1.6. Die Ionenbindung

1.6.1. Die Edelgasregel

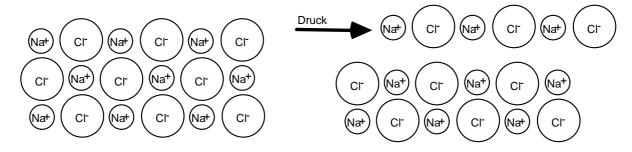
Die Edelgase gehen kaum Verbindungen ein und zeigen in ihrer Periode jeweils die
höchsten Ionisierungsenergien. Ihre Elektronenkonfiguration mit jeweils
Außenelektronen (voll besetzte undUnterniveaux) ist offensichtlich besonders
stabil. (Edelgaskonfiguration).
Die übrigen Atome suchen die Edelgaskonfiguration oder zumindest ein voll besetztes
s-Unterniveau zu erreichen, indem sie mit anderen Atomen bilden.
1.6.2. Die Ionenbindung
Treffen Metallatome auf Nichtmetallatome, so kann die Edelgaskonfiguration durch
Abgabe von Elektronen vomatom auf dasatom erreicht werden.
Dabei entstehen entgegengesetzt geladene Ionen, die durch allseitig wirkende
elektrostatische Anziehung (Coulomb-Kräfte) in einem Ionengitter zusammengehalten
werden. Stoffe mit Ionenbindung nennt man
Beispiel: Kochsalz: Na + Cl ₂ → Ionengitter:

Die **Verhältnisformel** eines Salzes gibt in möglichst kleinen ganzen Zahlen das Mengenverhältnis der Ionen an. **Beispiel**: Al^{3+} und O^{2-} verbinden sich im Verhältnis 2 : 3: ___ Al^{3+} + ___ O^{2-} \rightarrow _______

1.6.3. Benennung von Salzen

Metalle bilden durch Abgabe von e positiv geladene Ionen (______)
Nichtmetalle bilden durch Aufnahme von e negativ geladene Ionen (______)

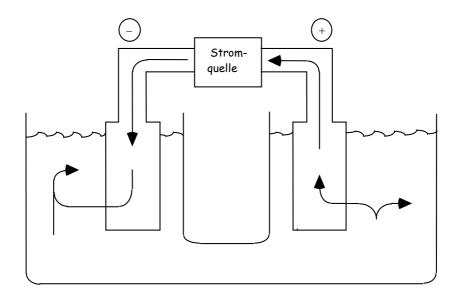
	I	II	III	IV	V	VI	VII	VIII
1	H⁺							He
	Wasserstoff							Helium
2	Li⁺	Be ²⁺	В	C ⁴⁻	N ³⁻	O ²⁻	F⁻	Ne
	Lithium	Beryllium	Bor	Carbid	Nitrid	Oxid	Fluorid	Neon
3	Na⁺	Mg²⁺	ΑΙ ³⁺	Si	P ³⁻	S ²⁻	Cl⁻	Ar
	Natrium	Magnesium	Aluminium	Silicium	Phosphid	Sulfid	Chlorid	Argon
4	K⁺	Ca ²⁺	Gα³+	Ge	As	Se ²⁻	Br⁻	Kr
	Kalium	Calcium	Gallium	Germanium	Arsen	Selenid	Bromid	Krypton
5	Rb⁺	Sr²⁺	In ³⁺	Sn⁴⁺	Sb ³⁺ /Sb ⁵⁺	Te	I-	Xe
	Rubidium	Strontium	Indium	Zinn	Antimon	Tellur	Iodid	Xenon
6	Cs⁺	Ba ²⁺	Tl ³⁺	Pb⁴+	Bi ³⁺ /Bi ⁵⁺	Po ⁴⁺	At	Rd
	Cäsium	Barium	Thallium	Blei	Wismut	Polonium	Astat	Radon


Vorsilben: 1 = mono, 2 = di, 3 = tri, 4 = tetra, 5 = penta

1.6.4. Eigenschaften von Salzen

Die	elektrostatische	Kraft	zwischen	positiv	geladenen	Metallionen	und	negativ
geladenen Nichtmetallionen und damit auch diesowie die								
und	Siedepunkte nehm	en mit _		Ladung u	ınd	Ionenro	dius	zu.

Beispiel: NaCl schmilzt bei 800°C und MgO erst bei 2800 °C, KI aber schon bei 680 °C


Im Gegensatz zu den Metallen sind Salze sehr **spröde**, da bei einer Verschiebung der Gitterebenen _____ geladene Ionen aufeinander stoßen und durch ihre gegenseitige ____ zum ____ des Gitters führen:

Im	Zustand	sind	die	Salze	Nichtleiter,	da	die	Ionen	fest	auf	ihren
Gitterplätzen s	itzen. Im				oder		Zu	stand c	dagege	n sir	nd die
Ionen beweglich	und leite	n den	elek	trische	n Strom						

1.6.5. Elektrolyse

Beispiel: Elektrolyse einer wässrigen Lösung von Kupferchlorid Cu²⁺ (aq)+ 2 Cl⁻ (aq)

Pluspol (Anode): _____ (farblos) \rightarrow ____ (grünes Gas) + 2 e⁻ Minuspol (Kathode): _____ (farblos) + 2 e⁻ \rightarrow ____ (Metallbart)

Ele	Elekrolyse = Zersetzung von Salzen im gelösten oder geschmolzenen Zustand							
•	positiv geladene Ionen () wandern zum Minuspol () und nehmen							
	dort e auf.							
•	negativ geladene Ionen () wandern zum Pluspol () und geben							
	dort e⁻ab.							

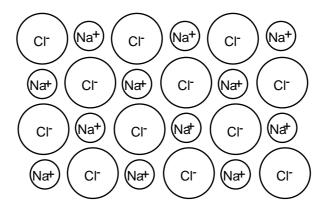
1.6.6. Bedeutung von Salzen

- Im menschlichen Körper sind Na⁺ und in geringerem Maße K⁺-Ionen für die Aufrechterhaltung des osmotischen Druckes in den Blutgefäßen und Zellen verantwortlich, da sie viel **Wasser binden** können.
- Zuviel Salz erhöht den Blutdruck und führt zur Austrocknung, da Salz nur in gelöstem Zustand transportiert und als Schweiß oder Harn ausgeschieden werden kann. Ungelöstes Salz z.B. in der Niere zerstört das umliegende Gewebe durch Wasserentzug und führt zum qualvollen Tod.
- Zuwenig Salz führt zu schwachem Blutdruck und Wasseransammlungen in den Räumen zwischen den Zellen (geschwollene Gliedmaßen), da das Wasser nicht mehr im Blut gehalten werden kann und in die Zellzwischenräume diffundiert.

1.6. Die Ionenbindung

1.6.1. Die Edelgasregel (vgl. Elemente I S. 151)

Die Edelgase gehen kaum Verbindungen ein und zeigen in ihrer Periode jeweils die höchsten Ionisierungsenergien. Ihre Elektronenkonfiguration mit jeweils 8 Außenelektronen (voll besetzte s- und p-Unterniveaux) ist offensichtlich besonders stabil. (**Edelgaskonfiguration**).


Die übrigen Atome suchen die Edelgaskonfiguration oder zumindest ein voll besetztes s-Unterniveau zu erreichen, indem sie **Verbindungen** mit anderen Atomen bilden.

1.6.2. Die Ionenbindung (vgl. Elemente I S. 150 und 152)

Herstellung von Kochsalz, Modell des Ionengitters untersuchen

Treffen Metallatome auf Nichtmetallatome, so kann die Edelgaskonfiguration durch Abgabe von Elektronen vom Metallatom auf das Nichtmetallatom erreicht werden. Dabei entstehen entgegengesetzt geladene **Ionen**, die durch allseitig wirkende **elektrostatische Anziehung** (Coulomb-Kräfte) in einem **Ionengitter** zusammengehalten werden. Stoffe mit Ionenbindung nennt man **Salze**.

Beispiel: Kochsalz: $2 \text{ Na} + \text{Cl}_2 \rightarrow 2 \text{ Na}^+\text{Cl}^-$.

Die **Verhältnisformel** eines Salzes gibt in möglichst kleinen ganzen Zahlen das Mengenverhältnis der Ionen an. **Beispiel**: Al³⁺ und O²⁻ verbinden sich im Verhältnis 2 : 3: 2 Al³⁺ + 3 O²⁻ \rightarrow Al₂³⁺O₃²⁻

Übungen: Aufgaben zur Ionenbindung Nr. 1

1.6.3. Benennung von Salzen (Elemente I S. 149 B4 betrachten und Lücken füllen)

Metalle bilden durch **Abgabe** von e⁻ positiv geladene Ionen (**Kationen**) **Nichtmetalle** bilden durch **Aufnahme** von e⁻ negativ geladene Ionen (**Anionen**)

	I	II	III	IV	V	VI	VII	VIII
1	H^{+}							He
	Wasserstoff							Helium
2	Li ⁺	Be^{2+}	В	C ⁴⁻	N^{3-}	O^{2-}	F^{-}	Ne
	Lithium	Beryllium	Bor	Carbid	Nitrid	Oxid	Fluorid	Neon
3	Na^+	Mg^{2+}	Al^{3+}	Si	P ³⁻	S^{2-}	Cl ⁻	Ar
	Natrium	Magnesium	Aluminium	Silicium	Phosphid	Sulfid	Chlorid	Argon
4	K^{+}	Ca ²⁺	Ga ³⁺	Ge	As	Se ²⁻	Br ⁻	Kr
	Kalium	Calcium	Gallium	Germanium	Arsen	Selenid	Bromid	Krypton
5	Rb^+	Sr ²⁺	In ³⁺	Sn ⁴⁺	Sb ³⁺ /Sb ⁵⁺	Te	I-	Xe
	Rubidium	Strontium	Indium	Zinn	Antimon	Tellur	Iodid	Xenon
6	Cs^+	Ba^{2+}	Tl ³⁺	Pb ⁴⁺	Bi ³⁺ /Bi ⁵⁺	Po ⁴⁺	At	Rd
	Cäsium	Barium	Thallium	Blei	Wismut	Polonium	Astat	Radon

Vorsilben: 1 = mono

2 = d

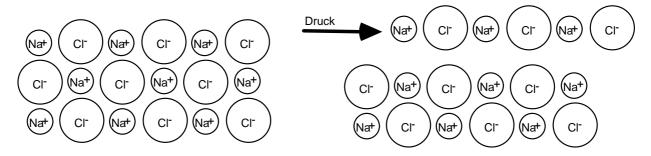
3 = tri

4 = tetra

5 = penta

Übungen: Aufgaben zur Ionenbindung Nr. 2 und 3

1.6.4. Eigenschaften von Salzen

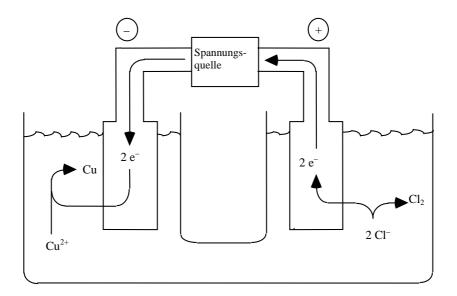

Erhitzen von Kaliumiodid, Natriumchlorid und Magnesiumoxid in schwerschmelzbaren Reagenzgläsern.

Die elektrostatische Kraft zwischen positiv geladenen Metallionen und negativ geladenen Nichtmetallionen und damit auch die **Festigkeit** sowie die **Schmelz- und Siedepunkte** nehmen mit steigender **Ladung** und sinkendem **Ionenradius** zu.

Beispiel: NaCl schmilzt bei 800°C und MgO erst bei 2800°C, KI aber schon bei 680°C

Verreiben von Eisenkörnern und Kochsalzkristallen in der Reibschale

Im Gegensatz zu den Metallen sind Salze sehr **spröde**, da bei einer Verschiebung der Gitterebenen gleichnamig geladene Ionen aufeinander stoßen und durch ihre gegenseitige Abstoßung zum Bruch des Gitters führen:


Leitfähigkeit von Kochsalz und Kochsalzlösung

Im **festen Zustand** sind die Salze **Nichtleiter**, da die Ionen fest auf ihren Gitterplätzen sitzen. Im **geschmolzenen** oder **gelösten** Zustand dagegen sind die Ionen beweglich und leiten den elektrischen Strom

Übungen: Aufgaben zur Ionenbindung Nr. 4 und 5

1.6.5. Elektrolyse (vgl. Elemente I S. 148)

Beispiel: Elektrolyse einer wässrigen Lösung von Kupferchlorid Cu²⁺ (aq)+ 2 Cl⁻ (aq)

Pluspol (**Kathode**): 2 Cl^- (farblos) $\rightarrow \text{Cl}_2$ (grünes Gas) $+ 2 \text{ e}^-$ **Minuspol** (**Anode**): Cu^{2+} (farblos) $+ 2 \text{ e}^- \rightarrow \text{Cu}$ (Metallbart)

Elekrolyse = Zersetzung von Salzen im gelösten oder geschmolzenen Zustand

- positiv geladene Ionen (Kationen) wandern zum Minuspol (Kathode) und nehmen dort e auf.
- negativ geladene Ionen (Anionen) wandern zum Pluspol (Anode) und geben dort e ab.

Übungen: Aufgaben zur Ionenbindung Nr. 6

Elektrolyse einer wässrigen ZnI2-Lösung

Schmelzelektrolyse von PbCl₂ (eutektisches Gemisch mit 20 % KCl)

1.6.6. Bedeutung von Salzen

- Im menschlichen Körper sind Na⁺ und in geringerem Maße K⁺-Ionen für die Aufrechterhaltung des osmotischen Druckes in den Blutgefäßen und Zellen verantwortlich, da sie viel **Wasser binden** können.
- Zuviel Salz erhöht den Blutdruck und führt zur Austrocknung, da Salz nur in gelöstem Zustand transportiert und als Schweiß oder Harn ausgeschiednen werden kann. Ungelöstes Salz z.B. in der Niere zerstört das umliegende Gewebe durch Wasserentzug und führt zum qualvollen Tod.
- Zuwenig Salz führt zu schwachem Blutdruck und Wasseransammlungen in den Räumen zwischen den Zellen (geschwollene Gliedmaßen), da das Wasser nicht mehr im Blut gehalten werden kann und in die Zellzwischenräume diffundiert.

Übungen: Aufgaben zur Ionenbindung Nr. 7