Nachweis von Carbonat und Hydrogencarbonat

Materialien

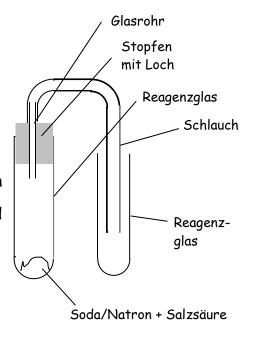
2 Reagenzgläser, Gummischlauch, Glasrohr, Stopfen mit und ohne Loch, Plastikpipetten, Salzsäure HCl (aq) (mindestens 1 m), Natriumcarbonat (Soda) Na_2CO_3 (s), Natriumhydrogencarbonat (Natron) $NaHCO_3$ (s) Bariumhydroxidlösung $Ba(OH)_2$ (aq) (Barytlauge, vorsicht, ätzend!), Phenolphthalein, Schutzbrille

Durchführung:

- 1. Löse in zwei Reagenzgläsern jeweils eine Spatelspitze Na_2CO_3 und $NaHCO_3$ in 2 ml Wasser, gib einen Tropfen Phenolphthalein dazu und vergleiche.
- 2. Gib jeweils einige Tropfen Salzsäure hinzu und vergleiche. Spüle die Reagenzgläser mit destilliertem Wasser, versetze eines erneut mit Na_2CO_3 (aq) und HCl (aq), setze schnell einen Lochstopfen mit Glasrohr und Gummischlauch auf und leite das entstehende Gas in das zweite Reagenzglas.
- 3. Gib anschließend wenige Tropfen Barytlauge in das Reagenzglas, verschließe mit einem Stopfen und schwenke einige Male. (Achtung, Schutzbrille!).
- 4. Gib einige Tropfen Salzsäure zu der getrübten Barytlauge und beobachte.

Ren	hac	htung	•
Deu	Duc	mung	•

1.	färbt	stärker	als	
- •	 			


- 2. In beiden Fällen entsteht ein _____
- 3. Barytlauge wird durch das Gas _____
- 4. Bei Zugabe von Säure _____

Erklärungen:

1. Die aus der Soda gebildeten _____-Ionen reagieren mit Wasser zu _____ und setzen dabei **zwei** ____-Ionen frei:

$$Na_2CO_3(s) \rightarrow 2 Na^+(aq) + CO_3^{2-}(aq)$$

 $CO_3^{2-}(aq) + 2 H_2O = H_2CO_3(aq) + 2 OH^-(aq)$

Die aus dem _____ gebildeten Hydrogencarbonat-Ionen reagieren mit ebenfalls zu Kohlensäure und setzen dabei aber nur **ein Hydroxid-Ion** frei:

NaHCO₃ (s)
$$\rightarrow$$
 ____ (aq) + ___ (aq)
HCO₃⁻ (aq) + H₂O \Rightarrow ___ (aq) + ___ (aq)

2. Die Hydroxonium-Ionen der Säure ebenfalls mit den (Hydrogen)carbonat-Ionen und setzen **zusätzliche** Kohlensäure frei:

$$CO_3^{2^-}$$
 (aq) + 2 H₃O⁺ \rightarrow _____ (aq) + 2 H₂O
 HCO_3^- (aq) + H₃O⁺ \rightarrow ____ (aq) + ____

Die Kohlensäure zerfällt zu Kohlenstoffdioxid und Wasser:

3. Die Hydroxid-Ionen der Barytlauge reagieren mit der Kohlensäure wieder zu Carbonat $H_2CO_3 + __OH^- \to ___+ ___$ (Umkehrung zu $__!$)

Die Carbonat-Ionen bilden mit Barium-Ionen sehr gerne das stabile Bariumcarbonat, welches sich nur sehr ungern wieder in Wasser löst:

$$Ba^{2+}(aq) + CO_3^{2-}(aq)$$
 (s)

(Nachweis von CO₂ durch Trübung von Barytlauge)

4. Bariumcarbonat löst sich in Säure auf, weil die Hydroxonium-Ionen sofort mit jedem freigesetzten Carbonat-Ion reagieren:

$$CO_3^{2-}$$
 (aq) + 2 H⁺ (aq) \rightarrow _____

Dadurch wird die Bildung von $BaCO_3$ (Vorwärtsrichtung in 3.) blockiert und nur die Auflösung von $BaCO_3$ (Rückwärtsrichtung in 3.) findet statt:

(BaCO₃ löst sich in Säure unter Bildung von CO₂)

Identifizierung von Carbonat und Hydrogencarbonat nach Ph Eur:

Carbonat, Hydrogencarbonat

Eine Suspension von 0,1 g Substanz in 2 ml <u>Wasser R</u> wird oder 2 ml der vorgeschriebenen Lösung werden verwendet. Die Lösung wird mit 3 ml <u>verdünnter Essigsäure R</u> versetzt und das Reagenzglas rasch mit einem durchbohrten Stopfen, der ein 2-mal im rechten Winkel gebogenes Glasrohr trägt, verschlossen. Die Mischung braust auf und liefert ein farb- und geruchloses Gas. Wird die Mischung schwach erhitzt und das Gas in 5 ml <u>Bariumhydroxid-Lösung R</u> geleitet, entsteht ein weißer Niederschlag, der sich in überschüssiger <u>Salzsäure R 1</u> löst.

Aufgabe:

Nenne drei Unterschiede der Ph Eur-Vorschrift zu unserem Verfahren und beschreibe, wie sie sich auf die Empfindlichkeit (geringe Mengen!) des Nachweises auswirken.