4.8. Prüfungsaufgaben zu trigonometrischen Funktionen

Aufgabe 1: Schaubilder der trigonomtrischen Funktionen (2)

- a) Zeichne das Schaubild der Funktion $f(x) = \sin(0.5x)$ im Bereich $0 \le x \le 2\pi$.
- b) Zeichne das Schaubild der Funktion $f(x) = \sin(2x)$ im Bereich $0 \le x \le 2\pi$.

Aufgabe 2: Trigonometrische Gleichungen (3)

Für welche x mit $0 \le x \le 2\pi$ sind die folgenden Gleichungen erfüllt?

a)
$$\cos^2(x) - \frac{1}{2}\cos(x) = \frac{1}{2}$$

b)
$$\frac{3}{2}\sin(x) - \sin^2(x) = \frac{1}{2}$$

c)
$$\sin^2(x)^2 + \sin(x) - 2 = 0$$

d)
$$\sin(x)\cdot(\sin(x) + 3) = 0$$

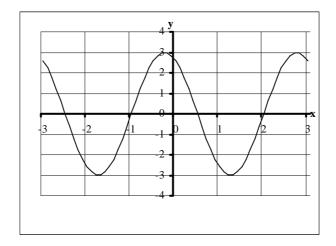
e)
$$\cos^2(x) - \cos(x) = 0$$

Lösungen

- a) Substitution $\cos(x) = z \Leftrightarrow z^2 \frac{1}{2}z \frac{1}{2} = 0 \Rightarrow z_{1/2} = \frac{1}{4} \pm \frac{3}{4} \Rightarrow \cos(x) = -\frac{1}{2} \text{ oder } \cos(x) = 1$ $\Rightarrow L = \{0; \frac{2}{3}\pi; \frac{4}{3}\pi; 2\pi\}$
- b) Substitution $\sin(x) = z \Leftrightarrow \frac{3}{2}z^2 z \frac{1}{2} = 0 \Rightarrow z_{1/2} = \frac{3}{4} \pm \frac{1}{4} \Rightarrow \sin(x) = \frac{1}{2} \text{ oder } \sin(x) = 1$ $\Rightarrow L = \{\frac{1}{6}\pi; \frac{1}{2}\pi; \frac{5}{6}\pi\}$
- c) Substitution $\sin(x) = z \Rightarrow z^2 + z 2 = 0 \Leftrightarrow z_{1/2} = -\frac{1}{2} \pm \frac{3}{2} \Rightarrow \sin(x) = -2 \text{ oder } \sin(x) = 1 \Rightarrow L = \{\frac{\pi}{2}\}$
- d) Substitution $\sin(x) = z \Rightarrow z \cdot (z+3) = 0 \Leftrightarrow z = 0 \text{ oder } z = -3 \Leftrightarrow \sin(x) = -3 \text{ oder } \sin(x) = 0 \Rightarrow L = \{0; \pi; 2\pi\}$
- e) Substitution $cos(x) = z \Leftrightarrow z(z-1) = 0 \Rightarrow z = 0$ oder $z = 1 \Leftrightarrow cos(x) = 0$ oder cos(x) = 1 $\Rightarrow L = \{0; \frac{1}{2}\pi; \frac{3}{2}\pi; 2\pi\}$

Aufgabe 3: Verschiebung und Streckung trigonometrischer Funktionen (2)

Bestimmen Sie die Funktionsgleichung der unten skizzierten Funktion. (Hinweis: f(-1) = f(2) = 0)



Lösung

$$f(x) = 3 \cdot \sin(\frac{2}{3}\pi(x+1))$$

Aufgabe 4: Verschiebung und Streckung trigonometrischer Funktionen (2)

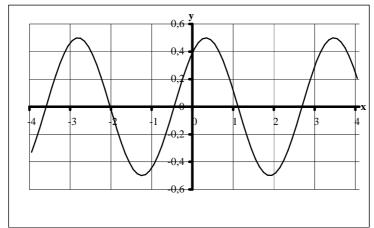
Bestimmen Sie die Periode p sowie die Nullstellen der Funktion $f(x) = \frac{1}{2} \sin(2x + 1)$ und skizzieren Sie ihr Schaubild im Bereich [-p; p[.

1

Lösung

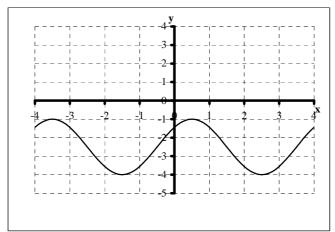
$$f(x) = \frac{1}{2} \sin(2x+1) = f(x) = \frac{1}{2} \sin[2(x+\frac{1}{2})] \Rightarrow \text{Amplitude A} = \frac{1}{2}, \text{ Periode p} = \pi \text{ und Phasenverschiebung}$$

$$\text{um } \frac{1}{2} \text{ nach links} \Rightarrow \text{Nullstellen bei} -\frac{1}{2} - \frac{1}{2}\pi, -\frac{1}{2}, -\frac{1}{2} + \frac{1}{2}\pi \text{ und} -\frac{1}{2} + \pi:$$



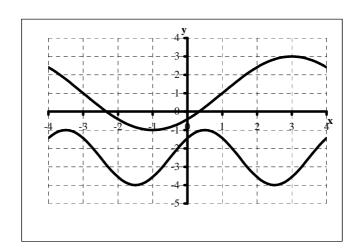
Aufgabe 5: Verschiebung und Streckung trigonometrischer Funktionen (4)

- a) Gib die Gleichung der unten skizzierten Funktion an (2)
- b) Skizziere das Schaubild der Funktion $f(x) = 2 \cdot \sin[\frac{\pi}{4}(x-1)] + 1$ in das Koordinatensystem aus a) (2)



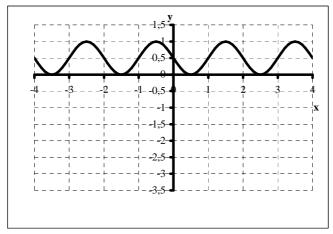
Lösung

- a) $f(x) = \frac{3}{2} \cdot \sin[\frac{\pi}{2}(x + \frac{1}{2})] \frac{5}{2}$
- b) Skizze



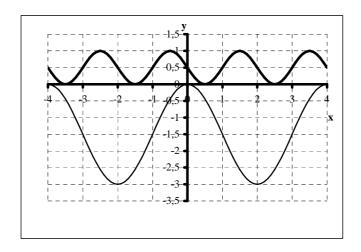
Aufgabe 6: Verschiebung und Streckung trigonometrischer Funktionen (4) Gib die Gleichung der unten skizzierten Funktion an (2)

Skizziere das Schaubild der Funktion $f(x) = \frac{3}{2} \cdot \sin[\frac{\pi}{2}(x+1)] - \frac{3}{2}$ in das Koordinatensystem aus a) (2)



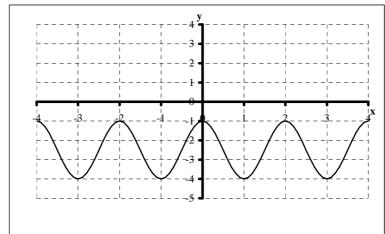
Lösung

- a) $f(x) = \frac{1}{2} \cdot \sin[\pi (x 1)] + \frac{1}{2}$
- b) Skizze



Aufgabe 7: Verschiebung und Streckung trigonometrischer Funktionen (4)

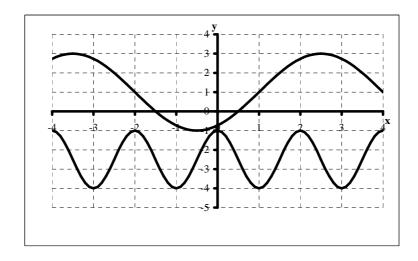
- Gib die Gleichung der unten skizzierten Funktion an (2)
- Skizziere das Schaubild der Funktion $f(x) = 2 \cdot \sin\left[\frac{\pi}{3}(x-1)\right] + 1$ in das Koordinatensystem aus a) (2)



Lösung

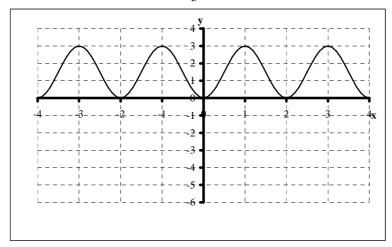
a)
$$f(x) = \frac{3}{2} \cdot \sin[\pi (x + \frac{1}{2})] - \frac{5}{2}$$

b) Skizze



Aufgabe 8: Verschiebung und Streckung trigonometrischer Funktionen (4) a) Gib die Gleichung der unten skizzierten Funktion an (2)

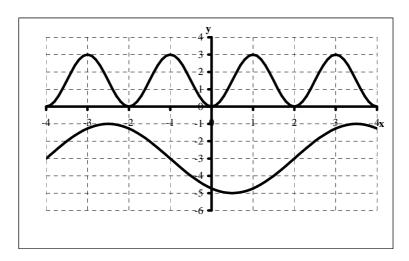
Skizziere das Schaubild der Funktion $f(x) = 2 \cdot \sin\left[\frac{\pi}{3}(x-2)\right] - 3$ in das Koordinatensystem aus a) (2)



Lösung

a)
$$f(x) = \frac{3}{2} \cdot \sin[\pi (x - \frac{1}{2})] + \frac{3}{2}$$

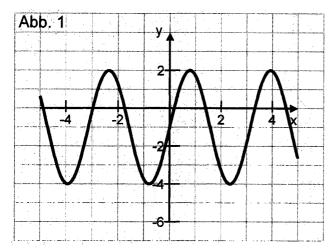
b) Skizze

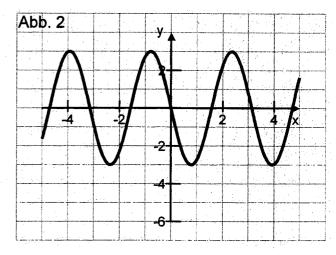


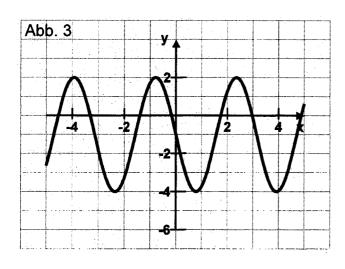
Aufgabe 9: Verschiebung und Streckung trigonometrischer Funktionen (5)

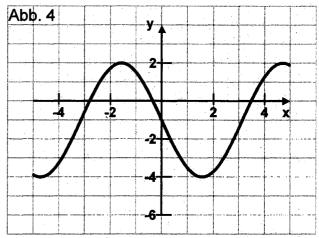
Gegeben sind die Funktion f mit $f(x) = -3 \cdot \sin(2x) - 1$ sowie vier Schaubilder.

- a) Geben Sie die charakteristischen Eigenschaften des Schaubilds von f an, die man ohne weitere Rechnung dem Funktionsterm entnehmen kann.
- b) Welches Schaubild gehört zu f?
- c) Geben Sie zu jedem anderen Schaubild mindestens eine Eigenschaft an, die mit den Funktionseigenschaften von f nicht vereinbar ist.









Lösung

- a) Amplitude 3 LE wegen Faktor –3, Periode $p = \pi$ wegen Faktor 2, Verschiebung um 1 LE nach unten wegen Summand –1 und Verschiebung um $\frac{\pi}{2}$ nach rechts oder links bzw. Spiegelung an y = –1 wegen Faktor–3.
- b) Abb. 1: $y = 3 \cdot \sin(2x) 1$ (falsche Phase)
 - Abb. 2: $y = 3 \cdot \sin(2x)$ (fehlende Verschiebung)
 - Abb. 3: $f(x) = 3 \cdot \sin(2x) 1$ (richtiges Bild)
 - Abb. 4: $y = 3 \cdot \sin(x) 1$ (falsche Periode)

Aufgabe 10: Trigonometrische und rationale Funktionen im Vergleich (4)

Gegeben sind die Schaubilder von vier Funktionen jeweils mit sämtlichen Asymptoten:

Schaubild 1

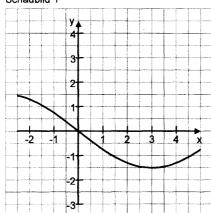


Schaubild 2

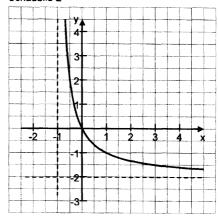


Schaubild 3

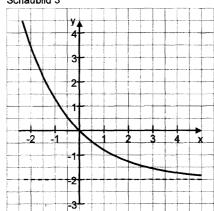
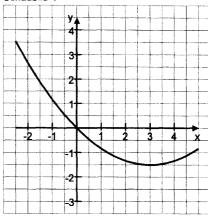


Schaubild 4



6

Drei dieser vier Schaubilder werden beschreiben durch die Funktionen f, g und h mit $f(x) = \frac{-2x}{x+a}$,

$$g(x) = -2 + b \cdot e^{-0.5x}$$
 und $h(x) = c \cdot x^2 - x$.

- a) Ordnen Sie den Funktionen f, g und h jeweils das passende Schaubild zu und begründen Sie. (3)
- b) Bestimmen Sie die Werte für a und b. (2)

Lösung

- a) f gehört zu Schaubild 2, da nur dieses Schaubild eine senkrechte Asymptote besitzt. g gehört zu Schaubild 3, da nur noch dieses Schaubild eine waagerechte Asymptote besitzt. h gehört zu Schaubild 4, da nur dieses Schaubild eine Parabel zweiter Ordnung zeigt.
- b) Die senkrechte Asymptote x = -1 führt auf a = 1. g(0) = 0 führt auf b = 2.

Aufgabe 11: Funktionsanpassung bei rationalen und trigonometrischen Funktionen (4)

Geben Sie jeweils mit Begründung einen Funktionsterm der Funktionen f und g mit den folgenden Eigenschaften

- a) Das Schaubild von f hat Asymptoten mit den Gleichungen x = 2 und y = 1
- b) g ist periodisch mit der Periode π und hat den Wertebereich [-3; 3]

Lösung

- a) $f(x) = 1 + \frac{1}{x-2}$, denn für $x \to \pm \infty$ strebt der echt gebrochenrationale Rest $\frac{1}{x-2}$ gegen Null und daher f(x) gegen den ganzrationalen Hauptteil 1. f hat also die waagrechte Asymptote y = 1. Für $x \to 2$ dagegen strebt der Rest $\frac{1}{x-2}$ gegen ∞ . f hat also die senkrechte Asymptote x = 2.
- b) $f(x) = 3 \cdot \sin(2x)$ hat die Amplitude 3 und die Periodendauer $p = \frac{2\pi}{2} = \pi$