8.1. Prüfungsaufgaben zu Gruppen

Aufgabe 1 (6)

Erkläre den Begriff der Kommutativität einer Verknüpfung. Zeige an einem Beispiel, dass das Vektorprodukt nicht kommutativ ist.

Lösung

Eine Verknüpfung \circ auf einer Menge M heisst **kommutativ**, wenn für alle a, $b \in M$ gilt a \circ b = b \circ a: Alle Elemente aus M sind bezüglich \circ **vertauschbar**. Für das Vektorprodukt auf der Menge der dreidimensionalen

Vektoren gilt dies nicht, denn z.B.
$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \times \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 5 \\ -3 \end{pmatrix}$$
 und $\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ -5 \\ 3 \end{pmatrix}$.

Aufgabe 2 (2)

Erkläre den Begriff der Abgeschlossenheit einer Verknüpfung. Zeige an einem Beispiel, dass das Skalarprodukt nicht abgeschlossen ist.

Lösung

Eine Verknüpfung \circ auf einer Menge M heisst **abgeschlossen**, wenn für alle a, b \in M auch das Ergebnis a \circ b \in M ist. Es ist unmöglich, durch eine Vernüpfung \circ die Menge zu verlassen. Für das Skalarprodukt auf der

Menge der dreidimensionalen Vektoren gilt dies nicht denn z.B. $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} * \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} = 7$ ist kein dreidmensionaler Vektor mehr.

Aufgabe 3 (3)

Erkläre den Begriff des **neutralen** Elementes einer Verknüpfung. Welches ist das neutrale Element der Matrizenmultiplikation der 2×2 -Matrizen?

Erkläre den Begriff des **inversen** Elementes einer Verknüpfung. Zeige, dass die Matrix $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ zu sich selbst invers ist.

Lösung:

Ein Element $e \in M$ heisst neutrales Element bezüglich der Verknüpfung \circ auf M, wenn $e \circ x = x \circ e = x$ für jedes $x \in M$ gilt. Die **Einheitsmatrix** $E_{2,2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ ist das neutrale Element der Matrizenmultiplikation auf der

Menge der 2×2 -Matrizen.

Ein Element $x^{-1} \in M$ heisst inverses Element zu $x \in M$, wenn $x^{-1} \circ x = x \circ x^{-1} = e$, wobei e das neutrale Element ist. Für die gegebene Matrix gilt $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} * \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, d.h., sie ist ihre eigene Inverse.