
## 1.2. Stoffgemische

## 1.2.1. Lösungsvorgänge

## Erklärung des Lösungsvorgangs mit dem Teilchenmodell

- Gibt man ein Salzkristall in Wasser, so sind die Wasserteilchen in der Lage, die Salzteilchen aus ihrem \_\_\_\_\_\_ herauszureißen, wenn die \_\_\_\_\_\_ zwischen Wasser- und Salzteilchen stärker sind als die Anziehungskräfte zwischen den Salzteilchen untereinander.
- 2. Die herausgerissenen Salzteilchen werden von einer Hülle aus \_\_\_\_\_\_umgeben und verteilen sich durch
  - Diffusion = ungeordnete Teilchenbewegung durch Wärme und
  - Konvektion = geordnete Teilchenbewegung durch Strömung gleichmäßig in der Lösung.
- 3. Der Lösungsvorgang wird beschleunigt durch
  - Erwärmen ⇒ schnellere \_\_\_\_\_
  - Rühren ⇒ schnellere \_\_\_\_\_
  - Zerteilung ⇒ größere \_\_\_\_\_.



## 1.2.2. Konzentrationsangaben

### Beispiele zu Volumenprozent (Vol-%)

Essig enthält 5 Vol-% Essigsäure: 100 ml Essig enthalten 5 ml Essigsäure Wein enthält 12 Vol-% Alkohol: 100 ml Wein enthalten 12 ml Alkohol

## Beispiele zu Massenprozent (% ohne Zusatz)

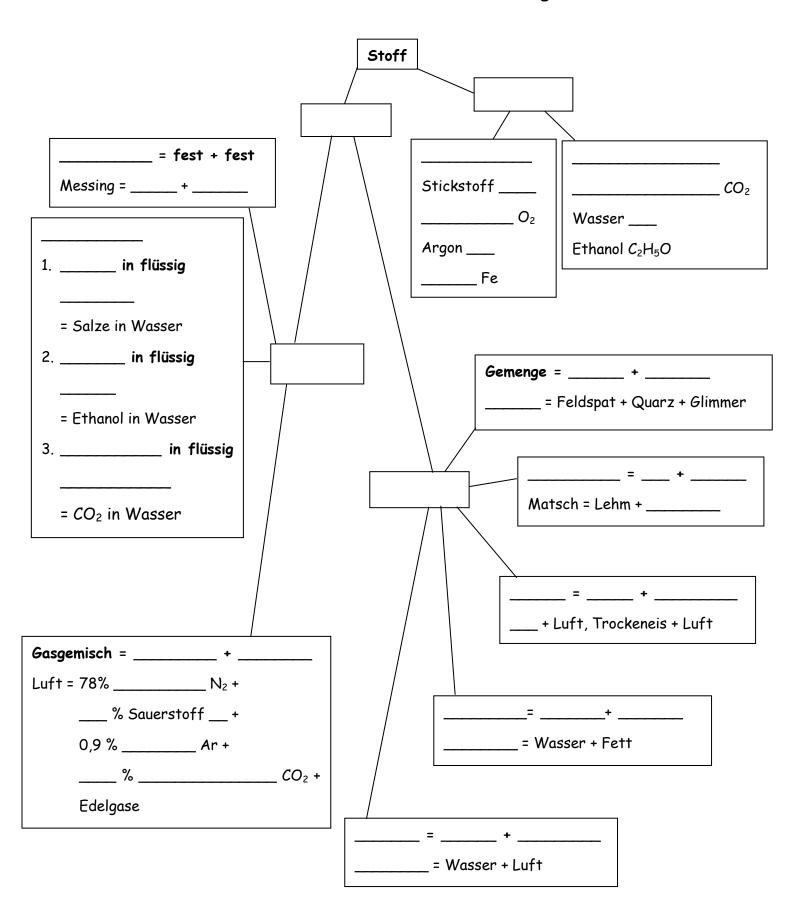
Stahl enthält 2 % Kohlenstoff: 100 g Stahl enthalten 2 g Kohlenstoff Messing enthält 30 % Zink: 100 g Messing enthalten 30 g Zink

## Beispiele zur Angabe in Mol pro Liter (molar)

- 0,1 molare Kochsalzlösung: 1 Liter Lösung enthält 0,1 mol Kochsalz
- 2 molare Natriumhydroxid-Lösung (Natronlauge): 1 Liter Natronlauge enthält 2 mol Natriumhydroxid

| Wie viel ml Alkohol sind in 750 ml Wein mit 12 Vol-% Alkohol enthalten?  Lösung: |                                                                                              |                                |                  |                           |                        |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------|------------------|---------------------------|------------------------|
| 100 ml Wein enthalten 12 ml Alkohol                                              |                                                                                              |                                |                  |                           |                        |
| 750 ml Wein enthalten $\times$ ml Alkohol                                        |                                                                                              |                                |                  |                           |                        |
| ⇒ Der Wein enthält x = = ml Alkohol.                                             |                                                                                              |                                |                  |                           |                        |
| 1.2.3. Saure und b                                                               | asische Lösungen                                                                             |                                |                  |                           |                        |
| Verwendung von sau                                                               | ıren Lösungen                                                                                |                                |                  |                           |                        |
|                                                                                  | en sauren Lebensmitte                                                                        | eln wie z.B                    | 3                | <i>'</i>                  |                        |
| in der Technik für sowie als Ätz- und Beizmittel                                 |                                                                                              |                                |                  |                           |                        |
| Verwendung von bas                                                               | sischen (                                                                                    | _) Lösung                      | gen = Lau        | gen                       |                        |
| • im Hausha                                                                      | lt in                                                                                        |                                |                  |                           | <del> </del>           |
|                                                                                  |                                                                                              |                                |                  |                           |                        |
|                                                                                  |                                                                                              |                                |                  |                           |                        |
| Vorsicht: Laugen verursachen irreparable Netzhautablösungen. Beim Umgang mit     |                                                                                              |                                |                  |                           |                        |
| <b>-</b>                                                                         | verursachen irrepart                                                                         | TOIS 1461                      | Znaurabi         | osungen.                  | benn onigung init      |
|                                                                                  | •                                                                                            |                                |                  |                           |                        |
| Laugen daher imm                                                                 | ner                                                                                          |                                |                  |                           |                        |
|                                                                                  | •                                                                                            |                                |                  |                           |                        |
| Laugen daher imm<br>abspülen!                                                    | •                                                                                            | tragen                         | und hir          | nterher (                 | die                    |
| Laugen daher imm<br>abspülen!                                                    | ner<br>toren sind Far                                                                        | tragen                         | und hir          | durch                     | diecharakteristische   |
| Laugen daher imm<br>abspülen!<br>Säure-Base-Indika                               | toren sind Far<br>anzeigen, ob                                                               | tragen                         | und hir          | durch                     | diecharakteristische   |
| Laugen daher imm<br>abspülen!                                                    | toren sind Far<br>anzeigen, ob                                                               | tragen                         | und hir          | durch                     | diecharakteristische   |
| Laugen daher imm<br>abspülen!<br>Säure-Base-Indika                               | toren sind Far<br>anzeigen, ob                                                               | tragen                         | und hir          | durch                     | diecharakteristische   |
| Laugen daher imm<br>abspülen!<br>Säure-Base-Indika                               | toren sind Far<br>anzeigen, ob o                                                             | tragen<br>bstoffe,<br>eine Lös | die              | durch                     | diecharakteristische   |
| Laugen daher imm<br>abspülen!<br>Säure-Base-Indika                               | toren sind Far anzeigen, ob o giert.  Indikator                                              | tragen<br>bstoffe,<br>eine Lös | die              | durch                     | diecharakteristische   |
| Laugen daher imm<br>abspülen!<br>Säure-Base-Indika                               | toren sind Far anzeigen, ob o giert.  Indikator Phenolphthalein                              | tragen<br>bstoffe,<br>eine Lös | die              | durch                     | diecharakteristische   |
| Laugen daher imm<br>abspülen!<br>Säure-Base-Indika                               | toren sind Far anzeigen, ob o giert.  Indikator Phenolphthalein Universalindikator           | tragen<br>bstoffe,<br>eine Lös | die              | durch                     | diecharakteristische   |
| Laugen daher imm abspülen!  Säure-Base-Indikar  rea                              | toren sind Far anzeigen, ob o giert.  Indikator Phenolphthalein Universalindikator           | tragen bstoffe, eine Lös       | die sung         | durch                     | charakteristischeoder  |
| Laugen daher immabspülen!  Säure-Base-Indikar  rea                               | toren sind Far anzeigen, ob giert.  Indikator Phenolphthalein Universalindikator Rotkohlsaft | bstoffe, eine Lös              | die Sung neutral | durch  basisch  Ssung kön | charakteristische oder |

Beispiel zur Gehaltsberechnung:


Der **pH-Wert** ist ein Maß für die \_\_\_\_\_\_ einer sauren oder basischen Lösung.

| _ | рН | Lösung |
|---|----|--------|
|   | 0  |        |
|   | 1  |        |
|   | 2  |        |
|   | 3  |        |
|   | 4  |        |
|   | 5  |        |
|   | 6  |        |
|   | 7  |        |
|   | 8  |        |
|   | 9  |        |
|   | 10 |        |
|   | 11 |        |
|   | 12 |        |
|   | 13 |        |
|   | 14 |        |

# 1.2.4. Reinstoff und Mischung

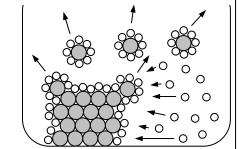
| Nur                                                                                  | besitzen l    | konstante | charakteristische | Stoffei | genschaften. |
|--------------------------------------------------------------------------------------|---------------|-----------|-------------------|---------|--------------|
| Dagegen hängen die                                                                   | Stoffeigensch | naften ei | ner               | v       | erschiedener |
| Reinstoffe vom Mischungsverhältnis ab. Nach ihrem Erscheinungsbild unterscheidet man |               |           |                   |         |              |
| einheitliche (                                                                       | ) und         | uneinhe   | itliche (         | )       | Mischungen.  |
| Heterogene Mischungen enthalten verschiedene <b>Phasen</b> , d.h., Bereiche,         |               |           |                   |         |              |
| die durch deutlich erkennbare Phasengrenzen voneinander getrennt sind.               |               |           |                   |         |              |

# Übersicht Reinstoff und Mischung



# 1.2.5. Trennverfahren

| Trennprinzip: Siedepunkte  1  2  3  4. Trinkwasser  aus Meerwasser                                    | (Absetzen)(Schleudern)(Abgießen) Trennprinzip: 1 in der Kläranlage 2 beim Arzt 3 schleudern ⇒Butter |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Chromatographie  Trennprinzip:  1. Grundwasserreinigung  mit und  2. Trinkwasser aus  von Farbstoffen | Trennprinzip: Korngröße  1. Herstellung von Getränken                                               |
| Trennprinzip  1 aus Kaffeepulver  2. Olivenöl aus  3 aus                                              | Ausschmelzen         Trennprinzip:                                                                  |


## 1.2. Stoffgemische

### 1.2.1. Lösungsvorgänge

Lösungsgeschwindigkeit von KMnO<sub>4</sub> in Wasser, Chemie heute S. 36

#### Erklärung des Lösungsvorgangs mit dem Teilchenmodell

- Gibt man ein Salzkristall in Wasser, so sind die Wasserteilchen in der Lage, die Salzteilchen aus ihrem Kristallgitter herauszureißen, wenn die Anziehungskräfte zwischen Wasser- und Salzteilchen stärker sind als die Anziehungskräfte zwischen den Salzteilchen untereinander.
- 2. Die herausgerissenen Salzteilchen werden von einer Hülle aus **Wasserteilchen** umgeben und verteilen sich durch
  - Diffusion = ungeordnete Teilchenbewegung durch Wärme und
  - Konvektion = geordnete Teilchenbewegung durch Strömung gleichmäßig in der Lösung.
- 3. Der Lösungsvorgang wird beschleunigt durch
  - Erwärmen ⇒ schnellere Diffusion
  - Rühren ⇒ schnellere Konvektion
  - Zerteilung ⇒ größere Angriffsfläche



Lösung und Auskristallisieren von KNO<sub>3</sub>, Kristallzüchtung mit Alaun oder CuSO<sub>4</sub>, Silberspiegelversuch mit Glucose, Aufgaben zu Stoffgemischen Nr. 1

#### 1.2.2. Konzentrationsangaben

Chemie heute S. 129

#### Beispiele zu Volumenprozent (Vol-%)

Essig enthält 5 Vol-% Essigsäure: 100 ml Essig enthalten 5 ml Essigsäure Wein enthält 12 Vol-% Alkohol: 100 ml Wein enthalten 12 ml Alkohol

#### Beispiele zu Massenprozent (% ohne Zusatz)

Stahl enthält 2 % Kohlenstoff: 100 g Stahl enthalten 2 g Kohlenstoff Messing enthält 30 % Zink: 100 g Messing enthalten 30 g Zink

#### Beispiele zur Angabe in Mol pro Liter (molar)

0,1 molare Kochsalzlösung: 1 Liter Lösung enthält 0,1 mol Kochsalz

2 molare Natriumhydroxid-Lösung (Natronlauge): 1 Liter Natronlauge enthält 2 mol Natriumhydroxid

### Beispiel zur Gehaltsberechnung:

Wieviel ml Alkohol sind in 750 ml Wein mit 12 Vol-% Alkohol enthalten?

#### Lösung:

100 ml Wein enthalten 12 ml Alkohol

750 ml Wein enthalten x ml Alkohol  $\Rightarrow$  Der Wein enthält x =  $\frac{750 \cdot 12}{100}$  = 90 ml Alkohol.

Übungen: Aufgaben zu Stoffgemischen Nr. 2

## 1.2.3. Saure und basische Lösungen

Versuch 1: Unterscheidung saurer und basischer Lösungen mit Hilfe von Indikatoren Zusatzaufgabe für Schnelle: Elemente I S. 32 – 33 / Chemie heute S. 30 lesen und Lücken ausfüllen

#### Verwendung von sauren Lösungen

- im Haushalt in allen sauren Lebensmitteln wie z.B. Wein, Essig, Zitrone, Mineralwasser
- in der Technik für Batterien sowie als Ätz- und Beizmittel

#### Verwendung von basischen (alkalischen) Lösungen = Laugen

• im Haushalt in Rohrreiniger, Geschirrspülmittel, Waschmittel

Vorsicht: Laugen verursachen irreparable Netzhautablösungen. Beim Umgang mit Laugen daher immer Schutzbrille tragen und hinterher die Hände abspülen!

Säure-Base-Indikatoren sind Farbstoffe, die durch charakteristische Farbänderungen anzeigen, ob eine Lösung sauer, neutral oder basisch reagiert.

Phenolphthalein und Universalindikator mit Salzsäure, Natronlauge und Wasser vorstellen

| Indikator          | sauer   | neutral | basisch |
|--------------------|---------|---------|---------|
| Phenolphthalein    | farblos | farblos | pink    |
| Universalindikator | rot     | grün    | blau    |
| Rotkohlsaft        | rot     | blau    | grün    |

Entsprechende Mengen einer sauren und einer basischen Lösung **neutralisieren** sich gegenseitig. Um die neutrale Lösung zu erkennen, muss ein **Indikator** zugesetzt werden.

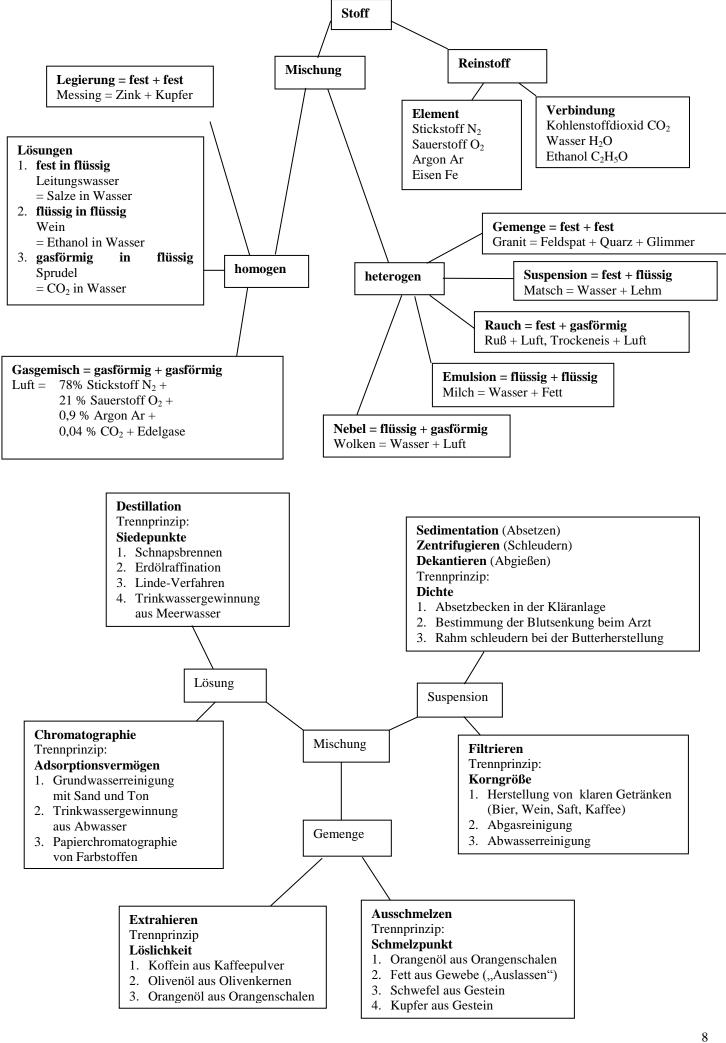
Der **pH-Wert** ist ein Maß für die Konzentration einer sauren oder basischen Lösung.

Versuch 2: pH-Werte von Lösungen

|                | pН | Lösung                    |
|----------------|----|---------------------------|
|                | 0  | 1-molare Salzsäure        |
|                | 1  | Magensaft                 |
| sauer          | 2  | Essigessenz, Zitronensaft |
|                | 3  | Essig, Cola, Vitamin C    |
|                | 4  | Wein                      |
|                | 5  | Mineralwasser             |
| neutral \{     | 6  | Speichel                  |
|                | 7  | Blut, Wasser              |
|                | 8  | Darmsaft                  |
|                | 9  |                           |
| la a si a a la | 10 | Seife                     |
| basisch        | 11 | Waschmittel               |
|                | 12 | Geschirrspülmittel        |
|                | 13 | Rohrreiniger              |
|                | 14 | 1-molare Natronlauge      |

Übungen: Aufgaben zu Stoffgemischen Nr. 3

#### 1.2.4. Reinstoff und Mischung


Elemente I S. 42-43 sowie S. 84 /Chemie heute S. 46 f. sowie S. 67 (Zusammensetzung und Trennung der Luft) lesen und Lücken ausfüllen, dann Versuch V 3 durchführen und Aufgaben A 1-A 3 bearbeiten

Nur **Reinstoffe** besitzen konstante charakteristische Stoffeigenschaften. Dagegen hängen die Stoffeigenschaften einer **Mischung** verschiedener Reinstoffe vom **Mischungsverhältnis** ab. Nach ihrem Erscheinungsbild unterscheidet man **homogene** (einheitliche) und **heterogene** (uneinheitliche) Mischungen. Heterogene Mischungen enthalten verschiedene **Phasen**, d.h., einheitliche Bereiche, die durch deutlich erkennbare **Phasengrenzen** voneinander getrennt sind.

Partnerpuzzle zu Reinstoff und Mischung oder Chemie heute S. 48 lesen, dann Mind-Map ausfüllen (siehe nächst Seite)

#### 1.2.5. Trennverfahren

Versuche zu Trennverfahren mit Fruchtsäften, Zusatz für Schnelle S. 49 A 1 – A3 Partnerpuzzle zu Trennverfahren oder Chemie heute S. 50 f. lesen, dann Mind-Map ausfüllen (siehe nächst Seite) Übungen: Aufgaben zu Stoffgemischen Nr. 4

