5.5. Abituraufgaben zu ganzrationalen Funktionen

Aufgabe 1: Kurvendiskussion, Fläche zwischen zwei Schaubildern (13)

Untersuchen Sie $f(x) = \frac{1}{2}x^4 - 2x^2$ und $g(x) = \frac{1}{2}x^2 - 2$ auf Symmetrie, Achsenschnittpunkte, Extrempunkts sowie gemeinsame Punkte. Skizzieren Sie die beiden Graphen in ein gemeinsames Koordinatensystem und berechnen Sie den Inhalt der Fläche, die von f und g eingeschlossen wird.

Lösung

Symmetrie: f und g sind symmetrisch zur y-Achse, da
$$f(-x) = f(x)$$
 und $g(-x) = g(x)$ (1)

$$f(x) = \frac{1}{2}x^2(x-2)(x+2) \Rightarrow S_{fx1}(0|0) \text{ (doppelt, daher Berührpunkt ohne VZW) und } S_{fx2/3}(\pm 2|0) \tag{1}$$

$$g(x) = \frac{1}{2} (x - 2)(x + 2) \Rightarrow S_{gx1/2}(\pm 2|0) \text{ und } S_{gy}(-4|0) \text{ (Scheitelpunkt = Tiefpunkt)}$$
 (1)

Ableitungen:
$$f'(x) = 2x^3 - 4x = 2x(x^2 - 2)$$
 und $f''(x) = 6x^2 - 4$ (1)

Tiefpunkte (f'(x) = 0 und f''(x) > 0):
$$T_{f1/2}(\pm \sqrt{2} | -2)$$
 (2)

Gemeinsame Punkte:
$$f(x) = g(x) \Leftrightarrow \frac{1}{2}x^4 - \frac{5}{2}x^2 + 2 = 0 \Leftrightarrow \frac{1}{2}(x^2 - 1)(x^2 - 4) = 0$$
 (1)

$$S_{fg1/2}(\pm 1|-\frac{3}{2}) \text{ und } S_{fg3/4}(\pm 2|0)$$
 (1)

Flächeninhalt
$$A = 2 \cdot \int_{0}^{1} (f(x) - g(x)) dx + 2 \cdot \int_{1}^{2} (g(x) - f(x)) dx$$
 (1)

$$= \int_{0}^{1} (x^{4} - 5x^{2} + 4) dx + \int_{1}^{2} (-x^{4} + 5x^{2} - 4) dx = \left[\frac{1}{5}x^{5} - \frac{5}{3}x^{3} + 4x \right]_{0}^{1} + \left[-\frac{1}{5}x^{5} + \frac{5}{3}x^{3} - 4x \right]_{1}^{2}$$
 (1)

$$= \frac{38}{15} + \frac{38}{15} + \frac{44}{15} = 8 \text{ FE}$$
 (1)

Aufgabe 2: Kurvenuntersuchung, Integration, Tangenten (15)

a) Untersuchen Sie das Schaubild von $f(x) = \frac{1}{2}x^4 - 3x^2 + \frac{5}{2}$ auf Symmetrie, Achsenschnittpunkte, Hoch-

Tief- und Wendepunkte. Bestimmen Sie die Gleichungen der Wendetangenten. (**Lösung**: $t_{1/2} = \mp 4x \pm 4$) Skizzieren Sie die Schaubilder von f und ihren Wendetangenten mit Hilfe dieser Punkte in einem passenden Bereich.

b) Berechnen Sie den Inhalte der Fläche, die von den beiden Wendetangenten und dem Schaubild von f eingeschlossen wird.

a) Symmetrie:
$$f(x) = f(-x)$$
 (gerade Funktion, Symmetrie zur y-Achse) (1)

Achsenschnittpunkte:
$$x = 0 \Rightarrow S_y(0|\frac{5}{2}),$$
 (1)

y = 0 mit Substitution z =
$$x^2$$
 und p-q-Formel $\Rightarrow S_{x1/2}(\pm 1|0), S_{x/3/4}(\pm \sqrt{5}|0)$ (1)

Ableitungen:
$$f'(x) = 2x^3 - 6x$$
 und $f''(x) = 6x^2 - 6$ (1)

Hoch- und Tiefpunkte:
$$f'(x) = 0$$
 und $f'(x) \neq 0 \Rightarrow H(0|\frac{5}{2})$ und $T_{1/2} (\pm \sqrt{3}|-2)$ (2)

Wendepunkte:
$$f''(x) = 0$$
 mit VZW bzw. $f'''(x) \neq 0 \Rightarrow W_{1/2} (\pm 1|0)$ (1)

Wendetangenten:
$$t_{1/2}(x) = \mp 4x \pm 4$$
 (2)

b)
$$A = 2 \int_{0}^{1} (t_1(x) - f(x)) dx = 2 \cdot \int_{0}^{1} (-\frac{1}{2}x^4 + 3x^2 - 4x + \frac{3}{2}) dx$$
 (2)

$$=2\cdot\left[-\frac{1}{10}x^5 + x^3 - 2x^2 + \frac{3}{2}x\right]_0^1 = \frac{6}{5} \text{ FE}$$
 (3)

Aufgabe 3: Kurvenuntersuchung, Integration, Tangenten (15)

- a) Untersuchen Sie das Schaubild von $f(x) = -\frac{1}{4}x^4 + \frac{3}{2}x^2 \frac{5}{4}$ auf Symmetrie, Achsenschnittpunkte, Hoch-
 - Tief- und Wendepunkte. Bestimmen Sie die Gleichungen der Wendetangenten. (**Lösung**: $t_{1/2} = \mp 2x \pm 2$) Skizzieren Sie die Schaubilder von f und ihren Wendetangenten mit Hilfe dieser Punkte in einem passenden Bereich.
- b) Berechnen Sie den Inhalte der Fläche, die von den beiden Wendetangenten und dem Schaubild von f eingeschlossen wird.

Lösung

a) Symmetrie:
$$f(x) = f(-x)$$
 (gerade Funktion, Symmetrie zur y-Achse) (1)

Achsenschnittpunkte:
$$x = 0 \Rightarrow S_y(0|-\frac{5}{4}),$$
 (1)

y = 0 mit Substitution z =
$$x^2$$
 und p-q-Formel $\Rightarrow S_{x1/2}(\pm 1|0), S_{x/3/4}(\pm \sqrt{5}|0)$ (1)

Ableitungen:
$$f'(x) = -x^3 + 3x$$
 und $f''(x) = -3x^2 + 3$ (1)

Hoch-und Tiefpunkte:
$$f'(x) = 0$$
 und $f''(x) \neq 0 \Rightarrow H(0|-\frac{5}{4})$ und $T_{1/2} (\pm \sqrt{3}|1)$ (2)

Wendepunkte:
$$f''(x) = 0$$
 mit VZW bzw. $f'''(x) \neq 0 \Rightarrow W_{1/2} (\pm 1|0)$ (1)

Wendetangenten:
$$t_{1/2}(x) = \mp 2x \pm 2$$
 (2)

b)
$$A = 2 \int_{0}^{1} (f(x) - t_2(x)) dx = 2 \cdot \int_{0}^{1} (-\frac{1}{4}x^4 + \frac{3}{2}x^2 - 2x + \frac{3}{4}) dx$$
 (2)

$$=2\cdot\left[-\frac{1}{20}x^5 + \frac{1}{2}x^3 - x^2 + \frac{3}{4}x\right]_0^1 = \frac{3}{5} \text{ FE}$$
 (3)

Aufgabe 4: Symmetrienachweis durch Verschiebung, Extremwertaufgabe, Integration (25)

Gegeben ist die Funktion f durch $f(x) = -\frac{1}{3}x^3 - x^2 + 2x + \frac{8}{3}$ mit $x \in \mathbb{R}$. Das Schaubild von f ist K.

- a) Untersuchen Sie K auf Schnittpunkte mit den Achsen, Hoch-, Tief- und Wendpunkte. Geben Sie die Koordinaten der Hoch- und Tiefpunkte auf zwei Stellen nach dem Komma gerundet an. Zeichnen Sie K für −4,5 ≤ x ≤ 2,5 mit 1 LE = 1 cm. (10)
- b) Zeigen Sie durch eine geeignete Verschiebung des Schaubildes, dass K symmetrisch ist zu N(-1|0). Bestimmen Sie den Inhalt der Gesamtfläche, die von K und der x-Achse eingeschlossen wird. (7)
- c) Zeichnen Sie die Kurve G der Funktion g mit $g(x) = -x^2 + \frac{8}{3}$ für $-3 \le x \le 3$ in das Achsenkreuz aus Teilaufgabe a) ein. Die Gerade mit der Gleichung x = u ($0 \le u \le 2$) schneidet die Kurve K im Punkt R und die Kurve G im Punkt S. Für welches u wird der Inhalt des Dreiecks RSO am größten? Berechnen Sie den maximalen Flächeninhalt. (8)

a) Schnittpunkt mit der y-Achse:
$$(x = 0) S_y(0|\frac{8}{3})$$
 (0,5)

Schnittpunkt mit der x-Achse:
$$(f(x) = 0) N_1(-1|0), N_2(2|0) \text{ und } N_3(-4|0)$$
 (1,5)

Ableitungen:
$$f(x) = -\frac{1}{3}x^3 - x^2 + 2x + \frac{8}{3}$$
, $f'(x) = -x^2 - 2x + 2$ und $f''(x) = -2x - 2$ (2)

Hoch- und Tiefpunkte:
$$T(-1+\sqrt{3}|3,46) \approx T(0,73|3,46)$$
 und $H(-1-\sqrt{3}|-3,46) \approx H(-2,73|-3,46)$ (1,5)

Wendepunkte:
$$(f'(x)=0 \text{ mit VZW bzw. } f''(x\neq 0) \text{ W}(-1|0)$$
 (1,5)

Schaubild: (an x-Achse gespiegelt) (2) + (1)
$$\rightarrow$$
 d)

b) Symmetrie:
$$f(x-1) = -(\frac{1}{3}x^3 - x^2 + 3x - \frac{1}{3}) - (x^2 - 2x + 1) + (2x - 2) + \frac{8}{3} = \frac{1}{3}x^3 + x$$
 (1)

$$A = \left| \int_{-4}^{-1} (-\frac{1}{3}x^3 - x^2 + 2x + \frac{8}{3}) dx \right| + \left| \int_{-1}^{2} (-\frac{1}{3}x^3 - x^2 + 2x + \frac{8}{3}) dx \right|$$
 (oder $A = 2 \cdot |...|$)

$$= \left[-\frac{1}{12} x^4 - \frac{1}{3} x^3 + x^2 + \frac{8}{3} x \right]_{-4}^{-1} + \left[-\frac{1}{12} x^4 - \frac{1}{3} x^3 + x^2 + \frac{8}{3} x \right]_{-1}^{2} \right]$$
 (2)

$$= \left[\left(-\frac{1}{12} + \frac{1}{3} + 1 - \frac{8}{3} \right) - \left(-\frac{256}{12} + \frac{64}{3} + 16 - \frac{32}{3} \right) \right] + \left[\left(-\frac{16}{12} - \frac{8}{3} + 4 + \frac{16}{3} \right) - \left(-\frac{1}{12} + \frac{1}{3} + 1 - \frac{8}{3} \right) \right]$$
(1)

$$= \left| -\frac{17}{12} - \frac{16}{3} \right| + \left| \frac{16}{3} + \frac{17}{12} \right| \tag{1}$$

$$=\frac{27}{4}+\frac{27}{4}$$

$$= 13,5 \text{ FE}$$
 (1)

c) Flächeninhalt des Dreiecks mit den Ecken O(0|0), R (u(f(u)) und S(u|g(u)):

$$A(u) = \frac{1}{2} \cdot g \cdot h = \frac{1}{2} \cdot \left[\left(-\frac{1}{3} u^3 - u^2 + 2u + \frac{8}{3} \right) - \left(-u^2 + \frac{8}{3} \right) \right] \quad u = -\frac{1}{6} u^4 + u^2 \quad \text{mit} \quad 0 \le u \le 2$$
 (2)

Ableitungen: A'(u) =
$$-\frac{2}{3}u^3 + 2u$$
 und A''(u) = $-2u^2 + 2$ (2)

relatives Maximum auf [0;2]:
$$(A'(u) = 0 \text{ und } A''(u) < 0)$$
 bei $u = \sqrt{3}$ (1)

Randwerte:
$$A(0) = 0$$
, $A(\sqrt{3}) = \frac{3}{2}$ und $A(2) = \frac{4}{3} \Rightarrow$ absolutes Max für $u = \sqrt{3}$ mit $A(\sqrt{3}) = \frac{3}{2}$. (2)

Aufgabe 5: Symmetrienachweis durch Verschiebung, Extremwertaufgabe, Integration (25)

Gegeben ist die Funktion f durch $f(x) = -\frac{1}{2}x^3 - \frac{3}{2}x^2 + 3x + 4$ mit $x \in \mathbb{R}$. Das Schaubild von f ist K.

- a) Untersuchen Sie K auf Schnittpunkte mit den Achsen, Hoch-, Tief- und Wendpunkte. Geben Sie die Koordinaten der Hoch- und Tiefpunkte auf zwei Stellen nach dem Komma gerundet an. Zeichnen Sie K für −2,5 ≤ x ≤ 4,5 mit 1 LE = 1 cm. (10)
- b) Ziegen Sie durch eine geeignete Verschiebung des Schaubildes, dass K symmetrisch ist zu N(-1|0). Bestimmen Sie den Inhalt der Gesamtfläche, die von K und der x-Achse eingeschlossen wird. (7)
- c) Zeichnen Sie die Kurve G der Funktion g mit $g(x) = -\frac{3}{2}x^2 + 4$ für $-3 \le x \le 3$ in das Achsenkreuz aus Teilaufgabe a) ein. Die Gerade mit der Gleichung x = u ($0 \le u \le 2$) schneidet die Kurve K im Punkt R und die Kurve G im Punkt S. Für welches u wird der Inhalt des Dreiecks RSO am größten? Berechnen Sie den maximalen Flächeninhalt. (8)

a) Schnittpunkt mit der y-Achse:
$$(x = 0) S_v(0|4)$$
 (0,5)

Schnittpunkt mit der x-Achse:
$$(f(x) = 0) N_1(-1|0), N_2(2|0) \text{ und } N_3(-4|0)$$
 (1,5)

Ableitungen:
$$f(x) = -\frac{1}{2}x^3 - \frac{3}{2}x^2 + 3x + 4$$
, $f'(x) = -\frac{3}{2}x^2 - 3x + 3$ und $f''(x) = -3x - 3$ (2)

Hoch- und Tiefpunkte:
$$T(-1+\sqrt{3}|5,19) \approx T(0,73|5,19)$$
 und $H(-1-\sqrt{3}|-5,19) \approx H(-2,73|-5,19)$ (3)

Wendepunkte: (f'(x)=0 mit VZW bzw. f''(x
$$\neq$$
0) W(-1|0) (1,5)
Schaubild: (vgl. Gruppe A) (2) + (1) \rightarrow d)

b) Symmetrie:
$$f(x-1) = -(\frac{1}{2}x^3 - \frac{3}{2}x^2 + \frac{9}{2}x - \frac{1}{2}) - (\frac{3}{2}x^2 - 3x + \frac{3}{2}) + (3x-3) + 4 = \frac{1}{2}x^3 + \frac{3}{2}x$$
 (1)

Symmetrie:
$$f(x-1) = -(\frac{1}{2}x^3 - \frac{3}{2}x^2 + \frac{3}{2}x - \frac{1}{2}) - (\frac{3}{2}x^2 - 3x + \frac{3}{2}) + (3x-3) + 4 = \frac{1}{2}x^3 + \frac{3}{2}x$$
 (1)

$$A = \left| \int_{-4}^{1} (-\frac{1}{2}x^3 - \frac{3}{2}x^2 + 3x + 4) dx \right| + \left| \int_{-1}^{2} (-\frac{1}{2}x^3 - \frac{3}{2}x^2 + 3x + 4) dx \right|$$
 (2)

$$= \left[-\frac{1}{8}x^4 - \frac{1}{2}x^3 + \frac{3}{2}x^2 + 4x \right]_{-4}^{-1} + \left[-\frac{1}{8}x^4 - \frac{1}{2}x^3 + \frac{3}{2}x^2 + 4x \right]_{-1}^{2}$$
 (2)

$$= \left\| \left(-\frac{1}{8} + \frac{1}{2} + \frac{3}{2} - 4 \right) - \left(-\frac{256}{8} + \frac{64}{2} + 24 - 16 \right) \right\| + \left\| \left(-\frac{16}{8} - \frac{8}{2} + 6 + 8 \right) - \left(-\frac{1}{8} + \frac{1}{2} + \frac{3}{2} - 4 \right) \right\|$$
 (1)

$$= \left| -\frac{17}{8} - 8 \right| + \left| 8 + \frac{17}{8} \right| \tag{1}$$

$$= \frac{81}{8} + \frac{81}{8}$$
= 20,25 FE (1)

c) Flächeninhalt des Dreiecks mit den Ecken O(0|0), R (u(f(u)) und S(u|g(u)):

$$A(u) = \frac{1}{2} \cdot g \cdot h = \frac{1}{2} \cdot \left[\left(-\frac{1}{2} u^3 - \frac{3}{2} u^2 + 3u + 4 \right) - \left(-\frac{3}{2} u^2 + 4 \right) \right] \quad u = -\frac{1}{4} u^4 + \frac{3}{2} u^2 \text{ mit } 0 \le u \le 2$$
 (2)

Ableitungen: A'(u) =
$$-u^3 + 3u$$
 und A''(u) = $-3u^2 + 3$ (2)

relatives Maximum auf [0;2]: (A'(u) = 0 und A''(u) < 0) bei
$$u = \sqrt{3}$$

Randwerte:
$$A(0) = 0$$
, $A(\sqrt{3}) = \frac{9}{4}$ und $A(2) = 2 \Rightarrow$ absolutes Max für $u = \sqrt{3}$ mit $A(\sqrt{3}) = \frac{9}{4}$. (2)

Aufgabe 6: Kurvenuntersuchung Optimierungsaufgabe, Integration (24)

Für x $\in \mathbb{R}$ ist die Funktion f mit dem Schaubild K gegeben durch $f(x) = \frac{1}{2}(x^3 - 6x^2 + 24)$.

- Untersuchen Sie das Schaubild K auf Hoch-, Tief- und Wendepunkte. Zeichnen Sie K im Bereich $-2.5 \le x$ \leq 6,5 mit 1 LE = 1cm. (7)
- Die Gerade g mit der Gleichung $y = \frac{1}{2}x$ und das Schaubild K begrenzen zwei Flächenstücke. Berechnen Sie deren Gesamtinhalt. (7)
- Für $-2 \le u \le 2$ schneidet die Gerade mit der Gleichung x = u das Schaubild im Punkt A und die Gerade aus Teilaufgabe b) im Punkt B. Der Punkt C(2|1) bildet mit den Punkten A und B ein Dreieck. Für welchen Wert von u wird das Flächeninhalt dieses Dreiecks maximal? (10)

Lösungen

a) Ableitungen:
$$f(x) = \frac{1}{8}(x^3 - 6x^2 + 24)$$
, $f'(x) = \frac{1}{8}(3x^2 - 12x)$, $f''(x) = \frac{1}{8}(6x - 12)$ und $f'''(x) = \frac{3}{4}(1.5)$

Extrema:
$$(f'(x) = 0 \text{ und } f''(x) < > 0) T(4|-1) \text{ und } H(0|3)$$
 (3)

Wendepunkt:
$$(f''(x)=0 \text{ mit VZW bzw. } f'''(x)\neq 0) \text{ W}(2|1)$$
 (1,5)

Schnittpunkte von g und K: Entweder rechnerisch durch Gleichsetzen g(x) = f(x) (ergibt Gleichung 3. Grades => Probieren) oder durch ablesen der Punkte aus dem Schaubild und Punktprobe: $x_1 = -23$, $x_2 = 6$, $x_3 = 2$

A =
$$\left| \int_{-2}^{2} f(x) - g(x) dx \right| + \left| \int_{2}^{6} f(x) - g(x) dx \right|$$
 (1)

$$= \left| \int_{-2}^{2} \left(\frac{1}{8} x^{3} - \frac{3}{4} x^{2} - \frac{1}{2} x + 3 \right) dx \right| + \left| \int_{2}^{6} \left(\frac{1}{8} x^{3} - \frac{3}{4} x^{2} - \frac{1}{2} x + 3 \right) dx \right|$$
 (1)

$$= \left[\frac{1}{32} x^4 - \frac{1}{4} x^3 - \frac{1}{4} x^2 + 3x \right]_{-2}^2 + \left[\frac{1}{32} x^4 - \frac{1}{4} x^3 - \frac{1}{4} x^2 + 3x \right]_{2}^6$$
 (1)

$$= \left| \left(\frac{1}{16} - 2 - 1 + 6 \right) - \left(\frac{1}{16} + 2 - 1 - 6 \right) \right| + \left| \left(\frac{81}{2} - 54 - 9 + 18 \right) - \left(\frac{1}{2} - 2 - 1 + 6 \right) \right| \tag{1}$$

$$= |8| + |-8| \tag{1}$$

$$= 16 \, \text{FE}. \tag{1}$$

c)
$$A(u) = \frac{1}{2} \cdot g \cdot h = \frac{1}{2} (f(u) - g(u)) \cdot (2 - u) = \frac{1}{2} \cdot (\frac{1}{8}u^3 - \frac{3}{4}u^2 - \frac{1}{2}u + 3) \cdot (2 - u)$$

$$= -\frac{1}{16}u^4 + \frac{1}{2}u^3 - \frac{1}{2}u^2 - 2u + 3 \Rightarrow A'(u) = -\frac{1}{4}u^3 + \frac{3}{2}u^2 - u - 2$$
 (3)

Maximum: $(A'(u)=0 \text{ ergibt Gleichung 3. Grades} \Rightarrow \text{Probieren})$

3. Grades
$$\Rightarrow$$
 Probleren)
$$u_1 = 2 - \sqrt{8} \qquad \text{(relatives Maximum)} \qquad (1)$$

$$u_2 = 2 \qquad \text{(relatives Minimum)} \qquad (1)$$

$$u_3 = 2 + \sqrt{8} \qquad \text{(außerhalb des zulässigen Bereiches)} \qquad (1)$$

$$\text{inimum} \Rightarrow \text{abs. Maximum bei } u_1 = 2 - \sqrt{8} \text{ mit } A(2 - \sqrt{8}) = 4. \quad (3)$$

$$u_2 = 2$$
 (relatives Minimum) (1)

$$u_3 = 2 + \sqrt{8}$$
 (außerhalb des zulässigen Bereiches) (1)

Randwerte: A(-2) = 0, A(2) ist rel. Minimum \Rightarrow abs. Maximum bei $u_1 = 2 - \sqrt{8}$ mit $A(2 - \sqrt{8}) = 4$. (3)

Aufgabe 7. Kurvenuntersuchung Optimierungsaufgabe, Integration (24)

Für $x \in \mathbb{R}$ ist die Funktion f mit dem Schaubild K gegeben durch $f(x) = \frac{1}{8}(x^3 + 6x^2 - 24)$.

- a) Untersuchen Sie das Schaubild K auf Hoch-, Tief- und Wendepunkte. Zeichnen Sie K im Bereich $-6.5 \le x \le 2.5$ mit 1 LE = 1cm. (7)
- b) Die Gerade g mit der Gleichung $y = \frac{1}{2}x$ und das Schaubild K begrenzen zwei Flächenstücke. Berechnen Sie deren Gesamtinhalt. (7)
- c) Für -2 ≤ u ≤ 2 schneidet die Gerade mit der Gleichung x = u das Schaubild im Punkt A und die Gerade aus Teilaufgabe b) im Punkt B. Der Punkt C(-2|-1) bildet mit den Punkten A und B ein Dreieck. Für welchen Wert von u wird das Flächeninhalt dieses Dreiecks maximal? (10)

Lösungen

a) Ableitungen:
$$f(x) = \frac{1}{8}(x^3 + 6x^2 - 24)$$
, $f'(x) = \frac{1}{8}(3x^2 + 12x)$ und $f''(x) = \frac{1}{8}(6x + 12)$ (1,5)

Extrema:
$$(f'(x) = 0 \text{ und } f''(x) < > 0) T(-4|1) \text{ und } H(0|-3)$$
 (3)

Wendepunkt:
$$(f''(x)=0 \text{ mit VZW bzw. } f'''(x)\neq 0) W(-2|-1)$$
 (1,5)

Wertetabelle und Schaubild: (vgl. Gruppe A) (1)

b) Schnittpunkte von g und K: Entweder rechnerisch durch Gleichsetzen g(x) = f(x) (ergibt Gleichung 3. Grades \Rightarrow Probieren) oder durch ablesen der Punkt aus dem Schaubild und Punktprobe: $x_1 = 23$, $x_2 = -6$, $x_3 = -2$ (1)

A =
$$\left| \int_{-2}^{2} f(x) - g(x) dx \right| + \left| \int_{2}^{6} f(x) - g(x) dx \right|$$
 (1)

$$= \left| \int_{-6}^{2} \left(\frac{1}{8} x^3 + \frac{3}{4} x^2 - \frac{1}{2} x - 3 \right) dx \right| + \left| \int_{-2}^{2} \left(\frac{1}{8} x^3 + \frac{3}{4} x^2 - \frac{1}{2} x - 3 \right) dx \right|$$
 (1)

$$= \left[\frac{1}{32} x^4 + \frac{1}{4} x^3 - \frac{1}{4} x^2 - 3x \right]_{-6}^{-2} + \left[\frac{1}{32} x^4 + \frac{1}{4} x^3 - \frac{1}{4} x^2 - 3x \right]_{-2}^{2}$$
 (1)

$$= \left| \left(\frac{1}{2} - 2 - 1 + 6 \right) - \left(\frac{81}{2} - 54 - 9 + 18 \right) \right| + \left| \left(\frac{1}{16} + 2 - 1 - 6 \right) - \left(\frac{1}{16} - 2 - 1 + 6 \right) \right| \tag{1}$$

$$= |8| + |-8|$$
 (1)

$$= 16 \text{ FE}. \tag{1}$$

c)
$$A(u) = \frac{1}{2} \cdot g \cdot h = \frac{1}{2} (g(u) - f(u)) \cdot (2 + u) = \frac{1}{2} \cdot (-\frac{1}{8}u^3 - \frac{3}{4}u^2 + \frac{1}{2}u + 3) \cdot (2 + u) = -\frac{1}{16}u^4 - \frac{1}{2}u^3 - \frac{1}{2}u^2 + 2u + 3 \Rightarrow A'(u) = -\frac{1}{4}u^3 - \frac{3}{2}u^2 - u + 2 \text{ und } A''(u) = -\frac{3}{4}u^2 - 3u - 1$$
 (3)

Maximum: (A'(u)=0 ergibt Gleichung 3. Grades \Rightarrow Probieren): $u_1 = -2 + \sqrt{8}$ (relatives Maximum), $u_2 = -2$ (relatives Minimum) und $u_3 = -2 - \sqrt{8}$ (außerhalb des zulässigen Bereiches) (3)

Randwerte: A(-2) ist rel. Minimum, $A(2) = 0 \Rightarrow$ abs. Maximum bei $u_1 = -2 + \sqrt{8}$ mit maximaler Fläche $A(-2 + \sqrt{8}) = 4$.

Aufgabe 8: Kurvenuntersuchung, Extremwertaufgabe, Integration (30)

- a) Untersuche $f(x) = \frac{1}{4}x^4 2x^2 + 4$ auf Symmetrie, Achsenschnittpunkte, Extrem- sowie Wendepunkte und skizziere ihren Graphen mit allen wesentlichen Punkten.
- b) In den Raum zwischen der x-Achse und dem Teil des Graphen von f, der die Extremalpunkte enthält, soll ein Rechteck mit maximalem Flächeninhalt eingepasst werden. Berechne die Eckpunkte dieses Rechtecks.
- c) Wieviel Prozent des gesamten Zwischenraums nimmt das Rechteck aus b) ein?

Lösungen:

a) Symmetrie zur y-Achse, da f(-x) = f(x) oder. $f(x) = \frac{1}{4}x^4 - 2x^2 + 4$ enthält nur gerade Exponenten (1)

$$S_{v}(0|4) \tag{1}$$

$$f(x) = \frac{1}{4}(x-2)^2(x+2)^2 \Rightarrow T_{1/2}(\pm 2|0)$$
 (2)

(doppelte Nullstellen \Rightarrow Berührpunkte und insbesondere Tiefpunkte, da f(x) > 0 für alle $x \in \mathbb{R}$, siehe unten) Ableitungen: $f'(x) = x^3 - 4x = x(x+2)(x-2)$, $f''(x) = 3x^2 - 4$ (und f'''(x) = 6x) (2) Hochpunkt H(0|4), da f'(0) = 0 und f''(0) = -4 < 0 oder mit VZW von + nach – (1)

Ableitungen:
$$f'(x) = x^3 - 4x = x(x+2)(x-2)$$
, $f''(x) = 3x^2 - 4$ (und $f'''(x) = 6x$) (2)

Hochpunkt
$$H(0|4)$$
, da f'(0) = 0 und f''(0) = $-4 < 0$ oder mit VZW von + nach – (1)

Tiefpunkte
$$T_{1/2}(\pm 2|0)$$
, da $f'(\pm 2) = 0$ und $f''(\pm 2) = 2 > 0$ oder wie oben oder mit VZW (2)

Wendepunkte
$$W_{1/2}(\pm \sqrt{\frac{4}{3}} | \frac{16}{9})$$
, da f''($\pm \sqrt{\frac{4}{3}}$) = 0 und f'''($\pm \sqrt{\frac{4}{3}}$) = $6\sqrt{\frac{4}{3}} \neq 0$ oder mit VZW (3)

b) Das Rechteck mit den Eckpunkten A(-u|0), B(u|0), C(u|f)u) und D(-u|f(-u) mit $0 \le u \le 2$ (2)

Flächeninhalt
$$A(u) = 2u \cdot f(u) = \frac{1}{2}u^5 - 4u^3 + 8u \text{ mit } A'(u) = \frac{5}{2}u^4 - 12u^2 + 8 = \frac{5}{2}(u^4 - \frac{24}{5}u^2 + \frac{16}{5})$$
 (2)

A'(u) = 0 für
$$u^2 = \frac{12}{5} \pm \frac{8}{5} \iff u_{112} = \pm \sqrt{\frac{4}{5}} \text{ und } u_{314} = \pm 2.$$
 (1)

u₂ und u₄ sind negativ und liegen ausserhalb des betrachteten Bereiches. (1)

In
$$u_3 = 2$$
 wird die Fläche minimal mit $A(2) = 0$ (1)

Das absolute und relative Maximum muss also bei
$$u_1 = \sqrt{\frac{4}{5}}$$
 liegen mit $f(\sqrt{\frac{4}{5}}) = \frac{64}{25}$. (1)

Das Rechteck hat die Eckpunkte
$$(\pm \sqrt{\frac{4}{5}} \mid 0)$$
 und $(\pm \sqrt{\frac{4}{5}} \mid \frac{64}{25})$ (1)

c) Der Flächeninhalt des Rechtecks aus b) ist A(
$$\sqrt{\frac{4}{5}}$$
) = $\sqrt{\frac{4}{5}} \cdot \frac{128}{25}$ FE. (1)

Der Flächeninhalt des gesamten Zwischenraum

$$A_0 = 2\int_0^2 f(x)dx = 2\left[\frac{1}{20}x^5 - \frac{2}{3}x^3 + 4x\right]_0^2 = 2(\frac{8}{5} - \frac{16}{3} + 8) = \frac{128}{15} \text{ FE.}$$
 (3)

Der Anteil von A betragt
$$\frac{A}{A_0} = \sqrt{\frac{4}{5}} \cdot \frac{128}{25} \cdot \frac{15}{128} = \sqrt{\frac{4}{5}} \cdot \frac{3}{5} \approx 53,66 \%$$
 (2)

Aufgabe 9: Kurvenuntersuchung mit Parameter, Ortskurve, Optimierungsaufgabe, Integration (24)

Gegeben ist $f_t(x) = \frac{1}{9}x^3 + \frac{t}{3}x^2 - t^2x + 3t^2 - 3t - 3$ mit $x \in \mathbb{R}$ und $t \in \mathbb{R}^*_+$. Das Schaubild von f_t heißt K_t .

- Untersuchen Sie K_1 auf Achsenschnittpunkte, Extrem- und Wendepunkte. Zeichnen Sie K_1 für $-4 \le x \le 4$ mit 1 LE = 1cm. (10)
- Bestimmen Sie die Ortskurve des Hochpunktes von K_t. (6)
- Die Senkrechte x = u mit $-3 \le x \le 3$ schneidet K_1 in R und die x-Achse in P. K_1 schneidet die positive x-Achse in Q. Berechnen Sie dien maximalen Flächeninhalt, den das Dreieck PQR annehmen kann. (6)

a) Ableitungen:
$$f_1(x) = \frac{1}{9}x^3 + \frac{1}{3}x^2 - x - 3$$
, $f_1'(x) = \frac{1}{3}x^2 + \frac{2}{3}x - 1$ und $f_1''(x) = \frac{2}{3}x + \frac{2}{3}$ (2)

Schnittpunkt mit der y-Achse:
$$S_y(0|-3)$$
 (0,5)

Schnittpunkte mit der x-Achse
$$(f_1(x) = \frac{1}{9}(x-3)(x+3)^2 \Rightarrow S_{x1}(3|0) \text{ und } S_{x2/3}(-3|0) \text{ (doppelt)}$$
 (2,5)

Extrema:
$$(f_1'(x) = 0 \text{ und } f_1''(x) < > 0) T(1 - \frac{32}{9}) \text{ und } H(-3 | 0)$$
 (4)

Wendepunkte:
$$(f_1''(x) = 0 \text{ mit VZW}) W(-1 | -\frac{16}{9})$$
 (3)

b) Ableitungen:
$$f_t'(x) = \frac{1}{3}x^2 + \frac{2t}{3}x - t^2 \text{ und } f_t''(x) = \frac{2}{3}x + \frac{2t}{3} \Rightarrow$$
 (2)

Hochpunkte
$$(f_t'(x) = 0 \text{ und } f_t''(x) < 0) \text{ H}(--t|3t^3 + 3t^2 - 3t - 3)$$
 (3)

$$\Rightarrow \text{Ortskurve } y = -\frac{1}{9}x^3 + \frac{1}{3}x^2 + x - 3 \tag{1}$$

c)
$$A(u) = \frac{1}{2} \cdot g \cdot h = \frac{1}{2} \cdot (3 - u) \cdot (0 - f(u)) = \frac{1}{18} (u^4 - 18u^2 + 81) \Rightarrow A'(u) = \frac{1}{18} (4u^3 - 36u)$$
 (3)

Bereichsgrenzen
$$A(-3) = A(3) = 0 \Rightarrow$$
 absolutes Maximum bei $u = 0$. (2)

Aufgabe 10: Kurvenuntersuchung mit Parameter, Ortskurve, Optimierungsaufgabe, Integration (24)

K ist das Schaubild der Funktion f_t .mit $f_t = -\frac{x^2}{t^2}$ (x - 3t) mit $x \in \mathbb{R}$ und $t \in \mathbb{R}^*_+$.

- a) Untersuchen Sie K_2 auf Schnittpunkte mit der x-Achse, Hoch-, Tief- und Wendepunkte. Zeichnen Sie K_2 für $-1 \le x \le 6$ mit 1 LE = 1 cm. (10)
- b) Bestimmen Sie die Gleichung der Ortskurve der Hochpunkte von K_t. (6)
- c) Die Senkrechte x = u schneidet K_2 in P und die x-Achse in R. Gegeben ist außerdem der Punkt Q(0|6). Berechnen Sie den maximalen Flächeninhalt, den das Dreieck PQR annehmen kann. (8)

Lösung

a)
$$f_2(x) = -\frac{1}{4}x^2(x-6) = -\frac{1}{4}x^3 + \frac{3}{2}x^2$$
, $f_2'(x) = -\frac{3}{4}x^2 + 3x$, $f_2''(x) = -\frac{3}{2}x + 3$, $f_2'''(x) = -\frac{3}{2}$ (2)

Schnittpunkte mit der x-Achse:
$$(f(x)=0) N_{1/2}(0|0)$$
 (doppelte NST \Rightarrow Berührpunkt) und $N_3(6|0)$ (1)

Hoch- und Tiefpunkte:
$$(f'(x)=0, f''(x)0) T(0|0)$$
 und $H(4|8)$ (4)

Wendepunkte:
$$(f''(x)=0, f'''\neq 0 \text{ oder VZW von } f''(x)) W(2|4)$$
 (2)

b)
$$f'_t(x) = -\frac{3}{t^2}x^2 + \frac{6}{t}x$$
, $f''_t(x) = -\frac{6}{t^2}x + \frac{6}{t}$ (2)

Hochpunkt:
$$(f'_t(x) = 0 \text{ und } f''_t(x) < 0) H(2t \mid 4t)$$
 (3)

$$\Rightarrow$$
 Ortskurve der Hochpunkte y = 2x (1)

c)
$$A(u) = \frac{1}{2} \cdot g \cdot h = (6 - u) \cdot f_2(u) = \frac{1}{8} u^2 (u - 6)^2,$$
 (2)

$$A'(u) = \frac{1}{2} u \cdot (u - 6) \cdot (u - 3), A''(u) = \frac{3}{2} (u^2 - 6u + 6)$$
 (2)

rel. Max
$$(A'(u) = 0 \text{ und } A''(u) < 0)$$
 bei $u = 3$. (2)

Bereichsgrenzen:
$$A(0) = A(6) = 0 \Rightarrow abs Max bei u = 3 mit A(3) = \frac{81}{8} FE.$$
 (2)

Aufgabe 11: Kurvenuntersuchung mit Parameter, Ortskurve, Optimierungsaufgabe (26)

Für jedes $t \in \mathbb{R}^*_+$ sind die Funktionen f_t und g_t gegeben durch $f_t(x) = \frac{1}{2t}x^4 - t^2x^2$ und $g_t(x) = \frac{1}{2t}x^4 - t^2x^2$

$$(\frac{5}{2t}-t^2)x^2-\frac{2}{t}$$
 . Das Schaubild von f_t ist K_t , das Schaubild von g_t ist G_t

- a) Untersuchen Sie das Schaubild K_t auf Symmetrie, Schnittpunkte mit der x-Achse, Hoch-, Tief- und Wendepunkte. Zeichnen Sie K_1 und G_1 im Bereich $-2 \le x \le 2$ mit 1 LE = 2 cm. (11)
- b) In den Raum, der zwischen K₁ und G₁ liegt, soll ein Rechteck maximaler Fläche eingepasst werden, dessen Seiten parallel zu den Koordinatenachsen verlaufen. Geben Sie die Koordinaten der Eckpunkte dieses Rechteckes auf zwei Nachkommastellen gerundet an. (9)
- c) Berechnen Sie die Koordinaten der Schnittpunkte von K_t und G_t. Für welches t wird der Abstand der beiden rechten Schnittpunkte minimal? Hinweis: Dieses Extremwertproblem lässt sich lösen ohne dabei irgendwelche Ableitungen zu bilden! (6)

Lösungen:

a) Ableitungen:
$$f_t'(x) = \frac{2}{t}x^3 - 2t^2x$$
, $f_t''(x) = \frac{6}{t}x^2 - 2t^2$ und $f'''_t(x) = \frac{12}{t}x$ (2)

Symmetrie:
$$f_t$$
 ist eine gerade Funktion, also symmetrisch zur y-Achse. (1)

Schnittpunkte mit der x-Achse
$$N_{1/2}(0|0)$$
 (doppelte NST \Rightarrow Berührpunkt) und $N_{3/4}(\pm \sqrt{2t^3}|0)$ (2)

Extrempunkte
$$(f_t'(x) = 0 \text{ und } f_t''(x) \neq 0)$$
: $H(0|0) \text{ und } T_{1/2}(\pm \sqrt{t^3} |-\frac{1}{2}t^5)$ (4)

Wendepunkte
$$(f_t^{"}(x) = 0 \text{ mit VZW}): W_{1/2}(\pm \sqrt{\frac{t^3}{3}} \mid -\frac{5}{18} t^5)$$
 (3)

Schaubild (zusätzliche Werte: $f_1(\pm 2) = 4$) (

b) Aus der Zeichnung lässt sich erkennen, dass von den Zwischenräumen in den Bereichen $-2 \le x \le -1$, $-1 \le x \le 1$ und $1 \le x \le 2$ der mittlere Bereich $-1 \le x \le 1$ deutlich größer ist als die beiden anderen. Es bietet sich daher an, die folgenden Eckpunkte mit $0 \le x \le 1$ zu wählen:

A(u|g(u))

B(u|(f(u))

C(u|(f(-u)) = C(-u|f(u)

D(u|(g(-u)) = D(-u|g(u)

 $A(u) = b \cdot h = [u - (-u)] \cdot [f_1(u) - g_1(u)] = 2u \cdot [0.5u^4 - 2.5u^2 + 2] = u^5 - 5u^3 + 4u \Rightarrow A'(u) = 5u^4 - 15u^2 + 4$ und $A''(u) = 20u^3 - 30u \Rightarrow \text{Relatives Maximum } (A'(u) = 0 \text{ und } A''(u) < 0) : 0 = 5u^4 - 15u^2 + 4 \Leftrightarrow 0 = u^4 - 15u^4 + 4 \Leftrightarrow 0 = u^4 - 15$

$$3u^2 + 0.8 \Leftrightarrow 0 = z^2 - 3z + 0.8 \Rightarrow z_{1/2} = \frac{3}{2} \pm \sqrt{\frac{29}{20}} \Rightarrow u_{1/2} = \pm \sqrt{\frac{3}{2} + \sqrt{\frac{29}{20}}} \approx \pm 1.64$$
 und $u_{3/4} = 0.00$

 $\pm\sqrt{\frac{3}{2}-\sqrt{\frac{29}{20}}} \approx \pm \ 0.54$. Nur $u_3 \approx 0.54$ liegt im gewünschten Bereich! A'' $(0.54) \approx -15.4 < 0 \Rightarrow$ relatives

Maximum (Hochpunkt). Bereichsgrenzen: A(0) = 0, $A(0,54) \approx 1,41$ und $A(1) = 1 \Rightarrow$ absolutes Maximum bei $u_3 \approx 0,54$ y-Koordinaten: $f_1(0,54) \approx -0,21$ und $g_1(0,54) \approx -1,56 \Rightarrow$ Eckpunkte: A(0,54|-0,21), B(-0,54|-0,21), C(-0,54|-1,56) und D(0,54|-1,56).

c) Punkte A(1 |
$$\frac{1}{2t} - t^2$$
) und B(2 | $\frac{8}{t} - 4t^2$) \Rightarrow Abstand d(t) = $\sqrt{1 + (\frac{15}{2t} - 3t^2)^2}$ mit t > 0.

Ansatz 1:

Da die Wurzelfunktion streng monoton steigend ist, genügt es, das Minimum von $d^2(t) = 1 + (\frac{15}{2t} - 3t^2)^2$ zu suchen: Ist $d^2(t)$ an der Stelle t_0 minimal, so besitzt auch d(t) dort ein relatives Minimum. $(d^2(t)^2) = 2(\frac{15}{2t} - 3t^2)(-\frac{15}{2t^2} - 6t) = 0 \Leftrightarrow \frac{15}{2t} - 3t^2 = 0 \Leftrightarrow t = \sqrt[3]{\frac{5}{2}} \text{ mit } d(\sqrt[3]{\frac{5}{2}}) = 1. \ (t > 0!)$. Randwerte: Da d(t) für $t \to 0$

(wegen $\frac{15}{2t}$) und für $t \to \infty$ (wegen $3t^2$) gegen ∞ strebt, ist an dieser Stelle auch das absolute Minimum.

Ansatz 2

$$\sqrt{1+(\frac{15}{2t}-3t^2)^2} \ \ \text{erreicht sein absolutes Minimum, wenn} \ \ \frac{15}{2t}-3t^2=0 \Leftrightarrow t=\sqrt[3]{\frac{5}{2}} \ .$$

Aufgabe 12: Kurvenuntersuchung mit Parameter, Ortskurve, Tangente (24)

Für jedes $t \in \mathbb{R}$ ist die Funktion f_t gegeben durch $f_t(x) = -x^3 + (t-2)x^2 + (2t-1)x + t$. Ihr Schaubild heißt K_t .

- a) Untersuchen Sie K_2 auf Achsenschnittpunkte, Hoch-, Tief- und Wendepunkte. Zeichnen Sie K_2 für $-2 \le x \le 2$ mit 1 LE = 2 cm. (10)
- b) Bestimmen Sie die Gleichung der Tangente an K₂ im Punkte P(0,5|f₂(0,5)). Zeigen Sie, dass der Tiefpunkt von K₂ auf dieser Tangenten liegt. Q sei ein vom Hochpunkt H(1|4) verschiedener Punkt auf K₂. Bestimmen Sie die Koordinaten von Q so, dass die Tangente an K₂ in Q durch H geht. (7)
- c) Zeigen Sie, dass K_t die x-Achse in A(-1|0) berührt. Für welche Werte von t ist A Hochpunkt Tiefpunkt

Wendepunkt von K_t?

d) Es sei $t \le 0$. Auf dem Schaubild K_t liegen die Punkte R(t|0) und S(0|t). Der Ursprung O(0|0) und die Punkte R und S bilden Sie Eckpunkte eines Dreieckes mit dem Flächeninhalt $A_1(t)$. Die Koordinatenachsen und K_t begrenzen im 1. Quadranten eine Fläche mit dem Inhalt $A_2(t)$. Für welchen Wert von t gilt $A_1(t): A_2(t) = 1: 3$?

Aufgabe 13: Kurvenuntersuchung mit Parameter, Ortskurve, Optimierungsaufgabe (24)

Gegeben ist die Funktion f_t durch $f_t(x)=\frac{t^2}{16}x^4+\frac{t}{2}x^3$ mit $x\in\mathbb{R}$ und $t\in\mathbb{R}^*_+$. Das Schaubild von f_t heißt K_t .

a) Untersuchen Sie K_3 auf gemeinsame Punkte mit der x-Achse, Extrem- und Wendepunkte. Zeichnen Sie K_3

- für $-3 \le x \le 1$ mit 1 LE = 1cm. (10)
- Untersuchen Sie K_t auf Extrempunkte und zeigen Sie, dass K_t keinen Hochpunkt besitzt. Bestimmen Sie die Ortskurve des Tiefpunktes von K_t. (8)
- Die Senkrechte x = u mit $-\frac{8}{3} \le u \le 0$ schneidet K_3 in P und die x-Achse in Q Für welches u ist der Flächeninhalt des Dreiecks OPQ maximal? (5)