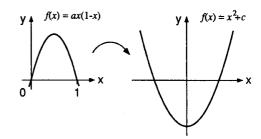
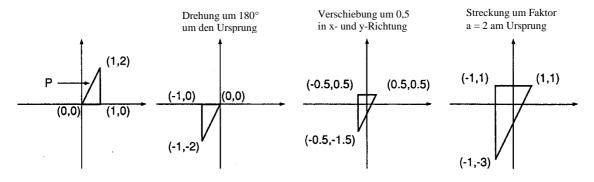
9.6.6. Invariante Mengen bei ähnlichen Parabeln

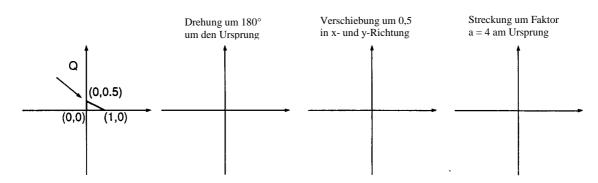
Die Mandelbrot-Menge wird von den invarianten Mengen der Parabeln $f_c(x) = x^2 + c$ erzeugt. Um die Erkenntnisse über die invarianten Mengen der Parabeln $f_a(x) = ax(1-x)$ auf die Parabeln f_c zu übertragen, verwenden wir drei Ähnlichkeitsabbildungen: Drehung um 180° , Verschiebung um 0.5 Einheiten in x-und y-Richtung und schließlich Streckung um den Faktor a.



a) In der folgenden Abbildung werden die drei Ähnlichkeitsabbildungen mit a = 2 auf das Dreieck P angewendet.



b) Wende die drei Ähnlichkeitsabbildungen mit a = 4 auf das abgebildete Dreieck Q an.



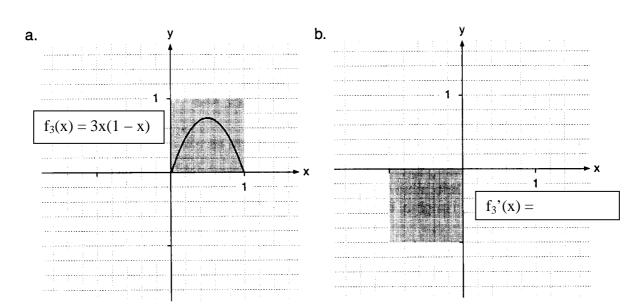
c) Vervollständige die Tabelle mit Hilfe der Beispiele a) und c)

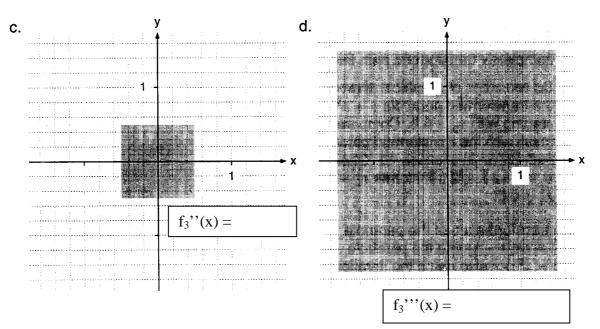
Original	Drehung um 180° um den Ursprung	Verschiebung um 0,5 in x- und y-Richtung	Streckung um Faktor a in x- und y-Richtung
X	x' =	x''=	$x''' = -ax + \frac{a}{2}$
у	y' =	y'' =	$y''' = -ay + \frac{a}{2}$

d) Die Parabel $f_3(x) = 3x(1-x)$ hat den Scheitelpunkt S(0,5|0,75) und geht durch die Punkte $S_{x1}(0|0)$ und $S_{x2}(1|0)$.

Wende die drei Ähnlichkeitsabbildungen mit a=3 nacheinander auf die drei Punkte an und zeichne die Parabeln f_3 ', f_3 '' und f_3 '''.

Bestimme dann die Funktionsgleichungen der drei Parabeln f₃', f₃'' und f₃'''.





e) Vervollständige die folgende Tabelle mit Hilfe des Beispiels d):

Original	Drehung um 180° um den Ursprung	Verschiebung um 0,5 in x- und y-Richtung	Streckung um Faktor a in x- und y-Richtung
Ersetze x durch	-x	x – 0,5	$\frac{\mathbf{x}}{\mathbf{a}}$
Ersetze y durch	-у	y – 0,5	$\frac{\mathbf{y}}{\mathbf{a}}$
$f_a(x) = ax(1-x)$	$f_a'(x) =$	f_a "(x) =	f_a "(x) = $x^2 + \frac{a}{2} - \frac{a^2}{4}$

f) Gib jeweils die Bildfunktion $f_c(x) = x^2 + c$ mit $c = \frac{a}{2} - \frac{a^2}{4}$ an:

Origina	$al f_a(x) = ax(1-x)$	$f_1(x) = x(1-x)$	$f_3(x) = 3x(1-x)$	$f_4(x) = 4x(1-x)$
Bild	$f_c(x) = x^2 + c$			

- g) Führe an den vier Parabeln f_3 , f_3 ', f_3 '' und f_3 ''' jeweils die ersten 4 Schritte einer graphischen Iteration mit den Startwerten $x_0 = 0.3$, x_0 '' = -0.3; x_0 '' = 0.2 und x_0 ''' = 0.6 aus. Was stellst Du fest?
- h) Zusammen mit den Parabeln werden auch die Iterationsfolgen und damit auch die invarianten Mengen den gleichen Ähnlichkeitsabbildung $x''' = -ax + \frac{a}{2}$ unterworfen. Verwende diese Abbildung, um die Bilder der invarianten Mengen in der folgenden Tabelle zu bestimmen:

Funktion f _a	$f_1(x) = x(1-x)$	$f_3(x) = 3x(1-x)$	$f_4(x) = 4x(1-x)$	$f_a(x) = ax(1-x)$
Invariante Menge	[0; 1]	[0; 1]	[0; 1]	[0; 1]
Bildfunktion f _c	$f_{0,5}(x) = x^2 - 0.5$			$f_c(x) = x^2 + \frac{a}{2} - \frac{a^2}{4}$
Invariante Menge	$[-\frac{1}{2};\frac{1}{2}]$			