5.1. Grenzwerte und Stetigkeit von Funktionen

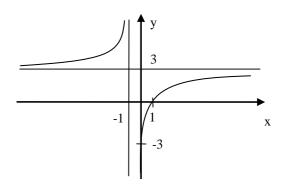
5.1.1. Grenzwert einer Funktion für $x \to \pm \infty$

Beispiel: Aufgaben zu Grenzwerten und Stetigkeit Nr. 1 a)

Beispiel
$$f(x) = \frac{3x-3}{x+1} = \frac{3(x-1)}{x+1} = 3 - \frac{6}{x+1}$$

Wertetabelle und Verhalten für $x \to \pm \infty$

X	$3-\frac{6}{x+1}$
$-\infty$	3
1	↑
-10000	3,000
-1000	3,006
-100	3,060
100	2,941
1000	2,994
10000	2,999
\downarrow	↓
$+\infty$	3



$$f(x) \to 3$$
 für $x \to \pm \infty$ bzw. $\lim_{x \to +\infty} f(x) = 3$

Definition: Grenzwert einer Funktion für $x \to \pm \infty$

Eine Funktion f strebt für $x \to -\infty$ bzw. $x \to +\infty$ gegen den **Grenzwert** (lat. limes) a, wenn die Funktionswerte f(x) für genügend kleine bzw. große x beliebig nahe an die Zahl a herankommen.

Schreibweise:
$$\lim_{x \to -\infty} f(x) = a$$
 bzw. $\lim_{x \to +\infty} f(x) = a$.

Das Schaubild von f besitzt dann für $x \to -\infty$ bzw. $x \to +\infty$ eine waagrechte Asymptote y=a.

Beispiel: Aufgaben zu Grenzwerten und Stetigkeit Nr. 1 b)

Der Ausdruck "beliebig nahe" lässt sich mit Hilfe des aus der Technik bekannten Begriffs der Abweichung bzw. Fehlertoleranz zwischen Sollwert = Grenzwert a und Istwert = Funktionswert f(x) präzisieren: Für beliebig

kleine ϵ gibt es ein $x_{\epsilon} = \frac{6}{\epsilon}$ so dass die Abweichung |3 - f(x)| für alle x jenseits von x_{ϵ} kleiner als ϵ wird:

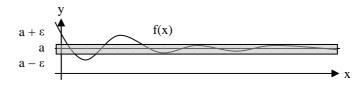
$$3-f(x)<\epsilon \Leftrightarrow 3-\frac{3x-3}{x+1} <\epsilon \Leftrightarrow \frac{6}{x+1} <\epsilon \Leftrightarrow 6 <\epsilon \ x+\epsilon \Leftrightarrow \frac{6}{\epsilon}-1 < x \Rightarrow L=[\frac{6}{\epsilon}\ ; +\infty[$$

Grenzwert einer Funktion für $x \rightarrow \pm \infty$

Die Funktion f(x) hat für $\begin{cases} x \to +\infty \\ x \to -\infty \end{cases}$ den **Grenzwert (Limes)** a, wenn für jedes noch so kleine vorgegebene $\epsilon > 0$

 $0 \text{ ein entsprechendes } x_\epsilon \text{ existiert, so dass für alle } \begin{cases} x > x_\epsilon \\ x < x_\epsilon \end{cases} \text{der Abstand } |f(x) - a| < \epsilon \text{ wird.}$

Schreibweise: $\lim_{x \to +\infty} f(x) = a$ bzw. $\lim_{x \to -\infty} f(x) = a$.



Übungen: Aufgaben zu Grenzwerten und Stetigkeit Nr. 2

5.1.2. Grenzwert einer Funktion für $x \rightarrow x_0$

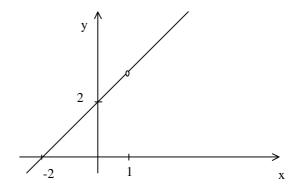
Beispiel: Aufgaben zu Grenzwerten und Stetigkeit Nr. 3 a)

Beispiel 1:
$$f(x) = \frac{x^2 + x - 2}{x - 1} = \frac{(x - 1)(x + 2)}{x - 1}$$

hebbare Lücke L(1|3)

(Nennernullstelle, die gleichzeitig Zählernullstelle ist) Die y-Koordinate der hebbaren Lücke wurde in 4.6.4. durch Einsetzen in die **stetige Fortsetzung** $\bar{f}(x) = x + 2$ ermittelt: $\bar{f}(1) = 3$. Da die stetige Fortsetzung für alle $x \ne 1$ mit fübereinstimmt, müsste sie eigentlich auch für x = 1 den passensten Wert liefern.

Diese Überlegung lässt sich ebenfalls mit Hilfe des **Grenzwertbegriffs** präzisieren: Die y-Koordinate lässt sich als **Grenzwert** der y-Werte von f(x) für gegen 1 strebendes x betrachten:



$$y_0 = \lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{(x-1)(x+2)}{x-1} = \lim_{x \to 1} x + 2 = 1 + 2 = 3.$$

Die Bedingung $x \ne 1$ ist bei der Grenzwertermittlung erfüllt, da x beliebig nahe an die 1 heranrutscht, die 1 aber niemals ganz erreicht!

Grenzwert einer Funktion für $x \rightarrow x_0$

Die Funktion f hat für $x \to x_0$ den **Grenzwert** a, falls die Funktionswerte f(x) beliebig nahe an die Zahl a herankommen, wenn x gegen x_0 läuft. **Schreibweise**: $\lim_{x \to x_0} f(x) = a$.

Beispiel: Aufgaben zu Grenzwerten und Stetigkeit Aufgabe 3 b)

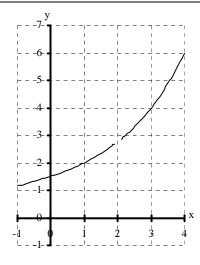
Beispiel 2:
$$f(x) = \frac{2^x - 4}{x - 2}$$

An der Stelle $x_0 = 2$ befindet sich eine **hebbare Lücke.** (Zählernullstelle und gleichzeitig Nennernullstelle) Da man den Faktor (x - 2) nicht kürzen kann, muss man für die Berechnung der y-Koordinate der hebbaren Lücke auf den **Grenzwert** zurückgreifen

$$y_0 = \lim_{x \to 2} f(x) = 2,772....$$

Sein exakter Wert lässt sich nicht feststellen (!) Er lässt sich auf **beliebig** viele Stellen genau bestimmen, indem man den Abstand zwischen x und x_0 weiter verringert.

X	f(x)
-1	1,17
0	1,5
1	2
1,9	2,679
1,99	2,763
1,999	2,771
1,9999	2,772
2	-
2,0001	2,772
2,001	2,773
2,01	2,782
2,1	2,871
3	4



Bemerkung: Der Grenzwert lässt sich mit Hilfe der Grenzwertsätze und der Potenzreihenentwicklung von 2^x

$$= e^{x \cdot \ln 2} = \sum_{n > 0} \frac{(x \cdot \ln 2)^n}{n!} \text{ auf den natürlichen Logarithmus zurückführen: } \lim_{x \to 2} f(x) = 4 \lim_{x \to 2} \frac{2^{x-2} - 1}{x - 2} = 4 \cdot \ln 2$$

≈ 2,77259... Das ist aber nur eine elegante Umformulierung, die auch keinen exakteren Wert liefert!

Übungen: Aufgaben zur Grenzwerten und Stetigkeit Nr. 4

5.1.3. Stetigkeit

Wird $f(x) = \frac{2^x - 4}{x - 2}$ an der Stelle $x_0 = 2$ durch einen "unpassenden" Funktionswert ergänzt, z.B. $\bar{f}(2) = 2,7$, so ergibt sich eine **Unstetigkeit**: Der Grenzwert $\lim_{x \to 2} f(x) = \lim_{x \to 2} \bar{f}(x) = 2,772...$ existiert in diesem Fall zwar nach wie vor, er stimmt aber nicht mehr mit dem "unpassenden" Funktionswert $\bar{f}(2) = 2,7$ überein. Beim Zeichnen müsste man an der Stelle $x_0 = 2$ **absetzen**, um einen isolierten Punkt P(2|2,7) einzuzeichnen.

Definition: Stetigkeit

Eine Funktion f heißt **stetig** an der Stelle $x_0 \in D$ falls der Grenzwert $\lim_{x \to x_0} f(x)$ existiert und mit dem Funktionswert $f(x_0)$ selbst übereinstimmt: $\lim_{x \to x_0} f(x) = f(x_0)$.

Anschauliche Deutung

Eine Funktion ist stetig auf einem Intervall $[a; b] \subset D$, falls sich das Schaubild in diesem Bereich **ohne Absetzen des Stiftes** zeichnen lässt.

Übungen: Aufgaben zur Grenzwerten und Stetigkeit Nr. 5 und 6