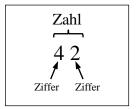
0.1. Natürliche Zahlen

0.1.1 Das Dezimalsystem

Mit zehn **Ziffern** 0; 1; 2; 3; 4; 5; 6; 7; 8 und 9 lassen sich alle **Zahlen** im **Dezimalsystem** (**Zehnersystem** von lat. decem = griech. deka = zehn) darstellen:

Stellen	wer	ttafe	el		
ZT	Т	Н	Z	Е	
			3	3 2	= 3 Einer = 3 Zehner + 2 Einer
	3	3 8	6	4 2	= 3 Hunderter + 6 Zehner + 4 Einer = 3 Tausender + 8 Hunderter + 0 Zehner + 2 Einer



Übungen: Aufgaben zum Dezimalsystem Nr. 1 - 6

0.1.2 Der Zahlenstrahl



Zum Vergleichen von Zahlen benutzt man die **Relationszeichen** < (kleiner als) und > (größer als).

Merke: kleinere Zahl – Spitze des Relationszeichens – links auf dem Zahlenstrahl größere Zahl – Öffnung des Relationszeichens – rechts auf dem Zahlenstrahl

Beispiel: 14 ist kleiner als 35 35 ist größer als 14 14 < 35 35 > 14

Übungen: Aufgaben zum Zahlenstrahl Nr. 1 - 4

0.1.3 Große Zahlen

Um große Zahlen besser lesen und vergleichen zu können, teilt man die Stellenwerttafel in Dreierblöcke:

 Billionen B.			M	Iilliarde Mrd.	en	N	Aillione Mio.	n		Γauseno Tsd.	d			
Н	Z	Е	Н	Z	Е	Н	Z	Е	Н	Z	Е	Н	Z	Е
											1	0	0	0
								1	0	0	0	0	0	0
					1	0	0	0	0	0	0	0	0	0
		1	0	0	0	0	0	0	0	0	0	0	0	0

1 Tausender = 1 000 Einer = 1 000

1 Million = 1 000 Tausender = 1 000 000 von lat. mille = tausend (Tausender) 1 Milliarde = 1 000 Millionen = 1 000 000 von lat. mille = tausend (Millionen)

1 Billion = 1 000 Milliarden = 1 000 000 000 000 von lat. bis = zweimal für Millionen

Beispiele:

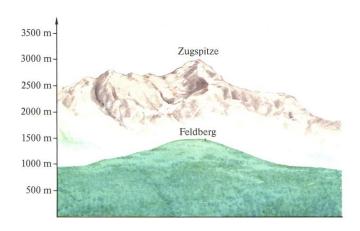
8 300 000 acht Millionen dreihunderttausend
6 800 000 001 sechs Milliarden achthundert Millionen eins
213 000 017 019 zweihundertdreizehn Milliarden siebzehntausendneunzehn
4 076 000 000 211 vier Billionen sechsundsiebzig Milliarden zweihundert elf

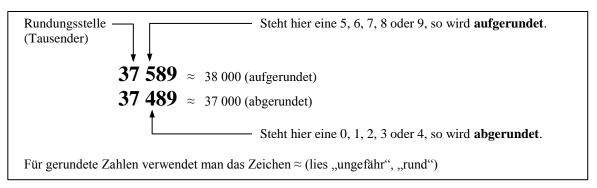
Übungen: Aufgaben zu großen Zahlen Nr. 1 - 10

0.1.4 Runden von Zahlen

Der höchste Berg Deutschlands ist mit 2962 m die **Zugspitze** in den bayrischen Alpen. Der höchste Berg Baden-Württembergs ist der **Feldberg** mit 1493 m. **Merke**: Zugspitze: rund 3000 m und Feldberg: rund 1500 m.

Um große Zahlen schneller vergleichen zu können, verwendet man gerundete Zahlen. Vor dem Runden ist die **Rundungsstelle** (Zehner, Hunderter, Tausender, ...) festzulegen. Die Ziffer, die **rechts** von der Rundungsstelle steht, entscheidet über auf- oder abrunden:





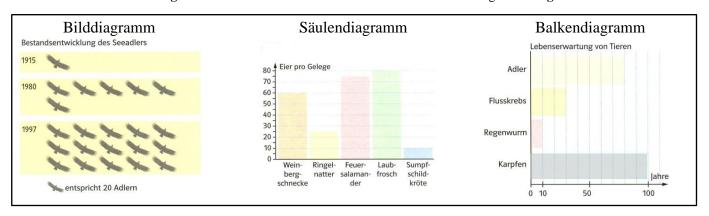
Beispiele:

- a) Runden auf Zehner $2178 \approx 2180$ (aufrunden) $2612 \approx 2610$ (abrunden)
- b) Runden auf Hunderter $2371 \approx 2400$ (aufrunden) $3412 \approx 3400$ (abrunden)
- c) Runden auf Tausender $3948 \approx 4000$ (aufrunden) $5499 \approx 5000$ (abrunden)

Übungen: Aufgaben zum Runden Nr. 1 - 9

0.1.5 Ordnen und Darstellen von Zahlen

Zahlen lassen sich durch Diagramme veranschaulichen. Große Zahlen werden in der Regel vorher gerundet.



Übungen: Aufgaben zum Ordnen und Darstellen Nr. 1 - 4

0.1.6 Römische Zahlen

Stufenzeichen: I		X 10		C 100		M 1000
Zwischenzeichen:	V 5		L 50		D 500	

Regel	Beispiele
Stehen gleiche Stufenzeichen	II = 1 + 1 = 2
nebeneinander, so wird addiert	XXX = 10 + 10 + 10 = 30
	CC = 100 + 100 = 200
Steht ein kleineres Zeichen rechts neben	VI = 5 + 1 = 6
einem größeren Zeichen, so wird addiert.	LV = 50 + 5 = 55
	CX = 100 + 10 = 110
Steht ein kleineres Zeichen links neben	IV = 5 - 1 = 4
einem größeren Zeichen, so wird	VL = 50 - 5 = 45
subtrahiert.	CX = 100 - 10 = 90
Die Stufenzahlen dürfen höchstens	XXX = 30
dreimal nebeneinander vorkommen.	XXXX, schreibe stattdessen $XL = 40$
Die Zwischenzeichen dürfen sich nicht	XV = 15
wiederholen.	$\forall V$, schreibe stattdessen X = 10

Übungen: Aufgaben zu römischen Zahlen Nr. 1 und 2

0.1.7 Potenzen

Unser gewohntes Dezimalsystem beruht auf Zehnerpotenzen

Zahlwort	Zehnerpotenz	Produkt	Zahl
Eins	10^{0}	-	1
Zehn	101	10	10
Hundert	102	10.10	100
Tausend	103	10.10.10	1000
Zehntausend	104	10.10.10.10	10 000
Hunderttausend	105	10.10.10.10.10	100 000
Million	106	10.10.10.10.10.10	1 000 000
Milliarde	109		
Billion	10^{12}		
Billiarde	1015		
Trillion	10^{18}		
Trilliarde	10^{21}		
Quadrillion	10^{24}		
Quadrilliarde	10^{27}		

Wissenschaftliche Darstellung großer Zahlen: $6 \cdot 10^8 = 600\ 000\ 000$

Allgemein gilt

Eine Potenz ist ein Produkt mit gleichen Faktoren.

Beispiele: $5^3 = 5.5.5$ lies: "fünf hoch drei" $3^5 = 3.3.3.3.3$ lies: "drei hoch fünf"

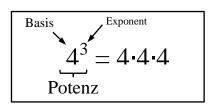
Zum Vergleich:

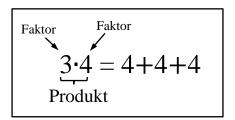
Ein Produkt ist eine Summe mit gleichen Summanden:

Beispiele: 3.5 = 5 + 5 + 5 lies: "drei mal fünf"

5.3 = 3 + 3 + 3 + 3 + 3 lies: "fünf mal drei"

Übungen: Aufgaben zu Potenzen Nr. 1 - 6





0.1.8 Das Binärsystem

Im **Dezimalsystem** wird die Zahl in **Zehnerpotenzen** zerlegt:

M	Iilliarde	en	M	lillione	n	Tausend					
Н	Z	Е	Н	Z	Е	Н	Z	Е	Н	Z	Е
10^{11}	10^{10}	10^{9}	10^{8}	107	106	105	104	10^{3}	10^{2}	10^{1}	10^{0}
	3	0	0	8	7	2	0	0	1	0	5

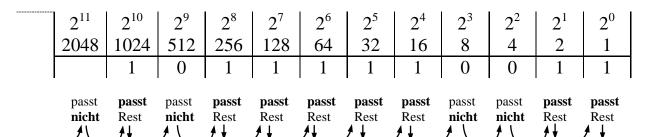
$$\Rightarrow$$
 30 087 200 105 = $3 \cdot 10^{10} + 8 \cdot 10^7 + 7 \cdot 10^6 + 2 \cdot 10^5 + 1 \cdot 10^2 + 5 \cdot 10^0$

Die elektronischen Speicher und Rechenwerke der Computern z.B. in Autos und Mobiltelefonen können nur die Werte 1 (Strom fließt) und 0 (Strom fließt nicht) unterscheiden. Zur Programmierung müssen Zahlen daher in das **Binärsystem** (griech. bini = je zwei) übersetzt werden. Dabei wird die Zahl in **Zweierpotenzen** zerlegt:

	210	29	28	27	26	2^{5}	24	23	2^{2}	21	2^{0}
	1024	512	256	128	64	32	16	8	4	2	1
	1	0	1	1	0	0	0	0	1	0	1

$$\Rightarrow (10\ 110\ 000\ 101)_2 = 1 \cdot 2^{10} + 1 \cdot 2^8 + 1 \cdot 2^7 + 1 \cdot 2^2 + 1 \cdot 2^0 = 1024 + 256 + 128 + 4 + 1 = 1413$$

Um eine Zahl aus dem Dezimalsystem ins Binärsystem zu übersetzen, füllt man sie mit Zweierpotenzen von links nach rechts auf:



$$\Rightarrow 1523 = 1 \cdot 10^{10} + 1 \cdot 2^8 + 1 \cdot 2^7 + 1 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^1 + 1 \cdot 2^0 = (10\ 111\ 110\ 011)_2$$

Übungen: Aufgaben zum Binärsystem Nr. 1 und 2

0.1.9 Das Hexadezimalsystem

Weil Binärzahlen sehr lang sind, werden bei der Programmierung häufig **Hexadezimalzahlen** (griech. **hexa** = sechs) auf der Basis 16 benutzt. Um die dafür benötigten 16 Ziffern zu erhalten, werden die Zehnerziffern 0-9 durch die **Buchstaben** A-F für 10-15 ergänzt.

Beispiele:
$$(12)_{16} = 1 \cdot 16^{1} + 2 \cdot 16^{0}$$

$$= 16 + 2$$

$$= 18$$

$$(3FA)_{16} = 3 \cdot 16^{2} + F \cdot 16^{1} + A \cdot 16^{0}$$

$$= 3 \cdot 256 + 15 \cdot 16 + 10 \cdot 1$$

$$= 768 + 240 + 10$$

$$= 1018$$

$$(AB)_{16} = A \cdot 16^{1} + B \cdot 16^{0}$$

$$= 160 + 11$$

$$= 171$$

$$(A3B)_{16} = A \cdot 16^{2} + 3 \cdot 16^{1} + B \cdot 16^{0}$$

$$= 10 \cdot 256 + 3 \cdot 16 + 11 \cdot 1$$

$$= 2560 + 48 + 11$$

$$= 2619$$

$$(AB0)_{16} = A \cdot 16^{2} + B \cdot 16^{1}$$

$$= 2619$$

$$(AB0)_{16} = A \cdot 16^{2} + B \cdot 16^{1}$$

$$= 10 \cdot 256 + 11 \cdot 16$$

$$= 2560 + 176$$

$$= 2736$$

Übungen: Aufgaben zum Hexadezimalsystem Nr. 1 und 2