9.1.8. Pascalsches Dreieck mod 3

Mit Hilfe der modulo-Rechnung (vgl. 8.1. Gruppen) lassen sich auch andere Fraktale aus dem Pascalschen Dreieck gewinnen.

In der modulo-2-Rechnung betrachtet man nur noch den Rest einer Zahl bei Division durch 2:

Zahl n	0	1	2	3	4	
Rest n mod 2	0	1	0	1	0	

Entsprechend beschränkt man sich beim Rechnen auf die Reste: Z.B. $1 + 1 = 2 = 0 \mod 2$

+	0	1
0	0	1
1	1	0

Das Pascalsche Dreieck der Reste mod 2 enthält also nur die Reste 0 und 1. Färbt man die Reste 1 schwarz, so erhält man das Sierpinski-Dreieck mod 2 wie in Aufgaben 1 bzw. 7.

In der modulo-3-Rechnung betrachtet man nur noch den Rest einer Zahl bei Division durch 3:

Zahl n	0	1	2	3	4	5	6	
Rest n mod 3	0	1	2	0	1	2	0	

Beispielrechnungen: $1 + 2 = 3 = 0 \mod 3$ und $2 + 2 = 4 = 1 \mod 3$.

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

Das Pascalsche Dreieck der Reste mod 3 enthält also nur die Reste 0, 1 und 2.

- a) Berechne zunächst die ersten 9 Zeilen des unten abgebildeten Pascalschen Dreiecks mod 3. Färbe dann die Reste 1 und 2 schwarz.
- b) Wiederhole dann das Muster in den nächsten 18 Zeilen ohne zu rechnen und vergleiche mit Aufgabe 2.

