5.5. Abituraufgaben zu Logarithmusfunktionen

Aufgabe 1: Kurvenuntersuchung mit Parameter, Integration ohne GTR (24)

Für jedes reelle t und x > 0 sind die Funktionen f_t und g gegeben durch $f_t(x) = 2(\ln x + t)^2$ und $g(x) = \frac{2(\ln x - 1)^2}{x}$

Das Schaubild von ft heißt Kt; K sei das Schaubild von g.

- a) Untersuchen Sie K_t auf Asymptoten, Achsenschnittpunkte, Extrem- und Wendepunkte. Zeichnen Sie K_{-1} für $0.5 \le x \le 10$ mit 1 LE = 1 cm. (12)
- b) Untersuchen Sie K auf Asymptoten, Achsenschnittpunkte und Extrempunkte. Zeichnen Sie K in das Koordinatensystem aus Aufgabe 1. Hinweis: Beschränken Sie sich bei der Untersuchung der Extrempunkte auf die 1. Ableitung und argumentieren Sie geometrisch! (8)
- c) Bestätigen Sie durch Integration, dass $F_{-1}(x) = 2x(\ln x)^2 8x\ln x + 10x$ und $G(x) = \frac{2}{3}(\ln x 1)^3$. (6)
- d) Berechnen Sie den Inhalt der Fläche, die durch die Kurven K₋₁ und K eingeschlossen wird. (4)

Lösung

Teil a)

Asymptoten:

Für
$$x \to 0$$
 strebt $f_t(x)$ gegen $+\infty \Rightarrow$ senkrechte Asymptote bei $x = 0$ (1)

Achsenschnittpunkte:

$$2(\ln x + t)^2 = 0 \Rightarrow \text{doppelte Nullstelle bei } x = e^{-t} \Rightarrow \text{Ber\"{u}hrpunkt (Minimum!) } N_t(e^{-t}|0)$$
 (1)

Ableitungen:

$$f_t(x) = 2(\ln x + t)^2, f_t'(x) = 4\frac{\ln x + t}{x}, f_t''(x) = 4\frac{1 - t - \ln x}{x^2}, f_t'''(x) = 4\frac{2t - 3 + 2\ln x}{x^3}$$
(3)

Extrempunkte

$$4\frac{\ln x + t}{x} = 0 \Rightarrow x = e^{-t}; f_t``(e^{-t}) = 4e^{-2t} \Rightarrow \text{Tiefpunkt } T_t(e^{-t}|0)$$
 (2)

Wendepunkte:

$$4\frac{1-t-\ln x}{x^2} = 0 \Rightarrow x = e^{1-t}, f_t "(e^{1-t}) = -4e^{-3(1-t)} \neq 0 \Rightarrow \text{Wendepunkt } W_t(e^{1-t}|2)$$
(3)

Teil b)

Asymptoten:

Für
$$x \to 0$$
 strebt $g(x)$ gegen $+\infty \Rightarrow$ senkrechte Asymptote bei $x = 0$ (0,5)

$$\lim_{x \to +\infty} g(x) = 0 \Rightarrow \text{waagrechte Asymptote } y = 0 \text{ für } x \to +\infty.$$
 (0,5)

Achsenschnittpunkte:

$$\frac{2(\ln x - 1)^2}{x} = 0 \Rightarrow \text{doppelte Nullstelle bei } x = e \Rightarrow \text{Ber\"{u}hrpunkt (Minimum!) N(e|0)}$$
 (1)

Ableitungen

$$g(x) = \frac{2(\ln x - 1)^2}{x}, g_t'(x) = \frac{4(\ln x - 1) - 2(\ln x - 1)^2}{x^2} = \frac{2(\ln x - 1)(3 - \ln x)}{x^2}$$
(1)

Extrempunkte:

$$\frac{2(\ln x - 1)(3 - \ln x)}{x^2} = 0 \Rightarrow x_1 = e \text{ und } x_2 = e^3 => \text{Tiefpunkt T}(e|0) \text{ und Hochpunkt H}(e^3|8e^{-3}) \tag{4}$$

Begründung: Da die Funktionswerte nie negativ werden, verläuft das Schaubild ausschließlich auf und über der x-Achse. Ein Extrempunkt, der auf der x-Achse liegt, muß daher ein Tiefpunkt sein. Der zweite Extrempunkt kann nicht wieder ein Tiefpunkt sein, da zwischen zwei Tiefpunkten ein Hochpunkt (oder ein Pol) liegen muß.

Teil c)

$$\int_{a}^{b} f_{-1}(x) dx = 2 \int_{a}^{b} (\ln x - 1)(\ln x - 1) dx$$

$$= 2 \left[(x \ln x - x - x)(\ln x - 1) \right]_{a}^{b} - 2 \int_{a}^{b} (x \ln x - x - x) \frac{1}{x} dx$$

$$= 2 \left[(x \ln x - x - x)(\ln x - 1) \right]_a^b - 2 \int_a (x \ln x - x - x) \frac{1}{x} dx \tag{1}$$

$$= 2 \left[x(\ln x)^2 - 3x \ln x + 2x \right]_a^b - 2 \left[x \ln x - x - 2x \right]_a^b \tag{1}$$

$$= \left[2x(\ln x)^2 - 8x \ln x + 10x \right]_a^b \tag{1}$$

$$= \left[F_{-1}(x) \right]_a^b.$$

$$\int_{a}^{b} g(x) dx = 2 \int_{a}^{b} \frac{(\ln x - 1)^{2}}{x} dx = 2 \int_{\ln a - 1}^{\ln b - 1} z^{2} dz = 2 \left[\frac{1}{3} z^{3} \right]_{\ln a - 1}^{\ln b - 1} = \left[\frac{2}{3} (\ln x - 1)^{3} \right]_{a}^{b} = \left[G(x) \right]_{a}^{b}.$$
 (3)

Teil d)

Integrationsgrenzen:

$$f_{-1}(x) = g(x) \Leftrightarrow 2(\ln x - 1)^2 = \frac{2(\ln x - 1)^2}{x} \Leftrightarrow x(\ln x - 1)^2 = (\ln x - 1)^2 \Leftrightarrow (x - 1)(\ln x - 1) = 0$$

$$\Rightarrow$$
 x₁ = 1 und x_{2/3} = e (doppelte Nullstelle => Berührpunkt der beiden Schaubilder!) (2)

$$\Rightarrow A = \int_{1}^{e} (f_{-1}(x) - g(x)) dx = \left[F_{-1}(x) - G(x) \right]_{1}^{e} = \left[2x(\ln x)^{2} - 8x \ln x + 10x - \frac{2}{3}(\ln x - 1)^{3} \right]_{1}^{e} = 4e - 9\frac{1}{3}.$$
 (2)

Aufgabe 2: Kurvenuntersuchung mit Parametern, Integration (24)

Für jedes reelle t und x > 0 sind die Funktionen f_t und g gegeben durch $f_t(x) = 2(\ln x - t)^2$ und g(x) = 1 $\frac{2(\ln x - 1)^2}{2}$ Das Schaubild von f_t heißt K_t ; K sei das Schaubild von g_t

- a) Untersuchen Sie K₁ auf Asymptoten, Achsenschnittpunkte, Extrem- und Wendepunkte. Zeichnen Sie K₁ für $0.5 \le x \le 10 \text{ mit } 1 \text{ LE} = 1 \text{ cm. } (12)$
- Untersuchen Sie K auf Asymptoten, Achsenschnittpunkte und Extrempunkte. Zeichnen Sie K in das Koordinatensystem aus Teil a). Hinweis: Beschränken Sie sich bei der Untersuchung der Extrempunkte auf die 1. Ableitung und argumentieren Sie geometrisch! (8)
- Bestätigen Sie durch Integration, dass $F_1(x) = 2x(\ln x)^2 8x\ln x + 10x$ und $G(x) = \frac{2}{3}(\ln x 1)^3$. (6)
- Berechnen Sie den Inhalt der Fläche, die durch die Kurven K_1 und K eingeschlossen wird. (4)

Lösung

Teil a)

Asymptoten:

Für
$$x \to 0$$
 strebt $f_1(x)$ gegen $+\infty \Rightarrow$ senkrechte Asymptote bei $x = 0$ (1)

Achsenschnittpunkte:

$$2(\ln x - t)^2 = 0 \Rightarrow \text{doppelte Nullstelle bei } x = e^t \Rightarrow \text{Berührpunkt (Minimum!) } N_t(e^t|0)$$
 (1)

Ableitungen:

$$f_{t}(x) = 2(\ln x - t)^{2}, f_{t}'(x) = 4\frac{\ln x - t}{x}, f_{t}''(x) = 4\frac{1 + t - \ln x}{x^{2}}, f_{t}'''(x) = 4\frac{-2t - 3 + 2\ln x}{x^{3}}$$
(3)

Extrempunkte:

$$4\frac{\ln x - t}{x} = 0 \Rightarrow x = e^{t}; f_{t}"(e^{t}) = 1e^{-2t} > 0 \Rightarrow \text{Tiefpunkt } T_{t}(e^{t}|0)$$
(2)

$$4\frac{1+t-\ln x}{x^2} = 0 \Rightarrow x = e^{1+t}, f_t^{(*)}(e^{1+t}) = -1e^{-3(1+t)} \neq 0 \Rightarrow \text{Wendepunkt } W_t(e^{1+t}|2)$$
 (3)

Teil b)

Asymptoten:

Für
$$x \to 0$$
 strebt $g(x)$ gegen $+\infty \Rightarrow$ senkrechte Asymptote bei $x = 0$ (0,5)

$$\lim_{x \to \infty} g(x) = 0 \Rightarrow \text{waagrechte Asymptote } y = 0 \text{ für } x \to +\infty. \tag{0.5}$$

Achsenschnittpunkte:

$$\frac{2(\ln x - 1)^2}{x} = 0 \Rightarrow \text{doppelte Nullstelle bei } x = e \Rightarrow \text{Berührpunkt (Minimum!) N(e|0)}$$
Ableitungen:

$$g(x) = \frac{2(\ln x - 1)^2}{x}, g_t'(x) = \frac{4(\ln x - 1) - 2(\ln x - 1)^2}{x^2} = \frac{2(\ln x - 1)(3 - \ln x)}{x^2}$$
(1)

Extrempunkte:
$$\frac{2(\ln x - 1)(3 - \ln x)}{x^2} = 0 \Rightarrow x_1 = e \text{ und } x_2 = e^3 \Rightarrow \text{Tiefpunkt T}(e|0) \text{ und Hochpunkt H}(e^3|8e^{-3})$$
 (4)

Begründung: Da die Funktionswerte nie negativ werden, verläuft das Schaubild ausschließlich auf und über der x-Achse. Ein Extrempunkt, der auf der x-Achse liegt, muß daher ein Tiefpunkt sein. Der zweite Extrempunkt kann nicht wieder ein Tiefpunkt sein, da zwischen zwei Tiefpunkten ein Hochpunkt (oder ein Pol) liegen muß.

Teil c)

$$\int_{a}^{b} f_{1}(x)dx = 2 \int_{a}^{b} (\ln x - 1)(\ln x - 1)dx$$

$$= 2 \left[(x \ln x - x - x)(\ln x - 1) \right]_{a}^{b} - 2 \int_{a}^{b} (x \ln x - x - x) \frac{1}{x} dx \qquad (1)$$

$$= 2 \left[x(\ln x)^{2} - 3x \ln x + 2x \right]_{a}^{b} - 2 \left[x \ln x - x - 2x \right]_{a}^{b} \qquad (1)$$

$$= \left[2x(\ln x)^{2} - 8x \ln x + 10x \right]_{a}^{b} \qquad (1)$$

$$= \left[F_{1}(x) \right]_{a}^{b} \qquad (1)$$

$$= \left[F_{1}(x) \right]_{a}^{b} \qquad (2)$$

$$= 2 \int_{a}^{b} \frac{(\ln x - 1)^{2}}{x} dx = 2 \int_{a}^{\ln b - 1} z^{2} dz = 2 \left[\frac{1}{3} z^{3} \right]_{b = 1}^{\ln b - 1} = \left[\frac{2}{3} (\ln x - 1)^{3} \right]_{a}^{b} = \left[G(x) \right]_{a}^{b} \qquad (3)$$

Teil d)

Integrationsgrenzen:

$$f_1(x) = g(x) \Leftrightarrow 2(\ln x - 1)^2 = \frac{2(\ln x - 1)^2}{x} \Leftrightarrow x(\ln x - 1)^2 = (\ln x - 1)^2 \Leftrightarrow (x - 1)(\ln x - 1) = 0$$

$$\Rightarrow$$
 $x_1 = 1$ und $x_{2/3} = e$ (doppelte Nullstelle \Rightarrow Berührpunkt der beiden Schaubilder!) (2)

$$=>A=\int_{1}^{e}(f_{1}(x)-g(x))dx=\left[F_{1}(x)-G(x)\right]_{1}^{e}=\left[2x(\ln x)^{2}-8x\ln x+10x-\frac{2}{3}(\ln x-1)^{3}\right]_{1}^{e}=4e-9\frac{1}{3}.$$

Aufgabe 3: Kurvenuntersuchung mit Parameter, Tangenten, Optimierungsaufgabe (30)

Gegeben sind die Funktionen f_n durch $f_n(x) = (\ln x)^n$ mit $x \in R_+^*$ und $n \in Z$. K_n ist das Schaubild von f_n .

- Untersuchen Sie K2 auf gemeinsame Punkte mit der x-Achse, Extrem- und Wendepunkte sowie Asymptoten. Zeichnen Sie K_2 im Intervall]0;4] mit 1 LE = 1 cm. (9)
- Untersuchen Sie K ₋₂ auf Asymptoten und zeichnen Sie K ₋₂ in das Schaubild aus a) ein. (3)
- Zeichnen Sie K₁ in das Schaubild aus a) ein und berechnen Sie den Inhalt der Fläche, die von K₁ und K₂ eingeschlossen wird. (6)
- Geben Sie die Gleichungen der Tangenten t2 und t -2 an, die an K2 und K -2 an der Stelle x = e angelegt werden können. (4)
- Die Tangenten t₂ und t₋₂ schließen mit der x-Achse ein Dreieck ein. In dieses Dreieck soll ein Rechteck mit achsenparallelen Seiten und maximalem Flächeninhalt einbeschrieben werden. Geben Sie die Koordinaten der Eckpunkte dieses Rechteckes an. (8)

Lösung

a) Ableitungen:
$$f_2(x) = (\ln x)^2$$
, $f_2'(x) = \frac{2 \ln x}{x}$, $f_2''(x) = \frac{2}{x^2} (1 - \ln x)$ (2)

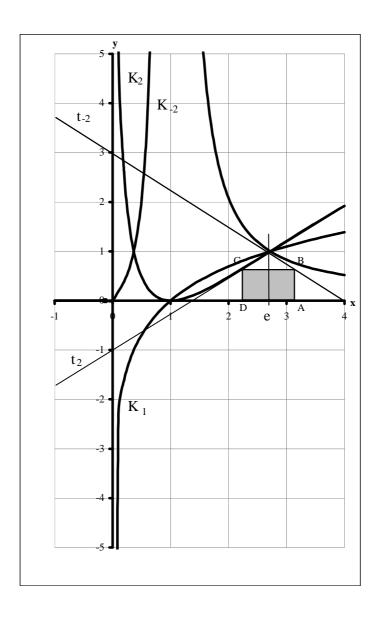
Schnittpunkt mit der x-Achse:
$$(\ln x)^2 = 0 \implies x = 1 \implies S_x(1 \mid 0)$$
 (1)

Asymptote: positive y-Achse ist senkrechte Asymptote, da
$$f_2(x) \to +\infty$$
 für $x \to 0^+$. (1)

Tiefpunkt:
$$(f_2'(x) = 0 \text{ und } f_2''(x) > 0) \Rightarrow T(1 \mid 0)$$
 (1)

Wendepunkt:
$$(f_2''(x) = 0 \text{ mit VZW}) \Rightarrow W(e \mid 1)$$
 (2)

Schaubild: (2)



- b) Asymptote: senkrechte Asymptote bei x = 1, da $f_{-2}(x) \to +\infty$ für $x \to 1^{\pm}$. (1)
 - waagrechte Asymptote bei y = 0, da $\lim_{x \to +\infty} f_{-2}(x) = 0$. (1)

Schaubild: (1)

c) Integrations grenzen: $f_1(x) = f_2(x) \implies \ln x = (\ln x)^2 \implies x_1 = 1 \text{ und } x_2 = e \text{ (Substitution } \ln x = z)$ (1)

$$A = \int_{1}^{e} \ln x \, dx - \int_{1}^{e} (\ln x)^{2} dx \tag{1}$$

$$= \left[x \ln x - x \right]_{1}^{e} - \left[\ln x (x \ln x - x) \right]_{1}^{e} + \int_{1}^{e} \frac{1}{x} (x \ln x - x) dx \tag{1}$$

$$= \left[x \ln x - x \right]_{1}^{e} - \left[\ln x (x \ln x - x) \right]_{1}^{e} + \left[x \ln x - x - x \right]_{1}^{e} \tag{1}$$

$$= \left[3x \ln x - x(\ln x)^2 - 3x \right]_1^6 \tag{1}$$

$$= 3 - e$$

$$\approx 0.28 \text{ FE}$$
(1)

d) Tangente durch W(e | 1) mit Steigung $a = f_2'(e) = \frac{2}{e} \implies t_2(x) = \frac{2}{e} x - 1$ (2)

Tangente durch (e|1) mit Steigung $a = f_{-2}'(e) = -\frac{2}{e} \implies t_{-2}(x) = -\frac{2}{e}x + 3$ (oder

Symmetriebetrachtung) (2)

e) Aufgrund der Achsensymmetrie zur Senkrechten x = e genügt es, die rechte Hälfte des Rechteckes zu betrachten:

$$\frac{1}{2}A(u) = g \cdot h = u \cdot t_{-2}(e + u) = u \cdot \left(-\frac{2}{e}(e + u) + 3\right) = -\frac{2}{e}u^2 + u \text{ mit } \frac{1}{2}A'(u) = -\frac{4}{e}u + 1$$
 (3)

- \Rightarrow absolutes und relatives Maximum im Scheitelpunkt bei $u = \frac{e}{4}$ (1)
- $\Rightarrow \text{Koordinaten A}(\frac{5}{4}e \mid 0), B(\frac{5}{4}e \mid \frac{1}{2}), C(\frac{3}{4}e \mid \frac{1}{2}) \text{ und } D(\frac{3}{4}e \mid 0)$ (2)

(2)