7.3. Prüfungsaufgaben zu Ebenen

Aufgabe 1: Parameterform (3)

Gegeben sind die Geraden g und h mit g: $\vec{x} = \begin{pmatrix} 4 \\ -1 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 3 \\ -1 \\ 5 \end{pmatrix}$ und h: $\vec{x} = \begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} -9 \\ 3 \\ -15 \end{pmatrix}$ mit $r, s \in \mathbb{R}$.

- a) Zeigen Sie, dass g und h parallel, aber nicht identisch sind.
- b) Geben Sie eine Gleichung der Ebene an, in welcher die beiden Geraden liegen.

Lösung

Sie sind nicht identisch, da z.B. der Stützpunkt von h nicht auf g liegt: $\begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 3 \\ -1 \\ 5 \end{pmatrix}$ erfordert in

den ersten beiden Komponenten r = 0 und in der dritten Komponente $r = 0,2 \Rightarrow$ keine Lösuing! (1)

b) E:
$$\vec{\mathbf{x}} = \begin{pmatrix} 4 \\ -1 \\ 0 \end{pmatrix} + \mathbf{u} \cdot \begin{pmatrix} 3 \\ -1 \\ 5 \end{pmatrix} + \mathbf{v} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
 (1)

Aufgabe 2: Parameterform, Spurpunkte und Punktprobe (6)

- a) Bestimmen Sie eine Parametergleichung der Ebene E durch die Punkte A(0|2|3), B(1|-2|6) und C(-4|2|15). (1)
- b) Geben Sie die Koordinaten der Schnittpunkte S₁, S₂ und S₃ der Ebene E mit der x₁-, x₂ und x₃-Achse an. (3)
- c) Zeichnen Sie das Dreieck S₁S₂S₃ in ein Koordinatensystem (1)
- d) Liegt der Punkt D(2|-2|3) in der Ebene E? (1)

Lösung

a) E:
$$\vec{\mathbf{x}} = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} + \mathbf{s} \cdot \begin{pmatrix} 1 \\ -4 \\ 3 \end{pmatrix} + \mathbf{t} \cdot \begin{pmatrix} -4 \\ 0 \\ 12 \end{pmatrix}$$
 (1)

b)
$$S_1(2|0|0)$$
, $S_2(0|4|0)$ and $S_3(0|0|6)$ (3)

d)
$$D \in E \text{ mit } s = 1 \text{ und } t = -\frac{1}{4}$$
. (1)

Aufgabe 3: Parameterform, Spurpunkte und Punktprobe (14)

- a) Bestimme eine Gleichung der Ebene E durch die Punkte A(3|2|0), B(6|-2|1) und C(15|2|-4). (1)
- b) Bestimme die Koordinaten der Schnittpunkte S₁, S₂ und S₃ der Ebene E mit der x₁-, x₂ und x₃-Achse an. (3)
- c) Zeichne das Dreieck $S_1S_2S_3$ in ein Koordinatensystem (1)
- d) Liegt der Punkt D(3|-2|2) in der Ebene E? (1)
- e) Bestimme den Schnittpunkte S_{12} der Geraden g: $\vec{x} = \begin{pmatrix} 0 \\ 0 \\ -2 \end{pmatrix} + r \cdot \begin{pmatrix} 6 \\ 2 \\ 5 \end{pmatrix}$ mit der x_1 x_2 -Ebene und zeichne die

Gerade in das Koordinatensystem aus c). (2)

f) Berechne den Schnittpunkt $E \cap g$ und zeichne ihn ebenfalls in das Koordinatensystem aus c) ein. (6)

a) E:
$$\vec{\mathbf{x}} = \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix} + \mathbf{s} \cdot \begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix} + \mathbf{t} \cdot \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix}$$
 (1)

b)
$$S_1(6|0|0), S_2(0|4|0) \text{ und } S_3(0|0|2)$$
 (3)

d)
$$D \in E \text{ mit } s = 1 \text{ und } t = -\frac{1}{4}$$
. (1)

e)
$$S_{12}(2|\frac{4}{3}|0)$$
 für $r=\frac{2}{3}$ mit Zeichnung (2)

f)
$$E \cap g \Leftrightarrow \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -2 \end{pmatrix} + r \cdot \begin{pmatrix} 6 \\ 2 \\ 5 \end{pmatrix} \Leftrightarrow t \cdot \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix} + s \cdot \begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} -6 \\ -2 \\ -5 \end{pmatrix} = \begin{pmatrix} -3 \\ -2 \\ -2 \end{pmatrix}$$
 (2)

$$\Leftrightarrow \begin{pmatrix} 3 & 3 & -6 & | & -3 \\ 0 & -4 & -2 & | & -2 \\ -1 & 1 & -5 & | & -2 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 1 & -2 & | & -1 \\ 0 & 2 & 1 & | & 1 \\ -1 & 1 & -5 & | & -2 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 1 & -2 & | & -1 \\ 0 & 2 & 1 & | & 1 \\ 0 & 2 & -7 & | & -3 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 1 & -2 & | & -1 \\ 0 & 2 & 1 & | & 1 \\ 0 & 0 & 8 & | & 4 \end{pmatrix}$$
 (2)

$$\Rightarrow \mathbf{r} = \frac{1}{2} \Rightarrow \mathbf{S}_{Eg}(3|1|\frac{1}{2}). \tag{2}$$

Aufgabe 4: Parameterform, Spurpunkte und Punktprobe (14)

- a) Bestimme eine Gleichung der Ebene E durch die Punkte A(3|0|-2), B(1|-5|2) und C(5-4|3). (1)
- Bestimme die Koordinaten der Schnittpunkte S_1 , S_2 und S_3 der Ebene E mit der x_1 -, x_2 und x_3 -Achse an. (3)
- Zeichne das Dreieck S₁S₂S₃ in ein Koordinatensystem (1)
- d) Bestimme den Schnittpunkte S_{12} S_{23} und S_{13} der Geraden g: $\vec{x} = \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ mit den x_1 - x_2 -, x_2 - x_3 und x_1 -

x₃-Ebenen und zeichne die Gerade in das Koordinatensystem aus c). (3)

e) Berechne den Schnittpunkt $E \cap g$ und zeichne ihn ebenfalls in das Koordinatensystem aus c) ein. (6)

a) E:
$$\vec{\mathbf{x}} = \begin{pmatrix} 3 \\ 0 \\ -2 \end{pmatrix} + \mathbf{s} \cdot \begin{pmatrix} 2 \\ -4 \\ 5 \end{pmatrix} + \mathbf{t} \cdot \begin{pmatrix} -2 \\ -5 \\ 4 \end{pmatrix}$$
 (1)

b)
$$S_1(7|0|0)$$
 mit $s = \frac{10}{9}$ und $t = -\frac{8}{9}$, $S_2(0|-\frac{7}{2}|0)$ mit $s = -\frac{4}{9}$ und $t = \frac{19}{18}$

sowie
$$S_3(0|0|-\frac{7}{2})$$
 mit $s=-\frac{5}{6}$ und $t=\frac{2}{3}$ (3)

d)
$$S_{12}(3|-3|0)$$
 für $r=-1$, $S_{23}(0|-6|-3)$ für $r=-4$ und $S_{13}(6|0|3)$ für $r=2$ mit Zeichnung (3)

e)
$$E \cap g \Leftrightarrow \begin{pmatrix} 3 \\ 0 \\ -2 \end{pmatrix} + s \cdot \begin{pmatrix} 2 \\ -4 \\ 5 \end{pmatrix} + t \cdot \begin{pmatrix} -2 \\ -5 \\ 4 \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \Leftrightarrow s \cdot \begin{pmatrix} 2 \\ -4 \\ 5 \end{pmatrix} + t \cdot \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$$
 (2)

$$\Leftrightarrow \begin{pmatrix} 2 & -2 & -1 & 1 \\ -4 & -5 & -1 & -2 \\ 5 & 4 & -1 & 3 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 2 & -2 & -1 & 1 \\ 0 & -9 & -3 & 0 \\ 0 & -18 & -3 & -1 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 2 & -2 & -1 & 1 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 3 & -1 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 9 & 0 & 0 & 4 \\ 0 & 9 & 0 & 1 \\ 0 & 0 & 3 & -1 \end{pmatrix}$$
 (2)

$$\Rightarrow r = -\frac{1}{3} \Rightarrow S_{Eg}(\frac{11}{3} | -\frac{7}{3} | \frac{2}{3}). \tag{2}$$

Aufgabe 5: Parameterform von Gerade und Ebene mit Spurpunkten und gemeinsamen Punkten (9)

In einem kartesischen Koordinatensystem sind die Punkte A(0|2|3), B(1|-2|6), C(-4|2|15) und D(2|-2|3)

gegeben sowie für jedes $a \in \mathbb{R}$ eine Gerade g_a mit der Gleichung $\vec{x} = \begin{pmatrix} -1 \\ 2 \\ 6 \end{pmatrix} + r \cdot \begin{pmatrix} a \\ 1 \\ a-2 \end{pmatrix}$ mit $r \in \mathbb{R}$.

- Untersuchen Sie, ob die Punkte A, B, C und D in einer Ebene liegen. (1)
- Bestimmen Sie eine Parametergleichung der Ebene E durch A, B und C. (0,5)
- Geben Sie die Koordinaten der Schnittpunkte S₁, S₂ und S₃ der Ebene E mit der x₁-, x₂ und x₃-Achse an.
- Zeichnen Sie das Dreieck S₁S₂S₃ in ein Koordinatensystem mit 1 LE = 1 cm und Verkürzungsfaktor k = $\frac{1}{2}\sqrt{2}$ in x₃-Richtung. (0,5)
- Für welchen Wert von a ist die Gerade g_a parallel zur Ebene E? (Lösung: $a = \frac{1}{8}$) (4)
- Zeichnen Sie diese Gerade ebenfalls in das Koordinatensystem ein. (0,5)
- Überprüfen Sie, ob g_a sogar in E enthalten ist. (1)

Lösung

Die Punkte liegen in einer Eben, da z.B. die Vektoren $\overrightarrow{AB} = \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix}$, $\overrightarrow{AC} = \begin{bmatrix} -4 \\ 0 \\ 12 \end{bmatrix}$ und $\overrightarrow{AD} = \begin{bmatrix} 2 \\ -4 \\ 0 \end{bmatrix}$ linear

abhängig sind oder die Punktprobe der Ebene E aus b) für den Punkt D positiv ist. (1)

b) E:
$$\vec{x} = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ -4 \\ 3 \end{pmatrix} + t \cdot \begin{pmatrix} -4 \\ 0 \\ 12 \end{pmatrix}$$

- $S_1(2|0|0)$, $S_2(0|4|0)$ und $S_3(0|0|6)$
- d) Zeichnung
- $g_a \text{ ist parallel zu E, wenn die drei Richtungsvektoren } \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix}, \begin{bmatrix} -4 \\ 0 \\ 12 \end{bmatrix} \text{ und } \begin{bmatrix} a \\ 1 \\ a-2 \end{bmatrix} \text{ koplanar bzw. linear }$

abhängig sind, d.h., wenn
$$s \cdot \begin{pmatrix} 1 \\ -4 \\ 3 \end{pmatrix} + t \cdot \begin{pmatrix} -4 \\ 0 \\ 12 \end{pmatrix} + r \cdot \begin{pmatrix} a \\ 1 \\ a-2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 (1)

abhängig sind, d.h., wenn s·
$$\begin{pmatrix} 1 \\ -4 \\ 3 \end{pmatrix}$$
 + t· $\begin{pmatrix} -4 \\ 0 \\ 12 \end{pmatrix}$ + r· $\begin{pmatrix} a \\ 1 \\ a-2 \end{pmatrix}$ = $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ (1)

$$\Leftrightarrow \begin{pmatrix} 1 & -4 & a & | 0 \\ -4 & 0 & 1 & | 0 \\ 3 & 12 & a-2 & | 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & -4 & a & | 0 \\ 0 & -16 & 4a+1 & | 0 \\ 0 & 24 & -2a-2 & | 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & -4 & a & | 0 \\ 0 & -16 & 4a+1 & | 0 \\ 0 & 0 & 8a-1 & | 0 \end{pmatrix} \Rightarrow a = \frac{1}{8}$$
. (4)

f) Zeichnung

g)
$$\begin{pmatrix} -1 \\ 2 \\ 6 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ -4 \\ 3 \end{pmatrix} + t \cdot \begin{pmatrix} -4 \\ 0 \\ 12 \end{pmatrix} \Rightarrow \begin{pmatrix} -1 \\ 0 \\ 3 \end{pmatrix} = s \cdot \begin{pmatrix} 1 \\ -4 \\ 3 \end{pmatrix} + t \cdot \begin{pmatrix} -4 \\ 0 \\ 12 \end{pmatrix} \Rightarrow s = 0 \text{ und } t = \frac{1}{4} \Rightarrow g_{1/8} \text{ liegt sogar in E!}$$

Aufgabe 6: Parameterform von Geraden und Ebenen mit gemeinsamen Punkten (9)

Gegeben sind die Ebene E: $\vec{x} = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ -4 \\ 3 \end{pmatrix} + t \cdot \begin{pmatrix} -4 \\ 0 \\ 12 \end{pmatrix}$ und die Geraden g_a : $\vec{x} = \begin{pmatrix} -1 \\ 2 \\ 6 \end{pmatrix} + r \cdot \begin{pmatrix} a \\ 1 \\ a-2 \end{pmatrix}$ mit $a \in \mathbb{R}$.

- a) In welchem Punkt schneidet die Gerade g₁ die Eben E? (2)
- b) Bestimmen Sie die Gleichung der Ebene D, die durch die Geraden g₁ und g₋₁ aufgespannt wird. (1)
- Bestimmen Sie die Gleichung aller gemeinsamen Punkte der Ebenen E und D. (2)
- Für welchen Wert von a ist die Gerade ga parallel zur Ebene E ? (4)

Lösung

a)
$$g_1 = E \Leftrightarrow \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ -4 \\ 3 \end{pmatrix} + t \cdot \begin{pmatrix} -4 \\ 0 \\ 12 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 6 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & -1 & 4 & 1 \\ 1 & 4 & 0 & 0 \\ -1 & -3 & -12 & -3 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1/4 \end{pmatrix}$$

$$\Rightarrow$$
 g₁ \cap E = {(-1|2|6)} (2)

b) D:
$$\vec{\mathbf{x}} = \begin{pmatrix} -1\\2\\6 \end{pmatrix} + \mathbf{u} \cdot \begin{pmatrix} 1\\1\\-1 \end{pmatrix} + \mathbf{v} \cdot \begin{pmatrix} -1\\1\\-3 \end{pmatrix}$$
 (1)

c)
$$E = D \Leftrightarrow \begin{pmatrix} 1 & -1 & -1 & 4 & 1 \\ 1 & 1 & 4 & 0 & 0 \\ -1 & -3 & -3 & -12 & -3 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 0 & 0 & 6 & 3/2 \\ 0 & 1 & 0 & 14/3 & 7/6 \\ 0 & 0 & 1 & -8/3 & -2/3 \end{pmatrix} \Rightarrow s = -\frac{2}{3} + \frac{8}{3}t$$

$$\Rightarrow g_{ED}: \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} - \frac{2}{3} \begin{pmatrix} 1 \\ -4 \\ 3 \end{pmatrix} + t \cdot \frac{8}{3} \begin{pmatrix} 1 \\ -4 \\ 3 \end{pmatrix} + t \cdot \begin{pmatrix} -4 \\ 0 \\ 12 \end{pmatrix} = \begin{pmatrix} -2/3 \\ 14/3 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} -4/3 \\ -32/3 \\ 20 \end{pmatrix}. (2)$$

d) g_a ist parallel zu E, wenn die drei Richtungsvektoren $\begin{pmatrix} 1 \\ -4 \\ 3 \end{pmatrix}$, $\begin{pmatrix} -4 \\ 0 \\ 12 \end{pmatrix}$ und $\begin{pmatrix} a \\ 1 \\ a-2 \end{pmatrix}$ koplanar bzw. linear

abhängig sind, d.h., wenn s
$$\begin{pmatrix} 1 \\ -4 \\ 3 \end{pmatrix} + t \cdot \begin{pmatrix} -4 \\ 0 \\ 12 \end{pmatrix} + r \cdot \begin{pmatrix} a \\ 1 \\ a-2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} (1)$$

$$\Leftrightarrow \begin{pmatrix} 1 & -4 & a & | 0 \\ -4 & 0 & 1 & | 0 \\ 3 & 12 & a - 2 | 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & -4 & a & | 0 \\ 0 & -16 & 4a + 1 & | 0 \\ 0 & 24 & -2a - 2 | 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & -4 & a & | 0 \\ 0 & -16 & 4a + 1 & | 0 \\ 0 & 0 & 8a - 1 | 0 \end{pmatrix} \Rightarrow a = \frac{1}{8}. (4)$$

e)
$$\begin{pmatrix} -1 \\ 2 \\ 6 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ -4 \\ 3 \end{pmatrix} + t \cdot \begin{pmatrix} -4 \\ 0 \\ 12 \end{pmatrix} \Rightarrow \begin{pmatrix} -1 \\ 0 \\ 3 \end{pmatrix} = s \cdot \begin{pmatrix} 1 \\ -4 \\ 3 \end{pmatrix} + t \cdot \begin{pmatrix} -4 \\ 0 \\ 12 \end{pmatrix} \Rightarrow s = 0 \text{ und } t = \frac{1}{4} \Rightarrow g_{1/8} \text{ liegt sogar in E!}$$