5.7. Prüfungsaufgaben zur vollständigen Induktion

Aufgabe 1: Rekursive Darstellung und vollständige Induktion (5)

- Leiten Sie eine rekursive Formel für die Folge $a_n = 3 \frac{1}{n}$ her. (2)
- Überprüfen Sie Ihr Ergebnis durch vollständige Induktion. (3)

Lösung

a)
$$a_{n+1} = 3 - \frac{1}{n+1} \Rightarrow a_{n+1} - a_n = \frac{1}{n} - \frac{1}{n+1} = \frac{1}{n \cdot (n+1)}$$
 (2)

b) n = 1: linke Seite: $a_1 = 2$ (gegeben), rechte Seite: $a_1 = 3 - \frac{1}{1} = 2$ $n \Rightarrow n + 1$: linke Seite $a_{n+1} = a_n + \frac{1}{n(n+1)} = 3 - \frac{1}{n} + \frac{1}{n(n+1)} = 3 - \frac{1}{n+1}$, rechte Seite $a_{n+1} = 3 - \frac{1}{n+1}$

Aufgabe 2: Rekursive Darstellung und vollständige Induktion (5)

- Leiten Sie eine rekursive Formel für die Folge $a_n = \frac{3}{n} + 1$ her. (2)
- Überprüfen Sie Ihr Ergebnis durch vollständige Induktion. (3)

Lösung

a)
$$a_{n+1} = \frac{3}{n+1} + 1 \Rightarrow a_{n+1} - a_n = \frac{3}{n+1} - \frac{3}{n} = -\frac{3}{n \cdot (n+1)}$$
 (2)

b) n = 1: linke Seite: $a_1 = 4$ (gegeben), rechte Seite: $a_1 = \frac{3}{1} + 1 = 4$

 $k \Rightarrow k+1$: linke Seite $a_{n+1} = a_n - \frac{3}{n(n+1)} = \frac{3}{n} + 1 - \frac{3}{n(n+1)} = \frac{3}{n+1} + 1$, rechte Seite $a_{n+1} = \frac{3}{n+1} + 1$. (3)

Aufgabe 3: Rekursive Darstellung und vollständige Induktion (6)

- a) Die Folge (b_n) ist rekursiv gegeben durch $b_0 = 1$ und $b_n = b_{n-1} + 0.2 \cdot (5 b_{n-1})$ für $n \ge 1$. Zeigen Sie mit vollständiger Induktion, dass für $n \ge 0$ gilt $b_n = 5 - 4.0,8^n$.
- Die Folge (c_n) ist gegeben durch $c_0 = 1$ und $c_n = c_{n-1} + 0.2 \cdot (5.2 c_{n-1})$ für $n \ge 1$. Geben Sie eine explizite Darstellung für c_n an.

Lösung

a) Induktionsstart
$$n = 0$$
: $1 = 5 - 4.0, 8^0 = 5 - 4.$ (0,5)

Induktionsschritt $n - 1 \Rightarrow n$:

Annahme:
$$b_{n-1} = 5 - 4.0,8^{n-1}$$
 (0,5)

Zu zeigen:
$$b_n = 5 - 4.0,8^n$$
 (0,5)

Einsetzen:
$$b_n = b_{n-1} + 0.2 \cdot (5 - b_{n-1})$$
 (0,5)
= $5 - 4 \cdot 0.8^{n-1} + 0.2 \cdot (5 - (5 - 4 \cdot 0.8^{n-1}))$ (0,5)

$$= 5 - 4 \cdot 0.8^{n-1} + 0.2 \cdot (5 - (5 - 4 \cdot 0.8^{n-1}))$$

$$= 5 - 4 \cdot 0.8^{n-1} + 0.2 \cdot (5 - (5 - 4 \cdot 0.8^{n-1}))$$

$$(0,5)$$

$$= 5 - 4.0,8^{n-1} + 0.2 \cdot 4.0,8^{n-1}$$

$$= 5 - 4.0,8^{n-1} + 0.2 \cdot 4.0,8^{n-1}$$

$$= 5 - 4.0,8^{n-1}(1 - 0.2)$$
(0,5)

$$= 5 - 4.0,8^{n-1}(1 - 0.2) \tag{0.5}$$

$$= 5 - 4.0,8^{n} \tag{0.5}$$

1

b) Explizite Darstellung:
$$c_n = 5,2-4,2\cdot0,8^n$$
. (Beschränktes Wachstum) (2) (Beweis: $c_n = c_{n-1} + 0,2\cdot(5,2-c_{n-1}) = 5,2-4,2\cdot0,8^{n-1} + 0,2\cdot4,2\cdot0,8^{n-1} + 5,2-4,2\cdot0,8^{n-1}(1-0,2) = 5,2-4,2\cdot0,8^n$.)

Aufgabe 4: vollständige Induktion (5)

Zeigen Sie mit vollständiger Induktion, dass

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n\cdot (n+1)} = \frac{n}{n+1}$$
 für $n \ge 1$.

Lösung:

Induktionsstart n = 1:
$$\frac{1}{1 \cdot 2} = \frac{1}{1+1}.$$
 (1)

Induktionsschritt $n \Rightarrow n + 1$:

Annahme:
$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n\cdot (n+1)} = \frac{n}{n+1}$$
 (1)

Zu zeigen:
$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n \cdot (n+1)} + \frac{1}{(n+1) \cdot (n+2)} = \frac{n+1}{n+2}$$
 (1)

linke Seite:
$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + ... + \frac{1}{n\cdot (n+1)} + \frac{1}{(n+1)\cdot (n+2)}$$

$$= \frac{1}{n \cdot (n+1)} + \frac{1}{(n+1) \cdot (n+2)}$$

$$= \frac{n \cdot (n+2) + 1}{(n+1) \cdot (n+2)} \tag{0.5}$$

$$= \frac{n^2 + 2n + 1}{(n+1)\cdot(n+2)} \tag{0,5}$$

$$= \frac{(n+1)^2}{(n+1)\cdot(n+2)} \tag{0.5}$$

$$= \frac{n+1}{n+2} = \text{rechte Seite}$$
 (0,5)

Aufgabe 5: vollständige Induktion (5)

Zeigen Sie mit vollständiger Induktion, dass

$$1 + 4 + 7 + \dots + (3n - 2) = \frac{1}{2} \cdot n \cdot (3n - 1) \text{ für } n \ge 1.$$

Lösung:

Induktionsstart n = 1:
$$1 = \frac{1}{2} \cdot 1 \cdot (3 - 1) = \frac{1}{2} \cdot 2$$
 (1)

Induktionsschritt $n \Rightarrow n + 1$:

Annahme:
$$1 + 4 + 7 + ... + (3n - 2) = \frac{1}{2} \cdot n \cdot (3n - 1)$$
 (1)

Zu zeigen:
$$1 + 4 + 7 + ... + (3n - 2) + (3(n + 1) - 2) = \frac{1}{2} \cdot (n + 1) \cdot (3(n + 1) - 1)$$
 (1)

linke Seite: 1 + 4 + 7 + ... + (3n - 2) + (3(n + 1) - 2)

$$= \frac{1}{2} \cdot n \cdot (3n-1) + (3(n+1)-2)$$

$$= \frac{1}{2} \cdot 3n^2 - \frac{1}{2}n + 3n + 3 - 2 \tag{0.5}$$

$$= \frac{3}{2}n^2 + \frac{5}{2}n + 1 \tag{0.5}$$

rechte Seite:
$$\frac{1}{2} \cdot (n+1) \cdot (3(n+1)-1)$$

$$= \frac{1}{2}(n+1)(3n+2) \tag{0.5}$$

$$= \frac{1}{2}(3n^2 + 5n + 2) = \text{linke Seite}$$
 (0,5)

Aufgabe 6: Vollständige Induktion (3)

Beschreiben Sie an einem selbst gewählten Beispiel oder dem Beispiel von Aufgabe 2 die wesentlichen Schritte des Beweisverfahrens der vollständigen Induktion.

Aufgabe 7: Vollständige Induktion (4)

An einem Fest nehmen $n \ge 1$ Paare teil. Dabei werden alle Personen mit Ausnahme des eigenen Partners mit begrüßt. Zeigen Sie durch vollständige Induktion, dass dabei insgesamt 2n² – 2n Begrüßungen stattfinden.

Lösungen zu den Aufgaben 6 und 7 (3 + 3)

- 1. Die vollständige Induktion ist ein Beweisprinzip für Aussagen An, die in Abhängigkeit von einem natürlichen Parameter n $\in \mathbb{N}$ getroffen werden.
 - **Beispiel Aufgabe 2:** Bei n Paaren finden $B_n = 2n^2 2n$ Begrüßungen statt, wobei n $\epsilon \bowtie \{0\}$. (1+0)
- Induktionsstart $n = n_0$: Man beweist zunächst A_{n0} für der kleinsten Wert n_0 , den n annehmen kann. **Beispiel Aufgabe 2:** Bei $n_0 = 1$ Paar findet $2 \cdot 1^2 - 2 \cdot 1 = 0$ Begrüßung statt. Die Aussage A_{n0} gilt offensichtlich. (1 + 1)
- Induktionsschritt $n \Rightarrow n + 1$: Man beweist A_{n+1} unter der Induktionsvoraussetzung, dass A_n gilt. **Beispiel Aufgabe 2:** Induktionsvoraussetzung: Bei n Paaren finden $B_n = 2n^2 - 2n$ Begrüßungen statt. Zu zeigen ist: Bei n + 1 Paaren finden $B_{n+1} = 2(n+1)^2 - 2(n+1) = 2n^2 + 4n + 2 - 2n - 2 = 2n^2 + 2n$ Begrüßungen statt. Beweis: Beide Partner des n + 1-ten Paares begrüßen alle 2 n bereits anwesende Personen. Es finden also 2·2n = 4 n zusätzliche Begrüßungen statt. Nach Induktionsvoraussetzung haben unter den n bereits anwesenden Paaren $B_n = 2n^2 - 2n$ Begrüßungen stattgefunden, so dass sich zusammen B_n $_{+\,1}=B_n+4n=2n^2+2n$ Begrüßungen ergeben. Dies entspricht der Behauptung. (1+2)

Aufgabe 8 (4)

Beweisen Sie durch vollständige Induktion, dass die Funktion f mit $f(x) = \frac{x}{e^x}$; $x \in \mathbb{R}$ die n-te Ableitung $f^{(n)}(x) = \frac{x}{e^x}$

$$\frac{(-1)^n(x-n)}{e^x}$$
 besitzt.

Lösung

Induktionsstart
$$n = 1$$
: $f(x) = x \cdot e^{-x}$ hat die Ableitung $f'(x) = 1 \cdot e^{-x} - x \cdot e^{-x} = \frac{(-1)(x-1)}{e^x}$ (Produktregel) (1)

Induktionsschritt
$$n \Rightarrow n + 1$$
: Induktionsannahme $f^{(n)}(x) = (-1)^n (x - n)e^{-x}$ (0,5)

$$\Rightarrow f^{(n+1)}(x) = (-1)^{n}(1 \cdot e^{-x} - (x - n)e^{-x})$$

$$= (-1)^{n}(n + 1 - x)e^{-x}$$

$$= (-1)^{n+1}(x - (n+1))e^{-x}$$
(0,5)

$$= (-1)^{n}(n+1-x)e^{-x}$$
 (0,5)

$$= (-1)^{n+1} (x - (n+1))e^{-x}$$
 (0,5)

$$=\frac{(-1)^{n+1}(x-(n+1))}{e^x}$$
 (0,5)

3

Aufgabe 9: Vollständige Induktion (10)

Beweisen Sie die folgende Summenformel für $n \ge 1$:

$$1+3+6+10+\ldots+\frac{1}{2}n(n+1)=\frac{1}{6}n(n+1)(n+2).$$

- a) mit vollständiger Induktion (5)
- b) mit Hilfe der beiden folgenden Formeln:

$$1 + 2 + 3 + \dots + n = \frac{1}{2}n(n+1)$$

$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1)$$

Lösung:

a) Induktionsstart
$$\mathbf{n} = 1$$
: $1 = \frac{1}{6}1(1+1)(1+2) = \frac{1}{6} \cdot 1 \cdot 2 \cdot 3$. (1)

Induktionsschritt $n \Rightarrow n + 1$:

Induktionsannahme
$$1 + 3 + 6 + 10 + \dots + \frac{1}{2}n(n+1) = \frac{1}{6}n(n+1)(n+2).$$
 (1)

$$1 + 3 + 6 + 10 + \dots + \frac{1}{2}n(n+1) + \frac{1}{2}(n+1)(n+2) = \frac{1}{6}n(n+1)(n+2) + \frac{1}{2}(n+1)(n+2). \tag{1}$$

$$= \frac{1}{6}(n+1)(n+2)(n+3) \tag{2}$$

b)
$$1+3+6+10+...+\frac{1}{2}n(n+1) = \frac{1}{2}(2+6+12+20+...+n^2+n)$$
 (1)

$$= \frac{1}{2}[(1+2+3+...+n)+(1^2+2^2+3^2+...+n^2)]$$
 (1)

$$= \frac{1}{2} \left[\frac{1}{2} n(n+1) + \frac{1}{6} n(n+1)(2n+1) \right] \tag{1}$$

$$= \frac{1}{2} \cdot \frac{1}{6} n(n+1)[3+2n+1] \tag{0.5}$$

$$= \frac{1}{6}n(n+1)(n+2) \tag{0.5}$$

Aufgabe 10: vollständige Induktion (10)

Beweisen Sie die folgende Summenformel für $n \ge 1$:

$$1 \cdot 2 + 2 \cdot 3 + ... + n \cdot (n+1) = \frac{1}{3} n(n+1)(n+2)$$

- mit vollständiger Induktion
- mit Hilfe der beiden folgenden Formeln:

$$1 + 2 + 3 + \dots + n = \frac{1}{2}n(n+1)$$

$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1)$$

Lösung:

a) Induktionsstart
$$\mathbf{n} = 1$$
: $2 = \frac{1}{3} 1(1+1)(1+2) = \frac{1}{3} \cdot 1 \cdot 2 \cdot 3$. (1)

Induktionsschritt $n \Rightarrow n + 1$:

Induktionsannahme
$$2+6+12+20+...+n(n+1)=\frac{1}{3}n(n+1)(n+2).$$
 (1)

$$2 + 6 + 12 + 20 + \dots + n(n+1) + (n+1)(n+2) = \frac{1}{3}n(n+1)(n+2) + (n+1)(n+2). \tag{1}$$

$$=\frac{1}{3}(n+1)(n+2)(n+3) \tag{2}$$

b)
$$2+6+12+20+...+n(n+1) = 2+6+12+20+...+n^2+n$$
 (1) $= (1+2+3+...+n)+(1^2+2^2+3^2+...+n^2)$

$$= (1 + 2 + 3 + \dots + n) + (1^2 + 2^2 + 3^2 + \dots + n^2)$$
 (1)

$$= \frac{1}{2}n(n+1) + \frac{1}{6}n(n+1)(2n+1) \tag{1}$$

$$= \frac{1}{6}n(n+1)[3+2n+1] \tag{0.5}$$

$$= \frac{1}{3} n(n+1)(n+2) \tag{0.5}$$