4.2. Prüfungsaufgaben zu quadratischen Funktionen mit Parametern

Aufgabe 1: Achsenschnittpunkte, Scheitelpunkte und gemeinsame Punkte

Gegeben seien die Funktionen $f_t(x) = x^2 - 2x - t$ für $t \in \mathbb{R}$. und g(x) = 2x - 4

- a) Gib die Koordinaten der Achsenschnittpunkte und des Scheitelpunktes von ft in Abhängigkeit von t an. (6)
- b) Untersuche, für welche t sich die Schaubilder von ft und g
 - schneiden,
 - berühren oder
 - passieren

und gib die Koordinaten der gemeinsamen Punkte in Abhängigkeit von tan. (4)

c) Zeichne die Schaubilder von f_{-1} , f_0 und f_1 sowie von g in ein gemeinsames Koordinatensystem mit $-1 \le x \le 3$ und $-5 \le x \le 4$. (3)

Lösung

a)
$$S(1|-1-t)$$
, $S_v(0|-t)$, $S_{x1}(1-\sqrt{1+t})$ und $S_{x2}(1+\sqrt{1+t})$, falls $t \neq -1$

$$\begin{array}{lll} \text{b)} & S_{fg1}(2-\sqrt{t} \ | -2\sqrt{t} \) \text{ und } S_{fg2}(2+\sqrt{t} \ | 2\sqrt{t} \), & \text{falls } t>0 \\ & S_{fg1}(2|0), & \text{falls } t=0 \\ & \text{keine gemeinsamen Punkte,} & \text{falls } t<0 \end{array}$$

c) Normalparabeln mit Scheitelpunkten bei $S_{-1}(1|-2)$, $S_0(1|-1)$ und $S_1(1|0)$ sowie Gerade.

Aufgabe 2: Achsenschnittpunkte, Scheitelpunkte und gemeinsame Punkte

Gegeben seien die Funktionen $f_t(x) = x^2 + 2x - t$ für $t \in \mathbb{R}$. und g(x) = -2x - 4

- a) Gib die Koordinaten der Achsenschnittpunkte und des Scheitelpunktes von f_t in Abhängigkeit von t an. (6)
- b) Untersuche, für welche t sich die Schaubilder von ft und g
 - schneiden,
 - berühren oder
 - passieren

und gib die Koordinaten der gemeinsamen Punkte in Abhängigkeit von tan. (4)

c) Zeichne die Schaubilder von f_{-1} , f_0 und f_1 sowie von g in ein gemeinsames Koordinatensystem mit $-3 \le x \le 1$ und $-5 \le x \le 4$. (3)

Lösung

a)
$$S(-1|-1-t)$$
, $S_y(0|-t)$, $S_{x1}(-1-\sqrt{1+t}|0)$ und $S_{x2}(-1+\sqrt{1+t}|0)$, falls $t \neq -1$

$$\begin{array}{ll} b) & S_{fg1}(-2-\sqrt{t} \ | -2\sqrt{t} \) \ und \ S_{fg2}(-2+\sqrt{t} \ | 2\sqrt{t} \), falls \ t>0 \\ & S_{fg}(-2|0), & falls \ t=0 \\ & keine \ gemeins amen \ Punkte, & falls \ t<0 \end{array}$$

c) Normalparabeln mit Scheitelpunkten bei $S_{-1}(-1|-2)$, $S_0(-1|-1)$ und $S_1(-1|0)$ sowie Gerade.

Aufgabe 3: Achsenschnittpunkte und Scheitelpunkte

Gegeben seien die Funktionen $f_t(x) = x^2 - 2tx - 2t + 1$ mit $t \in \mathbb{R}$ und $D(t) = t^2 + 2t - 1$.

- a) Beschreibe die Streckung bzw. Stauchung, die Koordinaten des Scheitelpunktes sowie die Achsenschnittpunkte der Funktion $f_t(x)$ in Abhängigkeit von t.
- b) Bestimme die Streckung bzw. Stauchung, die Koordinaten des Scheitelpunktes sowie die Achsenschnittpunkte der Funktion D(t)
- c) Zeichne ein Schaubild von D(t) im Bereich $-3 \le t \le 1$.
- d) Für welche t ist -D(t) > 0 -D(t) = 0
 - -D(t) < 0?
- e) Für welche t besitzt $f_t(x)$ zwei, eine bzw. keine Nullstellen? (Begründung!)

Lösung:

a)
$$S(t|-t^2-2t+1)$$
 und $x_{1/2} = t \pm \sqrt{t^2+2t-1}$

b)
$$D(t) = t^2 + 2t - 1 = (t+1)^2 - 2$$
, also $S(-1|2)$

- c) (nach oben geöffnete Normalparabel)
- d) $t_{1/2} = -1 \pm \sqrt{2}$, also
- e) D(t) > 0 und zwei NST im Schaubild von $f_t(x)$ für $t < -1 \sqrt{2}$ oder $t > -1 + \sqrt{2}$.

$$D(t)=0$$
 und eine NST im Schaubild von $f_t(x)$ für $t=-1-\sqrt{2}$ oder $t=-1+\sqrt{2}$.

$$D(t) < 0$$
 und keine NST im Schaubild von $f_t(x)$ für $-1 - \sqrt{2} < t < -1 + \sqrt{2}$.

Aufgabe 4: Achsenschnittpunkte und Scheitelpunkte

Gegeben seien die Funktionen $f_t(x) = x^2 - 2tx + 4$ für $t \in \mathbb{R}$. und $D(t) = t^2 - 4$.

- a) Berechne den Scheitelpunkt von ft in Abhängigkeit von t.
- b) Berechne alle Achsenschnittpunkte von D.

$$-D(t) < 0,$$

$$-D(t) = 0,$$

-
$$D(t) > 0$$
?

d) Berechne alle Achsenschnittpunkte von ft in Abhängigkeit von t.

Lösung

a)
$$S(t|t^2-4)$$

b)
$$S_1(-2|0)$$
 und $S_2(2|0)$

c)
$$D(t) < 0$$
 für $-2 < t < 2$

$$D(t) = 0 \text{ für } t = \pm 2$$

$$D(t) > 0$$
 für $t < -2$ oder $2 < t$.

d) Aus
$$f_t(x) = 0$$
 erhält man $x_{1/2} = t \pm \sqrt{t^2 - 4}$ und daraus

keine Nullstelle für
$$-2 < t < 2$$

eine Nullstelle
$$S(t|0)$$
 für $t = \pm 2$

zwei Nullstellen S(t±
$$\sqrt{t^2-4}$$
 |0) für t < -2 oder 2 < t.

Aufgabe 5: gemeinsame Punkte

Bestimme die gemeinsamen Punkte der folgenden Funktionen in Abhängigkeit von t:

a)
$$f_t(x) = t(x-1)^2$$
 und $g(x) = 1$ mit $t \in \mathbb{R} \setminus \{0\}$

b)
$$f(x) = x^2 + 4t - 2t^2$$
 und $g(x) = -x^2 + 4x$ mit $t \in \mathbb{R}$

Lösung:

a)
$$S_{t1/2}(1 \pm \frac{1}{\sqrt{t}}|1)$$

b)
$$S_{t1}(2-t|4-t^2)$$
 und $S_{t2}(t|4t-t^2)$

Aufgabe 6: Achsenschnittpunkte und gemeinsame Punkte

 $\text{Gegeben seien die Funktionen } f(x) = -\frac{1}{2} (x+1)^2 - 2 \text{ und } g_t(x) = -\frac{1}{2} (x-3)^2 + t \text{ für } t \in \mathbb{R}.$

- a) Berechne alle Achsenschnittpunkte von f
- b) Berechne alle Achsenschnittpunkte von g_t in Abhängigkeit von t
- c) Für welche t haben die Schaubilder von f und g_t
 - zwei Schnittpunkte
 - einen Berührpunkt
 - keinen gemeinsamen Punkt?

Lösung

a)
$$S_1(0|-\frac{3}{2})$$
, $S_1(-3|0)$ und $S_2(1|0)$

b)
$$S_{0t}(0|\frac{9}{2}+t)$$
, $S_{1t}(3+\sqrt{2t}|0)$ und $S_{2t}(3-\sqrt{2t}|0)$, falls $t \neq 0$.

c) Aus
$$\frac{1}{2}x^2 + x - \frac{3}{2} = -\frac{1}{2}x^2 + 3x - \frac{9}{2} + t$$
 bzw.
$$x^2 - 2x + 3 - t = 0$$
 erhält man
$$x_{1/2} = 1 \pm \sqrt{t - 2}$$
 und daraus - zwei Schnittpunkte für $t > 2$ - einen Berührpunkt für $t = 2$ - keinen gemeinsamen Punkt

Aufgabe 7: gemeinsame Punkte

Welchen Wert muss t annehmen, damit das Schaubild der Funktion $f_t(x) = tx^2 + (t+1)x$ die Gerade g(x) = -1 gerade berührt? Bestimme die Koordinaten des Berührpunktes.

Lösung

$$f_t(x) = tx^2 + (t+1)x = t(x + \frac{t+1}{2t})^2 - \frac{(t+1)^2}{4t}, \text{ also } S(-\frac{t+1}{2t}|-\frac{(t+1)^2}{4t}) \text{ und aus } - \frac{(t+1)^2}{4t} = -1 \text{ ergibt sich } S(-\frac{t+1}{2t}|-\frac{(t+1)^2}{4t}) = -1 \text{ ergibt sich } S(-\frac{t+1}{2t}|-\frac{(t+1)^2}{4t}) = -1 \text{ ergibt } S(-\frac{t+1}{2t}|-\frac{(t+1)^2}{2t}|-\frac{(t+1)^2}{4t}) = -1 \text{ ergibt } S(-\frac{t+1}{2t}|-\frac{(t+1)^2}{2$$

t - 2t + 1 = 0 und daraus t = 1. Die Koordinaten des Berührpunktes (=Scheitelpunkt) sind dann S(-1|-1).

Aufgabe 8: gemeinsame Punkte

Welchen Wert muss t annehmen, damit das Schaubild der Funktion $f_t(x) = x^2 - tx + 72$ die nach unten geöffnete Normalparabel $p(x) = -x^2$ gerade berührt? Bestimme die Koordinaten des Berührpunktes.

Lösung:

Aus
$$2x^2 - tx + 72 = 0$$
 erhält man $x_t = \frac{t}{4} \pm \sqrt{\frac{t^2}{16} - 36}$ und daraus $t_a = -24$ und $t_b = 24$. Die Koordinaten des Berührpunktes sind dann $S_a(-6|-36)$ und $S_b(6|-36)$.

Aufgabe 9: Ortskurven

Bestimme die Gleichung der Ortskurve der Scheitelpunkte von f_t und zeichne die Ortskurve und die Schaubilder von f_t für $t \in \{-3, -2, -1, 0, 1, 2, 3\}$ in ein gemeinsames Koordinatensystem.

a)
$$f_t(x) = 2x^2 - 2tx + \frac{t^2}{4} + 1 \text{ für } -3 \le x \le 3 \text{ und } -2 \le y \le 4$$

$$f_t(x) = 2x^2 - 2tx + \frac{t^2}{4} + 1 = 2(x - \frac{t}{2})^2 - \frac{t^2}{4} + 1 \Rightarrow S_t(\frac{t}{2}|-\frac{t^2}{4}+1) \text{ mit Ortskurve } y = -x^2 + 1.$$
 b)
$$f_t(x) = 2x^2 - 2tx + \frac{t^2}{4} + t - 1 \text{ für } -3 \le x \le 3 \text{ und } -7 \le y \le 2.$$

$$\begin{split} \text{b)} \quad & f_t(x) = 2x^2 - 2tx + \frac{t}{4} + t - 1 \text{ für } - 3 \leq x \leq 3 \text{ und } - 7 \leq y \leq 2. \\ \\ & f_t(x) = 2x^2 - 2tx + \frac{t^2}{4} + t - 1 = 2(x - \frac{t}{2})^2 - \frac{t^2}{4} + t - 1 = 2(x - \frac{t}{2})^2 - (\frac{t}{2} - 1)^2 \\ \\ & \Rightarrow S_t(\frac{t}{2} \mid -(\frac{t}{2} - 1)^2) \text{ mit Ortskurve } y = -(x - 1)^2 \,. \end{split}$$

$$\begin{split} c) \quad f_t(x) &= -2x^2 + 2tx - \frac{t^2}{4} + t + 1 \text{ für } -3 \leq x \leq 3 \text{ und } -2 \leq y \leq 7. \\ f_t(x) &= -2x^2 + 2tx - \frac{t^2}{4} + t + 1 = -2(x - \frac{t}{2})^2 + \frac{t^2}{4} + t + 1 = -2(x - \frac{t}{2})^2 + (\frac{t}{2} + 1)^2 \\ \Rightarrow S_t(\frac{t}{2} \mid (\frac{t}{2} + 1)^2) \text{ mit Ortskurve } y = (x + 1)^2 \,. \end{split}$$

$$\begin{aligned} d) \quad f_t(x) &= \frac{x^2}{t} - \frac{2x}{t} + \frac{2}{t} \text{ für } -2 \leq x \leq 5 \text{ und } -5 \leq y \leq 5. \\ f_t(x) &= \frac{x^2}{t} - \frac{2x}{t} + \frac{2}{t} = \frac{1}{t}(x-1)^2 + \frac{1}{t} \Rightarrow S_t(1|\frac{1}{t}) \text{ mit Ortskurve } x = 1 \end{aligned}$$

e)
$$f_t(x) = -x^2 + 2tx + 2t + 1$$
 für $-4 \le x \le 4$ und $-4 \le y \le 4$
 $f_t(x) = -x^2 + 2tx + 2t + 1 = -(x - t)^2 + (t + 1)^2 \Rightarrow S(t|(t + 1)^2)$ mit Ortskurve $y = (x + 1)^2$

f)
$$f_t(x) = \frac{x^2}{t} - 2x + 1 \text{ für } -5 \le x \le 5 \text{ und } -4 \le y \le 6$$

 $f_t(x) = \frac{x^2}{t} - 2x + 1 = \frac{1}{t}(x - t)^2 - t + 1 \Rightarrow S(t|-t+1) \text{ mit Ortskurve } y = -x + 1$

g)
$$f_t(x) = x^2 - \frac{2}{t}x + \frac{4}{t} - 4 \text{ für } -5 \le x \le 5 \text{ und } -25 \le y \le 4$$

$$f_t(x) = x^2 - \frac{2}{t}x + \frac{4}{t} - 4 = (x - \frac{1}{t})^2 + \frac{1}{t^2} + \frac{4}{t} - 4 = (x - \frac{1}{t})^2 - (\frac{1}{t} - 2)^2 \Rightarrow S_t(\frac{t}{2} \mid (\frac{t}{2} + 1)^2) \text{ mit }$$
 Ortskurve $y = -(x - 2)^2 \text{ mit } S_{-1/3}(-3|-25), S_{-1/2}(-2|-16), S_{-1}(-1|-9), S_1(1|1), S_{1/2}(2|0) \text{ und } S_{1/3}(3|-1).$

$$\begin{split} h) \quad f_t(x) &= \frac{1}{2}\,x^2 - 2tx + 4t - 1 \text{ für } -2 \leq x \leq 6 \text{ und } -2 \leq y \leq 6 \\ f_t(x) &= \frac{1}{2}\,x^2 - 2tx + 4t - 1. = \frac{1}{2}\,(x - 2t)^2 - 2t^2 + 4t - 1 = \frac{1}{2}\,(x - 2t)^2 - \frac{1}{2}\,(2t - 2)^2 + 1 \\ &\Rightarrow S_t(2t|-\frac{1}{2}\,(2t-2)^2 + 1) \text{ mit Ortskurve } y = -(x-2)^2 + 1 \text{ mit } S_0(0|-1), \, S_{1/2}(1|0,5), \, S_1(2|1), \, S_{3/2}(3|0,5) \\ &\text{ und } S_2(4|-1). \end{split}$$

i)
$$f_t(x) = -x^2 + 4tx - 4t^2 + t + 1$$
 für $-4 \le x \le 4$ und $-4 \le y \le 2$
 $f_t(x) = -x^2 + 4tx - 4t^2 + t + 1 = -(x - 2t)^2 + t + 1 \Rightarrow S_t(2t|t+1)$ mit Ortskurve $y = 0.5x + 1$