Stoffklasse	Alkane	Alkene/Alkine	Aromaten
funktionelle Gruppe			
Bezeichnung	Einfachbindung	Doppel-/Dreifachbindung	aromatisches System
Präfix	Alkyl-	Alkenyl/Alkinyl-	Phenyl-
Suffix	-alkan	-en/-in	-Benzol
Beispiele	, c , c , c , c , c , c , c , c , c , c	-C, C=C, -C, -C, -C, -C, -C, -C, -C, -C, -C, -	c;
Bezeichnung	2-Methylbutan	trans-/cis-2-Buten, 2-Butin	Phenylmethan Methylbenzol
typische Reaktionen	radikal. Substitution - mit Halogenen zu Halogenalkanen Elimierung - mit Pt-Katalysator zu Alkenen Oxidation - mit Luftsauerstoff zu CO ₂ und H ₂ O	elektrophile Addition - von Halogenen zu Dihalogenalkanen, - von Halogenwasserstoffen zu Halogenalkanen, - von Wasser zu Alkanolen, - von Wasserstoff zu Alkanen Bei Alkinen zweifache Addition möglich!	elektrophile Substitution - mit Halogenen zu Halogenbenzol, - mit Schwefelsäure zu Benzolsulfonsäure, - mit Salpetersäure zu Nitrobenzol, - mit Chloralkanen zu Alkylbenzol
Nachweis	Entfärbung von Bromw. nur mit Licht	Entfärbung von Bromwasser	Entfärbung von Bromwasser nur mit Katalysator AlBr ₃

Zusammenfassung funktioneller Gruppen und ihrer Reaktionen

primäre/sekundäre/tertiäre Halogenalkane	primäre/sekundäre/tertiäre Aminoalkane	primäre/sekundäre/tertiäre Alkohole
\	$\frac{1}{\sqrt{C}}$ C — NH ₂	
Halogenatom	Aminogruppe	Hydroxylgruppe
Halogen-	Amino-	Hydroxy-
-halogenid	-amin	-ol
СН ₃ С1-С-Н Н-С-Н Н ₃ С	CH ₃ H ₂ N - C - H H - C - H H ₃ C	СН ₃ НО-С-Н Н-С-Н Н ₃ С
L-2-Chlorbutan L-2-Butylchlorid	L-2-Aminobutan L-1-Butylamin	L-2-Hydroxybutan L-Butan-2-ol
nukleophile Substitution - mit Natriumhalogenid NaX zu Halogenalkanen, - mit Natriumhydroxid NaOH zu Alkoholen, - mit Natriumamid NaNH2 zu Aminoalkanen, - mit Na-alkanolaten NaOR zu Ethern Eliminierung - mit Natronlauge zu Alkenen	Säure-Base-Reaktion - mit Säuren zu Alkylammoniumionen - mit Na zu Alkylamiden	nukleophile Substitution (über Alkyloxonium) - mit Halogenwasserstoffen zu Halogenalkanen, - mit anderen anorganischen Säuren zu Säureestern, - mit Alkoholen zu Ethern Eliminierung (über Alkyloxonium) - zu Alkenen Oxidation der prim./sek. Alkohole - mit CuO, KMnO ₄ oder H ₂ CrO ₄ zu Aldehyden/Ketonen Säure-Base-Reaktion - mit Säuren zu Alkyloxoniumionen - mit Na (als Lewis-Base) zu Alkoholaten
Summenformel enthält F, Cl, Br, I	Summenformel enthält N wasserlösliche Amine reagieren basisch	Alle Alkohole bilden mit Na Wasserstoff primäre/sekundäre Alkohole lassen sich mit starken Oxidationsmitteln (heißes CuO, KMnO ₄ oder H ₂ CrO ₄) oxidieren. tertiäre Alkohole lassen sich nicht oxidieren.

Ether	Aldehyde/Ketone	Carbonsäuren
	$ \begin{array}{ccc} H & R \\ C = 0 & C = 0 \\ R & R \end{array} $	$R-C \xrightarrow{OH} \xrightarrow{-H^+} R-C \xrightarrow{OI} R-C \xrightarrow{OI}$
Oxagruppe (-O-) Ethergruppe	Oxogruppe (=O) Carbonylgruppe (C=O) Aldehyd-/Ketogruppe	Carboxylgruppe/Carboxylatgruppe
Oxa-	Oxo-	Carboxy-
-ether	-al/-on	-säure/-oat
, c	-c	ноос—с—соон ОН
2-Oxa-Butan	1-Oxobutan/2-Oxobutan	3-Carboxy-3-Hydroxy-Pentandisäure/1-
Methylethylether	Butanal/2-Butanon	(Zitronensäure)
nukleophile Subst.	nukleophile Addition	nukleophile Addition
(über Dialkyloxonium) - mit Wasser zu Alkoholen (Etherspaltung)	 von Wasser zu n,n-Dihydroxyverb. von Alkoholen zu n-Hydroxy, n-Alkoxyverb. (Halbacetalen) und nachfolgende nukleophile Substitution mit Alkohol zu n,n-Dialkoxyverb. (Vollacetalen) Oxidation der primären Carbonylverbindungen mit Cu²⁺ oder Ag⁺ zu Carbonsäuren Keto-Enol-Tautomerie der Carbonylverbindungen zu Alkenolen 	 von Alkoholen von Aminen und nachfolgende Eliminierung von Wasser zu Carbonsäureestern (→ Fette) zu Carbonsäureamiden (→ Peptide) Säure-Base-Reaktion mit Basen zu Alkanoaten
Summenf. enthält O, aber keine Reaktion mit Na oder Oxidationsmitteln	primäre Carbonylverbindungen lassen sich mit schwachen Oxidationsmitteln (Ag ⁺ oder Cu ²⁺) oxidieren und färben fuchsinschweflige Säure violett. sekundäre Carbonylverbindungen lassen sich nicht oxidieren	wasserlösl. Carbonsäuren reagieren sauer

Stoffklasse	Alkane	Alkene/Alkine	Aromaten
funktionelle Gruppe			
D			
Bezeichnung			
Präfix			
Suffix			
Beispiele			
Bezeichnung			
typische Reaktionen			
Nachweis			

Zusammenfassung funktioneller Gruppen und ihrer Reaktionen

primäre/sekundäre/tertiäre Halogenalkane	primäre/sekundäre/tertiäre Aminoalkane	primäre/sekundäre/tertiäre Alkohole
Haiogenainait	Aminoaikanc	AIROHOIC

Ether	Aldehyde/Ketone	Carbonsäuren