Linear Algebra

Arne Vorwerg

March 30, 2024

Contents

1 Groups 4
1.1 Semigroups, monoids and groups 4
1.2 Translations 4
1.3 Properties of a group 4
1.4 Direct products and subgroups 4
1.5 Homomorphisms 5
1.6 Extension of semigroups to groups 5
1.7 Index and order of a subgroup 5
1.8 Normal subgroups 6
1.9 Fundamental theorem on homomorphisms 6
1.10 Noether's first isomorphism theorem 6
1.11 Noether's second isomorphism theorem 6
1.12 Cyclic groups 7
1.13 Operations 7
1.14 Orbit and class formulae 7
1.15 Permutations 8
1.16 The symmetric group 8
1.17 The signum of a permutation 9
2 Rings 9
2.1 Rings 9
2.2 Examples 10
2.3 Ideals 10
2.4 Commutative rings 11
2.5 The Chinese remainder theorem 11
2.6 Fields 12
2.7 Polynomials 12
2.8 Descartes' rule of signs 12
3 Vector spaces 13
3.1 Vector spaces 13
3.2 Vector subspaces 13
3.3 The basis of a vector space 14
3.4 The dimension of a vector space 14
3.5 The Steinitz basis exchange lemma 14
3.6 Direct sums 15
3.7 Linear maps 15
3.8 Quotient spaces and rank 16
3.9 Endomorphisms 16
3.10 Coordinate transformations 17
3.11 Change of bases 17
3.12 Dual spaces 18
3.13 The index notation 19
3.14 Dual linear maps 20
3.15 Annihilator and rank 21
3.16 Dual bases 21
4 Determinants 21
4.1 The Weierstrass axioms 21
4.2 Leibniz' formula 23
4.3 Cramer's rule 24
4.4 Laplace's formula 25
4.5 Orientation 26
4.6 The Vandermonde determinant 27
5 Eigendecomposition 28
5.1 Eigenvectors and Eigenvalues 28
5.2 Trigonalization of complex endomorphisms 28
5.3 The Cayley-Hamilton theorem 30
5.4 Decomposition of real endomorphisms 31
5.5 Minimal polynoms 32
5.6 Fitting's lemma 32
5.7 Generalized eigenspaces 33
5.8 The Jordan decomposition 33
6 Unitary and euclidean vector spaces 38
6.1 Sesquilinear forms 38
6.2 Bases 38
6.3 Coordinate transformation 38
6.4 The Gram-Schmidt-Orthonormalization 39
6.5 Geometric formulae 39
6.6 Unitary and orthogonal endomorphisms 41
6.7 Decomposition of orthogonal endomorphisms 41
6.8 Self-adjoint endomorphisms 43
6.9 Trigonalization of self-adjoint endomorphisms 43
6.10 Simultaneous determination of eigenvectors and eigenvalues 43
6.11 Adjoint maps 44
6.12 Normal endomorphisms 45
6.13 Diagonalization of normal endomorphisms 45
7 Multilinear algebra 45
7.1 Multilinear maps 45
7.2 Tensors 46
7.3 Tensors and multilinear forms 48
7.4 Coordinate transformations 49
7.5 The general tensor product 50
7.6 Contractions 51
7.7 Raising and lowering of indices 51
7.8 Symmetric maps 52
7.9 The symmetric product 52
7.10 Antisymmetric maps 52
7.11 Antisymmetrization 53
7.12 The exterior product 53
7.13 The finite dimensional case 54
7.14 Antisymmetric tensors 55
7.15 Exterior products in three dimensions 55
7.16 The cross product 56
7.17 The exterior product of linear maps 57
7.18 The general exterior product 58
7.19 The scalar product 58
7.20 The exterior algebra 59
8 Affine spaces 60
8.1 Affine spaces 60
8.2 Affine subspaces 60
8.3 Affine coordinate systems 60
8.4 Affine maps 61
9 Projective spaces 63
9.1 Definitions 63
9.2 Projective maps 64
9.3 Projective completion 64
9.4 Projective coordinates 66

1 Groups

1.1 Semigroups, monoids and groups

A semigroup $(G ; \circ)$ is a pair of a set G and a map $\circ: G \times G \rightarrow G$ with

1. the associative law $(a \circ b) \circ c=a \circ(b \circ c)$ for every $a, b, c \in G$
$(G ; \circ)$ is abelian resp. regular iff it satisfies
2. the commutative law $a \circ b=b \circ a$ for every $a, b \in G$.
3. the division rule: $a \circ b=a \circ c \Leftrightarrow a=c$.

A semigroup $(G ; \circ)$ is a monoid iff it has
4. a left neutral element $e \in G$ such that $e \circ a=a$ for every $a \in G$

A monoid $(G ; \circ)$ is a group iff it has
5. a left inverse element $a^{\prime} \in G$ such that $a^{\prime} \circ a=e$ for every $a \in G$

1.2 Translations

A semigroup $(G ; \circ)$ is a group iff for every $a \in G$ the left translation $l_{a}: G \rightarrow G$ with $l_{a}(x)=a \circ x$ and the right translation $r_{a}: G \rightarrow G$ with $r_{a}(x)=x \circ a$ are both surjective. In that case they are both injective hence bijective.

1.3 Properties of a group

For elements $a, b, c \in G$ of a group G and left neutral elements $e ; e_{0}$ resp. left inverse elements $a^{-1} ; a_{0}^{-1}$ we have

1. right inverse property: $a \circ a^{-1}=e \circ a \circ a^{-1}=\left(a^{-1}\right)^{-1} \circ a^{-1} \circ a \circ a^{-1}=\left(a^{-1}\right)^{-1} \circ e \circ a^{-1}=$ $\left(a^{-1}\right)^{-1} \circ a^{-1}=e$
2. right neutral property: $a \circ e=a \circ a^{-1} \circ a=e \circ a=e$
3. uniqueness of the inverse: $a_{0}^{-1}=e \circ a_{0}^{-1}=a^{-1} \circ a \circ a_{0}^{-1}=a^{-1} \circ e=a^{\prime}$
4. uniqueness of the neutral element: $e_{0}=e \circ e_{0}=e$
5. Division rule: $a \circ b=a \circ c \Leftrightarrow b=a^{-1} \circ a \circ b=a^{-1} \circ a \circ c=c$ resp. $b \circ a=c \circ a \Leftrightarrow b=$ $b \circ a \circ a^{-1}=b \circ a \circ a^{-1}=c$.

1.4 Direct products and subgroups

The direct product $\left(\prod_{i \in I} G_{i} ; \circ\right)$ of groups $\left(G_{i}\right)_{i \in I}$ for any index set I refers to componentwise composition $\left(x_{i}\right)_{i \in I} \circ\left(y_{i}\right)_{i \in I}=\left(x_{i} \circ y_{i}\right)_{i \in I}$ on the set theoretic product $\prod_{i \in I} G_{i}=\left(x_{i}\right)_{i \in I}: I \rightarrow$ $\bigcup_{i \in I} G_{i}: x_{i} \in G_{i}$. A subgroup $H \subset G$ is a group included in G. A set $H \subset G$ is a subgroup iff for every $a ; b \in H$ we have $a \circ b^{-1} \in H$. Any set $S \subset G$ may be the generator of a subgroup $\langle S\rangle=\left\{\prod_{i=1}^{n} x_{i}: x_{i} \vee x_{i}^{-1} \in S \forall 1 \leq i \leq n \in \mathbb{N}\right\}$. Obviously $\langle S\rangle$ is the smallest subgroup containing S and equal to the intersection of all such subgroups.

Examples: There are two non-abelian groups of order 8:

1. The symmetry group of the square is generated by the rotation $\sigma=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and the reflection $\tau=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$ such that $\sigma^{4}=\tau^{2}=e=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$.
2. The quaternion group is generated by $\iota=\left(\begin{array}{cc}i & 0 \\ 0 & i\end{array}\right)$ and $\kappa=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ with $\iota^{4}=\kappa^{4}=e$.

1.5 Homomorphisms

A mapping $\varphi: G \rightarrow G^{\prime}$ between two groups $(G ; \circ)$ and $\left(G^{\prime} ; \circ^{\prime}\right)$ is a homomorphism resp. endomorphism in the case of $G^{\prime}=G$ iff $\varphi(a \circ b)=\varphi(a) \circ^{\prime} \varphi(b)$ for every $a ; b \in G$. The left translation l_{a} and the right translation r_{a} are homomorphisms iff $a=e$. The mapping $a \mapsto l_{a}$ is always a homomorphism but $a \mapsto r_{a}$ only iff G is abelian. The composition $\psi \circ \varphi: G \rightarrow G^{\prime \prime}$ of two homomorphisms $\varphi: G \rightarrow G^{\prime}$ resp $\psi: G^{\prime} \rightarrow G^{\prime \prime}$ is again a homomorphism. Since we have $\varphi(e)=e^{\prime}$ and $\varphi\left(a^{-1}\right)=\varphi(a)^{-1}$ the image $\operatorname{Im} \varphi=\varphi[H] \subset G^{\prime}$ as well as the inverse image $\varphi^{-1}\left[H^{\prime}\right] \subset G$ of subgroups $H \subset G$ resp. $H^{\prime} \subset G^{\prime}$ under a homomorphism φ are again subgroups. A special case is the kernel $\operatorname{ker} \varphi=\varphi^{-1}\left[\left\{e^{\prime}\right\}\right]$, i.e. the inverse image of the trivial subgroup $\{e\}$. A homomorphism φ is injective iff $\operatorname{ker} \varphi=\{e\}$. In this case it is also called an embedding. A bijective homomorphism is an isomorphism resp. an automorphism in the case of $G^{\prime}=G$. The bijections on an arbitrary set X constitute the symmetric group $(S(X) ; \circ)$ with reference to the composition of mappings. Any subgroup of $S(X)$ is called a permutation group. In the case of a group G the family Aut $G \subset S(G)$ of automorphisms on G is a subgroup of $S(G)$. In particular the left translations $l_{a} \in$ Aut G are a permutation group and since $l: G \rightarrow$ Aut G with $l(a)=l_{a}$ is an isomorphism we have Cayley's theorem: Every group is isomorphic to a permutation group.

1.6 Extension of semigroups to groups

For every abelian and regular semigroup H exists an abelian group G and an embedding $\iota: H \rightarrow G$ such that for every homomorphism $\varphi: H \rightarrow G^{\prime}$ into an abelian group G^{\prime} there is a unique homomorphism $\psi: G \rightarrow G^{\prime}$ with $\psi \circ \iota=\varphi$.
Proof: The set $\sim=\left\{(a ; b) ;\left(a^{\prime} ; b^{\prime}\right) \in H^{4}: \exists x \in H: a b^{\prime} x=a^{\prime} b x\right\}$ is an equiva-
 lence relation with obvious reflexivity resp. symmetry and transitivity since $a^{\prime} b x=a b^{\prime} x$ and $a^{\prime \prime} b^{\prime} y=a^{\prime} b^{\prime \prime} y$ imply $a b^{\prime \prime}\left(a^{\prime} b^{\prime} x y\right)=\left(a b^{\prime} x\right)\left(a^{\prime} b^{\prime \prime} y\right)=\left(a^{\prime} b x\right)\left(a^{\prime \prime} b^{\prime} y\right)=$ $a^{\prime \prime} b\left(a^{\prime} b^{\prime} x y\right)$.

For $[a ; b] ;[c ; d] \in G=H \times H$ the mapping $\circ:[a ; b] \circ[c ; d] \mapsto[a c ; b d]$ is independent of the representants since $a b^{\prime} x=a^{\prime} b x$ and $c d^{\prime} y=c^{\prime} d y$ imply $a b c^{\prime} d^{\prime}(x y)=a^{\prime} b^{\prime} c d(x y)$. It is obviously associative, commutative with the neutral element is $0=[a ; a]$ and the inverse $[a ; b]^{-1}=[b ; a]$ for each $[a ; b]$.

The mapping $\iota: H \rightarrow H^{2}$ with $\iota(a)=\left[a^{2} ; a\right]$ is a homomorphism since $\iota(a b)=\left[a^{2} b^{2} ; a b\right]=$ $\left[a^{2} ; a\right] \circ\left[b^{2} ; b\right]=\iota(a) \circ \iota(b)$. In the case of regularity and owing to the commutativity we have $\left[a^{2} ; a\right]=\left[b^{2} ; b\right] \Leftrightarrow a^{2} b x=a b^{2} x \Leftrightarrow a(a b)=(a b) b \Leftrightarrow a=b$, i.e. ι is injective. It is also surjective since for every $[a ; b] \in G$ we have $[a ; b]=[a(a b) ; b(a b)]=\left[a^{2} ; a\right] \circ\left[b ; b^{2}\right]=\iota(a) \circ \iota(b)^{-1}$.

For a homomorphism $\varphi: H \rightarrow G^{\prime}$ and $[a ; b] \in G$ the mapping $\psi([a ; b])=\varphi(a) \circ^{\prime} \varphi(b)^{-1}$ is a homomorphism since $\psi([a ; b] \circ[c ; d])=\psi([a c ; b d])=\varphi(a c) \circ^{\prime} \varphi(b d)^{-1}=\varphi(a) \circ^{\prime} \varphi(c) \circ^{\prime} \varphi(b)^{-1} \circ^{\prime}$ $\varphi(d)^{-1}=\psi([a ; b]) \circ^{\prime} \psi([c ; d])$. It is uniquely determined since for every $[a ; b] \in G$ the condition $(\psi \circ \iota)(x)=\varphi(x)$ implies $\psi([a ; b])=\psi\left(\iota(a) \circ \iota(b)^{-1}\right)=\varphi(a) \circ^{\prime} \varphi(b)^{-1}$.

1.7 Index and order of a subgroup

Any subgroup $H \subset G$ of a group G defines an equivalence relation $a=b \bmod H \Leftrightarrow a b^{-1} \in H$. The equivalence classes $a H=l_{a}[H]$ or left cosets have the same cardinality or order $\operatorname{ord} H=(H: 1)$ as H since the left translation l_{a} is bijective. The order $\operatorname{ind} H=(G: H)=(G / H: 1)$ of the quotient set is called the index of H and in the case of two of theses indices being finite we have Lagrange's theorem $(G: H)(H: 1)=(G: 1)$.

A second application of Lagrange's theorem to a further subgroup $K \subset H$ yields the generalization $(G: H)(H: K)=(G: K)$, cf. the second isomorphism theorem 1.11.

1.8 Normal subgroups

The composition \circ extends to the quotient set G / H such that the projection $\pi: G \rightarrow G / H$ with $\pi(a)=a \circ H$ is a homomorphism iff $a \circ H \in G / H \Rightarrow a \circ H \circ a^{-1} \circ H=e \circ H \Leftrightarrow a \circ H \circ a^{-1} \in H \Leftrightarrow$ $a \circ H \circ a^{-1}=H \Leftrightarrow a \circ H=H \circ a$. A subset satisfying this condition is normal and in this case the pair $(G / H ; \circ)$ is the factor group with $\pi(a) \circ \pi(b)=a \circ H \circ b \circ H=a \circ b \circ H \circ H=a \circ b \circ H=\pi(a \circ b)$. In the following sections we abbreviate $a b=a \circ b$ if no ambiguity is caused.

1.9 Fundamental theorem on homomorphisms

For every homomorphism $\varphi: G \rightarrow G^{\prime}$

1. the inverse image $\varphi^{-1}\left[N^{\prime}\right] \subset G$ of a normal subgroup $N^{\prime} \subset G^{\prime}$ is normal in G. In particular the kernel $\operatorname{ker} \varphi$ is normal.
2. If φ is surjective the canonical injection $\iota: G / \operatorname{ker} \varphi \rightarrow G^{\prime}$ with $\iota(a \circ \operatorname{ker} \varphi)=\varphi(a)$ is an isomorphism and in that case the image $\varphi[N]$ of a normal subgroup N is normal in G^{\prime}.
On account of $(x y)^{-1}=y^{-1} x^{-1}$ for any subset $S \subset G$ the normalizer $N_{S}=\left\{x \in G: x S x^{-1}=S\right\}$ and the centralizer $Z_{S}=\left\{x \in G: x s x^{-1}=s \forall s \in S\right\}$ are subgroups. The center Z_{G} is a normal subgroup and the normalizer N_{H} of a subgroup $H \subset G$ is the largest subgroup in which H is normal. Also in that case for any other subgroup $K \subset N_{H}$ the product $K H$ is a group and H is normal in $K H$.

1.10 Noether's first isomorphism theorem

For every subgroup $H \subset G$ and every normal subgroup $N \subset G$.

1. the product $H N$ is a subgroup of G.
2. N is a normal subgroup of $H N$.
3. $H \cap N$ is a normal subgroup of H.

4. the injection $\iota: H /(H \cap N) \rightarrow H N / N$ with $\iota(a(H \cap N))=a N$ is an isomorphism.

1.11 Noether's second isomorphism theorem

For normal subgroups $M \subset N \subset G$

1. the factor group N / M is normal in G / M
2. the mapping

$$
\varphi:(G / M) /(N / M) \rightarrow G / N
$$

with

$$
\varphi((a M)(N / M))=a N
$$

is an isomorphism.

1.12 Cyclic groups

A single element $S=\{a\}$ generates a cyclic group $\langle a\rangle:=\langle\{a\}\rangle=\left\{a^{z}: z \in \mathbb{Z}\right\}$ with the inductively defined powers $a^{0}=e, a^{n+1}=a \circ a^{n}$ and $a^{-n}=\left(a^{-1}\right)^{n}$. A further induction yields $a^{n} \circ a^{m}=$ a^{n+m} such that for any cyclic group $\langle a\rangle$ of order $n=\operatorname{ord}\langle a\rangle=\operatorname{ord} a$ we have an isomorphism $\varphi: \mathbb{Z} / n \mathbb{Z} \rightarrow\langle a\rangle$ with $\varphi(m \bmod n)=a^{m}$. Hence every subgroup $H \subset\langle a\rangle$ contains a smallest $m \in \mathbb{N}$ with $a^{m} \in H$ and since there is no $m-k \in \mathbb{N}$ with $a^{m-k} \in H$ we have $H=\left\langle a^{m}\right\rangle$. In particular from Lagrange's theorem we infer

1. $a^{n}=e \Leftrightarrow \operatorname{ord} a \mid n$
2. Every cyclic group is abelian.
3. Every subgroup of a cyclic group is cyclic.
4. Fermat's little theorem: if ord $G<\infty$ for every $a \in G$ we have $a^{\text {ord } G}=e$.
5. If ord $G \in \mathbb{P}$ is a prime number for every $a \in G$ we also have $a^{n} \neq e$ for $n<\operatorname{ord} G$. In that case G is cyclic and $G=\langle a\rangle$ for every $a \in G \backslash\{e\}$.
6. For every $a \in G$ with ord $G<\infty$ we have ord $a^{m}=\frac{\text { ord } a}{\operatorname{GCD}(m ; \text { ord } a)}$.
7. $\langle a\rangle=\langle b\rangle$ iff there is an $m \in \mathbb{N}$ with GCD $(m ; \operatorname{ord} a)=1$ and $b=a^{m}$.
8. For every $m \in \mathbb{N}$ with $m \mid \operatorname{ord} a$ resp. GCD $(m ; \operatorname{ord} a)=m$ there is a subgroup $\left\langle a^{\frac{\text { ord }}{m}}\right\rangle \subset\langle b\rangle$.
9. Every group $G \neq\{e\}$ without any subgroups apart from $\{e\}$ and G itself is of prime order ord $G \in \mathbb{P}$ and hence cyclic.

Proof of 1.12.6: Since there are coprime $m^{\prime} ; n^{\prime}$ with $m=m^{\prime} \cdot \operatorname{GCD}(m ;$ ord $a)$ resp. ord $a=n^{\prime}$. $\operatorname{GCD}(m ; \operatorname{ord} a)$ and $a^{m \cdot o r d a^{m}}=e=a^{\text {ord } a}$ on the one hand we have an $n \geq 1$ with $m \cdot \operatorname{ord} a^{m}=n \cdot \operatorname{ord} a \Rightarrow$ $m^{\prime} \cdot$ ord $a^{m}=n \cdot n^{\prime} \Rightarrow n^{\prime} \mid \operatorname{ord} a^{m}$ and on the other hand $\left(a^{m}\right)^{n^{\prime}}=a^{m \cdot n^{\prime}}=a^{m^{\prime} \cdot \operatorname{GCD}(m ; \text { ord } a) \cdot n^{\prime}}=a^{m \cdot \operatorname{ord} a}=e$ whence ord $a^{m} \mid n^{\prime}$. This proves ord $a^{m}=n^{\prime}$ and thus the assertion.

1.13 Operations

An operation is a homomorphism $\pi: G \rightarrow S(X)$ between a group G and the symmetric group of a set X.
The translation $l: G \rightarrow S(G)$ with $l(a)=l_{a}: G \rightarrow G$ and $l_{a}(x)=a x$ due to Kerl $=l^{-1}(i d)=$ $l^{-1}\left(l_{e}\right)=\{e\}$ is an injective operation and observing that in general $(a b) x=a(b x)$ holds but not $a(x y)=(a x)(a y)$ we note that l is a homomorphism but l_{a} is not. The group G may also operate by translation $l: G \rightarrow S(P(G))$ with $l(a)=l_{a}: P(G) \rightarrow P(G)$ and $l_{a}(H)=a H$ on its family $P(G)$ of subsets. Note again that even for a subgroup H in general the image $a H$ will only be a left coset. Due to 1.7 the group G operates by translation on the quotient set G / H with $l(a)=l_{a}: G / H \rightarrow G / H$ and $l_{a}(x H)=a x H$.
The conjugation $c: G \rightarrow S(G)$ is defined by $c(a)=c_{a}: G \rightarrow G$ and $c_{a}(x)=a x a^{-1}$. Due to 1.9 its kernel $\operatorname{Ker} c=c^{-1}(i d)=Z_{G}$ is the center of G whence c is not injective but the inner automorphism $c_{a} \in \operatorname{Aut} G$ is. As above the group G by conjugation also operates on the families of subsets resp. subgroups $H \in P(G)$. The resulting conjugations $c_{a}: P(G) \rightarrow P(G)$ with $c_{a}(H)=a H a^{-1}$ are obviously bijective and the inverse image $c_{a}^{-1}(H)=a^{-1} H a=c_{a^{-1}}(H)$ is the conjugate of $a c_{a}^{-1}(H) a^{-1}=H$.

1.14 Orbit and class formulae

For an operation $\pi: G \rightarrow S(X)$ and $x \in X$ the isotropy group is defined by $G_{x}=\left\{a \in G: \pi_{a}(x)=x\right\}$. The kernel $\operatorname{ker} \pi=\pi^{-1}(\mathrm{id})=\bigcap_{x \in X} G_{x}$ is equal to the intersection of all isotropy groups. An element $x \in X$ is a fixed point iff $G_{x}=G$ and $\pi_{G}(x)=\bigcup_{a \in G} \pi_{a}(x) \subset X$ is the orbit of x. Since
for every $x \in X$ the mapping $\varphi: G / G_{x} \rightarrow \pi_{G}(x) \subset X$ with $\varphi\left(a G_{x}\right)=\pi_{a}(x)$ is bijective we have $\operatorname{ind} G_{x}=\operatorname{ord} \pi_{G}(x)$. Since $\pi_{a}(x)=\pi_{b}(y) \Leftrightarrow \pi_{b^{-1} a}(x)=y \Leftrightarrow y \in \pi_{G}(x)$ the orbits partition X and in the case of a finite number n of orbits we can choose $x_{i} \in X$ for $1 \leq i \leq n$ such that $i \neq j \Leftrightarrow \pi_{G}\left(x_{i}\right) \neq \pi_{G}\left(x_{j}\right)$ and $X=\bigcup_{1 \leq i \leq n}^{\circ} \pi_{G}\left(x_{i}\right)$ yielding the orbit decomposition formula $\operatorname{card} X=\sum_{i=1}^{n} \operatorname{ord} \pi_{G}\left(x_{i}\right)$.
In the case of the conjugation and due to 1.9 the isotropy group coincides with the normalizer: $G_{x}=N_{x}$ for $x \in X$ resp. $G_{H}=N_{H}$ for $H \in P(G)$. For every $x ; y \in X$ with $\pi_{a}(x)=y$ the isotropy groups are conjugate, i.e. $G_{y}=a G_{x} a^{-1}$ since $b \in G_{y} \Rightarrow \pi_{b}(y)=y \Rightarrow \pi_{a^{-1} b a}(x)=\pi_{a^{-1} b}(y)=$ $\pi_{a^{-1}}(y)=\pi_{a}^{-1}(y)=x \Rightarrow a^{-1} b a \in G_{x} \Leftrightarrow b \in a G_{x} a^{-1}$ and vice versa. Since $\pi_{a}(x) \neq \pi_{b}(x) \Leftrightarrow$ $a x a^{-1} \neq b x b^{-1} \Leftrightarrow b^{-1} a x \neq x b^{-1} a \Leftrightarrow b^{-1} a \notin N_{x} \Leftrightarrow a N_{x} \neq b N_{x}$ we have $\operatorname{ord} \pi_{G}(x)=\operatorname{ind} N_{x}=\operatorname{ind} G_{x}$ such that in the case of the conjugation on a group G of finite order the orbit decomposition formula becomes the class formula $\operatorname{ord} G=\sum_{i=1}^{n} \operatorname{ind} N_{x_{i}}$ with $x_{i} \in X$ for $1 \leq i \leq n$ chosen such that $i \neq j \Leftrightarrow N_{x_{i}}=G_{x_{i}} \neq G_{x_{j}}=N_{x_{j}}$.

1.15 Permutations

A bijection $\sigma \in S(X)$ is a cycle of length $n \in \mathbb{N}$ iff there are $x_{1} ; \ldots ; x_{n} \in X$ with $x_{i+1}=\sigma\left(x_{i}\right)=$ $\ldots=\sigma^{i-1}\left(x_{1}\right)$ for $1 \leq i \leq n-1$ resp. $x_{1}=\sigma\left(x_{n}\right)=\ldots=\sigma^{n}\left(x_{1}\right)$ and $\sigma(x)=x$ for every other $x \in X \backslash\left\{x_{1} ; \ldots ; x_{n}\right\}$. The set of all cycles is $C(X) \subset S(X)$. In a simplified notation we only mention the elements $x_{i} \in X$ affected by σ and write $\sigma[X]=\left\{\ldots ; \sigma\left(x_{1}\right) ; \ldots ; \sigma\left(x_{n}\right) ; \ldots\right\}=$ $\left\langle x_{1} ; \ldots ; x_{n}\right\rangle=\left\langle x_{1} ; \sigma^{1}\left(x_{1}\right) ; \ldots ; \sigma^{n-1}\left(x_{1}\right)\right\rangle$, e.g. $\{1 ; 4 ; 3 ; 6 ; 5 ; 2 ; 7 ; 8 ; 9 ; 10\}=\langle 2 ; 4 ; 6\rangle$. Also if there is no ambiguity between the mapping σ and its image $\sigma[S]$ the argument may be suppressed and we write $\sigma=\sigma[S]$ as in e.g. $\sigma=\sigma[\{1 ; 2 ; 3 ; 4\}]=\{4 ; 3 ; 2 ; 1\}$. For every $1 \leq j \leq n$ the image $\left\langle x_{1} ; \ldots ; x_{n}\right\rangle=\left\langle\sigma^{1}\left(x_{j}\right) ; \ldots ; \sigma^{n}\left(x_{j}\right)\right\rangle=\langle\sigma\rangle_{x_{j}}$ is the orbit of the cyclic subgroup generated by σ on the single element x_{j}. A cycle $\tau=\left\langle x_{i} ; x_{j}\right\rangle$ of length $n=2$ is a transposition τ with $\tau\left(x_{i}\right)=x_{j}$ and the set of all transpositions is $T(X) \subset C(X) \subset S(X)$. Note that neither set is closed under composition, e.g. $\langle 1 ; 2\rangle \circ\langle 3 ; 4\rangle=\{2 ; 1 ; 4 ; 3\}$ is not a cycle any more. (cf. 1.16.2) By $\mathbf{x}:\{1 ; \ldots ; n\} \rightarrow\left\{x_{1} ; \ldots ; x_{n}\right\}$ with $\mathbf{x}(n)=x_{n}$ and $\sigma\left(x_{n}\right)=(\sigma \circ \mathbf{x})(n)$ every symmetric group $S\left(\left\{x_{1} ; \ldots ; x_{n}\right\}\right)$ of order n is isomorphic to $S_{n}=S(\{1 ; \ldots ; n\})=S(\mathbf{x}[\{1 ; \ldots ; n\}])$ such that any permutation $\sigma \in S_{n}$ may be expressed simply in the form $\sigma[1 ; \ldots ; n]=\{\sigma(1) ; \ldots ; \sigma(n)\}$. For example the Klein Vierergruppe $H=\langle\pi ; \rho\rangle=\{\mathrm{id} ; \pi ; \rho ; \pi \circ \rho\} \subset S_{4}$ with $\pi=\{2 ; 1 ; 4 ; 3\}, \rho=\{3 ; 4 ; 1 ; 2\}$ and $\pi \circ \rho=\rho \circ \pi=\{4 ; 3 ; 2 ; 1\}$ is an abelian subgroup of S_{4}.

1.16 The symmetric group

For $n \geq 2$ the symmetric group S_{n} has the following properties:

1. $S_{n}=\left\langle T_{n}\right\rangle$ is generated by the transpositions $T_{n}=\left\{\tau_{i ; j}=\langle i ; j\rangle: 1 \leq i<j \leq n\right\}$ and is of order $\operatorname{ord} S_{n}=n!$.
2. Every $\rho \in S_{n}$ is a finite product of disjoint cycles.
3. Disjoint cycles commutate: $\sigma \circ \rho=\rho \circ \sigma$ for every $\sigma, \rho \in C(X)$ with $\sigma \cap \rho=\emptyset$.
4. Every $\pi \in S_{n}$ is a finite product of disjoint transpositions.

Proof:

1. Follows by induction from the observation that for $n \geq 2$ there are n transpositions $\tau_{i ; n}$ and $S_{n}=\left\{\tau_{i ; n} \circ \sigma_{n-1}: \sigma_{n-1} \in S_{n-1}\right\}$ whence $\operatorname{ord} S_{n}=n \cdot \operatorname{ord} S_{n-1}$.
2. Since with $x_{i} \in X$ for $1 \leq i \leq m \leq n$ such that $i \neq j \Leftrightarrow \pi_{\langle\rho\rangle}\left(x_{i}\right) \neq \pi_{\langle\rho\rangle}\left(x_{j}\right)$ the orbits $\pi_{\langle\rho\rangle}\left(x_{i}\right)=$ $\left\{\rho\left(x_{i}\right) ; \ldots ; \rho^{m_{i}+1}\left(x_{i}\right)=x_{i}\right\}=\left\langle x_{i} ; \rho\left(x_{i}\right) ; \ldots ; \rho^{m_{i}}\left(x_{i}\right)\right\rangle$ resp. images of cycles $\sigma_{i} \in C(X)$ with $\sigma_{i}\left(x_{i}\right)=\rho\left(x_{i}\right)$ partition $X=\bigcup_{1 \leq i \leq m}^{\circ} \pi_{\langle\rho\rangle}\left(x_{i}\right)$ such that for every $x \in X$ there is an $1 \leq i \leq m$ and a $1 \leq j \leq m_{i}$ such that $x=\sigma_{i}^{j}\left(x_{i}\right) \in \pi_{\langle\rho\rangle}\left(x_{i}\right)$ whence $\pi(x)=\pi \circ \sigma_{i}^{j}\left(x_{i}\right)=\sigma_{i}^{j+1}\left(x_{i}\right)$.
3. obvious.
4. Follows from 2. since for every cycle we have $\left\langle x_{1} ; \ldots ; x_{n}\right\rangle=\left\langle x_{1} ; x_{n}\right\rangle \circ\left\langle x_{1} ; x_{n-1}\right\rangle \circ \ldots \circ\left\langle x_{1} ; x_{2}\right\rangle$.

1.17 The signum of a permutation

For every $n \geq 2$ the signum sgn : $S_{n} \rightarrow\{ \pm 1\}$ with $\operatorname{sgn}(\sigma)=\prod_{i<j} \frac{\sigma(i)-\sigma(j)}{i-j}$ is a homomorphism with $\operatorname{sgn}(\sigma \circ \rho)=\operatorname{sgn}(\sigma) \cdot \operatorname{sgn}(\rho)$ and $\operatorname{sgn}(\tau)=-1$ for every transposition τ. Hence $\operatorname{sgn}\left(\tau_{1} \circ \ldots \circ \tau_{n}\right)=$ $(-1)^{n}$ and for $A_{n}=\sigma^{-1}[\{1\}]$ the map $\sigma \mapsto \sigma \circ \tau$ is a bijection $A_{n} \rightarrow A_{n} \circ \tau$ such that from $S_{n}=A_{n} \cup A_{n} \circ \tau$ follows $\left|A_{n}\right|=\left|A_{n} \circ \tau\right|=\frac{1}{2} n!$.
Proof:

$$
\begin{aligned}
\operatorname{sgn}(\sigma \circ \rho)= & \prod_{i<j} \frac{(\sigma \circ \rho)(i)-(\sigma \circ \rho)(j)}{i-j} \\
= & \prod_{i<j} \frac{\sigma(\rho(i))-\sigma(\rho(j))}{\rho(i)-\rho(j)} \cdot \prod_{i<j} \frac{\rho(i)-\rho(j)}{i-j} \\
= & \prod_{\substack{i<j \\
\rho(i<\rho(j)}} \frac{\sigma(\rho(i))-\sigma(\rho(j))}{\rho(i)-\rho(j)} \cdot \prod_{\substack{i<j \\
\rho(i)>\rho(j)}} \frac{\sigma(\rho(i))-\sigma(\rho(j))}{\rho(i)-\rho(j)} \cdot \epsilon(\rho) \\
= & \prod_{i<j} \frac{\sigma(\rho(i))-\sigma(\rho(j))}{\rho(i)-\rho(j)} \cdot \prod_{j>i} \frac{\sigma(\rho(j))-\sigma(\rho(i))}{\rho(j)-\rho(i)} \cdot \epsilon(\rho) \\
= & \prod_{i<j} \frac{\sigma(j)<\rho(i)}{\rho(i<j(j)-\rho(j)} \cdot \prod_{i>j} \frac{\sigma(\rho(i))-\sigma(\rho(j))}{\rho(i)-\rho(j)} \cdot \epsilon(\rho) \\
& \rho(i)<\rho(j) \\
= & \prod_{\rho(i)<\rho(j)} \frac{\sigma(\rho(i))-\sigma(\rho(j))}{\rho(i)-\rho(j)} \cdot \epsilon(\rho) \\
= & \operatorname{sgn}(\sigma) \cdot \operatorname{sgn}) \\
&
\end{aligned}
$$

2 Rings

2.1 Rings

A ring $(R ;+\cdot)$ is a triple of a set R and two maps $+; \cdot: R \times R \rightarrow R$ iff for every $a ; b ; c \in R$ we have:

1. $(R ;+)$ is an abelian group
2. associativity of the multiplication : $a \cdot(b \cdot c)=(a \cdot b) \cdot c$
3. distributivity $a \cdot(b+c)=a \cdot b+a \cdot c$ and $(a+b) \cdot c=a \cdot c+b \cdot c$
4. a unit element $1 \in R$ with $1 \cdot a=a \cdot 1=a$
5. A ring is commutative iff this property holds for the multiplication.
6. The unit elemt is uniquely determined and in the case of $0=1$ we have $R=\{0\}$
7. The ring is an integral domain iff $a \cdot b=0 \Leftrightarrow a=0 \vee b=0$ for every $a ; b \in R$, i.e. it is free (nullteilerfrei) of left resp. right zero divisors $a \in R: \exists 0 \neq b \in R: a \cdot b=0$ resp $b \cdot a=0$.
8. $0 \cdot a=a \cdot 0=0$ since $0 \cdot a=(0+0) \cdot a=0 \cdot a+0 \cdot a$ and vice versa.
9. $a \cdot(-b)=-(a \cdot b)$ and $(-a) \cdot(-b)=a \cdot b$ since $a \cdot(-b)+a \cdot b=a(-b+b)=a \cdot 0=0$.

2.2 Examples

1. The set of maps $G \rightarrow G$ on an additive group $(G ;+)$ forms a ring with respect to the composition. Special cases are the endomorphisms (End $G ;+; \circ$) on G, linear maps ($\mathrm{L}(X) ;+; \circ$) on a complex vector space X and in the finite dimensional case the isomorphic set ($\mathrm{M}(n ; \mathbb{C}) ;+; *)$ of complex quadratic matrices with respect to the matrix product.
2. The set of maps $R \rightarrow R$ on a ring ($R ;+; \cdot)$ forms a ring with respect to the multiplication with the unit $1: r \rightarrow 1$ for $r \in R$ as well as with respect to the composition with the unit id : $R \rightarrow R$.
3. The set $\left(L^{1}(\mathbb{C}) ;+; *\right)$ of Lebesgue integrable complex functions with respect to the convolution is not a ring since the convolution lacks a neutral element.

2.3 Ideals

A subring $I \subset R$ of a ring $(R ;+; \cdot)$ is a left resp. right ideal iff $R I \subset I$ resp. $I R \subset R$ whence $R I=I$ resp. $I R=I$ since $1 \in R$. Only for a two-sided or simply ideal I the factor group $(R / I ;+)$ with the multiplication $(r+I) \cdot(s+I)=\pi(r) \cdot \pi(s)=\pi(r s)=r s+I$ becomes a factor ring $(R / I ;+; \cdot)$ since only in that case $r^{\prime}=r \bmod I$ and $s^{\prime}=s \bmod I$ satisfy $r^{\prime} s^{\prime}-r s=r^{\prime}\left(s^{\prime}-s\right)-\left(r^{\prime}-r\right) s \in I$ whence $\pi\left(r^{\prime} s^{\prime}\right)=\pi(r s) \bmod I$ while the associativity resp. the distributivity obviously extend from ($R ;+; \cdot)$ to $(R / I ;+; \cdot)$.
The simplest ideals are the left principal ideals $R i$ for any generator $i \in R$. This can be extended to finitely many generators $\left(i_{k}\right)_{1 \leq k \leq n} \subset R$ such that $\sum_{k=1}^{n} R i_{k}=\left\{\sum_{k=1}^{n} r_{k} i_{k}: r_{k} \in R \forall 1 \leq k \leq n\right\}$ and likewise for right principal resp. two-sided principal ideals. In the latter case we use the notation $\left\langle i_{k}\right\rangle_{1 \leq k \leq n}=\sum_{k=1}^{n} R i_{k}=\sum_{k=1}^{n} i_{k} R$. A commutative nontrivial ring is principal iff every ideal is principal.

The sum $I+J=\{i+j: i \in I \wedge j \in J\}=I \cup J$ of two ideals is again an ideal. In general this is not true for the product $I J=\{i j: i \in I \wedge j \in J\} \subset I \cap J$. The product of two principal ideals can be represented by $\langle i\rangle\langle j\rangle=\left\{\sum_{k=1}^{n} i_{k} j_{k}: i_{k} \in I ; j_{k} \in J: 1 \leq k \leq n \in \mathbb{N}\right\}$.

Examples:

1. The ring \mathbb{Z} of integers is principal since for the smallest positive integer $d \in \mathbb{N} \cap I$ of a given ideal $I \subset \mathbb{Z}$ and any other $n \in I$ according to the Euclidean division there exist integers q and $0 \leq r<d$ such that $n=d q+r \Leftrightarrow r=n-d q \in I$ whence $r=0$ such that we obtain $I=d \mathbb{Z}$.
2. The ring $K[x]$ of polynomials in one variable x over a field K is principal since for any polynomial $d \in K[x] \cap I$ with minimal degree $\operatorname{deg} d$ in a given ideal $I \subset K[x]$ and any other $n \in I$ according to the Euclidean division there exist polynomials $q, r \in K[x]$ with $\operatorname{deg} r<\operatorname{deg} d$ such that $n=d q+r \Leftrightarrow r=n-d q \in I$ whence $r=0$ such that we obtain $I=d K[x]$.
3. The ring $H(\mathbb{C})$ of entire functions on the complex plane is principal since according to the finite multiplicity of zeros of holomorphic functions [2, p. 2.11] the generators f_{k} of the ideal $I=\left\langle f_{k}\right\rangle_{1 \leq k \leq n}$ have at most finitely many common zeros a_{k} with at most finite common multiplicity n_{k} such that due to the Weierstrass factorization theorem [1, th. 5.14] there is an $f \in H(\mathbb{C})$ with exactly these zeros of matching multiplicity. Hence we have $I=\langle f\rangle$

2.4 Commutative rings

An ideal $I \subset R$ in a commutative ring R is

1. prime iff the factor ring R / I is an integral domain
2. maximal iff there is no ideal $I \nsubseteq M \varsubsetneqq R$.

In a commutative ring R the following statements hold:

1. Every maximal ideal is prime.
2. Every ideal is contained in some maximal ideal.
3. $\{0\}$ is prime ideal iff R is an integral domain.
4. For every maximal ideal M the factor ring R / M is a field.
5. If the factor ring R / M of an ideal M is a field, then M is maximal.

Proof:

1. For a maximal ideal M and $r ; s \in R$ with $r s \in M$. In the case of $r \notin M$ due to the maximal character of M we have $M \subset M+R r=R$ whence there are $n \in M$ and $t \in R$ with $1=n+t r$. Multiplication by s yields $s=n s+$ trs $\in M$ whence M is prime.
2. For any given ideal $I \subset R$ the family \mathcal{I} of all ideals $I \subset J \varsubsetneqq R$ in R is inductively ordered by inclusion since every linearly ordered chain $\left(I_{k}\right)_{k \in K} \subset \mathcal{I}$ has an upper bound $1 \notin \bigcup_{k \in K} I_{k} \varsubsetneqq R$ which is an ideal due to the increasing charachter of the chain such that Zorn's lemma [5, p. 14.2.4] provides the desired maximal ideal $M \subset R$.
3. obvious.
4. From $1 \notin M$ follows $1 \neq 0 \bmod M$ whence for every $r \neq 0 \bmod M$ due to the maximal character of M the ideal $M \subset M+R r=R$ such that there are $m \in M$ and $t \in R$ with $m+t r=1$, i.e. $\operatorname{tr}=1 \bmod M$ resp. $\pi(r)^{-1}=\pi(t)$.
5. For every $i \in I$ of an ideal $M \subset I \subsetneq R$ there is a $j \in R$ with $i j=1 \bmod M$ resp. an $m \in M$ with $1=i j+m$ such that we obtain $i \in M$. Hence $I \subset M$ and since obviously $M \varsubsetneqq R$ the assertion follows.

2.5 The Chinese remainder theorem

For ideals $\left(I_{k}\right)_{1 \leq k \leq n}$ with $I_{k}+I_{l}=R$ for $k \neq l$ in a commutative ring R and any set $\left(r_{m}\right)_{1 \leq m \leq n} \subset R$ there is an $r \in \bar{R}$ with $r=r_{k} \bmod I_{k}$ for every $1 \leq k \leq n$.

Proof: According to the hypothesis for $n=2$ there are $i_{1} \in I_{1}$ and $i_{2} \in I_{2}$ with $i_{1}+i_{2}=1$ such that $r=r_{2} i_{1}+r_{1} i_{2}$ due to $r-r_{1}=\left(r_{2}-r_{1}\right) i_{1}$ and vice versa satisfies the given congruences. For $k \geq 2$ there are $a_{k} \in I_{1}$ and $b_{k} \in I_{k}$ with $a_{k}+b_{k}=1$. Due to 2.3 this implies $1=\prod_{k=2}^{n}\left(a_{k}+b_{k}\right) \in I_{1}+\prod_{k=2}^{n} I_{k}$, i.e. $1=i_{1}+\prod_{k=2}^{n} i_{k}$ for some $i_{k} \in I_{k}$. But then for every $r \in R$ follows $r \cdot 1=r \cdot i_{1}+r \cdot \prod_{k=2}^{n} i_{k} \in I_{1}+\prod_{k=2}^{n} I_{k}$ whence $I_{1}+\prod_{k=2}^{n} I_{k}=R$. By the proven case for $n=2$ we can find an $s_{1} \in R$ with $s_{1}=1 \bmod I_{1}$ resp. $s_{1}=0 \bmod \left(\prod_{k=2}^{n} i_{k}\right)$ whence in particular $s_{1}=0 \bmod I_{k}$ for $k \neq 1$. Similarly we obtain $\left(s_{m}\right)_{2 \leq m \leq n}$ with $s_{m}=1 \bmod I_{m}$ resp. $s_{m}=0 \bmod I_{k}$ for $k \neq m$. Then $r=\sum_{m=1}^{n} r_{m} s_{m}$ is a solution for the given system of congruences.

2.6 Fields

A triple of a set K and two maps $+; \cdot: K \times K \rightarrow K$ is a field (Körper) $(K ;+\cdot)$ iff

1. $(K ;+; \cdot)$ is a ring
2. $(K \backslash\{0\} ; \cdot)$ is an abelian group

Examples:

1. The ring $\mathbb{Z} \bmod p=\mathbb{Z} / p \mathbb{Z}$ with the equivalence relation $r=s \bmod p \Leftrightarrow \exists z \in \mathbb{Z}: r-s=z \cdot p$ resp. the equivalence classes $r \bmod p$ with $0 \leq r<p(c f .[5, \mathrm{p} .8 .9])$ is a domain iff $p \in \mathbb{P}$ is a prime number, since for $k<p$ and $b, l, m \in \mathbb{Z}$ we have $(m p+k) \cdot b=l p \Leftrightarrow k b=(l-m b) \cdot p \Leftrightarrow$ $p \mid b$. For every $p \in \mathbb{P} \backslash\{2\}$ the pair ($\mathbb{Z} / p \mathbb{Z} ; \cdot)$ forms a cyclic and hence abelian group since for $l ; m<p$ and $n \in \mathbb{N}$ we have $l \cdot m=n \cdot p+l \Leftrightarrow l \cdot(m-1)=n \cdot p$. In these cases $(\mathbb{Z} / p \mathbb{Z} ;+; \cdot)$ is a field.
2. More generally every domain R of finite order with multiplicative unit is a field since in that case for every $a \in R$ the mapping $x \mapsto a x$ is injective and hence surjective. Conversely the order of a finite field is a prime number since assuming $n \cdot m \cdot 1=0$ implies $m=0$ or $n=0$.
3. The ring $\mathbb{R}(x) \bmod \left(x^{2}+1\right)=\mathbb{R}(x) /\left(x^{2}+1\right) \cdot \mathbb{R}(x)$ with the equivalence relation $p(x)=$ $q(x) \bmod x^{2}+1 \Leftrightarrow \exists r(x) \in \mathbb{R}(x): p(x)-q(x)=r(x) \cdot\left(x^{2}+1\right)$ resp. the equivalence classes $(a x+b) \bmod \left(x^{2}+1\right)$ with $a ; b \in \mathbb{R}$ is a field since with $x^{2}=-1 \bmod \left(x^{2}+1\right)$ we have $(a x+b) \cdot(c x+d)=1 \bmod \left(x^{2}+1\right) \Leftrightarrow b d-a c=1 \wedge a d+b c=0 \Leftrightarrow b^{2} c+a^{2} c=-a \Leftrightarrow$ $c=\frac{-a}{a^{2}+b^{2}} \wedge d=\frac{b}{a^{2}+b^{2}}$, i.e. $(a x+b)^{-1}=\frac{-a x+b}{a^{2}+b^{2}}$. With the isomorphism $x \mapsto i$ we obtain the complex numbers: $\mathbb{R}(x) \bmod \left(x^{2}+1\right) \simeq \mathbb{C}$.

2.7 Polynomials

According to the fundamental theorem of algebra [2, p. 2.10] every non constant polynomial $p(z)=\sum_{k=0}^{n} a_{k} z^{k} \in \mathbb{C}(z)$ with $a_{k} \in \mathbb{C}, a_{n} \neq 0$, degree $\operatorname{deg} p=n \geq 1$ and $0 \leq k \leq n$ has a complex $\operatorname{root} \lambda \in \mathbb{C}$ with $p(\lambda)=0$. Due to the Euclidean polynomial division for every root $\lambda \in \mathbb{C}$ we have $p(z)=q(z) \cdot(z-\lambda)$ with $q(z) \in \mathbb{C}(z)$ and $\operatorname{deg} q=\operatorname{deg} p-1$. According to the rules for complex conjugation for every non real root $\lambda \in \mathbb{C}$ of a real polynom $p(z) \in \mathbb{R}(z)$ we have $0=p(\lambda)=$ $\overline{p(\lambda)}=\bar{p}(\bar{\lambda})=p(\bar{\lambda})$ whence $p(z)=q(z) \cdot(z-\lambda)^{\mu(\lambda)}(z-\bar{\lambda})^{\mu(\bar{\lambda})}$ with multiplicities $\mu(\lambda)=\mu(\bar{\lambda})$ and the real polynom $(z-\lambda)^{\mu(\lambda)}(z-\bar{\lambda})^{\mu(\bar{\lambda})}$ of even degree $2 \mu(\lambda)$. Hence every real polynom can be factorized in the form $p(z)=\prod_{i=1}^{k}\left(z-\lambda_{i}\right) \cdot \prod_{i=k}^{(n-k) / 2}\left(z-\lambda_{i}\right)\left(z-\bar{\lambda}_{i}\right)$ with $\operatorname{Im} \lambda_{i}=0$ for $i<k$ and $\operatorname{Im} \lambda_{i} \neq 0$ for $i \geq k$ such that every real polynom of odd degree must have at least one real root $\lambda_{1} \in \mathbb{R}$.

2.8 Descartes' rule of signs

The number Z_{f} of strictly positive real roots (counting multiplicity) of a real polynomial $p(x)=\sum_{k=0}^{n} a_{k} z^{b_{k}} \in \mathbb{R}(x)$ with integer powers $0 \leq b_{0}<b_{1}<\ldots<b_{n}$ and real coefficients $a_{i} \in \mathbb{R} \backslash\{0\}$ is equal to the number $V_{f}=\sum_{a_{k} \leq a_{k+1}<0} 1$ of sign changes in the coefficients of f minus a nonnegative even number.

Proof:

1. W.l.o.g. we assume $b_{0}=0$ since otherwise a division by $z^{b_{0}}$ would not change the number of strictly positive roots.
2. Z_{f} is even iff $a_{n} a_{0}>0$ since in the case of $f(0)=a_{0}>0$ and $a_{n}>0$ we have $f(x) \rightarrow+\infty$ for $x \rightarrow+\infty$ and due to the intermediate value theorem [6, p. 5.1] it must cross the positive x-axis an even number of times (each of which contributes an odd number of roots) and glance without crossing an arbitrary number of times (each of which contributes an odd number of roots) such that Z_{f} must be even. The other cases are dealt with analogously.
3. Since every coefficient a_{k} with a $a_{k} a_{0}<0$ produces a pair of sign changes it follows from 2 . that Z_{f} and V_{f} have the same parity.
4. It remains to show that $Z_{f} \leq V_{f}$: For $n=0$ and $n=1$ the proposition is obvious. Assuming $n \geq 2$ by the induction hypothesis we have $Z_{d f / d x}=V_{d f / d x}-2 m$ for some integer $m \geq 0$. By the mean value theorem [2, th. 1.9] there is at least one positive root of $\frac{d f}{d x}$ between any two different roots of f. Due to the product rule [2, th. 4.4] any k-multiple positive root of f is a $k-1$-multiple root of $\frac{d f}{d x}$, i.e. $Z_{d f / d x} \geq Z_{f}-1$. Since $V_{d f / d x}=V_{f}$ in the case of $a_{1} a_{0}>0$ and $V_{d f / d x}=V_{f}-1$ otherwise we have $V_{d f / d x} \leq V_{f}$. Hence $Z_{f} \leq Z_{d f / d x}+1=V_{d f / d x}-2 m+1 \leq$ $V_{f}-2 m+1 \leq V_{f}+1$ whence the assertion follows from 3.

3 Vector spaces

3.1 Vector spaces

The Quadruple ($X ; K ;+; \cdot$) of a set V, a field $K \in\{\mathbb{R} ; \mathbb{C}\}$, an internal addition $+: X \times X \rightarrow X$ and an external multiplication $\cdot: K \times X \rightarrow X$ is a vector space over K iff

1. $(X ;+)$ is an abelian group
2. For $\lambda ; \mu \in K$ and $\boldsymbol{x} ; \boldsymbol{y} \in X$ we have
a) distribution laws $(\lambda+\mu) \cdot \boldsymbol{x}=\lambda \cdot \boldsymbol{x}+\mu \cdot \boldsymbol{x}$ and $\lambda \cdot(\boldsymbol{x}+\boldsymbol{y})=\lambda \cdot \boldsymbol{x}+\lambda \cdot \boldsymbol{y}$
b) associative law $\lambda \cdot(\mu \cdot \boldsymbol{x})=(\lambda \mu) \cdot \boldsymbol{x}$
c) compatibility of the neutral element $1 \cdot \boldsymbol{x}=\boldsymbol{x}$

These axioms imply the following properties:
3. $0 \cdot \boldsymbol{x}=0$ and $\lambda \cdot \mathbf{0}=\mathbf{0}$
4. $\lambda \cdot \boldsymbol{x}=\mathbf{0} \Rightarrow \lambda=0 \vee \boldsymbol{x}=\mathbf{0}$
5. $(-1) \cdot \boldsymbol{x}=-\boldsymbol{x}$

3.2 Vector subspaces

For a vector space X over a field $K \in\{\mathbb{R} ; \mathbb{C}\}$ with subsets $A, B \subset X$ and vectors $\boldsymbol{x} \in X$ as well as scalars $\alpha \in K$ we define $\alpha A:=\{\lambda \boldsymbol{a}: \boldsymbol{a} \in A\}, \boldsymbol{x}+A:=\{\boldsymbol{x}+\boldsymbol{a}: \boldsymbol{a} \in A\}$ and $A+B:=$ $\{A+B: \boldsymbol{a} \in A, \boldsymbol{b} \in B\}$ with $-A=(-1) A$. For vector subspaces A and B the sets $\alpha A, \boldsymbol{x}+A$ and $A+B$ are still algebraically closed. We have $2 A \subset A+A$ with equality if A is a vector subspace. An arbitrary subset A generates its linear span $(A)=\langle A\rangle=\left\{\sum_{k=1}^{n} \alpha_{k} \boldsymbol{x}_{k}: \alpha_{k} \in K, \boldsymbol{x}_{k} \in A, n \in \mathbb{N}\right\}$. A family $\left(\boldsymbol{x}_{i}\right)_{i \in I} \subset X$ is linearly independent iff $\sum_{i \in H} \alpha_{i} \boldsymbol{x}_{i}=0 \Leftrightarrow \alpha_{i}=0 \forall i \in H$ for every finite $H \subset$ I. It is a basis of the subspace $E \subset X$ iff it generates $E=\left\langle\boldsymbol{x}_{i}\right\rangle_{i \in I}=\left\{\sum_{i \in H} \alpha_{i} \boldsymbol{x}_{i}: H\right.$ finite in $\left.I\right\}$. The rank (A) of a matrix $A=\left(a_{i j}\right)_{1 \leq i \leq n ; 1 \leq j \leq m} \in M(n \times m ; \mathbb{C})$ is the maximal number of linearly independent column vectors $\boldsymbol{x}_{j}=\left(x_{i j}\right)_{1 \leq i \leq n}$.

3.3 The basis of a vector space

Every linearly independent family $\left(\boldsymbol{x}_{i}\right)_{i \in I} \subset X$ can be extended to a basis $\left\langle\boldsymbol{x}_{i}\right\rangle_{i \in J}=X$ with $I \subset J$.
Proof: The set L of all linearly independent families $\mathcal{N} \subset X$ containing the given set $\left(\boldsymbol{x}_{i}\right)_{i \in I} \subset \mathcal{N}$ is inductively ordered by inclusion since for every linearly ordered chain $\left(\mathcal{N}_{j}\right)_{j \in J}$ with $\mathcal{N}_{j}=$ $\left(\boldsymbol{x}_{i}\right)_{i \in I_{j}}$ the index sets $\left(I_{j}\right)_{j \in J}$ are also linearly ordered such that $\mathcal{N}=\bigcup_{j \in J} \mathcal{N}_{j}=\left(\boldsymbol{x}_{i}\right)_{i \in \bigcup} \bigcup_{j \in J} I_{j} \in L$ is a supremum of $\left(\mathcal{N}_{j}\right)_{j \in J}$. According to Zorn's lemma [5, th. 14.1.4] there is a maximal family $\mathcal{M} \in L$. Since for every $\boldsymbol{x} \in X$ we have $\langle\mathcal{M}\rangle \subset\langle\mathcal{M} \cup\{\boldsymbol{x}\}\rangle \in L$ such that from the maximal character of \mathcal{M} follows $\boldsymbol{x} \in\langle\mathcal{M}\rangle$ whence we conclude that $X=\langle\mathcal{M}\rangle$.

3.4 The dimension of a vector space

All bases of a vector space X have the same cardinal number which is called the dimension $\operatorname{dim} X$ of X.

Proof: For two bases B and C of X the family Φ of injective maps $\varphi: B \supset \operatorname{dom} \varphi \rightarrow \operatorname{im} \varphi \subset C$ with linearly independent sets $\operatorname{im} \varphi \cup B \backslash \operatorname{dom} \varphi$ is inductively odered by inclusion since for every linearly ordered chain Φ_{0} the map $\varphi_{0}=\bigcup_{\varphi \in \Phi_{0}} \varphi \in \Phi$ is an upper bound of Φ_{0}; note that $\bigcup_{\varphi \in \Phi_{0}} \operatorname{im} \varphi \cup B \backslash$ $\bigcup_{\varphi \in \Phi_{0}} \operatorname{dom} \varphi=\bigcup_{\varphi \in \Phi_{0}} \operatorname{im} \varphi \cup \bigcap_{\varphi \in \Phi_{0}} B \backslash \operatorname{dom} \varphi$ is still linearly independent. By Zorn's lemma [5, th. 14.2.4] the family Φ has a maximal element φ. Since any $b \in B \backslash \operatorname{dom} \varphi$ is linearly independent of $\operatorname{im} \varphi$ we infer that $\operatorname{im} \varphi \subset C$ is not a basis whence there exists a $c_{0} \in C \backslash i m \varphi$.
On the one hand if this c_{0} is linearly independent of $\operatorname{im} \varphi \cup B \backslash \operatorname{dom} \varphi$ there is an extension $\varphi^{\prime} \supset \varphi$ defined by $\varphi^{\prime}\left(b_{0}\right)=c_{0}$ for any $b_{0} \in B \backslash \operatorname{dom} \varphi$ and $\varphi^{\prime}(b)=\varphi(b)$ for every $b \in \operatorname{dom} \varphi$ contrary to the maximal character of φ.
On the other hand if c_{0} is linearly dependent of $\operatorname{im} \varphi \cup B \backslash \operatorname{dom} \varphi$ it follows that $c_{0}=\sum_{c \in \operatorname{im} \varphi} \lambda_{c} c+$ $\sum_{b \notin \operatorname{dom} \varphi} \mu_{b} b$ with at least one $\mu_{b_{0}} \neq 0$ for some $b_{0} \notin \operatorname{dom} \varphi$ Again we define an extension $\varphi^{\prime} \supset \varphi$ by $\varphi^{\prime}\left(b_{0}\right)=c_{0}$ and since c_{0} is linearly independent of $\operatorname{im} \varphi \cup B \backslash \operatorname{dom} \varphi^{\prime}$ the set $\operatorname{im} \varphi^{\prime} \cup B \backslash \operatorname{dom} \varphi^{\prime}$ is linearly independent whence $\varphi^{\prime} \in \Phi$ contrary to the maximal character of φ.

Thus we have shown that $|X| \subset|Y|$ whence by the symmetry of the argument and the SchroederBernstein theorem [5, th. 15.4] follows the assertion.

3.5 The Steinitz basis exchange lemma

For every basis $\mathcal{A}=\left(\boldsymbol{a}_{i}\right)_{i \in I}$ of a vector space $X=\left\langle\boldsymbol{a}_{i}\right\rangle_{i \in I}$ and $\boldsymbol{x}=\sum_{i \in J} \alpha_{i} \boldsymbol{a}_{i} \in X$ with finite $J \subset I$ and $\alpha_{k} \neq 0$ for $k \in J$ the set $\mathcal{A}^{\prime}=\left(\boldsymbol{a}_{i}\right)_{i \in I^{\prime}} \cup\{\boldsymbol{x}\}$ with $I^{\prime}=I /\{k\}$ is again a basis since for every $\mathbf{y}=\sum_{i \in H} \beta_{i} \boldsymbol{a}_{i}$ w.l.o.g. we can assume $J \subset H$ whence $\boldsymbol{y}=\frac{\beta_{k}}{\alpha_{k}} \boldsymbol{x}+\sum_{i \in H}\left(\beta_{i}-\frac{\beta_{k} \alpha_{i}}{\alpha_{k}}\right) \boldsymbol{a}_{i}$. Also \mathcal{A}^{\prime} is linearly independent since any nontrivial solution $\left(\gamma_{i}\right)_{i \in I} \neq(0)_{i \in H}$ for $\gamma_{k} \boldsymbol{y}+\sum_{i \in H} \gamma_{i} \boldsymbol{a}_{i}=\mathbf{0}$ and finite $H \subset I$ would either entail a nontrivial solution $\left(\gamma_{i}\right)_{i \in H} \neq(0)_{i \in H}$ for $\sum_{i \in H} \gamma_{i} \boldsymbol{a}_{i}=\mathbf{0}$ in the case of $\gamma_{k}=0$ or $-\sum_{i \in H} \frac{\gamma_{i}}{\gamma_{k}} \boldsymbol{a}_{i}=\boldsymbol{x}$ whence $\alpha_{k}=0$ in the case of $\gamma_{k} \neq 0$ both in contradiction to the hypotheses. Hence the dimension of a finite dimensional vector space is uniquely determined.

3.6 Direct sums

Due to the exchange lemma for any vector subspace $E=\left\langle\mathbf{v}_{l}\right\rangle_{l \in L}$ w.l.o.g. we can assume $E=\left\langle\boldsymbol{a}_{i}\right\rangle_{i \in J}$ with $J \subset I$ such that X can be decomposed into a direct sum $X=E \oplus F$ with the complementary space $F=\left\langle\boldsymbol{a}_{i}\right\rangle_{i \in I \backslash J}$ and in the case of finite I follows

$$
\operatorname{dim} X=\operatorname{dim} E+\operatorname{dim} F .
$$

Obviously the vector subspaces $E ; F \subset X$ are complementary to each other iff $E+F=X$ and $E \cap F=\{0\}$. In the case of vector spaces, rings and abelian groups, the direct sum by $\varphi: E \times F \rightarrow E \oplus F$ with $\varphi((\boldsymbol{v} ; \mathbf{w}))=(\boldsymbol{v} ; \mathbf{0})+(\mathbf{0} ; \mathbf{w})$ is isomorphic to the direct product. Hence we have

$$
\operatorname{card} X=\operatorname{card} E \cdot \operatorname{card} F .
$$

The isomorphism fails for nonabelian groups since

$$
\begin{aligned}
\varphi\left(\left(\boldsymbol{v}_{1}+\boldsymbol{v}_{2} ; \boldsymbol{w}_{1}+\boldsymbol{w}_{2}\right)\right) & =\left(\boldsymbol{v}_{1}+\boldsymbol{v}_{2} ; \mathbf{0}\right)+\left(\mathbf{0} ; \boldsymbol{w}_{1}+\boldsymbol{w}_{2}\right) \\
& =\left(\boldsymbol{v}_{1} ; \mathbf{0}\right)+\left(\boldsymbol{v}_{2} ; \mathbf{0}\right)+\left(\mathbf{0} ; \boldsymbol{w}_{1}\right)+\left(\mathbf{0} ; \boldsymbol{w}_{2}\right) \\
& \neq\left(\boldsymbol{v}_{1} ; \mathbf{0}\right)+\left(\mathbf{0} ; \boldsymbol{w}_{1}\right)+\left(\boldsymbol{v}_{2} ; \mathbf{0}\right)+\left(\mathbf{0} ; \boldsymbol{w}_{2}\right) . \\
& =\varphi\left(\left(\boldsymbol{v}_{1} ; \boldsymbol{w}_{1}\right)\right)+\varphi\left(\left(\boldsymbol{v}_{2} ; \boldsymbol{w}_{2}\right)\right) .
\end{aligned}
$$

3.7 Linear maps

To avoid excessive cluttering of the notation by indices we follow the Einstein summation convention i.e. the summation sign is omitted for any index occurring twice. For the same reason we introduce a special case of the index notation from 3.13 with uppercase indices for coordinate vectors. A linear map $\boldsymbol{f}: X \rightarrow Y$ between vector spaces X and Y satisfies $\boldsymbol{f}(\alpha \boldsymbol{x}+\beta \boldsymbol{y})=\alpha \boldsymbol{f}(\boldsymbol{x})+\beta \boldsymbol{f}(\boldsymbol{y})$ for every $\alpha ; \beta \in \mathbb{C}$ and $\boldsymbol{x} ; \boldsymbol{y} \in X$. In particular it is a homomorphism on the additive group $(X ;+)$ such that the corresponding terms resp. properties from 1.5 apply. Especially the image $\operatorname{Im} \boldsymbol{f}=\boldsymbol{f}[E] \subset Y$ as well as the inverse image $\boldsymbol{f}^{-1}[F] \subset X$ of vector subspaces $E \subset X$ resp. $F \subset Y$ under a linear map \boldsymbol{f} are again vector subspaces and \boldsymbol{f} is injective iff $\operatorname{ker} \boldsymbol{f}=\{\mathbf{0}\}$. The ring $L(X ; Y)$ of linear maps $\boldsymbol{f}: X \rightarrow Y$ between finite dimensional vector spaces $X=\left\langle\boldsymbol{a}_{i}\right\rangle_{1 \leq i \leq m}$ resp. $Y=\left\langle\boldsymbol{b}_{i}\right\rangle_{1 \leq j \leq n}$ generated by bases $\mathcal{A}=\left(\boldsymbol{a}_{i}\right)_{1 \leq i \leq m}$ resp. $\mathcal{B}=\left(\boldsymbol{b}_{j}\right)_{1 \leq j \leq n}$ with $m, n \in \overline{\mathbb{N}}$ by $M_{\mathcal{B}}^{\mathcal{A}}: L(X ; Y) \rightarrow M(n \times m ; \mathbb{C})$ defined by $M_{\mathcal{B}}^{\mathcal{A}}(\boldsymbol{f})=\left(f^{j}\left(\boldsymbol{a}_{i}\right)\right)_{1 \leq i \leq m ; 1 \leq j \leq n}$ for $\boldsymbol{f}\left(\boldsymbol{a}_{i}\right)=f^{j}\left(\boldsymbol{a}_{i}\right) \cdot \boldsymbol{b}_{j}$ $\in L(X ; Y)$ with components $f^{j} \in L(X ; \mathbb{C})$ is isomorphic to the ring $M(n \times m ; \mathbb{C})$ of complex matrices. Since $M(n \times m ; \mathbb{C})$ is also a complex vector space of dimension $n \cdot m$ we obtain

$$
\operatorname{dim} L(X ; Y)=\operatorname{dim} X \cdot \operatorname{dim} Y .
$$

For $\boldsymbol{x}=x_{\mathcal{A}}^{i} \boldsymbol{a}_{i} \in X$ resp. $\boldsymbol{y}=y_{\mathcal{B}}^{j} \boldsymbol{b}_{j} \in Y$ with coordinate vectors $\boldsymbol{x}_{\mathcal{A}}=x_{\mathcal{A}}^{i} \boldsymbol{e}_{i} \in \mathbb{C}^{m}$ resp. $\boldsymbol{y}_{\mathcal{B}}=y_{\mathcal{B}}^{j} \boldsymbol{e}_{j}$ $\in \mathbb{C}^{n}$ with regard to orthonormal bases of $\mathbb{C}^{m}=\left\langle\boldsymbol{e}_{i}\right\rangle_{1 \leq i \leq m}$ resp. $\mathbb{C}^{n}=\left\langle\boldsymbol{e}_{j}\right\rangle_{1 \leq j \leq n}$ defined in 6.4 we compute $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{f}\left(x_{\mathcal{A}}^{i} \boldsymbol{a}_{i}\right)=x_{\mathcal{A}}^{i} \boldsymbol{f}\left(\boldsymbol{a}_{i}\right)=x_{\mathcal{A}}^{i} f_{j}\left(\boldsymbol{a}_{i}\right) \cdot \boldsymbol{b}_{j}$. With the canonical inner product $A * \boldsymbol{x}=$ $a_{j}^{i} \cdot x^{j} \cdot \boldsymbol{e}_{i} \in \mathbb{C}^{n}$ between a vector $\boldsymbol{x}=x^{i} \boldsymbol{e}_{i} \in \mathbb{C}^{m}$ and a matrix $A=\left(a_{i}^{j}\right)_{1 \leq i \leq m ; 1 \leq j \leq n} \in M(n \times m ; \mathbb{C})$ this assumes the form

$$
{ }^{T} \boldsymbol{y}_{\mathcal{B}}=M_{\mathcal{B}}^{\mathcal{A}}(\boldsymbol{f}) * \boldsymbol{x}_{\mathcal{A}} .
$$

3.8 Quotient spaces and rank

For any vector subspace $E \subset X$ the quotient space X / E is again a vector space. Its elements $\pi(\boldsymbol{x})=\boldsymbol{x}+E$ for $\boldsymbol{x} \in X$ with $\pi(\boldsymbol{x})=\pi\left(\boldsymbol{x}^{\prime}\right) \Leftrightarrow \boldsymbol{x}-\boldsymbol{x}^{\prime} \in E$ for the canonical projection $\pi: X \rightarrow X / E$ are affine spaces as defined in 8.1. In the case of a finite dimensional vector space $X=\left\langle\boldsymbol{a}_{i}\right\rangle_{i \in I}$ with $I=\{1 ; \ldots ; n\}$ and a vector subspace $E=\left\langle\boldsymbol{a}_{i}\right\rangle_{i \in J}$ with $J \subset I$ according to the Steinitz lemma 3.5 w.l.o.g. we can assume $E=\left\langle\boldsymbol{a}_{i}\right\rangle_{i \in J}$ whence $X / E=\left\langle\boldsymbol{a}_{i}+E\right\rangle_{i \in I \backslash J}$ and

$$
\operatorname{dim} X=\operatorname{dim} X / E+\operatorname{dim} E
$$

in analogy to Lagrange's theorem 1.7 for finite groups. For every linear map $\boldsymbol{f}: X \rightarrow Y$ defined in the obvious way in following section 3.7 into another vector space Y with $E \subset \operatorname{ker} \varphi$ exists a uniquely determined and linear $f_{\pi}: X / E \rightarrow Y$ with $f=f_{\pi} \circ \pi$ and

$$
\operatorname{ker} \boldsymbol{f}_{\pi}=(\operatorname{ker} \boldsymbol{f}) / E \text {. }
$$

These properties are obvious if we define $\boldsymbol{f}_{\pi}(\pi(\boldsymbol{x}))=\boldsymbol{f}(\boldsymbol{x})$ for every $\boldsymbol{x} \in X$. The following dimension formula is a useful application: For every matrix $A \in M(n \times m ; \mathbb{C})$ we define its rank rank $A=$ $\operatorname{dim} \operatorname{im} \boldsymbol{f} \leq \min \{m ; n\}$ with regard to the corresponding linear map $\boldsymbol{f}: \mathbb{C}^{m} \rightarrow \mathbb{C}^{n}$ with $A=M(\boldsymbol{f})$. Then by $\boldsymbol{f}_{\pi}: X / \operatorname{ker} \boldsymbol{f} \rightarrow \operatorname{im} \boldsymbol{f}$ with $\boldsymbol{f}_{\pi} \circ \pi=\boldsymbol{f}$ we obtain

$$
\operatorname{dim} X=\operatorname{dim} \operatorname{im} \boldsymbol{f}+\operatorname{dim} \operatorname{ker} \boldsymbol{f}
$$

3.9 Endomorphisms

The group End (X) of endomorphisms $\boldsymbol{f}: X \rightarrow X$ on a finite dimensional vector spaces $X=\left\langle\boldsymbol{a}_{i}\right\rangle_{1 \leq i \leq n}=\left\langle\boldsymbol{b}_{i}\right\rangle_{1 \leq j \leq n}$ generated by the bases $\mathcal{A}=\left(\boldsymbol{a}_{i}\right)_{1 \leq i \leq n}$ and $\mathcal{B}=\left(\boldsymbol{b}_{j}\right)_{1 \leq j \leq n}$ by the map $M_{\mathcal{B}}^{\mathcal{A}}: \operatorname{End}(X) \rightarrow G L(n ; \mathbb{C})$ defined as above is isomorphic to the ring (groupe lineáire) $G L(n ; \mathbb{C})$ of invertible complex matrices of rank n. For a matrix $M=\left(f_{i j}\right)_{1 \leq i ; j \leq n} \in M(n ; \mathbb{C})$ with the corresponding endomorphism $\boldsymbol{f} \in \operatorname{End}(X)$ defined by $\boldsymbol{f}\left(\boldsymbol{a}_{i}\right)=\sum_{j=1}^{n} f_{i j} \boldsymbol{b}_{j}$ for given bases $\mathcal{A}=\left(\boldsymbol{a}_{i}\right)_{1 \leq i \leq n}$ and $\mathcal{B}=\left(\boldsymbol{b}_{j}\right)_{1 \leq j \leq n}$ the following conditions are equivalent:

1. The column vectors $\boldsymbol{f}_{j}=\sum_{i=1}^{n} f_{i j} \boldsymbol{e}_{i}$ are linearly independent.
2. $\operatorname{Ker} \boldsymbol{f}=\{\mathbf{0}\}$
3. f is injective
4. $M \in G L(n ; \mathbb{C})$
5. \boldsymbol{f} is surjective.

Proof: In the chain $1 . \Rightarrow 2 . \Rightarrow 3 . \Rightarrow 4 . \Rightarrow 5 . \Rightarrow 1$. only the third step may require a comment: For injective $\boldsymbol{f}: X \rightarrow \operatorname{im} \boldsymbol{f} \subset X$ we have an inverse $\boldsymbol{f}^{-1}: \operatorname{im} \boldsymbol{f} \rightarrow X$ whence for every $\boldsymbol{x} \in X$ we infer $\boldsymbol{x}=\boldsymbol{f}^{-1}(\boldsymbol{f}(\boldsymbol{x})) \in \operatorname{im} \boldsymbol{f}$.

3.10 Coordinate transformations

As before every element $\boldsymbol{v}=\sum_{i=1}^{n} x_{\mathcal{A} i} \boldsymbol{a}_{i} \in X$ of a finite dimensional vector space $X=\left\langle\boldsymbol{a}_{i}\right\rangle_{1 \leq i \leq n}$ is determined by the basis $\mathcal{A}=\left(\boldsymbol{a}_{i}\right)_{1 \leq i \leq n}$ and a coordinate vector $\boldsymbol{x}_{\mathcal{A}}=\sum_{i=1}^{n} x_{\mathcal{A} i} \boldsymbol{e}_{i} \in \mathbb{C}^{n}$ with reference to the orthonormal basis $\mathcal{E}=\left(\boldsymbol{e}_{i}\right)_{1 \leq i \leq n}$ of \mathbb{C}^{n}. The corresponding coordinate system $\Phi_{\mathcal{A}}^{\mathcal{E}}: \mathbb{C}^{n} \rightarrow X$ with $\Phi_{\mathcal{A}}^{\mathcal{E}}\left(\boldsymbol{x}_{\mathcal{A}}\right)=\sum_{i=1}^{n} x_{\mathcal{A} i} \boldsymbol{a}_{i}$ is an isomorphism with the representing matrix $M\left(\Phi_{\mathcal{A}}^{\mathcal{E}}\right)=E_{n}(\operatorname{cf} 3.7)$. For brevity
 in the canonical case $X=\mathbb{C}^{n}$ we will omit the symbol \mathcal{E} for the canonical basis and also use the same notation for a matrix $A \in M(n \times m ; \mathbb{C})$ and its corresponding linear map $A: \mathbb{C}^{m} \rightarrow \mathbb{C}^{n}$ with $A(\boldsymbol{x})=A * \boldsymbol{x}$. The transition from the basis $\mathcal{A}=\left(\boldsymbol{a}_{i}\right)_{1 \leq i \leq n}$ to another basis $\mathcal{B}=\left(\boldsymbol{b}_{j}\right)_{1 \leq j \leq n}$ of $X=\left\langle\boldsymbol{a}_{i}\right\rangle_{1 \leq i \leq n}=\left\langle\boldsymbol{b}_{j}\right\rangle_{1 \leq j \leq n}$ is given by the coordinate transformation

$$
T_{\mathcal{B}}^{\mathcal{A}}=\left(\Phi_{\mathcal{B}}^{\mathcal{E}}\right)^{-1} \circ \Phi_{\mathcal{A}}^{\mathcal{E}}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}
$$

with

$$
T_{\mathcal{B}}^{\mathcal{A}}\left(\boldsymbol{e}_{i}\right)=\sum_{j=1}^{n} t_{j i} \boldsymbol{e}_{j}
$$

such that the column vectors $\left(t_{j i}\right)_{1 \leq j \leq n}$ of the transformation matrix

$$
T_{\mathcal{B}}^{\mathcal{A}}=\left(t_{j i}\right)_{1 \leq i j \leq n}
$$

coincide with the coordinate vectors of the original basis $\mathcal{A} \subset X$ expressed by the new basis \mathcal{B}. For an arbitrary vector $\boldsymbol{v}=\sum_{i=1}^{n} x_{\mathcal{A} i} \boldsymbol{a}_{i}=\sum_{j=1}^{n} x_{\mathcal{B} j} \boldsymbol{b}_{j}$ we have $T_{\mathcal{B}}^{\mathcal{A}}(\boldsymbol{v})=\sum_{i=1}^{n} x_{\mathcal{A} i} \sum_{j=1}^{n} t_{j i} \boldsymbol{b}_{j}$ whence $x_{\mathcal{B} j}=\sum_{i=1}^{n} t_{j i} x_{\mathcal{A} i}$, i.e.

$$
\boldsymbol{x}_{\mathcal{B}}=T_{\mathcal{B}}^{\mathcal{A}} * \boldsymbol{x}_{\mathcal{A}}
$$

Vice versa the column vectors of the inverse $\left(T_{\mathcal{B}}^{\mathcal{A}}\right)^{-1}=T_{\mathcal{A}}^{\mathcal{B}}$ coincide with the coordinate vectors of the new basis \mathcal{B} expressed by the original basis \mathcal{A}. In the orthogonal case according to 6.6 these coincide with the row vectors of $T_{\mathcal{B}}^{\mathcal{A}}$, i.e. $\left(T_{\mathcal{B}}^{\mathcal{A}}\right)^{-1}={ }^{T} T_{\mathcal{B}}^{\mathcal{A}}$ and vice versa.

3.11 Change of bases

According to the Gauss algorithm every automorphism resp. every invertible matrix is the product of elementary transformations resp. elementary matrices of the two following types:

$$
\begin{aligned}
& E_{k l}=\left(\begin{array}{ccccccc}
1 & & & & & & \\
& \ddots & & & & & \\
& & 1 & & 1 & & \\
& & & \ddots & & & \\
& & & & 1 & & \\
& & & & & \ddots & \\
& & & & & & 1
\end{array}\right)\left(\begin{array}{c}
1 \\
\vdots \\
l \\
\vdots \\
n
\end{array}\right. \\
& E_{23}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \\
& \text { (}
\end{aligned}
$$

Multiplication of a matrix $A \in M(n \times m ; \mathbb{C})$ with $E_{k l} \in G L(n ; \mathbb{C})$ from the left results in an addition of the l-th row to the k-th row resp. a shear of the hyperplane span $\left\{\boldsymbol{e}_{i}: 1 \leq i \leq n ; i \neq l\right\}$ in the direction of e_{k} whereas multiplication with $E_{k l} \in G L(m ; \mathbb{C})$ from the right results in an addition of the k-th column to the l-th column and the corresponding shear of $\operatorname{span}\left\{\boldsymbol{e}_{i}: 1 \leq i \leq n ; i \neq k\right\}$ in the direction of e_{l}.

Multiplication with $E_{k \alpha}$ results in a multiplication of the k th row with the factor $\alpha \in \mathbb{C}$ resp. a dilation in the direction of \boldsymbol{e}_{k} with factor α.

Hence for every homomorphism $\boldsymbol{f}: X \rightarrow Y$ between finite dimensional vector spaces X and Y with bases $\mathcal{A} \subset X, \mathcal{B} \subset Y$ there are bases $\mathcal{A}^{\prime} \subset X, \mathcal{B}^{\prime} \subset Y$ resp. coordinate transformations

$$
M_{\mathcal{B}^{\prime}}^{\mathcal{A}^{\prime}}(\mathbf{f})=\overbrace{(\begin{array}{cc}
E_{k} & 0 \\
0 & 0
\end{array} \overbrace{\} n-k}^{k} \underbrace{}_{k}\}_{n-k}^{k}{ }_{k}{ }^{m}}
$$ $T=T_{\mathcal{A}^{\prime}}^{\mathcal{A}} \in G L(m ; \mathbb{C})$ resp. $S=T_{\mathcal{B}^{\prime}}^{\mathcal{B}} \in G L(n ; \mathbb{C})$ such that

$$
S * F * T^{-1}=E_{k}
$$

with $k=\operatorname{rank} A$ for $F=M_{\mathcal{B}}^{\mathcal{A}}(\boldsymbol{f})$. The corresponding map is $\boldsymbol{f}_{\mathcal{B}^{\prime}}^{\mathcal{A}^{\prime}}=T_{\mathcal{B}^{\prime}}^{\mathcal{B}} \circ \boldsymbol{f}_{\mathcal{B}}^{\mathcal{A}} \circ\left(T_{\mathcal{A}^{\prime}}^{\mathcal{A}}\right)^{-1}=\left.\mathrm{id}\right|_{X^{\prime}}+\left.\mathbf{0}\right|_{\operatorname{Ker} \boldsymbol{f}}$: $X=X^{\prime} \oplus \operatorname{Ker} \boldsymbol{f} \rightarrow Y$.

3.12 Dual spaces

The dual space X^{*} of a vector space X is the vector space of all linear functionals $\boldsymbol{x}^{*}: X \rightarrow \mathbb{C}$. If the equation $\boldsymbol{x}^{*} \alpha \boldsymbol{x}=\alpha \boldsymbol{x}^{*} \boldsymbol{x}$ only holds for real $\alpha \in \mathbb{R}$ we have real linearity. In the case of complex linearity we have $\operatorname{Re} \boldsymbol{x}^{*} i \boldsymbol{x}+i \operatorname{Im} \boldsymbol{x}^{*} i \boldsymbol{x}=\boldsymbol{x}^{*} i \boldsymbol{x}=i \boldsymbol{x}^{*} \boldsymbol{x}=-\operatorname{Im} \boldsymbol{x}^{*} \boldsymbol{x}+i \operatorname{Re} \boldsymbol{x}^{*} \boldsymbol{x} \Leftrightarrow \operatorname{Re} \boldsymbol{x}^{*} i \boldsymbol{x}=-\operatorname{Im} \boldsymbol{x}^{*} \boldsymbol{x}$ whence the functional \boldsymbol{x}^{*} is uniquely determined by its real part Rex*. Hence every complex linear $\boldsymbol{x}^{*} \boldsymbol{x}=\operatorname{Re} \boldsymbol{x}^{*} \boldsymbol{x}+i \operatorname{Im} \boldsymbol{x}^{*} \boldsymbol{x}=\operatorname{Re} \boldsymbol{x}^{*} \boldsymbol{x}-i \operatorname{Re} \boldsymbol{x}^{*} \boldsymbol{x}$ is real linear and conversely for every real linear $\boldsymbol{u}^{*}: X \rightarrow \mathbb{R}$ the functional $\boldsymbol{x}^{*}: X \rightarrow \mathbb{C}$ with $\boldsymbol{x}^{*} \boldsymbol{x}=\boldsymbol{u}^{*} \boldsymbol{x}-i \boldsymbol{u}^{*} i \boldsymbol{x}$ is complex linear, since for $\alpha=\beta+i \gamma$ we have $\boldsymbol{x}^{*} \alpha \boldsymbol{x}=\beta \boldsymbol{u}^{*} \boldsymbol{x}+\gamma \boldsymbol{u}^{*} i \boldsymbol{x}-i\left(\beta \boldsymbol{u}^{*} i \boldsymbol{x}-\gamma \boldsymbol{u}^{*} \boldsymbol{x}\right)=(\beta+i \gamma)\left(\boldsymbol{u}^{*} \boldsymbol{x}-i \boldsymbol{u}^{*} i \boldsymbol{x}\right)=\alpha \boldsymbol{x}^{*} \boldsymbol{x}$.

In a topological vector space $\boldsymbol{x}^{*} \in X^{*}$ is continuous iff its real part is continuous and the dual space X^{*} usually is defined as the vector space of all continuous resp. due to [3, th. 5.1] bounded linear functionals on X.

For a basis $\left(e_{i}\right)_{i \in I}$ of X the dual space $X^{*}=\left\langle e_{i}^{*}\right\rangle_{i \in I}$ is generated by the dual basis $\left(e_{i}^{*}\right)_{i \in I}$ defined by $\boldsymbol{e}_{i}^{*} \boldsymbol{e}_{j}=\delta_{i j}$. Hence by the transposition $\tau_{X}: X \rightarrow X^{*}$ with $\tau_{X}\left(\boldsymbol{e}_{i}\right)=e_{i}^{*}$ every vector space X is isomorphic to its dual space X^{*}.
The transformation $\Phi_{\mathcal{B}^{*}}^{\mathcal{A}^{*}}: X^{*} \rightarrow X^{*}$ of the dual basis $\mathcal{A}^{*}=\left(\boldsymbol{a}_{i}^{*}\right)_{1 \leq i \leq n}$ into another dual basis $\mathcal{B}^{*}=\left(\boldsymbol{b}_{j}^{*}\right)_{1 \leq j \leq n}$ of $X^{*}=\left\langle\boldsymbol{a}_{i}^{*}\right\rangle_{1 \leq i \leq n}=\left\langle\boldsymbol{b}_{j}^{*}\right\rangle_{1 \leq j \leq n}$ is determined by the invariance with regard to coordinate transformation of the linear functional $\boldsymbol{x}^{*} \boldsymbol{x}={ }^{T} \boldsymbol{x}_{\mathcal{B}^{*}} * \boldsymbol{x}_{\mathcal{B}}={ }^{T}\left(T_{\mathcal{B}^{*}}^{\mathcal{A}^{*}} * \boldsymbol{x}_{\mathcal{A}^{*}}\right) * T_{\mathcal{B}}^{\mathcal{A}} * \boldsymbol{x}_{\mathcal{A}}$ $={ }^{T} \boldsymbol{x}_{\mathcal{A}^{*}} *^{T} T_{\mathcal{B}^{*}}^{\mathcal{A}^{*}} * T_{\mathcal{B}}^{\mathcal{A}} * \boldsymbol{x}_{\mathcal{A}}={ }^{T} \boldsymbol{x}_{\mathcal{A}^{*}} * \boldsymbol{x}_{\mathcal{A}}$ whence

$$
{ }^{T} T_{\mathcal{B}^{*}}^{\mathcal{A}^{*}}=\left(T_{\mathcal{B}}^{\mathcal{A}}\right)^{-1}
$$

3.13 The index notation

The coordinate vectors of $\boldsymbol{x}=\sum_{i=1}^{n} x_{\mathcal{A} i} \boldsymbol{a}_{i}=\sum_{i=1}^{n} x_{\mathcal{B} i} \boldsymbol{b}_{i}$ resp. its dual $\boldsymbol{x}^{*}=\sum_{i=1}^{n} x_{\mathcal{A} i}^{*} \boldsymbol{a}_{i}^{*}=\sum_{i=1}^{n} x_{\mathcal{B} i}^{*} \boldsymbol{b}_{i}^{*}$ are transformed from the original basis \mathcal{A} to the new basis \mathcal{B} by $\boldsymbol{x}_{\mathcal{B}}=T_{\mathcal{B}}^{\mathcal{A}} * \boldsymbol{x}_{\mathcal{A}}$ resp. $\boldsymbol{x}_{\mathcal{B}}^{*}={ }^{T}\left(T_{\mathcal{B}}^{\mathcal{A}}\right)^{-1} * \boldsymbol{x}_{\mathcal{A}}^{*}$ resp. ${ }^{T} \boldsymbol{x}_{\mathcal{B}}^{*} * T_{\mathcal{B}}^{\mathcal{A}}={ }^{T} \boldsymbol{x}_{\mathcal{A}}^{*}$. The coordinate vectors $\boldsymbol{x}_{\mathcal{A}}$ and $\boldsymbol{x}_{\mathcal{B}}$ are called contravariant since the column vectors of the transformation matrix $T_{\mathcal{B}}^{\mathcal{A}}=\left(t_{j k}\right)_{1 \leq j ; k \leq n}$ coincide with the coordinate vectors of the original basis \mathcal{A} expressed by the new basis \mathcal{B}, i.e. $\boldsymbol{a}_{k}=\sum_{j=1}^{n} t_{j k} \boldsymbol{b}_{j}$ "contrary" to the new basis vectors. The dual coordinate vectors ${ }^{T} \boldsymbol{x}_{\mathcal{A}}^{*}$ and ${ }^{T} \boldsymbol{x}_{\mathcal{B}}^{*}$ are covariant vectors or covectors since the row vectors of the transformation matrix $T_{\mathcal{B}}^{\mathcal{A}}$ coincide with the coordinate vectors of the new basis \mathcal{B} expressed by the original basis \mathcal{A}.
The basis vectors \boldsymbol{a}_{i} are transformed to $\boldsymbol{b}_{i}=\sum_{i=1}^{n} s_{i k}^{\prime} \boldsymbol{a}_{k}=\sum_{i=1}^{n} \sum_{j=1}^{n} s_{i k}^{\prime} t_{j k} \boldsymbol{b}_{j}$ whence $\sum_{i=1}^{n} \sum_{j=1}^{n} s_{i k}^{\prime} t_{j k}=\delta_{i j}$ resp. $\left(s_{i k}^{\prime}\right)_{1 \leq i ; k \leq n}={ }^{T}\left(T_{\mathcal{B}}^{\mathcal{A}}\right)^{-1}=T_{\mathcal{B}^{*}}^{\mathcal{A}^{*}}$. Hence the basis vectors of X are of covariant type and correspondingly the basis covectors of X^{*} are of contravariant type.
The transformation behaviour of a vector is indicated by the index notation denoting contravariant vectors with uppercase indices and covariant ones with lowercase indices.
Also we follow the Einstein summation convention introduced in 3.7 so that we have vectors $\boldsymbol{x}=\sum_{i=1}^{n} x_{\mathcal{A}}^{i} \boldsymbol{a}_{i}=x_{\mathcal{A}}^{i} \boldsymbol{a}_{i}$ with contravariant coordinate vectors resp. covariant basis vectors or covectors $\boldsymbol{x}^{*}=\sum_{i=1}^{n} x_{\mathcal{A} i} \boldsymbol{a}^{i}=x_{\mathcal{A} i} \boldsymbol{a}^{i}$. We will use both notations $\boldsymbol{a}^{i}=\boldsymbol{a}_{i}^{*}$ depending on the context of the behaviour of \boldsymbol{a}^{i} under coordinate transformation resp. the role of \boldsymbol{a}_{i}^{*} as a functional.
The representing matrix $m_{k}^{j}=M_{\mathcal{B}}^{\mathcal{A}}(\boldsymbol{f}) \in M(n \times m ; \mathbb{C})$ of a homomorphism $\boldsymbol{f}: X \rightarrow Y$ between finite dimensional complex vector spaces X resp. Y with $\operatorname{dim} X=m$ resp. $\operatorname{dim} Y=n$ for bases $\mathcal{A} \subset X$ resp. $\mathcal{B} \subset Y$ has contravariant column vectors $\boldsymbol{m}_{k}=m_{k}^{j} \boldsymbol{e}_{j} \in \mathbb{C}^{n} ; 1 \leq k \leq m$ and covariant row vectors $\boldsymbol{m}^{j}=m_{k}^{j} e^{k} \in\left(\mathbb{C}^{m}\right)^{*} ; 1 \leq j \leq n$ since the transformation into $\left(m^{\prime}\right)_{l}^{i}=$ $M_{\mathcal{B}^{\prime}}^{\mathcal{A}^{\prime}} \boldsymbol{f} \in M(n \times m ; \mathbb{C})$ for bases $\mathcal{A}^{\prime} \subset X, \mathcal{B}^{\prime} \subset Y$ with coordinate transformations $\left(t^{-1}\right)_{j}^{i}=\left(T_{\mathcal{A}^{\prime}}^{\mathcal{A}}\right)^{-1} \in$ $G L(m ; \mathbb{C})$ resp. $s_{l}^{k}=T_{\mathcal{B}^{\prime}}^{\mathcal{B}} \in G L(n ; \mathbb{C})$ is given by

$$
M_{\mathcal{B}^{\prime}}^{\mathcal{A}^{\prime}}(\boldsymbol{f})=S_{\mathcal{B}^{\prime}}^{\mathcal{B}} * M_{\mathcal{B}}^{\mathcal{A}}(\boldsymbol{f}) *\left(T_{\mathcal{\mathcal { A }}^{\prime}}^{\mathcal{A}}\right)^{-1}
$$

resp.

$$
\left(m^{\prime}\right)_{l}^{i}=s_{l}^{k} \cdot m_{k}^{j} \cdot\left(t^{-1}\right)_{j}^{i}
$$

Accordingly the basis transformation of contravariant $\boldsymbol{x}=x_{\mathcal{A}}^{i} \boldsymbol{a}_{i}=x_{\mathcal{B}}^{j} \boldsymbol{b}_{j}$ resp. covariant $\boldsymbol{y}^{*}=$ $y_{\mathcal{A} i} \boldsymbol{a}^{i}=y_{\mathcal{B} j} \boldsymbol{a}^{j}$ by $t_{j}^{i}=T_{\mathcal{B}}^{\mathcal{A}} \in G L(n ; \mathbb{C})$ is given by

$$
\boldsymbol{x}_{\mathcal{B}}=T_{\mathcal{B}}^{\mathcal{A}} * \boldsymbol{x}_{\mathcal{A}} \text { and }{ }^{T} \boldsymbol{y}_{\mathcal{B}}^{*}={ }^{T} \boldsymbol{y}_{\mathcal{A}}^{*} *\left(T_{\mathcal{B}}^{\mathcal{A}}\right)^{-1}
$$

resp.

$$
x_{\mathcal{B}}^{j}=t_{i}^{j} \cdot x_{\mathcal{A}}^{i} \text { and } y_{\mathcal{B} j}=y_{\mathcal{A} i} \cdot\left(t^{-1}\right)_{k}^{i} \text { with } t_{i}^{j} \cdot\left(t^{-1}\right)_{k}^{i}=\delta_{k}^{j}
$$

Note that the distinction between column and row vectors as well as the transposition of matrices becomes obsolete since the information about the assignment of the corresponding summands is completely determined by the indices. In 7.4 we will encounter representing matrices $m_{j ; k}=M_{\mathcal{A}}(s) \in M(m ; \mathbb{C})$ of sesquilinear forms $s: X \times X \rightarrow \mathbb{C}$ with covariant column vectors as well as covariant row vectors $\left(\boldsymbol{m}^{j}\right) ;\left(\boldsymbol{m}^{k}\right) \in\left(\mathbb{C}^{m}\right)^{*}$ leading to the definition of the tensor concept generalizing vectors and matrices.

3.14 Dual linear maps

The vector space $L(X ; Y)$ of linear maps $\boldsymbol{f}: X \rightarrow Y$ between the vector spaces $X=\left\langle\boldsymbol{a}_{i}\right\rangle_{1 \leq i \leq m}$ and $Y=\left\langle\boldsymbol{b}_{j}\right\rangle_{1 \leq j \leq n}$ is isomorphic to the dual space $L\left(Y^{*} ; X^{*}\right)$ of linear maps between $X^{*}=\left\langle\boldsymbol{a}^{i}\right\rangle_{1 \leq i \leq m}$ and $Y^{*}=\left\langle\boldsymbol{b}^{j}\right\rangle_{1 \leq j \leq n}$ with the dual bases $\boldsymbol{a}^{i}=\tau_{X}\left(\boldsymbol{a}_{i}\right)$ resp. $\boldsymbol{b}^{j}=\tau_{Y}\left(\boldsymbol{b}_{j}\right)$ provided by the transpositions τ_{X} resp. τ_{Y} according to 3.12 . The isomorphism is given by another transposition $\tau_{L}: L(X ; Y) \rightarrow L\left(Y^{*} ; X^{*}\right)$ with $\tau_{L}(\boldsymbol{f})=\boldsymbol{f}^{*}$ defined by $\boldsymbol{f}\left(\boldsymbol{y}^{*}\right)=\boldsymbol{y}^{*} \circ \boldsymbol{f}$ for
 every linear $\boldsymbol{f}=f_{i}^{j} \boldsymbol{b}_{j} \boldsymbol{a}^{i} \in L(X ; Y)$ with $\boldsymbol{a}^{i} \boldsymbol{a}_{k}=\delta_{k}^{i}$ whence $\boldsymbol{f}\left(\boldsymbol{a}_{i}\right)=f_{i}^{j} \boldsymbol{b}_{j}$ and every linear form $\boldsymbol{y}^{*}=y_{j} \boldsymbol{b}^{j} \in Y^{*}$.

For $\boldsymbol{x}=x^{k} \boldsymbol{a}_{k} \in X$ on the one hand we have

$$
\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})=f_{i}^{j} \boldsymbol{b}_{j} \boldsymbol{a}^{i} x^{k} \boldsymbol{a}_{k}=f_{i}^{j} x^{i} \boldsymbol{b}_{j}
$$

resp. in coordinate vectors

$$
\left(\begin{array}{c}
y^{1} \\
\vdots \\
y^{n}
\end{array}\right)=\left(\begin{array}{ccc}
f_{1}^{1} & \cdots & f_{m}^{1} \\
\vdots & & \vdots \\
f_{1}^{n} & \cdots & f_{m}^{n}
\end{array}\right) *\left(\begin{array}{c}
x^{1} \\
\vdots \\
x^{m}
\end{array}\right)
$$

and on the other hand due to $\boldsymbol{b}^{l} \boldsymbol{b}_{j}=\delta_{j}^{l}$ holds

$$
\boldsymbol{x}^{*}=\boldsymbol{f}^{*}\left(\boldsymbol{y}^{*}\right)=y_{l} \boldsymbol{b}^{l} f_{i}^{j} \boldsymbol{b}_{j} \boldsymbol{a}^{i}=f_{i}^{j} y_{j} \boldsymbol{a}^{i}
$$

resp. in coordinate vectors

$$
\left(x_{1} ; \ldots ; x_{m}\right)=\left(y_{1} ; \ldots ; y_{n}\right) *\left(\begin{array}{ccc}
f_{1}^{1} & \cdots & f_{m}^{1} \\
\vdots & & \vdots \\
f_{1}^{n} & \cdots & f_{m}^{n}
\end{array}\right)
$$

resp.

$$
\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right)={ }^{T}\left(\begin{array}{ccc}
f_{1}^{1} & \cdots & f_{m}^{1} \\
\vdots & & \vdots \\
f_{1}^{n} & \cdots & f_{m}^{n}
\end{array}\right) *\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)
$$

whence

$$
M_{\mathcal{A}^{*}}^{\mathcal{B}^{*}}\left(\boldsymbol{f}^{*}\right)={ }^{T} M_{\mathcal{B}}^{\mathcal{A}}(\boldsymbol{f})
$$

3.15 Annihilator and rank

For the annihilator $E^{0}=\left\{\boldsymbol{x}^{*} \in X^{*}: \boldsymbol{x}^{*} \boldsymbol{x}=0 \forall \boldsymbol{x} \in E\right\}$ of a vector subspace $E \subset X$ and every $\boldsymbol{f} \in L(X ; Y)$ holds

$$
\operatorname{ker} \boldsymbol{f}^{*}=(\operatorname{im} \boldsymbol{f})^{0} \text { and } \operatorname{im} \boldsymbol{f}^{*}=(\operatorname{ker} \boldsymbol{f})^{0}
$$

since $\boldsymbol{y}^{*} \in \operatorname{Ker} \boldsymbol{f}^{*} \Leftrightarrow \boldsymbol{y}^{*} \circ \boldsymbol{f}=\mathbf{0} \Leftrightarrow \boldsymbol{y}^{*}(\boldsymbol{f}(\boldsymbol{x}))=0 \forall \boldsymbol{x} \in X \Leftrightarrow \boldsymbol{y}^{*} \in(\operatorname{Im} \boldsymbol{f})^{0}$ and vice versa. Due to 3.12 in the finite case we have $\boldsymbol{a}_{i}^{*} \boldsymbol{a}_{j}=\delta_{i j}$ for every basis $\left(\boldsymbol{a}_{j}\right)_{1 \leq j \leq n}$ with $X=\left\langle\boldsymbol{a}_{j}\right\rangle_{1 \leq j \leq n}$ resp. $X^{*}=\left\langle\boldsymbol{a}_{i}^{*}\right\rangle_{1 \leq i \leq n}$ and hence

$$
\operatorname{dim} X=\operatorname{dim} E+\operatorname{dim} E^{0}
$$

According to 3.7 it follows for every matrix $F=M(\boldsymbol{f}) \in \mathrm{M}(n \times m ; \mathbb{C})$ associated to the uniquely determined linear map $\boldsymbol{f}=M^{-1}(F): \mathbb{C}^{m} \rightarrow \mathbb{C}^{n}$ on canonical bases $\mathbb{C}^{m}=\left\langle\boldsymbol{e}_{j}\right\rangle_{1 \leq j \leq m}$ resp. $\mathbb{C}^{n}=$ $\left\langle\boldsymbol{e}_{i}\right\rangle_{1 \leq i \leq n}$ that

$$
\operatorname{rank}^{T} F=\operatorname{dim} \operatorname{im} \boldsymbol{f}^{*}=\operatorname{dim}(\operatorname{ker} \boldsymbol{f})^{0}=\operatorname{dim} \operatorname{im} \boldsymbol{f}=\operatorname{rank} F
$$

3.16 Dual bases

$\boldsymbol{x}^{*} \in X^{*}$ is a linear combination of the linearly independent family $\left(\boldsymbol{x}_{i}^{*}\right)_{1 \leq i \leq n} \subset X^{*}$ iff

$$
\operatorname{ker} \boldsymbol{x}^{*} \supset \bigcap_{i=1}^{n} \operatorname{ker} \boldsymbol{x}_{i}^{*}
$$

Proof: \Rightarrow is trivial and concerning \Leftarrow we consider the linear map $f=\sum_{i=1}^{n} \boldsymbol{x}_{i}^{*} \boldsymbol{e}_{i}: X \rightarrow Y=\mathbb{C}^{n}=$ $\left\langle\boldsymbol{e}_{i}\right\rangle_{1 \leq i \leq n}$ with $\operatorname{ker} \boldsymbol{f}=\bigcap_{i=1}^{n} \operatorname{ker} \boldsymbol{x}_{i}^{*} \subset \operatorname{ker} \boldsymbol{x}^{*}$ whence $\operatorname{im} \boldsymbol{f}^{*}=(\operatorname{ker} \boldsymbol{f})^{0} \supset\left(\operatorname{ker} \boldsymbol{x}^{*}\right)^{0} \ni \boldsymbol{x}^{*}$, i.e. there is an $\boldsymbol{a}^{*}=\sum_{i=1}^{n} a_{i} \boldsymbol{e}_{i}^{*} \in Y^{*}$ such that $\boldsymbol{x}^{*}=\boldsymbol{f}^{*}\left(\boldsymbol{a}^{*}\right)=\boldsymbol{a}^{*}(\boldsymbol{f})=\sum_{i=1}^{n} a_{i} \boldsymbol{x}_{i}^{*}$ on account of $\boldsymbol{e}_{i}^{*}\left(\boldsymbol{e}_{j}\right)=\delta_{i j}$.

4 Determinants

4.1 The Weierstrass axioms

In this section we write quadratic matrices as representing matrices of endomorphisms, i.e. as tensors of type $(1 ; 1)$ with contravariant column vectors and covariant row vectors. The general determinant as defined below is a function of a matrix resp. tensor of dgree 2 of arbitrary type ($2 ; 0$), $(1 ; 1)$ or $(0 ; 2)$ (cf. section 7) without regard to its transformation properties. In the followng section 5 the matrix will be defined as a function of an endomorphism and only in that context resp. only on tensors of type $(1 ; 1)$ it is invariant under coordinate transformations. Also in this section we will not use the Einstein summation convention.

The map det : $M(n ; \mathbb{C}) \rightarrow \mathbb{C}$ is a determinant, iff it is

1. linear in every row, i.e. $\operatorname{det}\left(\begin{array}{c}\vdots \\ \lambda \boldsymbol{a}+\mu \boldsymbol{b} \\ \vdots\end{array}\right)=\lambda \operatorname{det}\left(\begin{array}{c}\vdots \\ \boldsymbol{a} \\ \vdots\end{array}\right)+\mu \operatorname{det}\left(\begin{array}{c}\vdots \\ \boldsymbol{b} \\ \vdots\end{array}\right)$ for
$\lambda ; \mu \in \mathbb{C}, A \in M((i-1) \times n ; \mathbb{C}) ; B \in M((n-i) \times n ; \mathbb{C}), 0 \leq i \leq n$ and row vectors $\boldsymbol{a} ; \boldsymbol{b} \in \mathbb{C}^{n}$.
2. alternating, i.e. $\operatorname{det}\left(\begin{array}{c}\boldsymbol{a}^{1} \\ \vdots \\ \boldsymbol{a}^{n}\end{array}\right)=0$ iff $\boldsymbol{a}^{i}=\boldsymbol{a}^{j}$ for some $1 \leq i<j \leq n$
3. normed, i.e. $\operatorname{det} E_{n}=1$.

The following properties are direct consequences of the definitions:
4. $\operatorname{det}(\lambda \cdot A)=\lambda^{n} \cdot \operatorname{det} A$
5. $\operatorname{det}\left(\begin{array}{c}\vdots \\ \mathbf{0} \\ \vdots\end{array}\right)=\operatorname{det}\left(\begin{array}{c}\vdots \\ \boldsymbol{a} \\ \vdots\end{array}\right)+\operatorname{det}\left(\begin{array}{c}\vdots \\ -\boldsymbol{a} \\ \vdots\end{array}\right)=0$.
6. $\operatorname{det}\left(\begin{array}{c}\boldsymbol{a} \\ \vdots \\ \boldsymbol{b}\end{array}\right)+\operatorname{det}\left(\begin{array}{c}\boldsymbol{b} \\ \vdots \\ \boldsymbol{a}\end{array}\right)=\operatorname{det}\left(\begin{array}{c}\boldsymbol{a} \\ \vdots \\ \boldsymbol{b}\end{array}\right)+\operatorname{det}\left(\begin{array}{c}\boldsymbol{b} \\ \vdots \\ \boldsymbol{b}\end{array}\right)+\operatorname{det}\left(\begin{array}{c}\boldsymbol{b} \\ \vdots \\ \boldsymbol{a}\end{array}\right)+\operatorname{det}\left(\begin{array}{c}\boldsymbol{b} \\ \vdots \\ \boldsymbol{a}\end{array}\right)=\operatorname{det}\left(\begin{array}{c}\boldsymbol{a}+\boldsymbol{b} \\ \vdots \\ \boldsymbol{a}+\boldsymbol{b}\end{array}\right)$ $=0$.
7. $\operatorname{det}\left(\begin{array}{c}\boldsymbol{a} \\ \vdots \\ \boldsymbol{b}+\lambda \boldsymbol{a}\end{array}\right)=\operatorname{det}\left(\begin{array}{c}\boldsymbol{a} \\ \vdots \\ \boldsymbol{b}\end{array}\right)+\lambda \operatorname{det}\left(\begin{array}{c}\boldsymbol{a} \\ \vdots \\ \boldsymbol{a}\end{array}\right)=\operatorname{det}\left(\begin{array}{c}\boldsymbol{a} \\ \vdots \\ \boldsymbol{b}\end{array}\right)$.
8. $\operatorname{det}\left(\begin{array}{ccc}\lambda_{1} & \cdots & \\ & \ddots & \vdots \\ 0 & & \lambda_{n}\end{array}\right)=\lambda_{1} \cdot \ldots \cdot \lambda_{n}$ due to the Gauss algorithm and 4.1.7.
9. $\operatorname{det}\left(\begin{array}{cc}A_{1} & B \\ 0 & A_{2}\end{array}\right)=\operatorname{det} A_{1} \cdot \operatorname{det} A_{2}$ for quadratic matrices A_{1} and A_{2} due to 4.1.8.
10. $\operatorname{det} A=0 \Leftrightarrow \operatorname{rang} A<n$ due to the Gauss algorithm and 4.1.7.
11. $\operatorname{det}(A * B)=\operatorname{det} A \cdot \operatorname{det} B$ which in the case of $\operatorname{rang} A=\operatorname{rang} B=n$ due to the Gauss algorithm and 4.1.7 can be deduced from the diagonal case
$\operatorname{det}\left(\left(\begin{array}{ccc}\lambda_{1} & & 0 \\ & \ddots & \\ 0 & & \lambda_{n}\end{array}\right) \cdot\left(\begin{array}{ccc}\mu_{1} & & 0 \\ & \ddots & \\ 0 & & \mu_{n}\end{array}\right)\right)=\lambda_{1} \cdot \mu_{1} \cdot \ldots \cdot \lambda_{n} \cdot \mu_{n}$

$$
=\operatorname{det}\left(\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right) \cdot \operatorname{det}\left(\begin{array}{ccc}
\mu_{1} & & 0 \\
& \ddots & \\
0 & & \mu_{n}
\end{array}\right)
$$

and in the case of $\operatorname{rang} A<n$ or $\operatorname{rang} B<n$ is trivial due to 4.1.10.
12. Antisymmetry: According to 1.16.1, 1.17 and 4.1.6 for every permutation $\sigma=\tau_{1} \circ \ldots \circ \tau_{n} \in S_{n}$ we have

$$
\operatorname{det}\left(\begin{array}{c}
\boldsymbol{a}^{\sigma(1)} \\
\vdots \\
\boldsymbol{a}^{\sigma(n)}
\end{array}\right)=\operatorname{sgn}(\sigma) \cdot \operatorname{det}\left(\begin{array}{c}
\boldsymbol{a}^{1} \\
\vdots \\
\boldsymbol{a}^{n}
\end{array}\right) \text { and in particular } \operatorname{det}\left(\begin{array}{c}
\boldsymbol{e}^{\sigma(1)} \\
\vdots \\
\boldsymbol{e}^{\sigma(n)}
\end{array}\right)=\operatorname{sgn}(\sigma) .
$$

In the case of a transposition $\tau_{i ; j}=\langle i ; j\rangle$ exchanging to identical row vectors $\boldsymbol{a}_{i}=\boldsymbol{a}_{j}$ we have

$$
\operatorname{det}\left(\begin{array}{c}
\boldsymbol{a}^{\tau(1)} \\
\vdots \\
\boldsymbol{a}^{\tau(n)}
\end{array}\right)=-\operatorname{det}\left(\begin{array}{c}
\boldsymbol{a}^{1} \\
\vdots \\
\boldsymbol{a}^{n}
\end{array}\right)=0
$$

whence the antisymmetry is equivalent to the alternating character 4.1.2 of the determinant.

4.2 Leibniz' formula

There exists a uniquely determined and continuous map det : $M(n ; \mathbb{C}) \rightarrow \mathbb{C}$ with $\operatorname{det} A=$ $\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} a_{\sigma(i)}^{i} \operatorname{sgn}(\sigma)$ satisfying the three conditions 4.1.1-4.1.3. In particular we have

$$
\operatorname{det}^{T} A=\sum_{\sigma \in S_{n}} \prod_{k=1}^{n} a_{k}^{\sigma(k)}=\sum_{\sigma^{-1} \in S_{n}} \prod_{\sigma(k)=1}^{n} a_{\sigma^{-1}(\sigma(k))}^{\sigma(k)}=\sum_{\sigma^{-1} \in S_{n}} \prod_{m=1}^{n} a_{\sigma^{-1}(m)}^{m}=\operatorname{det} A .
$$

Proof: Applying 4.1.1 to the row vectors ${ }^{T} \boldsymbol{a}^{i}=\sum_{j=1}^{n} a_{j}^{i T} \boldsymbol{a}^{j}$ we obtain

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{c}
\boldsymbol{a}^{1} \\
\boldsymbol{a}^{2} \\
\vdots \\
\boldsymbol{a}^{n}
\end{array}\right) & \stackrel{4.1 .1}{=} \sum_{i_{1}=1}^{n} a_{i_{1}}^{1} \operatorname{det}\left(\begin{array}{c}
\mathbf{e}^{i_{1}} \\
\boldsymbol{a}^{2} \\
\vdots \\
\boldsymbol{a}^{n}
\end{array}\right) \\
& \stackrel{4.1 .1}{=} \sum_{i_{1}=1}^{n} a_{i_{1}}^{1} \sum_{i_{2}=1}^{n} a_{i_{2}}^{2} \operatorname{det}\left(\begin{array}{c}
\mathbf{e}^{i_{1}} \\
\mathbf{e}^{i_{2}} \\
\vdots \\
\boldsymbol{a}^{n}
\end{array}\right) \\
& \vdots \\
& \stackrel{4.1 .1}{=} \sum_{i_{1}=1}^{n} a_{i_{1}}^{1} \sum_{i_{2}=1}^{n} a_{i_{2}}^{2} \cdots \sum_{i_{n}=1}^{n} a_{i_{n}}^{n} \operatorname{det}\left(\begin{array}{c}
e^{i_{1}} \\
e^{i_{2}} \\
\vdots \\
e^{i_{n}}
\end{array}\right) \\
& \stackrel{4.1 .2}{=} \sum_{\sigma \in S_{n}} \prod_{i=1}^{n} a_{\sigma(i)}^{i} \operatorname{det}\left(\begin{array}{c}
e^{\sigma(1)} \\
e^{\sigma(2)} \\
\vdots \\
e^{\sigma(n)}
\end{array}\right) \\
& \stackrel{4.1 .3}{=} \sum_{\sigma \in S_{n}} \prod_{i=1}^{n} a_{\sigma(i)}^{i} \operatorname{sgn}(\sigma) .
\end{aligned}
$$

The above defined function satisfies

1. since

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{c}
\vdots \\
\lambda \boldsymbol{a}^{i}+\mu \boldsymbol{b}^{i} \\
\vdots
\end{array}\right) & =\sum_{\sigma \in S_{n}} a_{\sigma(1)}^{1} \cdot \ldots \cdot\left(\lambda a_{\sigma(i)}^{i}+\mu b_{\sigma(i)}^{i}\right) \cdot \ldots \cdot a_{\sigma(n)}^{n} \operatorname{sgn}(\sigma) \\
& =\lambda \sum_{\sigma \in S_{n}} a_{\sigma(1)}^{1} \cdot \ldots \cdot a_{\sigma(i)}^{i} \cdot \ldots \cdot a_{\sigma(n)}^{n} \operatorname{sgn}(\sigma) \\
& +\mu \sum_{\sigma \in S_{n}} a_{\sigma(1)}^{1} \cdot \ldots \cdot b_{\sigma(i)}^{i} \cdot \ldots \cdot a_{\sigma(n)}^{n} \operatorname{sgn}(\sigma) \\
& =\lambda \operatorname{det}\left(\begin{array}{c}
\vdots \\
\boldsymbol{a}^{i} \\
\vdots
\end{array}\right)+\mu \operatorname{det}\left(\begin{array}{c}
\vdots \\
\boldsymbol{b}^{i} \\
\vdots
\end{array}\right)
\end{aligned}
$$

2. since in the case of $\mathbf{a}^{k}=\mathbf{a}^{l}$ due to 1.17 we have a bijection $A_{n} \rightarrow A_{n} \circ \tau$ with $\tau(k)=l, \tau(i)=i$ for $i \neq k ; l$ and $\operatorname{sgn}\left[A_{n}\right]=1=-\operatorname{sgn}\left[A_{n} \circ \tau\right]$ such that

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{c}
\boldsymbol{a}^{k} \\
\vdots \\
\boldsymbol{a}^{l}
\end{array}\right) & =\sum_{\sigma \in A_{n}} a_{\sigma(1)}^{1} \cdot \ldots \cdot a_{\sigma(k)}^{k} \cdot \ldots \cdot a_{\sigma(l)}^{l} \cdot \ldots \cdot a_{\sigma(n)}^{n} \\
& -\sum_{\sigma \in A_{n}} a_{\sigma(\tau(1))}^{1} \cdot \ldots \cdot a_{\sigma(\tau(k))}^{k} \cdot \ldots \cdot a_{\sigma(\tau(l))}^{l} \cdot \ldots \cdot a_{\sigma(\tau(n))}^{n} \\
& =\sum_{\sigma \in A_{n}} a_{\sigma(1)}^{1} \cdot \ldots \cdot a_{\sigma(k)}^{k} \cdot \ldots \cdot a_{\sigma(l)}^{l} \cdot \ldots \cdot a_{\sigma(n)}^{n} \\
& -\sum_{\sigma \in A_{n}} a_{\sigma(1)}^{1} \cdot \ldots \cdot a_{\sigma(l)}^{k} \cdot \ldots \cdot a_{\sigma(k)}^{l} \cdot \ldots \cdot a_{\sigma(n)}^{n} \\
& =0
\end{aligned}
$$

3. since $\operatorname{det} E_{n}=1^{n}=1$.

4.3 Cramer's rule

For $A=\left(a_{j}^{i}\right)_{1 \leq i ; j \leq n} \in M(n ; \mathbb{C})$ and
$A_{i j}=\operatorname{det}\left(\begin{array}{ccccccc}a_{1}^{1} & \cdots & a_{j-1}^{1} & 0 & a_{j+1}^{1} & \cdots & a_{n}^{1} \\ \vdots & & \vdots & \vdots & \vdots & & \vdots \\ a_{1}^{i-1} & \cdots & a_{j-1}^{i-1} & 0 & a_{j-1}^{i-1} & & a_{n}^{i-1} \\ 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ a_{1}^{i+1} & \cdots & a_{j-1}^{i+1} & 0 & a_{j+1}^{i+1} & \cdots & a_{n}^{i+1} \\ \vdots & & \vdots & \vdots & \vdots & & \vdots \\ a_{1}^{n} & \cdots & a_{j-1}^{n} & 0 & a_{j+1}^{n} & \cdots & a_{n}^{n}\end{array}\right) \quad$ and $A_{i j}^{\prime}=\operatorname{det}\left(\begin{array}{ccccccc}a_{1}^{1} & \cdots & a_{j-1}^{1} & a_{j+1}^{1} & \cdots & a_{n}^{1} \\ \vdots & & \vdots & \vdots & & \vdots \\ a_{1}^{i-1} & \cdots & a_{j-1}^{i-1} & a_{j+1}^{i-1} & \cdots & a_{n}^{i-1} \\ a_{1}^{i+1} & \cdots & a_{j-1}^{i+1} & a_{j+1}^{i+1} & \cdots & a_{n}^{i+1} \\ \vdots & & \vdots & \vdots & & \vdots \\ a_{1}^{n} & \cdots & a_{j-1}^{n} & a_{j+1}^{n} & \cdots & a_{n}^{n}\end{array}\right)$
and the complementary $A^{\natural}=\left(a_{j}^{i}\right)_{1 \leq i ; j \leq n}$ with $a_{i, j}=\operatorname{det} A_{j i}$ we have

1. $A^{-1}=\frac{A^{\natural}}{\operatorname{det} A}$
such that for every $A \in G L(n ; \mathbb{C})$ and $\boldsymbol{b} \in \mathbb{C}^{n}$ the solution of the linear equation $A * \boldsymbol{x}=\boldsymbol{b}$ is given by
2. $x_{i}=\frac{\operatorname{det}\left(\boldsymbol{a}_{1} ; \ldots ; \boldsymbol{a}_{i-1} ; \boldsymbol{b} ; \boldsymbol{a}_{i+1} ; \ldots ; \boldsymbol{a}_{n}\right)}{\operatorname{det} A}$ for $1 \leq i \leq n$.

Proof:

First we note that

1. $\operatorname{det} A_{i j}=(-1)^{i+j} \operatorname{det} A_{i j}^{\prime}$
2. $\operatorname{det} A_{i j}=\operatorname{det}\left(\boldsymbol{a}_{1} ; \ldots ; \boldsymbol{a}_{j-1} ; \boldsymbol{e}_{i} ; \boldsymbol{a}_{j+1} ; \ldots ; \boldsymbol{a}_{n}\right)=\operatorname{det}$

$$
\left(\begin{array}{c}
\boldsymbol{a}^{1} \\
\boldsymbol{a}^{i-1} \\
\boldsymbol{e}^{j} \\
\boldsymbol{a}^{i+1} \\
\boldsymbol{a}^{n}
\end{array}\right)
$$

since

1. $A_{i j}$ can be transformed into $A_{i j}^{\prime}$ by $(i-1)$ row transpositions and $(j-1)$ column transpostions due to 4.1.6
2. The row vector \boldsymbol{e}^{i} can be transformed into \boldsymbol{a}^{i} by adding $a_{j}^{i} \boldsymbol{e}_{i}$ to the j-th column vectors of $A_{i j}$ and
the column vector \boldsymbol{e}_{j} can be transformed into \boldsymbol{a}_{j} by adding $a_{j}^{i} \boldsymbol{e}^{j}$ to the i-th row vectors of $A_{i j}$ due to 4.1.7.

In order to prove the formula for the inverse matrix we compute the components of $A * A^{\natural}$:

$$
\begin{aligned}
\sum_{j=1}^{n} a_{j}^{\text {ai }} a_{k}^{j} & =\sum_{j=1}^{n} a_{k}^{j} \cdot \operatorname{det} A_{j i} \\
& =\sum_{j=1}^{n} a_{k}^{j} \cdot \operatorname{det}\left(\boldsymbol{a}_{1} ; \ldots ; \boldsymbol{a}_{i-1} ; \boldsymbol{e}_{j} ; \boldsymbol{a}_{i+1} ; \ldots ; \boldsymbol{a}_{n}\right) \\
& =\operatorname{det}\left(\boldsymbol{a}_{1} ; \ldots ; \boldsymbol{a}_{i-1} ; \sum_{j=1}^{n} a_{k}^{j} \boldsymbol{e}_{j} ; \boldsymbol{a}_{i+1} ; \ldots ; \boldsymbol{a}_{n}\right) \\
& =\operatorname{det}\left(\boldsymbol{a}_{1} ; \ldots ; \boldsymbol{a}_{i-1} ; \boldsymbol{a}_{k} ; \boldsymbol{a}_{i+1} ; \ldots ; \boldsymbol{a}_{n}\right) \\
& =\delta_{i k} \cdot \operatorname{det} A
\end{aligned}
$$

Applying this formula to the components of $\mathbf{x}=A^{-1} * \boldsymbol{b}=\frac{A^{\natural} b}{\operatorname{det} A}$ yields

$$
\begin{aligned}
x_{i} & =\frac{1}{\operatorname{det} A} \sum_{j=1}^{n} b_{j} \cdot \operatorname{det} A_{j i} \\
& =\frac{1}{\operatorname{det} A} \sum_{j=1}^{n} b_{j} \cdot \operatorname{det}\left(\boldsymbol{a}_{1} ; \ldots ; \boldsymbol{a}_{i-1} ; \boldsymbol{e}_{j} ; \boldsymbol{a}_{i+1} ; \ldots ; \boldsymbol{a}_{n}\right) \\
& =\frac{\operatorname{det}\left(\boldsymbol{a}_{1} ; \ldots ; \boldsymbol{a}_{i-1} ; \boldsymbol{b} ; \boldsymbol{a}_{i+1} ; \ldots ; \boldsymbol{a}_{n}\right)}{\operatorname{det} A} .
\end{aligned}
$$

4.4 Laplace's formula

For $A \in M(n ; \mathbb{C}), n \geq 2$ and every $1 \leq i ; j \leq n$ we have

$$
\operatorname{det} A=\sum_{j=1}^{n}(-1)^{i+j} \cdot a_{j}^{i} \cdot \operatorname{det} A_{i j}^{\prime}=\sum_{i=1}^{n}(-1)^{i+j} \cdot a_{j}^{i} \cdot \operatorname{det} A_{i j}^{\prime}
$$

Proof: According to 4.3 .1 and the subsequent formula 1. in the proof we have

$$
\operatorname{det} A=\sum_{j=1}^{n} a_{j}^{i} a_{i}^{\text {jj }}=\sum_{j=1}^{n} a_{j}^{i} \cdot \operatorname{det} A_{i j}=\sum_{j=1}^{n} a_{j}^{i} \cdot(-1)^{i+j} \cdot a_{j}^{i} \cdot \operatorname{det} A_{i j}^{\prime} .
$$

4.5 Orientation

Two matrices $A, B \in G L(n ; \mathbb{R})$ have the same orientation, i.e.

$$
\operatorname{det} A \cdot \operatorname{det} B>0
$$

iff they are connected (cf. [6, p. 5.8]), i.e. there is a continuous path

$$
\varphi:[0 ; 1] \rightarrow G L(n ; \mathbb{R}) \text { with } \varphi(0)=A \text { and } \varphi(1)=B
$$

Hence the family of all invertible matrices resp. bases $\mathcal{A}=\left(\sum_{i=1}^{n} a_{j}^{i} \boldsymbol{e}_{i}\right)_{1 \leq j \leq n}$ and $\mathcal{B}=\left(\sum_{i=1}^{n} b_{j}^{i} \boldsymbol{e}_{i}\right)_{1 \leq j \leq n}$ is decomposed into two equivalence classes resp. connected components with right resp. left handed orientation.
Proof:
\Rightarrow : We show that every $A \in G L(n ; \mathbb{R})$ with $\operatorname{det} A>0$ is path connected to E_{n}.
Step I: According to the Gauss-algorithm the invertible matrix A can be transformed into a diagonal matrix

$$
L=\left(\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right) \text { with }\left(\lambda_{i}\right)_{1 \leq i \leq n} \subset \mathbb{C}
$$

by adding multiples of rows to other rows. Due to 4.1 .7 these operations leave the determinant unchanged such that $\operatorname{det} A=\operatorname{det} L=\prod_{i=1}^{n} \lambda_{i}$. Each row operation can be represented by a path as e.g. for addition of the μ-multiple of the i-th row \boldsymbol{a}^{i} to the j-th row \boldsymbol{a}^{j}

$$
\varphi(t)=\left(\begin{array}{c}
\vdots \\
\boldsymbol{a}_{j-1} \\
\boldsymbol{a}^{j}+t \cdot \mu \boldsymbol{a}^{i} \\
\boldsymbol{a}_{j+1} \\
\vdots
\end{array}\right) \text { with } \operatorname{det} \varphi(t)=\operatorname{det} A \text { for } 0 \leq t \leq 1
$$

Step II: The values of the diagonal elements are reduced to ± 1 without leaving $G L(n ; \mathbb{R})$: Due to 4.1.1 we have $\operatorname{det} L=\prod_{i=1}^{n} \lambda_{i}=\prod_{i=1}^{n}\left|\lambda_{i}\right| \operatorname{det} E$ with

$$
E=\left(\begin{array}{ccc}
\frac{\lambda_{1}}{\left|\lambda_{1}\right|} & & 0 \\
& \ddots & \\
0 & & \frac{\lambda_{n}}{\left|\lambda_{n}\right|}
\end{array}\right) \text { and a path } \varphi(t)=\left(\begin{array}{ccc}
\lambda_{1}+t\left(\frac{\lambda_{1}}{\left|\lambda_{1}\right|}-\lambda_{1}\right) & & 0 \\
0 & \ddots & \\
0 & & \lambda_{n}+t\left(\frac{\lambda_{n}}{\left|\lambda_{n}\right|}-\lambda_{n}\right)
\end{array}\right)
$$

such that $\operatorname{det} \varphi(t)=\prod_{i=1}^{n}\left(\lambda_{i}+t\left(\frac{\lambda_{i}}{\left|\lambda_{i}\right|}-\lambda_{i}\right)\right) \neq 0$ for $0 \leq t \leq 1, \varphi(0)=L$ and $\varphi(1)=E$.
Step III: Since $\operatorname{det} A=\operatorname{det} L>0$ the number $\left|I_{n}^{-}\right|$with $I_{n}^{-}=\left\{1 \leq i \leq n: \frac{\lambda_{i}}{\left|\lambda_{i}\right|}=-1\right\}$ must be even such that for each pair $\{i ; j\} \subset I_{n}^{-}$there is a path

$$
\varphi(t)=\left(\begin{array}{ccccccccc}
\ddots & & & & & & & & 0 \\
& \frac{\lambda_{i-1}}{\left|\lambda_{i-1}\right|} & & & & & & & \\
& & 0 & & \\
& & \frac{\lambda_{i+1}}{\left|\lambda_{i+1}\right|} & & & 0 & -\sin \pi t & & \\
& & \vdots & & \ddots & & \vdots & & \\
& & 0 & & & \frac{\lambda_{j-1}}{\left|\lambda_{j-1}\right|} & 0 & & \\
& & \sin \pi t & 0 & \cdots & 0 & -\cos \pi t & & \\
& & & & & & & \frac{\lambda_{j+1}}{\left|\lambda_{j+1}\right|} & \\
0 & & & & & & & & \ddots
\end{array}\right)
$$

with $\varphi(0)=E$ and $\varphi(0)=E^{\prime}$ with the values $e_{i}^{i}=e_{j}^{j}=-1$ transformed to $\left(e^{\prime}\right)_{i}^{i}=\left(e^{\prime}\right)_{j}^{j}=-1$ without without leaving GL $(n ; \mathbb{R})$:

$$
\operatorname{det} \varphi(t)=\frac{\lambda_{1}}{\left|\lambda_{1}\right|} \cdot \ldots \cdot \frac{\lambda_{i-1}}{\left|\lambda_{i-1}\right|} \cdot\left((\cos \pi t)^{2}+(\sin \pi t)^{2}\right)\left(\frac{\lambda_{i+1}}{\left|\lambda_{i+1}\right|} \cdot \ldots \cdot \frac{\lambda_{j-1}}{\left|\lambda_{j-1}\right|}\right) \cdot \frac{\lambda_{j+1}}{\left|\lambda_{j+1}\right|} \cdot \ldots \cdot \frac{\lambda_{n}}{\left|\lambda_{n}\right|} \neq 0
$$

\Leftarrow : According to the hypothesis we have $\varphi(t) \in G L(n ; \mathbb{R})$ whence $\operatorname{det} \varphi(t) \neq 0$ for $0 \leq t \leq 1$ such that $\operatorname{det} \varphi A \cdot \operatorname{det} \varphi B=\operatorname{det} \varphi(0) \cdot \operatorname{det} \varphi(1)>0$ follows from the continuity of det: $M(n ; \mathbb{R}) \rightarrow \mathbb{R}$ shown in 4.2 and the intermediate value theorem [6, th. 5.1].

4.6 The Vandermonde determinant

For $n \geq 1$ and $x \in \mathbb{C}$ with $x_{i}^{n}=\left(x_{i}\right)^{n}$ meaning the n-th power of x_{i} the Vandermonde determinant is defined as

$$
\Delta_{n}(x)=\operatorname{det}\left(\begin{array}{cccc}
1 & x_{1} & \cdots & x_{1}^{n-1} \\
1 & x_{2} & \cdots & x_{2}^{n-1} \\
\vdots & \vdots & & \vdots \\
1 & x_{n} & \cdots & x_{n}^{n-1}
\end{array}\right)=\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right) .
$$

Proof by induction: The case $n=2$ is obvious. In order to prove the induction step $n \Rightarrow n+1$ we write

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{ccccc}
1 & x_{1} & \cdots & x_{1}^{n-1} & x_{1}^{n} \\
1 & x_{2} & \cdots & x_{2}^{n-1} & x_{2}^{n} \\
\vdots & \vdots & & \vdots & \vdots \\
1 & x_{n+1} & \cdots & x_{n+1}^{n-1} & x_{n+1}^{n}
\end{array}\right) & =\operatorname{det}\left(\begin{array}{ccccc}
1 & x_{1}-x_{n+1} & \cdots & x_{1}^{n-1}-x_{1}^{n-2} \cdot x_{n+1} & x_{1}^{n}-x_{1}^{n-1} \cdot x_{n+1} \\
1 & x_{2}-x_{n+1} & \cdots & x_{2}^{n-1}-x_{2}^{n-2} \cdot x_{n+1} & x_{2}^{n}-x_{2}^{n-1} \cdot x_{n+1} \\
\vdots & \vdots & & \vdots & \vdots \\
1 & x_{n+1}-x_{n+1} & \cdots & x_{n+1}^{n-1}-x_{n+1}^{n-1} & x_{n+1}^{n}-x_{n+1}^{n}
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{ccccc}
1 & \left(x_{1}-x_{n+1}\right) & \cdots & x_{1}^{n-2} \cdot\left(x_{1}-x_{n+1}\right) & x_{1}^{n-1} \cdot\left(x_{1}-x_{n+1}\right) \\
1 & \left(x_{2}-x_{n+1}\right) & \cdots & x_{2}^{n-2} \cdot\left(x_{2}-x_{n+1}\right) & x_{2}^{n-1} \cdot\left(x_{2}-x_{n+1}\right) \\
\vdots & \vdots & & \vdots & \\
1 & 0 & \cdots & 0 & \vdots \\
1 & 0 & \\
& =1 \cdot\left(x_{1}-x_{n+1}\right) \cdot \cdots \cdot\left(x_{n}-x_{n+1}\right) \cdot \operatorname{det}\left(\begin{array}{cccc}
1 & x_{1} & \cdots & x_{1}^{n-1} \\
1 & x_{2} & \cdots & x_{2}^{n-1} \\
\vdots & \vdots & & \vdots \\
1 & x_{n} & \cdots & x_{n}^{n-1}
\end{array}\right) \\
& =\prod_{1 \leq i<j \leq n+1}\left(x_{j}-x_{i}\right) .
\end{array}\right. \\
&
\end{aligned}
$$

5 Eigendecomposition

5.1 Eigenvectors and Eigenvalues

A vector $\mathbf{0} \neq \boldsymbol{v} \in X$ is an Eigenvector for the Eigenvalue $\lambda \in \mathbb{C}$ of the endomorphism $\boldsymbol{f}: X \rightarrow X$ iff $\boldsymbol{f}(\boldsymbol{v})=\lambda \boldsymbol{v}$. Obviously the Eigenspace $\operatorname{Eig}(\boldsymbol{f}, \lambda):=\operatorname{Ker}(\boldsymbol{f}-\lambda \mathrm{id}) \subset X$ of all Eigenvectors for the Eigenvalue λ is a vector subspace. Eigenvectors for different Eigenvalues are linearly independent. This is obvious for $n=2$ and follows by induction for $n>2$. In the case of a finite dimensional vector space $X=\left\langle\mathrm{u}_{i}\right\rangle_{1 \leq i \leq n}$ the Eigenvalues of \boldsymbol{f} are exactly the zeros of the characteristic polynom

$$
P_{\mathbf{f}}(t)=\operatorname{det}\left(F-t \cdot E_{n}\right)=\operatorname{det}\left(\begin{array}{cc}
f_{1}^{1}-t & f_{n}^{1} \\
f_{1}^{n} & f_{n}^{n}-t
\end{array}\right)=(-t)^{n}+t^{n-1} \cdot \sum_{i=1}^{n} f_{i}^{i}+\ldots+\operatorname{det} F
$$

with the representing matrix $F=M_{\mathcal{A}}^{\mathcal{A}}(\boldsymbol{f})$ for the given basis $\mathcal{A}=\left(\boldsymbol{a}_{i}\right)_{1 \leq i \leq n}$. The characteristic polynom and the eigenvalues are independent of the basis since for any transformation matrix $T \in \mathrm{GL}(n ; \mathbb{C})$ we have $\operatorname{det}\left(T * F * T^{-1}-t \cdot E_{n}\right)=\operatorname{det}\left(T * F * T^{-1}-t \cdot T * E_{n} * T^{-1}\right)=\operatorname{det} T *$ $\left(F-t \cdot E_{n}\right) * T^{-1}=\operatorname{det} T \cdot \operatorname{det}\left(F-t \cdot E_{n}\right) \cdot \frac{1}{\operatorname{det} T}=\operatorname{det}\left(F-t \cdot E_{n}\right)$. The basis $\left(\boldsymbol{v}_{i}\right)_{1 \leq i \leq m}$ of $\operatorname{Eig}(\boldsymbol{f}, \lambda)=$ $\left\langle\boldsymbol{v}_{i}\right\rangle_{1 \leq i \leq m}$ can be complemented to a basis $\mathcal{A}^{\prime}=\left\{\boldsymbol{v}_{1} ; \ldots ; \boldsymbol{v}_{m} ; \boldsymbol{a}_{m+1} ; \ldots ; \boldsymbol{a}_{n}\right\}$ of $\bar{X}^{\text {with }} M_{\mathcal{A}^{\prime}}(\boldsymbol{f})=$ $\left(\begin{array}{cc}\lambda \cdot E_{m} & 0 \\ 0 & F^{\prime}\end{array}\right)$ and $F^{\prime}=\left(f_{j}^{i}\right)_{m+1 \leq i ; j \leq n}$ such that the dimension $m=\operatorname{dim} \operatorname{Eig}(\boldsymbol{f} ; \lambda) \leq \mu\left(P_{\boldsymbol{f}} ; \lambda\right)$ of the Eigenspace cannot exceed the multiplicity of the Eigenvalue λ in P_{f}.

5.2 Trigonalization of complex endomorphisms

For every endomorphism $f \in \operatorname{End}(X)$ on an n-dimensional complex vector space X there is a basis $\mathcal{B}=\left(\boldsymbol{v}_{i}\right)_{1 \leq i \leq n}$ of \mathbb{C}^{n} such that $\boldsymbol{f}\left(\boldsymbol{v}_{k}\right) \subset\left\langle\boldsymbol{v}_{i}\right\rangle_{1 \leq i \leq k}$ and

$$
M_{\mathcal{B}}^{\mathcal{B}}(\boldsymbol{f})=\left(\begin{array}{ccc}
\lambda_{1} & & * \\
& \ddots & \\
0 & & \lambda_{r}
\end{array}\right)
$$

with $P_{f}\left(\lambda_{i}\right)=0$ for every $1 \leq i \leq n$ and the λ_{i} not necessarily distinct from each other.
Proof: According to the fundamental theorem of algebra [2, th. 5.11] there are (not necessarily distinct!) eigenvalues $\left(\lambda_{i}\right)_{1 \leq i \leq n}$ such that $P_{f}(t)=\prod_{1=1}^{n}\left(\lambda_{i}-t\right)$. For $n=1$ the case is obvious. Assuming the hypothesis for $n-1$ we choose an eigenvalue $\lambda_{1} \in \mathbb{C}$ and an eigenvector $\mathbf{v}_{1}=\sum_{i=1}^{n}$ $v^{i 1} \boldsymbol{a}_{i} \in \mathbb{C}^{n}$ expressed as linear combination of the basis $\mathcal{A}=\left(\boldsymbol{a}_{1} ; \ldots ; \boldsymbol{a}_{n}\right)$ with $\boldsymbol{f}\left(\boldsymbol{v}_{1}\right)=\lambda_{1} \boldsymbol{v}_{1}$. W.l.o.g. assuming $v_{1} \neq 0$ and replacing \boldsymbol{a}_{1} by \boldsymbol{v}_{1} we obtain a basis $\mathcal{B}^{\prime}=\left\{\boldsymbol{v}_{1} ; \boldsymbol{a}_{2} ; \ldots ; \boldsymbol{a}_{n}\right\}$ with the transformation matrix

$$
M_{\mathcal{A}}^{\mathcal{B}^{\prime}}(\mathrm{id})=\left(\begin{array}{cccc}
v_{1}^{1} & 0 & \cdots & 0 \\
v_{1}^{2} & 1 & & 0 \\
\vdots & & \ddots & \\
v_{1}^{n} & 0 & & 1
\end{array}\right)
$$

comprised of the column vectors of the new basis \mathcal{B}^{\prime} expressed in linear combinations of the old basis. Hence we obtain $\boldsymbol{f}=T_{\mathcal{B}^{\prime}}^{\mathcal{A}} \circ \boldsymbol{f}_{\mathcal{A}}^{\mathcal{A}} \circ T_{\mathcal{A}}^{\mathcal{B}^{\prime}}$ resp. the transition from

$$
M_{\mathcal{A}}^{\mathcal{A}}(\boldsymbol{f})=\left(\begin{array}{cccc}
f_{1}^{1} & f_{2}^{1} & \cdots & f_{n}^{1} \\
f_{1}^{2} & f_{2}^{2} & \cdots & f_{n}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
f_{1}^{n} & f_{2}^{n} & \cdots & f_{n}^{n}
\end{array}\right) \text { to } M_{\mathcal{B}^{\prime}}^{\mathcal{B}^{\prime}}(\boldsymbol{f})=\left(\begin{array}{cccc}
\lambda_{1} & \left(f^{\prime}\right){ }_{2}^{1} & \cdots & \left(f^{\prime}\right)_{n}^{1} \\
0 & f_{2}^{2} & \cdots & f_{n}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
0 & f_{2}^{n} & \cdots & f_{n}^{n}
\end{array}\right)
$$

In the case of $\operatorname{dim} \operatorname{Eig}(\lambda)<\mu(\lambda)$ the subspace $W_{1}=\left\langle\boldsymbol{a}_{i}\right\rangle_{1 \leq i \leq n-1}$ is not \mathbf{f}-invariant and the coefficients $\left(f^{\prime}\right)_{2}^{1} ; \ldots ;\left(f^{\prime}\right)_{n}^{1}$ do not vanish. We circumvene this complication by splitting the restriction $\left.\boldsymbol{f}\right|_{W}=\boldsymbol{g}+\boldsymbol{h}$ into $\boldsymbol{g}: W_{1} \rightarrow W_{1}$ with $\boldsymbol{g}\left(\boldsymbol{a}_{j}\right)=\sum_{i=2}^{n} f_{j}^{i} \boldsymbol{a}_{i}$ and $\boldsymbol{h}: W_{1} \rightarrow\left\langle\boldsymbol{v}_{1}\right\rangle$ with $\boldsymbol{h}\left(\boldsymbol{a}_{j}\right)=\left(f^{\prime}\right)_{j}^{1} \boldsymbol{v}_{1}$. Now we can apply the hypothesis to \boldsymbol{g} and find a basis $\mathcal{B}_{W_{1}}=\left(\boldsymbol{v}_{i}\right)_{2 \leq i \leq n}$ of $W_{1}=\left\langle\boldsymbol{a}_{i}\right\rangle_{2 \leq i \leq n}$ such that $\boldsymbol{g}\left(\boldsymbol{v}_{k}\right) \subset\left\langle\boldsymbol{v}_{i}\right\rangle_{2 \leq i \leq k}$. Since the basis $\mathcal{A}_{W_{1}}=\mathcal{B}_{W_{1}}^{\prime}$ did not change on the subspace W_{1} the coordinate transformation $T_{\mathcal{A}_{W_{1}}}^{\mathcal{B}_{W_{1}}}=\left(\Phi_{\mathcal{A}_{W_{1}}}^{-1}\left(\boldsymbol{v}_{2}\right) ; \ldots ; \Phi_{\mathcal{A}_{W_{1}}}^{-1}\left(\boldsymbol{v}_{n}\right)\right): \mathbb{C}^{n-1} \rightarrow \mathbb{C}^{n-1}$ given by the
 coordinate vectors $\Phi_{\mathcal{A}_{W_{1}}}^{-1}\left(\boldsymbol{v}_{i}\right)$ yields $\boldsymbol{g}_{\mathcal{B}_{W_{1}}}^{\mathcal{B}_{W_{1}}}=T_{\mathcal{B}_{W_{1}}}^{\mathcal{A}_{W_{1}}} \circ \boldsymbol{g}_{\mathcal{A}_{W_{1}}}^{\mathcal{A}_{W_{1}}} \circ T_{\mathcal{A}_{W_{1}}}^{\mathcal{B}_{W_{1}}}$ with

$$
M_{\mathcal{B}_{W_{1}}}^{\mathcal{B}_{W_{1}}}(\boldsymbol{g})=\left(\begin{array}{ccc}
\lambda_{1} & & * \\
& \ddots & \\
0 & & \lambda_{r}
\end{array}\right)
$$

Then the basis $\mathcal{B}=\left\{\boldsymbol{v}_{1} ; \ldots ; \boldsymbol{v}_{n}\right\}$ with the transformation $T_{\mathcal{B}}^{\mathcal{A}}=T_{\mathcal{B}}^{\mathcal{B}^{\prime}} \circ T_{\mathcal{B}^{\prime}}^{\mathcal{A}}$ represented by

$$
\left(T_{\mathcal{B}}^{\mathcal{B}^{\prime}}\right)^{-1}=T_{\mathcal{B}^{\prime}}^{\mathcal{B}}=\left(\boldsymbol{v}_{1} ; \ldots ; \boldsymbol{v}_{n}\right)=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & v_{2}^{2} & & 0 \\
\vdots & \vdots & \ddots & \\
0 & v_{2}^{n} & \cdots & v_{n}^{n}
\end{array}\right)
$$

expressed in $\mathcal{B}^{\prime}=\left\{\boldsymbol{v}_{1} ; \boldsymbol{a}_{2} ; \ldots ; \boldsymbol{a}_{n}\right\}$ by $\boldsymbol{v}_{1}=\boldsymbol{v}_{1}$ resp. $\boldsymbol{v}_{i}=\sum_{j=2}^{n} v_{j i} \boldsymbol{a}_{j}$
resp. directly by

$$
\left(T_{\mathcal{B}}^{\mathcal{A}}\right)^{-1}=T_{\mathcal{A}}^{\mathcal{B}}=\left(\boldsymbol{v}_{1} ; \ldots ; \boldsymbol{v}_{n}\right)=\left(\begin{array}{ccc}
v_{1}^{1} & & 0 \\
\vdots & \ddots & \\
v_{1}^{n} & \cdots & v_{n}^{n}
\end{array}\right)
$$

expressed in $\mathcal{A}=\left\{\boldsymbol{a}_{1} ; \ldots ; \boldsymbol{a}_{n}\right\}$ by $\boldsymbol{v}_{1}=\sum_{j=1}^{n} v_{1}^{j} \boldsymbol{a}_{j}$ resp. $\boldsymbol{v}_{i}=\sum_{j=2}^{n} v_{i}^{j} \boldsymbol{a}_{j}$
results in

$$
M_{\mathcal{B}}^{\mathcal{B}}(\mathbf{f})=\left(\begin{array}{cccc}
\lambda_{1} & \left(f^{\prime \prime}\right)_{2}^{1} & \cdots & \left(f^{\prime \prime}\right)_{n}^{1} \\
0 & \lambda_{2} & & * \\
\vdots & \ddots & \ddots & \\
0 & \cdots & 0 & \lambda_{n}
\end{array}\right)
$$

satisfying the assertion.

Note:

1. The transformation matrix has an inverse triangular structure with zeroes obove the main diagonal since all subsequent basis changes only affect the corresponding subspaces W_{i} in the chain $X \supset W_{1} \supset \ldots \supset W_{n}$.
2. Every transformation changes every element of $M_{\mathcal{B}}^{\mathcal{B}}(\boldsymbol{f})$ above the main diagonal as indicated by the double dashes in the first row.

Example: For brevity we identify the representing matrices with the corresponding canonical maps on \mathbb{R}^{3}. For $A=\left(\begin{array}{ccc}3 & 4 & 3 \\ -1 & 0 & -1 \\ 1 & 2 & 3\end{array}\right)$ we have $P_{A}(t)=-(t-2)^{3}$ with eigenvalue $\lambda=2, A-2 E_{3}=$ $\left(\begin{array}{ccc}1 & 4 & 3 \\ -1 & -2 & -1 \\ 1 & 2 & 1\end{array}\right)$ and $\operatorname{rank}\left(A-2 E_{3}\right)=2$ such that $\operatorname{dim} \operatorname{Eig}(A ; 2)=1<3=\mu\left(P_{A} ; 2\right)$ whence
A cannot be diagonalized. With the eigenvector $\boldsymbol{v}_{1}=\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$ and the completed basis $\mathcal{B}^{\prime}=$ $\left(\boldsymbol{v}_{1} ; \boldsymbol{e}_{2} ; \boldsymbol{e}_{3}\right)$ we obtain $S_{1}^{-1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$ resp. $S_{1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right)$ and $A_{2}=S_{1} * A * S_{1}^{-1}=$ $\left(\begin{array}{ccc}2 & 4 & 3 \\ 0 & 4 & 2 \\ 0 & -2 & 0\end{array}\right)$. On the vector subspace $W=\left\langle\boldsymbol{e}_{2} ; \boldsymbol{e}_{3}\right\rangle$ we choose an eigenvector $\boldsymbol{v}_{2}=\boldsymbol{e}_{2}-\boldsymbol{e}_{3}$ of the restriction with $M\left(\left.\boldsymbol{f}\right|_{W}-2 \mathrm{id}\right)=\left(\begin{array}{cc}2 & 2 \\ -2 & -2\end{array}\right)$. The transformation is carried out by $S_{2}^{-1}=$ $\left(\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & -1 & 1\end{array}\right)$ resp. $S_{2}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right)$ such that $A_{3}=S_{2} * A * S_{2}^{-1}=\left(\begin{array}{ccc}2 & 1 & 3 \\ 0 & 2 & 2 \\ 0 & 0 & 2\end{array}\right)$.

5.3 The Cayley-Hamilton theorem

For every endomorphism $\boldsymbol{f} \in \operatorname{End}(X)$ on a finite-dimensional vector space X we have $P_{\mathbf{f}}(\boldsymbol{f})=0$ with the characteristic polynom $P_{\mathbf{f}} \in \mathbb{C}[\boldsymbol{g}]$ on the commutative subring $\mathbb{C}[\boldsymbol{g}] \subset$ End (X) of polynoms $\sum_{i=0}^{n} a_{i} \boldsymbol{g}^{i}$ with complex coefficients $a_{i} \in \mathbb{C}$ resp. variables $\boldsymbol{g} \in(\operatorname{End}(X) ;+; \circ)$ with $\boldsymbol{g}^{0}:=\mathrm{id}, \boldsymbol{g}^{1}:=\boldsymbol{g}$, and $\boldsymbol{g}^{i}:=\boldsymbol{g}^{i-1} \circ \boldsymbol{g}$ for $1 \leq i \leq n \in \mathbb{N}$.
Proof: With the notations from the preceding theorem 5.2 we have $P_{\boldsymbol{f}}(\boldsymbol{g})=\prod_{i=1}^{n}\left(\lambda_{i} \mathrm{id}-\boldsymbol{g}\right)$ for every $\boldsymbol{g} \in \operatorname{End}(X)$ and the product referring to the composition. We prove that $\prod_{i=1}^{k}\left(\lambda_{i} \mathrm{id}-\boldsymbol{f}\right)\left[\left\langle\mathbf{v}_{j}\right\rangle_{1 \leq j \leq k}\right]=$ $\{0\}$ for every $1 \leq j \leq k$ and the basis $\mathcal{B}=\left(\boldsymbol{v}_{i}\right)_{1 \leq i \leq n}$ for the trigonalized form. For $n=1$ the case is obvious. Assuming the hypothesis for $k-1$ and choosing an arbitrary $\boldsymbol{w}+\mu \boldsymbol{v}_{k}$ with $\boldsymbol{w} \in\left\langle\boldsymbol{v}_{j}\right\rangle_{1 \leq j \leq k-1}$ and $\mu \in \mathbb{C}$ the matrix

$$
M_{\mathcal{B}}^{\mathcal{B}} \boldsymbol{f}=\left(\begin{array}{ccc}
\lambda_{1} & & * \\
& \ddots & \\
0 & & \lambda_{r}
\end{array}\right)
$$

shows that $\boldsymbol{f}\left(\boldsymbol{v}_{k}\right)-\lambda_{k} \boldsymbol{v}_{k} \in\left\langle\boldsymbol{v}_{i}\right\rangle_{1 \leq i \leq k-1}$ and $\boldsymbol{f}(\boldsymbol{w}) \in\left\langle\boldsymbol{v}_{i}\right\rangle_{1 \leq i \leq k-1}$. This implies $\left(\lambda_{k} \mathrm{id}-\boldsymbol{f}\right)\left(\boldsymbol{w}+\mu \boldsymbol{v}_{k}\right) \in$ $\left\langle\boldsymbol{v}_{i}\right\rangle_{1 \leq i \leq k-1}$ whence $\prod_{i=1}^{k}\left(\lambda_{i} \mathrm{id}-\boldsymbol{f}\right)\left(\boldsymbol{w}+\mu \boldsymbol{v}_{k}\right)=\prod_{i=1}^{k-1}\left(\lambda_{i} \mathrm{id}-\boldsymbol{f}\right) \circ\left(\left(\lambda_{k} \mathrm{id}-\boldsymbol{f}\right)\left(\boldsymbol{w}+\mu \boldsymbol{v}_{k}\right)\right)=\mathbf{0}$.

5.4 Decomposition of real endomorphisms

For every endomorphism $\boldsymbol{f} \in \operatorname{End}(X)$ on an n-dimensional real vector space X there is a basis $\mathcal{B}=\left(\boldsymbol{v}_{i}\right)_{1 \leq i \leq k} \cup\left(\boldsymbol{w}_{i} ; \boldsymbol{f}\left(\boldsymbol{w}_{i}\right)\right)_{1 \leq i \leq l}$ with $k+2 l=n$ of \mathbb{R}^{n} such that $\boldsymbol{f}\left(\boldsymbol{v}_{j}\right) \subset\left\langle\boldsymbol{v}_{i}\right\rangle_{1 \leq i \leq j}$ for $j \leq k$, $\boldsymbol{f}\left[\left\langle\boldsymbol{w}_{m} ; \boldsymbol{f}\left(\boldsymbol{w}_{m}\right)\right\rangle\right] \subset\left\langle\boldsymbol{v}_{i}\right\rangle_{1 \leq i \leq k} \oplus\left\langle\boldsymbol{w}_{i} ; \boldsymbol{f}\left(\boldsymbol{w}_{i}\right)\right\rangle_{1 \leq i \leq m}$ for $1 \leq m \leq l$ and

$$
M_{\mathcal{B}}^{\mathcal{B}}(\boldsymbol{f})=\left(\begin{array}{cccccccc}
\lambda_{1} & & & & & & & * \\
& \ddots & & & & & & \\
& & \lambda_{k} & & & & & \\
& & & 0 & -q_{1} & & & \\
& & & 1 & -p_{1} & & & \\
& & & & & \ddots & & \\
& & & & & & 0 & -q_{m} \\
0 & & & & & & 1 & -p_{m}
\end{array}\right) .
$$

Proof: According to the fundamental theorem of algebra [2, th. 2.10] resp. the Euclidean division algorithm for polynomials there are real eigenvalues $\left(\lambda_{j}\right)_{1 \leq i \leq k} \subset \mathbb{R}$ and real coefficients $\left(p_{i} ; q_{i}\right)_{1 \leq i \leq l} \subset \mathbb{R}$ such that $P_{f}(t)=\prod_{i=1}^{k}\left(\lambda_{i}-t\right) \prod_{i=1}^{l}\left(t^{2}+p_{i} t+q_{i}\right)$. Note that the λ_{i} are not necessarily different from each other and that the trigonalisation of the restriction $\left.\boldsymbol{f}\right|_{V}$ for $V=\left\langle\boldsymbol{v}_{i}\right\rangle_{1 \leq i \leq k}$ is guaranteed by 5.2. Similarly to the trigonalization we now split the the restriction $\left.\boldsymbol{f}\right|_{W}=\boldsymbol{h}_{1}+\boldsymbol{g}_{1}$ with $\boldsymbol{h}_{1}: W \rightarrow W$ and $\boldsymbol{g}_{1}: W \rightarrow V$ on the complementing vector subspace W with $X=V \oplus W$. For an arbitrary $\boldsymbol{w} \in W$ according to the Cayley-Hamilton theorem 5.3 we can arrange the order of the factors in the characteristic polynomial such that the iterated composition holds

$$
\boldsymbol{w}_{1}:=\left(\prod_{i=2}^{m}\left(\boldsymbol{h}_{1}^{2}+p_{i} \cdot \boldsymbol{h}_{1}+\left.q_{i} \cdot \mathrm{id}\right|_{W}\right)\right)(\boldsymbol{w}) \neq \mathbf{0}
$$

and

$$
\boldsymbol{h}_{1}\left(\boldsymbol{h}_{1}\left(\boldsymbol{w}_{1}\right)\right)+p_{1} \cdot \boldsymbol{h}_{1}\left(\boldsymbol{w}_{1}\right)+q_{1} \cdot \boldsymbol{w}_{1}=\left(\boldsymbol{h}_{1}^{2}+p_{1} \cdot \boldsymbol{h}_{1}+\left.q_{1} \cdot \mathrm{id}\right|_{W}\right)\left(\boldsymbol{w}_{1}\right)=\mathbf{0},
$$

i.e. $\boldsymbol{h}_{1}\left(\boldsymbol{h}_{1}\left(\boldsymbol{w}_{1}\right)\right)=-p_{1} \cdot \boldsymbol{h}_{1}\left(\boldsymbol{w}_{1}\right)-q_{1} \cdot \boldsymbol{w}_{1}$. Since \boldsymbol{h}_{1} has no eigenvectors \boldsymbol{w}_{1} and $\boldsymbol{h}_{1}\left(\boldsymbol{w}_{1}\right)$ are linearly independent such that we have obtained an \boldsymbol{h}_{1}-invariant subspace $W_{1}=\left\langle\boldsymbol{w}_{1} ; \boldsymbol{h}_{1}\left(\boldsymbol{w}_{1}\right)\right\rangle \subset W$. W.l.o.g. assuming nonzero coefficients in the linear combinations for \boldsymbol{w}_{1} and $\boldsymbol{h}_{1}\left(\boldsymbol{w}_{1}\right)$ in terms of the original basis we replace the first two of the previous basis vectors of W by \boldsymbol{w}_{1} and $\boldsymbol{h}_{1}\left(\boldsymbol{w}_{1}\right)$ the representing matrix with reference to the new basis \mathcal{B}_{1} has the form

$$
M_{\mathcal{B}_{1}}^{\mathcal{B}_{1}}\left(\boldsymbol{h}_{1}\right)=\left(\begin{array}{ccccc}
0 & -q_{1} & * & \cdots & * \\
1 & -p_{1} & \vdots & & \vdots \\
0 & 0 & \vdots & & \vdots \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & * & \cdots & *
\end{array}\right) .
$$

By induction we proceed with the restriction $\left.\boldsymbol{f}\right|_{Y_{1}}$ on the complementing vector subspace Y_{1} with $W=W_{1} \oplus Y_{1}$ until we have a decomposition $X=V \oplus W=V \oplus W_{1} \oplus Y_{1}=V \oplus W_{1} \oplus W_{2} \oplus Y_{2}=$ $\ldots=V \oplus W_{1} \oplus \ldots \oplus W_{l}$ such that $\boldsymbol{h}_{i}\left[W_{i}\right] \subset W_{i}$. Similarly to the trigonalization of complex matrices 5.2 the transformation matrices have the form

$$
M_{\mathcal{B}}^{\mathcal{A}}(\Phi)=\left(\begin{array}{ccccccc}
v_{1}^{1} & & & & & & \\
\vdots & \ddots & & & & & 0 \\
& & v_{k}^{k} & & & & \\
& & \vdots & w_{1}^{k+1} & \left(h_{1}\right)^{k+1}\left(\boldsymbol{w}_{1}\right) & & \\
& & & \vdots & \vdots & & \\
& & & & & \ddots & \\
& & \vdots & \vdots & \vdots & & w_{l}^{n-1} \\
\vdots & & \vdots & \left(h_{l}\right)^{n-1}\left(\boldsymbol{w}_{l}\right) \\
v_{1}^{n} & \cdots & v_{k}^{n} & w_{1}^{n} & \left(h_{1}\right)^{n}\left(\boldsymbol{w}_{1}\right) & \cdots & w_{l}^{n} \\
\left(h_{1}\right)^{n}\left(\boldsymbol{w}_{l}\right)
\end{array}\right)
$$

Hence the transition from \mathcal{B}_{i} to \mathcal{B}_{i+1} will change the elements above the 2×2 units in an undetermined manner but leave the zeroes beneath unaffected such that we finally arrive at the asserted structure of $M_{\mathcal{B}}^{\mathcal{B}}(\boldsymbol{f})$.

5.5 Minimal polynoms

According to 2 for every $\boldsymbol{f} \in \operatorname{End}(X)$ with $\operatorname{dim} X=n \in \mathbb{N}$ the ideal $I_{\boldsymbol{f}}=\{Q \in \mathbb{C}[z]: Q(\boldsymbol{f})=0\}$ is principal, i.e. $I_{f}=\left\langle M_{\boldsymbol{f}}\right\rangle$ with the minimal polynom M_{f}. Since $M_{f} \in I_{\boldsymbol{f}}$ the minimal polynom must have at least the same zeroes λ_{j} as $P_{\boldsymbol{f}}$. Since it is a divisor of $P_{\boldsymbol{f}}$ their multiplicities cannot exceed those of $M_{\boldsymbol{f}}$. Hence for $P_{\boldsymbol{f}}(t)=\prod_{j=1}^{k}\left(\lambda_{j}-t\right)^{r_{j}}$ with $\sum_{j=1}^{k} r_{j}=n$ we have $M_{\boldsymbol{f}}(t)=\prod_{j=1}^{k}\left(\lambda_{j}-t\right)^{d_{j}}$ with $1 \leq d_{j} \leq r_{j}$.
For an endomorphism $\boldsymbol{g} \in \operatorname{End}(X)$ with $\operatorname{dim} X=n \in \mathbb{N}$ the following conditions are equivalent:

1. \boldsymbol{g} is nilpotent, i.e. $\boldsymbol{g}^{k}=0$ for some $k \in \mathbb{N}$
2. $\boldsymbol{g}^{k}=0$ for some $1 \leq k \leq n$
3. $P_{\boldsymbol{g}}(t)= \pm t^{n}$
4. There is a basis \mathcal{B} of X such that $M_{\mathcal{B}}^{\mathcal{B}}(\boldsymbol{g})=\left(\begin{array}{ccc}0 & & * \\ \vdots & \ddots & \\ 0 & \cdots & 0\end{array}\right)$

Proof: $1 . \Rightarrow 2 . \Rightarrow 3 . \Rightarrow 4 . \Rightarrow 1$. directly follows from the definitions resp. the preceding paragraph.

5.6 Fitting's lemma

For an endomorphism $\boldsymbol{g} \in \operatorname{End}(X)$ with $\operatorname{dim} X=n \in \mathbb{N}$ and $d=\min \left\{l: \operatorname{ker} \boldsymbol{g}^{l}=\operatorname{ker} \boldsymbol{g}^{l+1}\right\}$ we have

1. $d=\min \left\{l: \operatorname{im} \boldsymbol{g}^{l}=\operatorname{im} \boldsymbol{g}^{l+1}\right\}$.
2. $\operatorname{ker} \boldsymbol{g}^{d+i}=\operatorname{ker} \boldsymbol{g}^{d}$ and $\operatorname{im} \boldsymbol{g}^{d+i}=\operatorname{im} \boldsymbol{g}^{d}$ for every $i \in \mathbb{N}$.
3. $\boldsymbol{g}[U] \subset U$ for $U=\operatorname{ker} \boldsymbol{g}^{d}$ and $\boldsymbol{g}[V] \subset V$ for $V=\operatorname{im} \boldsymbol{g}^{d}$.
4. $\left(\left.\boldsymbol{g}\right|_{U}\right)^{d}=0$ and $\left.\boldsymbol{g}\right|_{V}$ is an isomorphism.
5. $M_{g \mid U}(t)=t^{d}$.
6. $X=U \oplus V$ with $\operatorname{dim} U=r \geq d$ with $r=\mu\left(P_{g} ; 0\right)$.
7. There is a basis \mathcal{B} of X such that $M_{\mathcal{B}}^{\mathcal{B}}(\boldsymbol{g})=\left(\begin{array}{cc}N & 0 \\ 0 & C\end{array}\right)$ with $N^{d}=0$ and $C \in \mathrm{GL}(n-r ; \mathbb{C})$.

Proof:

1. - 4.: By 3.7 we conclude that

$$
\operatorname{ker} \mathbf{g}^{l} \subset \quad V \xrightarrow{\mathbf{g}^{l}} \operatorname{im} \mathbf{g}^{l}
$$

$$
\begin{aligned}
\operatorname{im} \boldsymbol{g}^{l+1}=\operatorname{im} \boldsymbol{g}^{l} & \Leftrightarrow \operatorname{dimim} \boldsymbol{g}^{l+1}=\operatorname{dimim} \boldsymbol{g}^{l} \\
& \Leftrightarrow \operatorname{dim} \operatorname{ker} \boldsymbol{g}^{l+1}=\operatorname{dim} \operatorname{ker} \boldsymbol{g}^{l} \\
& \Leftrightarrow \operatorname{ker} \boldsymbol{g}^{l+1}=\operatorname{ker} \boldsymbol{g}^{l}
\end{aligned}
$$

$$
\begin{array}{cl}
\cap & \| \\
\operatorname{ker} \mathbf{g}^{l+1} \subset & V \\
\mathbf{g}^{l+1} & \cup \\
\operatorname{im} \mathbf{g}^{l+1}
\end{array}
$$

whence $\left.g\right|_{\mathrm{im} \boldsymbol{g}^{l}}: \operatorname{im} \boldsymbol{g}^{l} \rightarrow \operatorname{im} \boldsymbol{g}^{l+1}$ is an isomorphism.
5.: Assuming $M_{\boldsymbol{g} \mid U}(t)=t^{d-1}$ resp. $\quad\left(\left.\boldsymbol{g}\right|_{U}\right)^{d-1}=\mathbf{0}$ would imply $\operatorname{ker} \boldsymbol{g}^{d} \subset \operatorname{ker} \boldsymbol{g}^{d-1}$ contrary to the minimal character of d.
6.: For $v \in U \cap W$ we have $\boldsymbol{g}^{d}(\boldsymbol{v})=\mathbf{0}$ and a $\boldsymbol{w} \in V$ with $\boldsymbol{g}^{d}(\boldsymbol{w})=\boldsymbol{v}$ whence $\boldsymbol{g}^{2 d}(\boldsymbol{w})=\mathbf{0}$, i.e. $w \in \operatorname{ker} \boldsymbol{g}^{2 d}=\operatorname{ker} \boldsymbol{g}^{d}$ such that $\mathbf{0}=\boldsymbol{g}^{d}(\boldsymbol{w})=\boldsymbol{v}$. Hence we conclude that $X=U \oplus V$. Owing to $\operatorname{ker} \boldsymbol{g}^{i-1} \mp \operatorname{ker} \boldsymbol{g}^{i}$ whence $\operatorname{dim} \operatorname{ker} \boldsymbol{g}^{i-1}<\operatorname{dim} \operatorname{ker} \boldsymbol{g}^{i}$ for $1 \leq i \leq d$ we have $\operatorname{dim} U \geq d$. With $r=\mu\left(P_{\boldsymbol{g}} ; 0\right)$ we have $t^{r} \cdot Q(t)=P_{\boldsymbol{g}}(t)=P_{\boldsymbol{g}_{U}}(t) \cdot P_{\left.\boldsymbol{g}\right|_{V}}(t)$ for some polynomial Q with $Q(0) \neq 0$. By 5.5.3 we have $P_{g_{U}}(t)= \pm t^{m}$ with $m=\operatorname{dim} U$ whence $\mu\left(P_{\boldsymbol{g}} ; 0\right)=r=m=\operatorname{dim} U$ since for the characteristic polynomial of the isomorphism $\left.\boldsymbol{g}\right|_{V}$ holds $P_{\left.\boldsymbol{g}\right|_{V}}(0) \neq 0$.

5.7 Generalized eigenspaces

For every $\boldsymbol{f} \in \operatorname{End}(X)$ with $\operatorname{dim} X=n \in \mathbb{N}$ and characteristic polynomial $P_{\boldsymbol{f}}(t)=\prod_{j=1}^{k}\left(\lambda_{j}-t\right)^{r_{j}}$ with $\sum_{j=1}^{k} r_{j}=n$ there exists a decomposition into generalized eigenspaces (Haupträume) $U_{j}=$ $\operatorname{Hau}\left(\boldsymbol{f} ; \lambda_{i}\right)=\left\langle\mathcal{B}_{j}\right\rangle$ with bases \mathcal{B}_{j} for $1 \leq j \leq k$ such that

1. $\boldsymbol{f}\left[U_{j}\right] \subset U_{j}$ and $\operatorname{dim} U_{j}=r_{j}$
2. $X=U_{1} \oplus \ldots \oplus U_{k}$
3. $M_{\mathcal{B}}^{\mathcal{B}}(\boldsymbol{f})=\left(\begin{array}{ccc}\lambda_{1} E_{r_{1}}+N_{1} & & 0 \\ & \ddots & \\ 0 & & \lambda_{k} E_{r_{k}}+N_{k}\end{array}\right)$ with nilpotent matrices $N_{j} \in \mathrm{M}\left(r_{j} ; \mathbb{C}\right)$.

Proof by induction over the number k of eigenvalues: For $\boldsymbol{g}=\boldsymbol{f}-\lambda_{1}$ id we have $P_{\boldsymbol{g}}\left(t-\lambda_{1}\right)=P_{\boldsymbol{f}}(t)$ whence $r_{1}=\mu\left(P_{\boldsymbol{g}} ; 0\right)=\mu\left(P_{\boldsymbol{f}} ; \lambda_{1}\right)$ such that Fitting's lemma 5.6 yields $X=U_{1} \oplus W$ with $\boldsymbol{g}\left[U_{1}\right] \subset U_{1}$ resp. $\boldsymbol{f}\left[U_{1}\right] \subset U_{1}$ and $\boldsymbol{g}[W] \subset W$ resp. $\boldsymbol{f}[W] \subset W$. The representing matrices have the form
$M_{\mathcal{B}}^{\mathcal{B}}(\boldsymbol{f})=\left(\begin{array}{cc}N_{1} & 0 \\ 0 & C\end{array}\right)$ with $N_{1}=\left(\begin{array}{ccc}0 & & * \\ \vdots & \ddots & \\ 0 & \cdots & 0\end{array}\right) \in M\left(r_{1} ; \mathbb{C}\right)$ and $M_{\mathcal{B}}^{\mathcal{B}}\left(\left.\boldsymbol{g}\right|_{W}\right)=C \in G L\left(n-r_{1} ; \mathbb{C}\right)$ resp.
$M_{\mathcal{B}}^{\mathcal{B}}(\boldsymbol{f})=\left(\begin{array}{cc}\lambda_{1} E_{r_{1}}+N_{1} & 0 \\ 0 & D\end{array}\right)$ with $M_{\mathcal{B}}^{\mathcal{B}}\left(\left.\boldsymbol{f}\right|_{W}\right)=D \in G L\left(n-r_{1} ; \mathbb{C}\right)$.
The induction hypothesis then applies to the isomorphism $\left.\boldsymbol{f}\right|_{W}$ with the characteristic polynom $P_{\left.f\right|_{W}}(t)=\prod_{j=2}^{k}\left(\lambda_{j}-t\right)^{r_{j}}$ which proves the theorem.

5.8 The Jordan decomposition

For every nilpotent endomorphism $\boldsymbol{g} \in \operatorname{End}(X)$ with $\operatorname{dim} X=r \in \mathbb{N}$ and $d=\min \left\{l \in \mathbb{N}: \boldsymbol{g}^{l}=\mathbf{0}\right\}$ there exist uniquely determined numbers $s_{j} \in \mathbb{N}$ such that $\sum_{j=1}^{d} j \cdot s_{j}=r$ and a basis \mathcal{B} of X such that

$$
M_{\mathcal{B}}^{\mathcal{B}}(\boldsymbol{g})=\left(\begin{array}{ccccccc}
J_{d} & & & & & & 0 \\
& \ddots & & & & & \\
& & J_{d} & & & & \\
& & & \ddots & & & \\
& & & & J_{1} & & \\
0 & & & & & \ddots & \\
0 & & & & & J_{1}
\end{array}\right)
$$

with the Jordan matrices $J_{j}=\left(\begin{array}{cccc}0 & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & & 0\end{array}\right) \in M(j ; \mathbb{R})$ occurring s_{j} times for $1 \leq j \leq d$.
Proof: Consider the chain $\{0\}=U_{0} \subsetneq U_{1} \subsetneq \ldots \subsetneq U_{d}=X$ for $U_{j}=\operatorname{ker} \boldsymbol{g}^{j}$ with $\boldsymbol{g}^{-1}\left[U_{j-1}\right]=U_{j}$ and in particular $\boldsymbol{g}\left[U_{j}\right] \subset U_{j-1}$. Since for every vector subspace W with $W \cap U_{j}=\{\mathbf{0}\}$ the restriction $\left.\boldsymbol{g}\right|_{W}$ is injective for every $1 \leq j \leq d$ there is a vector subspace W_{j} such that $U_{j}=U_{j-1} \oplus W_{j}$ with $\boldsymbol{g}\left[W_{j}\right] \subset U_{j-1}$ and $\boldsymbol{g}\left[W_{j}\right] \subset U_{j-2}=\emptyset$. Hence we obtain a decomposition according to the following diagram:

In order to provide the corresponding bases we complete each U_{j-1} with some W_{j} such that $U_{j}=$ $U_{j-1} \oplus W_{j}$ and making use of the basis of the previous completion by $\boldsymbol{g}\left[W_{j+1}\right] \subset W_{j}$:

$$
\begin{array}{cccccccc}
W_{d} & = & \left\langle\boldsymbol{w}_{1}^{(d)}\right. & , \ldots, & \left.\boldsymbol{w}_{s_{d}}^{(d)}\right\rangle \\
W_{d-1} & = & \left\langle\boldsymbol{g}\left(\boldsymbol{w}_{1}^{(d)}\right)\right. & , \ldots, & \boldsymbol{g}\left(\boldsymbol{w}_{s_{d}}^{(d)}\right) & , & \boldsymbol{w}_{1}^{(d-1)} & , \ldots, \\
\vdots & \vdots & & \vdots & \vdots & \left.\boldsymbol{w}_{s_{d-1}}^{(d-1)}\right\rangle \\
W_{1} & = & \left\langle\boldsymbol{g}^{d-1}\left(\boldsymbol{w}_{1}^{(d)}\right)\right. & , \ldots, & \boldsymbol{g}^{d-1}\left(\boldsymbol{w}_{s_{d-1}}^{(d)}\right) & , & \boldsymbol{g}^{d-2}\left(\boldsymbol{w}_{1}^{(d-1)}\right) & , \ldots, \\
\boldsymbol{g}^{d-2}\left(\boldsymbol{w}_{s_{d-1}}^{(d-1)}\right) & , \ldots, & \boldsymbol{w}_{1}^{(1)} & , \ldots, & \left.\boldsymbol{w}_{s_{1}}^{(1)}\right\rangle
\end{array}
$$

with

$$
W_{1}=U_{1}=\operatorname{ker} \boldsymbol{g}
$$

The matrix $M_{\mathcal{B}}^{\mathcal{B}}(\boldsymbol{g})$ obtains the asserted form if the basis vectors in the above pattern are taken from each column upwards starting on the left column with $\boldsymbol{g}^{d-1}\left(\boldsymbol{w}_{1}^{(d)}\right)$, moving upwards to $\boldsymbol{w}_{1}^{(d)}$ then
working up the the next column starting with $\boldsymbol{g}^{d-1}\left(\boldsymbol{w}_{2}^{(d)}\right)$ up to $\boldsymbol{w}_{2}^{(d)}$ and so on until we close with s_{1} null vectors for $\boldsymbol{w}_{1}^{(1)}, \ldots, \boldsymbol{w}_{s_{1}}^{(1)}$.

Example:

As before we restrict the exposition to the matrix level. We want to separate as far as possible the components of $\boldsymbol{f}: \mathbb{R}^{5} \rightarrow \mathbb{R}^{5}$ defined by

$$
\mathcal{M}(\boldsymbol{f})=A=\left(\begin{array}{ccccc}
2 & 1 & 1 & 0 & -2 \\
1 & 1 & 1 & 0 & -1 \\
1 & 0 & 2 & 0 & -1 \\
1 & 0 & 1 & 2 & -2 \\
1 & 0 & 1 & 0 & 0
\end{array}\right)
$$

with the characteristic polynomial

$$
P_{A}(t)=-(t-2)^{2} \cdot(t-1)^{3}
$$

Its eigenvalues are $\lambda_{1}=2$ with mulitplicity $r_{1}=2$ and $\lambda_{2}=1$ wit $r_{2}=3$. For the sake of simplification in the following calculations we identify matrices with maps. The map defined by

$$
A-\lambda_{1} E_{5}=\left(\begin{array}{ccccc}
0 & 1 & 1 & 0 & -2 \\
1 & -1 & 1 & 0 & -1 \\
1 & 0 & 0 & 0 & -1 \\
1 & 0 & 1 & 0 & -2 \\
1 & 0 & 1 & 0 & -2
\end{array}\right) \cong\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

provides the eigenspace

$$
V_{1}=\operatorname{ker}\left(A-\lambda_{1} E_{5}\right)=\operatorname{span}\left(\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
1
\end{array}\right)\right) .
$$

Since $\operatorname{dim} V_{1}=2=r_{2}$ the restriction $\left.\boldsymbol{f}\right|_{V_{1}}$ can be diagonalized:

$$
\text { With } S^{-1}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right) \text { we obtain } B=S * A * S^{-1}=\left(\begin{array}{ccccc}
2 & 0 & 1 & 1 & -2 \\
0 & 2 & 1 & 0 & -2 \\
0 & 0 & 1 & -1 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 & 2
\end{array}\right)
$$

The second eigenspace $V_{2}=\operatorname{Ker}\left(B-\lambda_{2} E_{5}\right)$ is determined by

$$
B-\lambda_{2} E_{5}=\left(\begin{array}{ccccc}
1 & 0 & 1 & 1 & -2 \\
0 & 1 & 1 & 0 & -2 \\
0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & -1 & 1
\end{array}\right) \cong\left(\begin{array}{ccccc}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

with dimker $\left(B-\lambda_{2} E_{5}\right)=1<3=r_{2}$ such that it is not diagonizable. By

$$
\operatorname{ker}\left(B-\lambda_{2} E_{5}\right)=\operatorname{span}\left(\left(\begin{array}{c}
1 \\
1 \\
-1 \\
0 \\
0
\end{array}\right)\right) \text { and } T^{-1}=\left(\begin{array}{ccccc}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

we obtain

$$
C=T * B * T^{-1}=\left(\begin{array}{ccccc}
2 & 0 & 0 & 0 & -1 \\
0 & 2 & 0 & -1 & -1 \\
0 & 0 & 1 & 1 & -1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 & 2
\end{array}\right) \text { with } C-\lambda_{2} E_{5}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 & -1 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & -1 & 1
\end{array}\right)
$$

whence

$$
\operatorname{ker}\left(C-\lambda_{2} E_{5}\right)=\operatorname{span}\left(\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
1
\end{array}\right)\right) \text { and } U^{-1}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

and the trigonalized form

$$
D=U * C * U^{-1}=\left(\begin{array}{ccccc}
2 & 0 & 0 & -1 & -1 \\
0 & 2 & 0 & -2 & -1 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & -1 & 2
\end{array}\right)
$$

For the Jordan decomposition we consider the kernels $U_{i}^{l}:=\operatorname{ker} \boldsymbol{g}_{i}^{l}$ of the powers of $\boldsymbol{g}_{i}=\mathrm{f}-\lambda_{i} \mathrm{id}$. Concerning V_{1} we have

$$
\left(A-\lambda_{1} E_{5}\right)^{2}=\left(\begin{array}{ccccc}
0 & -1 & -1 & 0 & 2 \\
-1 & 2 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 \\
-1 & 1 & -1 & 0 & 1 \\
-1 & 1 & -1 & 0 & 1
\end{array}\right) \cong\left(\begin{array}{ccccc}
-1 & 1 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 & -2 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

with

$$
\operatorname{ker}\left(\left(A-\lambda_{1} E_{5}\right)^{2}\right)=\left\langle\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
1
\end{array}\right)\right\rangle
$$

$$
\text { which by } S^{-1}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right) \text { leads to } B=S * A * S^{-1}=\left(\begin{array}{ccccc}
2 & 0 & 1 & 1 & -2 \\
0 & 2 & 1 & 0 & -2 \\
0 & 0 & 1 & -1 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 & 2
\end{array}\right)
$$

as before. Concerning $V_{2}=\operatorname{Ker}\left(B-\lambda_{2} E_{5}\right)$ we observe

$$
B-\lambda_{2} E_{5}=\left(\begin{array}{ccccc}
1 & 0 & 1 & 1 & -2 \\
0 & 1 & 1 & 0 & -2 \\
0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & -1 & 1
\end{array}\right) \cong\left(\begin{array}{ccccc}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

with dimker $\left(B-\lambda_{2} E_{5}\right)=1<3=r_{2}$ such that B is not diagonizable. But its power

$$
\left(B-\lambda_{2} E_{5}\right)^{2} \cong\left(\begin{array}{ccccc}
1 & 0 & 1 & 1 & -2 \\
0 & 1 & 1 & 1 & -3 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

has dimker $\left(B-\lambda_{2} E_{5}\right)^{2}=3=r_{2}$ such that

$$
\operatorname{ker}\left(B-\lambda_{2} E_{5}\right)^{2}=\left\langle\left(\begin{array}{c}
1 \\
1 \\
-1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
1 \\
0 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{c}
2 \\
3 \\
0 \\
0 \\
1
\end{array}\right)\right\rangle \text { and } T^{-1}=\left(\begin{array}{ccccc}
1 & 0 & 1 & 1 & 2 \\
0 & 1 & 1 & 1 & 3 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

yields the eigen decomposition resp. separation of eigenspaces by

$$
C=T * B * T^{-1}=\left(\begin{array}{ccccc}
2 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & -1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & 2
\end{array}\right)
$$

The Jordan decomposition is attained by a further transformation of the mixed component

$$
\operatorname{ker}\left(\left.C\right|_{\operatorname{Eig}\left(C, \lambda_{2}\right)}-\lambda_{2} E_{3}\right)=\operatorname{ker}\left(\begin{array}{ccc}
0 & -1 & -1 \\
0 & -1 & -1 \\
0 & 1 & 1
\end{array}\right)=\left\langle\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)\right\rangle=\operatorname{Eig}\left(C, \lambda_{2}\right)
$$

such that

$$
U^{-1}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 & 1
\end{array}\right) \text { yields } D=U * C * U^{-1}=\left(\begin{array}{ccccc}
2 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

In a final step we reduce the nilpotent endomorphism represented by $M(\boldsymbol{g})=\left(\begin{array}{ccc}0 & 0 & -1 \\ 0 & 0 & -1 \\ 0 & 0 & 0\end{array}\right)$ with $\boldsymbol{g}^{2}=0$ into a Jordan matrix. With $d=2$ we have

$$
\mathbb{C}^{3}=U_{2}=U_{1} \oplus W_{2}=\left\langle\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right\rangle \oplus\left\langle\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\rangle=\left\langle\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\rangle \oplus\left\langle\left(\begin{array}{c}
-1 \\
-1 \\
0
\end{array}\right)\right\rangle \oplus\left\langle\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\rangle
$$

with

$$
\boldsymbol{w}_{1}^{(2)}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \boldsymbol{g}\left(\boldsymbol{w}_{1}^{(2)}\right)=\left(\begin{array}{c}
-1 \\
-1 \\
0
\end{array}\right) \text { and } \boldsymbol{w}_{1}^{(1)}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

such that

$$
V^{-1}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 1 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right) \text { whence finally } E=V * D * V^{-1}=\left(\begin{array}{ccccc}
2 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

6 Unitary and euclidean vector spaces

6.1 Sesquilinear forms

A map $\rangle: X \times X \rightarrow \mathbb{C}$ on a complex vector space X is

1. sesquilinear iff for $\boldsymbol{x} ; \boldsymbol{y} ; \boldsymbol{z} \in X$ and $\alpha ; \beta \in \mathbb{C}$ holds
$\langle\alpha \boldsymbol{x}+\beta \boldsymbol{y} ; \boldsymbol{z}\rangle=\alpha\langle\boldsymbol{x} ; \boldsymbol{z}\rangle+\beta\langle\mathbf{y} ; \boldsymbol{z}\rangle$ (linearity in the first component)
$\langle\boldsymbol{x} ; \alpha \mathbf{y}+\beta \boldsymbol{z}\rangle=\bar{\alpha}\langle\boldsymbol{x} ; \boldsymbol{y}\rangle+\bar{\beta}\langle\boldsymbol{x} ; \boldsymbol{z}\rangle$ (conjugate linearity in the second component)
2. hermitian iff for $\boldsymbol{x} ; \boldsymbol{y} \in X$ holds $\langle\boldsymbol{x} ; \boldsymbol{y}\rangle=\overline{\langle\boldsymbol{y} ; \boldsymbol{x}\rangle}$ (conjugate symmetry)
3. positive definite iff for $\boldsymbol{x} \in X \backslash\{\mathbf{0}\}$ holds $\langle\boldsymbol{x} ; \boldsymbol{x}\rangle>0$.

With 1. and 2. the map s is a scalar product and with all three properties it is an inner product. Note that 2. implies $\langle\boldsymbol{x} ; \boldsymbol{x}\rangle \in \mathbb{R}$. According to $[6$, th. 1.3] every inner product by $\|\boldsymbol{x}\|=\sqrt{\langle\boldsymbol{x} ; \boldsymbol{x}\rangle}$ generates a norm $\left\|\|: X \rightarrow \mathbb{R}_{0}^{+}\right.$which by $\left.d(\boldsymbol{x} ; \boldsymbol{y})=\right\| \boldsymbol{x}-\boldsymbol{y} \|$ produces a metric $d: X \times X \rightarrow \mathbb{R}_{0}^{+}$.

A unitary space resp. euclidean is a pair $(X ;\langle \rangle)$ of a complex resp. real vector space X and a scalar product. In the case of a real vector space the properties 6.1.1 resp. 6.1.2 become bilinearity resp. symmetry. According to [6, th. 14.8] a space ($X ;\langle \rangle$) with an inner product can be embedded into a complete Hilbert space.

6.2 Bases

A scalar product $\left\rangle: X^{2} \rightarrow \mathbb{C}\right.$ is determined by its values $\left\langle\boldsymbol{a}_{i} ; \boldsymbol{a}_{j}\right\rangle_{i ; j \in I}$ on a basis $\mathcal{A}=\left(\boldsymbol{a}_{i}\right)_{i \in I}$ of X. In the finite dimensional case with $\operatorname{dim} X=n \in \mathbb{N}$ it is represented by a hermitian covariant matrix $S_{\mathcal{A}}=s_{\mathcal{A} i j}=\left\langle\boldsymbol{a}_{i} ; \boldsymbol{a}_{j}\right\rangle$ with $\langle\boldsymbol{x} ; \boldsymbol{y}\rangle=x_{\mathcal{A}}^{i} s_{\mathcal{A} i j} \bar{y}_{\mathcal{A}}^{j}={ }^{T} \boldsymbol{x}_{\mathcal{A}} * S_{\mathcal{A}} * \overline{\boldsymbol{y}}_{\mathcal{A}}$ for $\boldsymbol{x}=x_{\mathcal{A}}^{i} \boldsymbol{a}_{i}$ resp. $\boldsymbol{y}=y_{\mathcal{A}}^{j} \boldsymbol{a}_{j}$. Owing to 6.1 .2 a quadratic matrix $S \in \mathrm{M}(n ; \mathbb{C})$ is hermitian iff ${ }^{T} S=\bar{S}$ and it is positive definite iff ${ }^{T} \boldsymbol{x} * S * \overline{\boldsymbol{x}} \in \mathbb{R}_{0}^{+}$for every $\boldsymbol{x} \in \mathbb{C}^{n}$.

6.3 Coordinate transformation

According to 3.10 the transformation from the basis $\mathcal{A}=\left(\boldsymbol{a}_{i}\right)_{1 \leq i \leq n}$ to another basis $\mathcal{B}=\left(\boldsymbol{b}_{j}\right)_{1 \leq j \leq n}$ with $\boldsymbol{b}_{j}=t_{j}^{i} \boldsymbol{a}_{i}$ is determined by the transformation matrix $T_{\mathcal{A}}^{\mathcal{B}}=t_{j}^{i}$ such that the coordinate vectors $\boldsymbol{x}_{\mathcal{A}}=x_{\mathcal{A}}^{i} \boldsymbol{e}_{i}$ resp. $\boldsymbol{x}_{\mathcal{B}}=x_{\mathcal{B}}^{j} \boldsymbol{e}_{j}$ of every $\boldsymbol{x}=x_{\mathcal{B}}^{k} \boldsymbol{b}_{k}=x_{\mathcal{A}}^{i} \boldsymbol{a}_{i}=x_{\mathcal{B}}^{k} t_{k}^{i} \boldsymbol{a}_{i} \in X$ are transformed by $\boldsymbol{x}_{\mathcal{A}}=T_{\mathcal{A}}^{\mathcal{B}} * \boldsymbol{x}_{\mathcal{B}}$. Consequently we have

$$
\begin{array}{rll}
\langle\boldsymbol{x} ; \boldsymbol{y}\rangle & =x_{\mathcal{A}}^{i} s_{\mathcal{A} i j} \bar{y}_{\mathcal{A}}^{j} & ={ }^{T} \boldsymbol{x}_{\mathcal{A}} * S_{\mathcal{A}} * \overline{\boldsymbol{y}_{\mathcal{A}}} \\
& =x_{\mathcal{B}}^{k} t_{k}^{i} s_{\mathcal{A} i j} \bar{y}_{\mathcal{B}}^{l} \bar{t}_{l}^{j} \quad & ={ }^{T}\left(T_{\mathcal{A}}^{\mathcal{B}} * \boldsymbol{x}_{\mathcal{B}}\right) * S_{\mathcal{A}} * \overline{T_{\mathcal{A}}^{\mathcal{B}} * \boldsymbol{y}_{\mathcal{B}}} \\
& =x_{\mathcal{B}}^{k} t_{k}^{i} s_{\mathcal{A} i j} \bar{t}_{l}^{j} \bar{y}_{\mathcal{B}}^{l} \quad={ }^{T} \boldsymbol{x}_{\mathcal{B}} *{ }^{T} T_{\mathcal{A}}^{\mathcal{B}} * S_{\mathcal{A}} * \overline{T_{\mathcal{A}}^{\mathcal{B}}} * \overline{\boldsymbol{y}_{\mathcal{B}}} \\
& =x_{\mathcal{B}}^{k} t_{k}^{i} s_{\mathcal{B} k l} \bar{t}_{l}^{j} \bar{y}_{\mathcal{B}}^{l} & ={ }^{T} \boldsymbol{x}_{\mathcal{B}} * S_{\mathcal{B}} * \overline{\boldsymbol{y}_{\mathcal{B}}}
\end{array}
$$

with

$$
s_{\mathcal{B} k l}=t_{k}^{i} s_{\mathcal{A} i j} t_{l}^{j}
$$

resp.

$$
S_{\mathcal{B}}={ }^{T} T_{\mathcal{A}}^{\mathcal{B}} * S_{\mathcal{A}} * \overline{T_{\mathcal{A}}^{\mathcal{B}}}
$$

which proves the covariant character resp. the type $(0 ; 2)$ of the representing tensor S.

6.4 The Gram-Schmidt-Orthonormalization

Two vectors $\boldsymbol{u} ; \boldsymbol{v} \in X$ on a unitary vector space $(X,\langle \rangle)$ are orthogonal iff $\langle\boldsymbol{u}, \boldsymbol{v}\rangle=0$ and they are normal iff $\|\boldsymbol{u}\|=\|\boldsymbol{v}\|=1$. Every finite dimensional vector space X has an orthonormal basis since according to 3.3 for any given basis $\left(\boldsymbol{a}_{i}\right)_{1 \leq i \leq n}$ the basis $\left(\boldsymbol{b}_{i}\right)_{1 \leq i \leq n}$ inductively defined by

$$
\boldsymbol{b}_{1}=\boldsymbol{a}_{1} \text { and } \boldsymbol{b}_{i}=\boldsymbol{a}_{i}-\sum_{k=1}^{i-1} \frac{\left\langle\boldsymbol{a}_{i}, \boldsymbol{b}_{k}\right\rangle}{\left\langle\boldsymbol{a}_{k}, \boldsymbol{b}_{k}\right\rangle} \boldsymbol{b}_{k} \text { for } 2 \leq i \leq n
$$

is orthogonal and the basis $\left(\boldsymbol{q}_{i}\right)_{1 \leq i \leq n}$ with $\boldsymbol{q}_{i}=\frac{\boldsymbol{b}_{i}}{\left\|\boldsymbol{b}_{i}\right\|}$ is orthonormal with $\left\langle\boldsymbol{q}_{i} ; \boldsymbol{q}_{j}\right\rangle=\delta_{i j}$ and $\left\langle\boldsymbol{q}_{i} ; \boldsymbol{a}_{i}\right\rangle=\left\langle\boldsymbol{q}_{i} ; \boldsymbol{b}_{i}\right\rangle=\left\|\boldsymbol{b}_{i}\right\|$.
Obviously for every vector subspace $V \subset X$ its orthogonal complement $V^{\perp}=\{\boldsymbol{u} \in X:\langle\boldsymbol{u}, \boldsymbol{v}\rangle=0 \forall \boldsymbol{v} \in V\}$ is a vector subspace. Due to the above desribed Gram-Schmidt orthonormalisation for every vector subspace $V \subset X$ we have an orthogonal decomposition $X=V \oplus V^{\perp}$ with

$$
\operatorname{dim} X=\operatorname{dim} V+\operatorname{dim} V^{\perp}
$$

Also every invertible matrix $A \in G L(n ; \mathbb{C})$ has a $Q R$-decomposition

$$
A=Q * R
$$

into a unitary matrix $Q \in U(n ; \mathbb{C})$ with $Q^{-1}={ }^{T} \bar{Q}$ (cf. 6.6.1) and an upper triangular matrix $R \in$ $G L(n ; \mathbb{C})$ since the Gram-Schmidt-orthonormalization of the column vectors of the given matrix $A=\left(\boldsymbol{a}_{1} ; \ldots ; \boldsymbol{a}_{n}\right)$ produces orthonormal column vectors of a unitary $Q=\left(\boldsymbol{q}_{1} ; \ldots ; \boldsymbol{q}_{n}\right) \in G L(n ; \mathbb{C})$ with $\boldsymbol{q}_{j}=\sum_{i=1}^{j} s_{j}^{i} \boldsymbol{a}_{i}$ such that $S=\left(s_{j}^{i}\right)_{1 \leq i ; j \leq n} \in G L(n ; \mathbb{C})$ with $s_{j}^{i}=0 \Leftrightarrow i>j$ is an upper triangular matrix with $q_{j}^{k}=a_{i}^{k} s_{j}^{i}$. Solving the Gram-Schmidt equations for the original basis $\left(\boldsymbol{a}_{i}\right)_{1 \leq i \leq n}$ yields $\boldsymbol{a}_{i}=\sum_{j=1}^{i}\left\langle\boldsymbol{q}_{j} ; \boldsymbol{a}_{i}\right\rangle \boldsymbol{q}_{j}$ whence $A=Q * R$ with the inverse $R=S^{-1}=r_{i}^{j}=\left\langle\boldsymbol{q}_{j} ; \boldsymbol{a}_{i}\right\rangle_{1 \leq j \leq i \leq n} \in G L(n ; \mathbb{C})$ and $r_{i}^{j}=0 \Leftrightarrow j>i$, i.e. R is again an upper triangular matrix.

6.5 Geometric formulae

For any $\boldsymbol{u} ; \boldsymbol{v} ; \boldsymbol{u}_{i} \in X$ on a unitary vector space $(X,\langle \rangle)$ resp. real vectors $\boldsymbol{x}_{i} \in \mathbb{R}^{n}$ and $1 \leq i \leq n$ we have

1. The Cauchy-Schwarz inequality: $|\langle\boldsymbol{u}, \boldsymbol{v}\rangle| \leq\|\boldsymbol{u}\| \cdot\|\boldsymbol{v}\|$
2. The Triangle inequality I: $\|\boldsymbol{u}+\boldsymbol{v}\| \leq\|\boldsymbol{u}\|+\|\boldsymbol{v}\|$ with equality if \mathbf{x} and \mathbf{y} are orthogonal. (Pythagoras equality)
3. The Triangle inequality II: $|\|\boldsymbol{u}\|-\|\boldsymbol{v}\|| \leq\|\boldsymbol{u}-\boldsymbol{v}\|$
4. The Parallelogram equality: $\|\boldsymbol{u}+\boldsymbol{v}\|+\|\boldsymbol{u}-\boldsymbol{v}\|=2\|\boldsymbol{u}\|+2\|\boldsymbol{v}\|$
5. The Polarisation equality: $\langle\boldsymbol{u}, \mathbf{v}\rangle=\frac{1}{4}\left(\|\boldsymbol{u}+\boldsymbol{v}\|^{2}-\|\boldsymbol{u}-\boldsymbol{v}\|^{2}+i\|\boldsymbol{u}+i \boldsymbol{v}\|^{2}-i\|\boldsymbol{u}-i \boldsymbol{v}\|^{2}\right)$
6. Gram's determinant: $\lambda^{n}\left(\left\{\sum_{i=1}^{n} t_{i} \boldsymbol{x}_{i}: 0 \leq t_{i} \leq 1 ; 1 \leq i \leq n\right\}\right)=\operatorname{det}\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{n}\right)=\sqrt{\operatorname{det}\left(\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle_{1 \leq i, j \leq n}\right)}$
7. Hadamard's inequality: $\operatorname{det}\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{n}\right) \leq \prod_{i=1}^{n}\left\|\boldsymbol{x}_{i}\right\|$ with equality iff the \boldsymbol{x}_{i} are orthogonal with $\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle=0$ for $1 \leq i \neq j \leq n$.

Proof:

1. For all $\boldsymbol{u} ; \boldsymbol{v} \in X$ holds

$$
\begin{aligned}
0 & \leq\langle\langle\boldsymbol{v}, \boldsymbol{v}\rangle \boldsymbol{u}-\langle\boldsymbol{u}, \boldsymbol{v}\rangle \boldsymbol{v},\langle\boldsymbol{v}, \boldsymbol{v}\rangle \boldsymbol{u}-\langle\boldsymbol{u}, \boldsymbol{v}\rangle \boldsymbol{v}\rangle \\
& =\langle\boldsymbol{v}, \boldsymbol{v}\rangle^{2}\langle\boldsymbol{u}, \boldsymbol{u}\rangle-\langle\boldsymbol{u}, \boldsymbol{v}\rangle\langle\boldsymbol{v}, \boldsymbol{v}\rangle\langle\boldsymbol{v}, \boldsymbol{u}\rangle-\langle\boldsymbol{v}, \boldsymbol{v}\rangle\langle\boldsymbol{u}, \boldsymbol{v}\rangle\langle\boldsymbol{u}, \boldsymbol{v}\rangle+\langle\boldsymbol{u}, \boldsymbol{v}\rangle^{2}\langle\boldsymbol{v}, \boldsymbol{v}\rangle \\
& =\langle\boldsymbol{v}, \boldsymbol{v}\rangle(\|\boldsymbol{u}\| \cdot\|\boldsymbol{v}\|-\langle\boldsymbol{u}, \boldsymbol{v}\rangle \overline{\langle\boldsymbol{u}, \boldsymbol{v}\rangle}) \\
& =\langle\boldsymbol{v}, \boldsymbol{v}\rangle(\|\boldsymbol{u}\| \cdot\|\boldsymbol{v}\|-|\langle\boldsymbol{u}, \boldsymbol{v}\rangle|) .
\end{aligned}
$$

2. we have

$$
\begin{aligned}
\|\boldsymbol{u}+\mathbf{v}\|^{2} & =\langle\boldsymbol{u}+\boldsymbol{v} ; \boldsymbol{u}+\boldsymbol{v}\rangle \\
& =\langle\boldsymbol{u}, \boldsymbol{u}\rangle+\langle\boldsymbol{u}, \boldsymbol{v}\rangle+\overline{\langle\boldsymbol{u}, \boldsymbol{v}\rangle}+\langle\boldsymbol{v}, \boldsymbol{v}\rangle \\
& =\|\boldsymbol{u}\|^{2}+2 \operatorname{Re}\langle\boldsymbol{u}, \boldsymbol{v}\rangle+\|\boldsymbol{v}\|^{2} \\
& \leq\|\boldsymbol{u}\|^{2}+2|\langle\boldsymbol{u}, \boldsymbol{v}\rangle|+\|\boldsymbol{v}\|^{2} \\
& \leq\|\boldsymbol{u}\|^{2}+2\|\boldsymbol{u}\| \cdot\|\boldsymbol{v}\|+\|\boldsymbol{v}\|^{2} \\
& \leq(\|\boldsymbol{u}\|+\|\boldsymbol{v}\|)^{2} .
\end{aligned}
$$

3. Follows from 2. by

$$
\begin{aligned}
\|\boldsymbol{u}\|-\|\boldsymbol{v}\| & =\|\boldsymbol{u}-\boldsymbol{v}+\boldsymbol{v}\|-\|\boldsymbol{v}\| \\
& \leq\|\boldsymbol{u}-\boldsymbol{v}\|+\boldsymbol{v}-\|\boldsymbol{v}\| \\
& =\|\boldsymbol{u}-\boldsymbol{v}\| \text { and vice versa. }
\end{aligned}
$$

4. obvious
5. obvious
6. according to $\left[4\right.$, p. 8.9.3] with the matrix $\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{n}\right)=x_{i}^{k}$ formed by the coordinate vectors in $\boldsymbol{x}_{i}=x_{i}^{k} \boldsymbol{e}_{k}$ we have

$$
\begin{aligned}
\operatorname{det}\left(\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle_{1 \leq i, j \leq n}\right) & =\operatorname{det}\left(\left(x_{i}^{k} x_{j}^{k}\right)_{1 \leq i, j \leq n}\right) \\
& =\operatorname{det}\left({ }^{T}\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{n}\right) \cdot\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{n}\right)\right) \\
& =\operatorname{det}^{T}\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{n}\right) \cdot \operatorname{det}\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{n}\right) \\
& =\left(\operatorname{det}\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{n}\right)\right)^{2} \\
& =\left(\lambda^{n}\left(\left\{\sum_{i=1}^{n} t_{i} \boldsymbol{x}_{i}: 0 \leq t_{i} \leq 1 ; 1 \leq i \leq n\right\}\right)\right)^{2}
\end{aligned}
$$

7. On account of the previous result it suffices to consider linearly independent $\left(\boldsymbol{x}_{i}\right)_{1 \leq i \leq n}$ such that the $Q R$-decomposition 6.4 applies with $A=\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{n}\right), Q=\left(\boldsymbol{q}_{1} ; \ldots ; \boldsymbol{q}_{n}\right) \in \bar{O}(n)$ and the upper triangular matrix $R=\left\langle\boldsymbol{q}_{j} ; \boldsymbol{x}_{i}\right\rangle_{1 \leq j \leq i \leq n} \in G L(n ; \mathbb{C})$ with $r_{i}^{j}=0 \Leftrightarrow j>i$ whence $\operatorname{det} A=\operatorname{det}(Q * R)=\operatorname{det} Q \cdot \operatorname{det} R$, i.e. $\operatorname{det}\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{n}\right)=1 \cdot \prod_{i=1}^{n}\left\langle\boldsymbol{q}_{i} ; \boldsymbol{x}_{i}\right\rangle=\prod_{i=1}^{n}\left\|\boldsymbol{b}_{i}\right\|$. The equality $A=Q * R$ also yields $\boldsymbol{a}_{i}=\sum_{j=1}^{i} r_{i}^{j} \boldsymbol{q}_{j}$, i.e. $\boldsymbol{x}_{i}=\sum_{j=1}^{i}\left\langle\boldsymbol{q}_{j} ; \boldsymbol{x}_{i}\right\rangle \boldsymbol{q}_{j}$ whence from $\left\langle\boldsymbol{q}_{j} ; \boldsymbol{q}_{i}\right\rangle=\delta_{j i}$ follows $\left\|\boldsymbol{x}_{i}\right\|^{2}=\left\|\sum_{j=1}^{i}\left\langle\boldsymbol{q}_{j} ; \boldsymbol{x}_{i}\right\rangle \boldsymbol{q}_{j}\right\|^{2}=\sum_{j=1}^{i}\left\langle\boldsymbol{q}_{j} ; \boldsymbol{x}_{i}\right\rangle^{2}\left\|\boldsymbol{q}_{j}\right\|^{2}=\sum_{j=1}^{i-1}\left\langle\boldsymbol{q}_{j} ; \boldsymbol{x}_{i}\right\rangle^{2} \cdot 1+\left\|\boldsymbol{b}_{i}\right\|^{2} \cdot 1$. Thus we conclude that $\left\|\boldsymbol{b}_{i}\right\| \leq\left\|\boldsymbol{x}_{i}\right\|$ and the assertion is proved.

6.6 Unitary and orthogonal endomorphisms

1. An endomorphism $\boldsymbol{f} \in \operatorname{End}(X)$ on a unitary vector space $(X ;\langle \rangle)$ is unitary iff $\langle\boldsymbol{f}(\boldsymbol{u}), \boldsymbol{f}(\mathbf{v})\rangle=$ $\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ for all $\boldsymbol{u}, \boldsymbol{v} \in X$. Correspondingly an invertible matrix $A \in G L(n ; \mathbb{C})$ is unitary iff $A^{-1}={ }^{T} \bar{A}$ and these matrices form the normal subgroup $U(n) \subset G L(n ; \mathbb{C})$. An invertible matrix $A=a_{j}^{i} \in G L(n ; \mathbb{C})$ is unitary iff $A *^{T} \bar{A}=E_{n}$, i.e. iff its column vectors $\left(\boldsymbol{a}_{j}\right)_{1 \leq j \leq n}$ resp. its row vectors $\left(\boldsymbol{a}^{i}\right)_{1 \leq i \leq n}$ are an orthonormal basis of $\left(\mathbb{C}^{n} ;\langle \rangle\right)$. In the case of the canonical scalar product $\langle\boldsymbol{x}, \boldsymbol{y}\rangle=x_{i} \bar{y}_{i}={ }^{T} \boldsymbol{x} * \overline{\boldsymbol{y}}$ for coordinate vectors $\boldsymbol{x}=x^{i} \boldsymbol{e}_{i}$ and $\boldsymbol{y}=y^{i} \boldsymbol{e}_{i}$ on the canonical basis $\mathcal{B}=\left(\boldsymbol{e}_{i}\right)_{1 \leq i \leq n}$ the two definitions coincide, i.e. $\boldsymbol{f} \in \operatorname{End}(X)$ is unitary iff $F=M_{\mathcal{B}}^{\mathcal{B}}(\boldsymbol{f})$ is unitary since

$$
\langle\boldsymbol{f}(\boldsymbol{x}), \boldsymbol{f}(\boldsymbol{y})\rangle={ }^{T}(F * \boldsymbol{x}) * \overline{F \boldsymbol{y}}={ }^{T} \boldsymbol{x} *^{T} F * \bar{F} * \boldsymbol{y}={ }^{T} \boldsymbol{x} * \overline{\boldsymbol{y}}=\langle\boldsymbol{x}, \boldsymbol{y}\rangle \Leftrightarrow^{T} F * \bar{F}=E_{n} .
$$

2. For unitary matrices $A \in \mathrm{U}(n)$ we have $1=\operatorname{det} A \cdot \operatorname{det} \bar{A}=\operatorname{det} A \cdot \overline{\operatorname{det} A}=|\operatorname{det} A|^{2}$ whence $|\operatorname{det} A|=1$. An invertible matrix $A \in G L(n ; \mathbb{R})$ is orthogonal iff $A^{-1}={ }^{T} A$ and these matrices form the normal subgroup $O(n) \subset G L(n ; \mathbb{C})$ with $\operatorname{det} A \in\{ \pm 1\}$ for $A \in \mathrm{O}(n)$. The normal subgroup $S L(n)=\{A \in \mathrm{O}(n): \operatorname{det} A=1\} \subset O(n)$ (special linear group) according to 4.5 preserves the orientation of the basis.
3. Every eigenvalue $\lambda \in \mathbb{C}$ of a unitary endomorphism $\mathbf{f}: X \rightarrow X$ has an absolute value of $|\lambda|=1$ and in particular $\bar{\lambda}=\frac{1}{\lambda}$ since for the corresponding eigenvector $\boldsymbol{v} \in X$ we have $\langle\boldsymbol{v} ; \boldsymbol{v}\rangle=\langle\boldsymbol{f}(\boldsymbol{v}) ; \boldsymbol{f}(\boldsymbol{v})\rangle=\langle\lambda \boldsymbol{v} ; \lambda \boldsymbol{v}\rangle=\lambda \bar{\lambda}\langle\boldsymbol{v} ; \boldsymbol{v}\rangle$ whence form $\langle\boldsymbol{v} ; \boldsymbol{v}\rangle \neq 0$ follows $|\lambda|^{2}=\lambda \bar{\lambda}=1$.
4. Eigenvectors \boldsymbol{v} resp. \boldsymbol{w} for different eigenvalues λ resp. μ of a unitary endomorphism \boldsymbol{f} : $X \rightarrow X$ are orthogonal to each other since $\langle\boldsymbol{v} ; \boldsymbol{w}\rangle=\langle\boldsymbol{f}(\boldsymbol{v}) ; \boldsymbol{f}(\boldsymbol{w})\rangle=\langle\lambda \boldsymbol{v} ; \mu \boldsymbol{w}\rangle=\lambda \bar{\mu}\langle\boldsymbol{v} ; \boldsymbol{w}\rangle$ whence form $\langle\boldsymbol{v} ; \boldsymbol{w}\rangle \neq 0$ follows $\lambda \cdot \frac{1}{\mu}=\lambda \bar{\mu}=1$, i.e. $\lambda=\mu$.

6.7 Decomposition of orthogonal endomorphisms

For every orthogonal endomorphism $\boldsymbol{f} \in S L(n)$ on an n-dimensional euclidean vector space X there is an orthonormal basis $\mathcal{B}=\left(\boldsymbol{u}_{i}\right)_{1 \leq i \leq k} \cup\left(\boldsymbol{v}_{i} ; \boldsymbol{v}_{i+1}\right)_{1 \leq i \leq l}$ with $k+2 l=n$ of \mathbb{R}^{n} such that $\boldsymbol{f}\left[\operatorname{span}\left\{\boldsymbol{u}_{i}\right\}\right]=\operatorname{span}\left\{\boldsymbol{u}_{i}\right\}$ for $i \leq k, \boldsymbol{f}\left[\operatorname{span}\left\{\boldsymbol{v}_{j} ; \boldsymbol{v}_{j+1}\right\}\right]=\operatorname{span}\left\{\boldsymbol{v}_{j} ; \boldsymbol{v}_{j+1}\right\}$ for $1 \leq j \leq l$ and

$$
M_{\mathcal{B}}^{\mathcal{B}}(\boldsymbol{f})=\left(\begin{array}{ccccccc}
\lambda_{1} & & & & & & \\
& \ddots & & & & & \\
& & \lambda_{k} & & & & \\
& & & \cos \alpha_{1} & -\sin \alpha_{1} & & \\
\sin \alpha_{1} & \cos \alpha_{1} & & & \\
& & & & & \ddots & \\
& & & & & & \cos \alpha_{l}
\end{array}-\sin \alpha_{l}\right)
$$

with $\lambda_{i} \in\{ \pm 1\}$ for $1 \leq i \leq k$ resp. $\left.\alpha_{j} \in\right] 0 ; 2 \pi[\backslash\{\pi\}$ for $1 \leq j \leq l$.
Proof: This almost diagonal separation is an improvement on the general decomposition of real endomorphisms presented in 5.4 and can be proved in a similar way by utilizing the Cayley-Hamilton theorem. In this case the invariance resp. separation of the two-dimensional subspaces extends to the whole function f instead of only the restriction $\left.f\right|_{W}$ to a subspace such that the representing matrix has zeros both below and above the diagonal.

As usual we proceed by induction over the dimension n and assume the hypothesis for $\operatorname{dim} W=n-1$. Similarly to the first part of the proof of 5.4 we show the existence of a vector subspace $V \subset X$ with $1 \leq \operatorname{dim} V \leq 2$ and $f[V]=V$. The othogonality implies important additional properties of the subspace V.

First we extend the euclidean vector space $(X ; \mathbb{R} ;+; \cdot ;\langle \rangle)$ to a unitary space $(\bar{X} ; \mathbb{C} ;+; \cdot ;\langle \rangle)$ by admitting complex scalars and generalizing the inner product $\langle\boldsymbol{u}, \boldsymbol{v}\rangle={ }^{T} \boldsymbol{x}_{\mathcal{A}} * \overline{\boldsymbol{y}_{\mathcal{A}}}$ for complex coordinate vectors $\boldsymbol{x}_{\mathcal{A}}=x_{\mathcal{A}}^{i} \boldsymbol{e}_{i} \in \mathbb{C}^{n}$ resp. $\boldsymbol{y}_{\mathcal{A}}=y_{\mathcal{A}}^{i} \boldsymbol{e}_{i} \in \mathbb{C}^{n}$ of $\boldsymbol{u}=x_{\mathcal{A}}^{i} \boldsymbol{a}_{i}$ and $\boldsymbol{v}=y_{\mathcal{A}}^{i} \boldsymbol{a}_{i}$ referring to the original basis $\mathcal{A}=\left(\boldsymbol{a}_{i}\right)_{1 \leq i \leq n} \subset X$. The characteristic polynomial $P_{\boldsymbol{f}}(t)=\prod_{i=1}^{k}\left(\lambda_{i}-t\right) \prod_{j=1}^{l}\left(t^{2}+p_{j} t+q_{j}\right)$ with $k+2 l=n$ in the case of $k \geq 1$ provides an eigenvector \boldsymbol{u}_{1} with $\boldsymbol{f}\left(\boldsymbol{u}_{1}\right)=\lambda_{1} \boldsymbol{u}_{1}$ and eigenvalue $\lambda_{1} \in\{ \pm 1\}$ such that we have $\boldsymbol{f}[V]=V$ for $V=\operatorname{span}\left\{\boldsymbol{u}_{1}\right\}$.
In the case of $k=0$ we have pair of conjugated complex eigenvalues λ resp. $\bar{\lambda}=-\frac{p}{2} \pm i \sqrt{\left(\frac{p}{2}\right)^{2}-q} \in$ \mathbb{C} as zeros of the corresponding factor in with $p=p_{1}$ resp. $q=q_{1}$.

The corresponding orthogonal eigenvectors are also conjugated to each other since with $F=$ $M_{\mathcal{A}}^{\mathcal{A}}(\boldsymbol{f}) \in M(n ; \mathbb{R})$ and eigenvector $\boldsymbol{v}=x_{\mathcal{A}}^{i} \boldsymbol{a}_{i}$ the identity $\lambda \boldsymbol{v}=\boldsymbol{f}(\boldsymbol{v})$ resp. $\quad \lambda \boldsymbol{x}_{\mathcal{A}}=\Phi_{\mathcal{A}}^{-1}(\lambda \boldsymbol{v})=$ $\Phi_{\mathcal{A}}^{-1}(\boldsymbol{f}(\boldsymbol{v}))=F * \boldsymbol{x}_{\mathcal{A}}$ implies $\bar{\lambda} \overline{\boldsymbol{x}_{\mathcal{A}}}=\overline{\lambda \boldsymbol{x}_{\mathcal{A}}}=\overline{F * \boldsymbol{x}_{\mathcal{A}}}=A * \overline{\boldsymbol{x}_{\mathcal{A}}} \Leftrightarrow \bar{\lambda} \overline{\boldsymbol{v}}=\Phi_{\mathcal{A}}\left(\bar{\lambda} \overline{\boldsymbol{x}_{\mathcal{A}}}\right)=\Phi_{\mathcal{A}}\left(F * \overline{\boldsymbol{x}_{\mathcal{A}}}\right)=$ $\boldsymbol{f}(\overline{\boldsymbol{v}})$. Hence we have $\langle\boldsymbol{v} ; \boldsymbol{v}\rangle=\|\boldsymbol{v}\|^{2}=1=\|\overline{\boldsymbol{v}}\|^{2}=\langle\overline{\boldsymbol{v}} ; \overline{\boldsymbol{v}}\rangle$ and $\langle\boldsymbol{v} ; \overline{\boldsymbol{v}}\rangle=\langle\overline{\boldsymbol{v}} ; \boldsymbol{v}\rangle=0$. Note that due to the definition of the canonical inner product on \mathbb{C}^{n} these equations imply ${ }^{T} \mathbf{x}_{\mathcal{A}} * \overline{\mathbf{x}_{\mathcal{A}}}=1$ but ${ }^{T} \mathbf{x}_{\mathcal{A}} * \mathbf{x}_{\mathcal{A}}=0$.
By polarisation we obtain real valued orthonormal vectors $\boldsymbol{v}_{1}=\frac{1}{\sqrt{2}}(\boldsymbol{v}+\overline{\boldsymbol{v}})$ and $\boldsymbol{v}_{2}=\frac{1}{i \sqrt{2}}(\boldsymbol{v}-\overline{\boldsymbol{v}})$ resp. $\boldsymbol{v}=\sqrt{2}\left(\boldsymbol{v}_{1}+i \boldsymbol{v}_{2}\right)$ and $\overline{\boldsymbol{v}}=\sqrt{2}\left(\boldsymbol{v}_{1}-i \boldsymbol{v}_{2}\right)$ such that
$\boldsymbol{f}\left(\boldsymbol{v}_{1}\right)=\frac{1}{\sqrt{2}}(\lambda \boldsymbol{v}+\bar{\lambda} \overline{\boldsymbol{v}})=\frac{1}{\sqrt{2}}(\lambda \boldsymbol{v}+\overline{\lambda \boldsymbol{v}})=\sqrt{2} \operatorname{Re}(\lambda \boldsymbol{v})=2 \operatorname{Re}\left(\lambda\left(\boldsymbol{v}_{1}+i \boldsymbol{v}_{2}\right)\right)=2(\operatorname{Re} \lambda) \boldsymbol{v}_{1}-2(\operatorname{Im} \lambda) \boldsymbol{v}_{2}$ and
$\boldsymbol{f}\left(\boldsymbol{v}_{2}\right)=\frac{1}{i \sqrt{2}}(\lambda \boldsymbol{v}-\bar{\lambda} \overline{\boldsymbol{v}})=\frac{1}{i \sqrt{2}}(\lambda \boldsymbol{v}-\overline{\lambda \boldsymbol{v}})=\sqrt{2} \operatorname{Im}(\lambda \boldsymbol{v})=2 \operatorname{Im}\left(\lambda\left(\boldsymbol{v}_{1}+i \boldsymbol{v}_{2}\right)\right)=2(\operatorname{Im} \lambda) \boldsymbol{v}_{1}+2(\operatorname{Re} \lambda) \boldsymbol{v}_{2}$, i.e.
$\boldsymbol{f}[V] \subset V$ for $V=\operatorname{span}\left\{\boldsymbol{v}_{1} ; \boldsymbol{v}_{2}\right\}$.
According to 3.7 and since orthogonal maps are injective we infer $\mathbf{f}[V]=V$.
Since \boldsymbol{f}^{-1} is orthogonal as well for any $\boldsymbol{v} \in V$ and $\boldsymbol{w} \in V^{\perp}=(\boldsymbol{f}[V])^{\perp}$ follows $\langle\boldsymbol{f}(\boldsymbol{w}), \boldsymbol{v}\rangle=\langle\boldsymbol{w}, \boldsymbol{f}(\boldsymbol{v})\rangle=$ 0 whence $\boldsymbol{f}\left[V^{\perp}\right]=V^{\perp}$.
By the Gram-Schmidt-orthonormalisation 6.4 we find an orthonormal basis $\mathcal{B}=\left(\boldsymbol{v}_{i}\right)_{1 \leq i \leq n}$ such that the representing matrix for $\boldsymbol{h}=\left.\boldsymbol{f}\right|_{V}: V \rightarrow V$ has the form

$$
M_{\mathcal{B}}^{\mathcal{B}}(\boldsymbol{h})=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

with $1=\left\|\boldsymbol{h}\left(\boldsymbol{v}_{1}\right)\right\|=\sqrt{a^{2}+c^{2}}=\sqrt{b^{2}+d^{2}}=\left\|\boldsymbol{h}\left(\boldsymbol{v}_{2}\right)\right\|$ and $0=\left\langle\boldsymbol{v}_{1} ; \boldsymbol{v}_{2}\right\rangle=\left\langle\boldsymbol{h}\left(\boldsymbol{v}_{1}\right) ; \boldsymbol{h}\left(\boldsymbol{v}_{2}\right)\right\rangle=a b+c d$ whence
$M_{\mathcal{B}}^{\mathcal{B}}(\boldsymbol{h})=\left(\begin{array}{cc}\cos \alpha_{1} & -\sin \alpha_{1} \\ \sin \alpha_{1} & \cos \alpha_{1}\end{array}\right)$ or $\left(\begin{array}{cc}\cos \alpha_{1} & \sin \alpha_{1} \\ -\sin \alpha_{1} & \cos \alpha_{1}\end{array}\right)$ or $\left(\begin{array}{cc}\sin \alpha_{1} & \cos \alpha_{1} \\ -\cos \alpha_{1} & \sin \alpha_{1}\end{array}\right)$ or $\left(\begin{array}{cc}\sin \alpha_{1} & -\cos \alpha_{1} \\ \cos \alpha_{1} & \sin \alpha_{1}\end{array}\right)$
for $0<\alpha_{1}<\frac{\pi}{2}$. By extending the range of the argument to $\left.\alpha_{1} \in\right] 0 ; 2 \pi[\backslash\{\pi\}$ all four possibilities can be expressed by the first formula alone.

Thus \boldsymbol{f} can be decomposed into $\left.\boldsymbol{f}\right|_{V}: V \rightarrow V$ and $\left.\boldsymbol{f}\right|_{V^{\perp}}: V^{\perp} \rightarrow V^{\perp}$ with $V \oplus V^{\perp}=X$ and an orthonormal basis \mathcal{B} with

$$
\text { either } M_{\mathcal{B}}^{\mathcal{B}}(\boldsymbol{h})=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & * & \cdots & * \\
\vdots & \vdots & \ddots & \vdots \\
0 & * & \cdots & *
\end{array}\right) \text { or } M_{\mathcal{B}}^{\mathcal{B}}(\boldsymbol{h})=\left(\begin{array}{ccccc}
\cos \alpha_{1} & -\sin \alpha_{1} & 0 & \cdots & 0 \\
\sin \alpha_{1} & \cos \alpha_{1} & 0 & \cdots & 0 \\
0 & 0 & * & \cdots & * \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & * & \cdots & *
\end{array}\right)
$$

such that we can apply the induction hypothesis to obtain the assertion.

6.8 Self-adjoint endomorphisms

An endomorphism $f^{\text {ad }}: X \rightarrow X$ is the adjoint to the endomorphism $f: X \rightarrow X$ on a unitary vector space $(X ;\langle \rangle)$ iff $\langle\boldsymbol{f}(\boldsymbol{v}), \boldsymbol{w}\rangle=\left\langle\boldsymbol{v}, \boldsymbol{f}^{\text {ad }}(\boldsymbol{w})\right\rangle$ for every $\boldsymbol{v} ; \boldsymbol{w} \in X$. In the case of an orthonormal basis $\mathcal{A}=\left(\boldsymbol{a}_{i}\right)_{1 \leq i \leq n}$ of a finite dimensional $X=\left\langle\boldsymbol{a}_{i}\right\rangle_{1 \leq i \leq n}$ with $\langle\boldsymbol{u}, \boldsymbol{v}\rangle=\boldsymbol{x}_{\mathcal{A}} * \boldsymbol{y}_{\mathcal{A}}$ for $\boldsymbol{u}=\sum_{i=1}^{n} x_{\mathcal{A} i} \boldsymbol{a}_{i}$ resp. $\boldsymbol{v}=\sum_{i=1}^{n} y_{\mathcal{A} i} \boldsymbol{a}_{i}$ we have $M_{\mathcal{A}}^{\mathcal{A}}\left(\boldsymbol{f}^{\text {ad }}\right)={ }^{T} \overline{M_{\mathcal{A}}^{\mathcal{A}}(\boldsymbol{f})}$. The endomorphism \boldsymbol{f} is self-adjoint iff $\boldsymbol{f}^{\text {ad }}=\boldsymbol{f}$ resp. in the case of an orthonormal basis and finite dimension iff the representing matrix $F=M_{\mathcal{A}}^{\mathcal{A}}(\boldsymbol{f})$ is hermitian with $F={ }^{T} \bar{F}$. In the real case we have $F={ }^{T} F$ and the matrix is symmetric. The vector spaces (cf. 6.6!) of hermitian resp. symmetric matrices are denoted as $S(n)$ resp. $H(n)$.
Every eigenvalue λ with $\lambda \boldsymbol{v}=\boldsymbol{f}(\boldsymbol{v})$ of a self-adjoint endomorphism \boldsymbol{f} is real since $\lambda\langle\boldsymbol{v}, \boldsymbol{v}\rangle=$ $\langle\boldsymbol{f}(\boldsymbol{v}), \boldsymbol{v}\rangle=\langle\boldsymbol{v}, \boldsymbol{f}(\boldsymbol{v})\rangle=\bar{\lambda}\langle\boldsymbol{v}, \boldsymbol{v}\rangle$.
Eigenvectors $\boldsymbol{v} ; \boldsymbol{w}$ with different eigenvalues $\lambda ; \mu \in \mathbb{R}$ are orthogonal since $\lambda\langle\boldsymbol{v}, \boldsymbol{w}\rangle=\langle\boldsymbol{f}(\boldsymbol{v}), \boldsymbol{w}\rangle=$ $\langle\boldsymbol{v}, \boldsymbol{f}(\boldsymbol{w})\rangle=\bar{\mu}\langle\boldsymbol{v}, \boldsymbol{w}\rangle$.

6.9 Trigonalization of self-adjoint endomorphisms

For every self-adjoint endomorphism $\boldsymbol{f}: X \rightarrow X$ on an n-dimensional euclidean or unitary vector space X there is an orthonormal basis $\mathcal{B}=\left(\boldsymbol{u}_{i}\right)_{1 \leq i \leq n}$ of eigenvectors \boldsymbol{u}_{i} with real eigenvalues $\lambda_{i} \in \mathbb{R}$ such that $\boldsymbol{f}\left[\operatorname{span}\left\{\boldsymbol{u}_{i}\right\}\right]=\operatorname{span}\left\{\boldsymbol{u}_{i}\right\}$ for $1 \leq i \leq n$ and

$$
M_{\mathcal{B}}^{\mathcal{B}}(\boldsymbol{f})=\left(\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right)
$$

Proof: Owing to the preceding paragraph it only remains to prove that $\operatorname{dim} \operatorname{Eig}(\boldsymbol{f} ; \lambda)=\mu\left(P_{\boldsymbol{f}} ; \lambda\right)$ for every eigenvalue λ resp. zero of the characteristic polynomial $P_{f}(c f .5 .1$ and 5.7). As in 6.7 we proceed by induction over the dimension n. Assuming the hypothesis for $n-1$ we choose a real eigenvalue λ_{1} with eigenvector \boldsymbol{u}_{1} and according to the Gram-Schmidt orthonormalisation determine an orthonormal basis $\mathcal{B}^{\prime}=\left\{\boldsymbol{u}_{1} ; \boldsymbol{w}_{2} ; \ldots ; \boldsymbol{w}_{n}\right\}$ such that $X=V \oplus V^{\perp}$ with $V=\operatorname{span}\left\{\boldsymbol{u}_{1}\right\}$ and $V^{\perp}=\operatorname{span}\left\{\boldsymbol{w}_{2} ; \ldots ; \boldsymbol{w}_{n}\right\}$. We have $\boldsymbol{f}[V]=V$ but also $\boldsymbol{f}\left[V^{\perp}\right]=V^{\perp}$ since $\left\langle\boldsymbol{f}(\boldsymbol{w}), \boldsymbol{v}_{1}\right\rangle=\left\langle\boldsymbol{w}, \boldsymbol{f}\left(\boldsymbol{v}_{1}\right)\right\rangle$ $=\lambda\left\langle\boldsymbol{w}, \boldsymbol{v}_{1}\right\rangle 0$ for every $\boldsymbol{w} \in V^{\perp}$. The latter condition provides the existence of a further linearly independent eigenvector in the case of $\mu\left(P_{f} ; \lambda\right) \geq 2$. Hence both components are \boldsymbol{f}-invariant and by applying the induction hypothesis to $\left.\boldsymbol{f}\right|_{V^{\perp}}$ we obtain the assertion.

6.10 Simultaneous determination of eigenvectors and eigenvalues

In the real case there is an effective optimizing procedure for the simultaneous determination of an eigenvalue λ and its eigenvector \boldsymbol{v} : For every symmetric matrix $A \in M(n ; \mathbb{R})$ the quadratic form $q: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $q(\boldsymbol{x})={ }^{T} \boldsymbol{x} * A * \boldsymbol{x}$ is continuous such that according to [6, p. 9.8] it attains its supremum $\lambda=\sup \{q(\boldsymbol{x}): \boldsymbol{x} \in S\}$ on the sphere $S=\{\|\boldsymbol{x}\|=1\}$, i.e. there is a $\boldsymbol{v} \in S$ with $\lambda={ }^{T} \boldsymbol{v} * A * \boldsymbol{v} \geq{ }^{T} \boldsymbol{x} * A * \boldsymbol{x}$ for every $\boldsymbol{x} \in S$.
For every $\boldsymbol{w} \in S$ with $\langle\boldsymbol{w}, \boldsymbol{v}\rangle=0$ we have $\mathbf{x}=\sigma \boldsymbol{v}+\tau \boldsymbol{w} \in S$ for $0<\tau<1$ and $\sigma=\sqrt{1-\tau^{2}}$. Hence with ${ }^{T} \boldsymbol{w} * A * \boldsymbol{v}=^{T} \boldsymbol{v} * A * \boldsymbol{w}$ and $1=\sigma^{2}+\tau^{2}$ follows

$$
{ }^{T} \boldsymbol{v} * A * \boldsymbol{v} \geq{ }^{T} \boldsymbol{x} * A * \mathbf{x}=\sigma^{2 T} \boldsymbol{v} * A * \boldsymbol{v}+2 \sigma \tau^{T} \boldsymbol{w} * A * \boldsymbol{v}+\tau^{2 T} \boldsymbol{w} * A * \boldsymbol{w}
$$

whence

$$
{ }^{T} \boldsymbol{w} * A * \boldsymbol{v} \leq{\frac{1-\sigma^{2}}{2 \sigma \tau}}^{T} \boldsymbol{v} * A * \boldsymbol{v}-\frac{\tau}{2 \sigma}^{T} \boldsymbol{w} * A * \boldsymbol{w}=\frac{\tau}{2 \sigma}\left({ }^{T} \boldsymbol{v} * A * \boldsymbol{v}-{ }^{T} \boldsymbol{w} * A * \boldsymbol{w}\right) .
$$

By exchanging \boldsymbol{w} with $-\boldsymbol{w}$ we can assume ${ }^{T} \boldsymbol{w} * A * \boldsymbol{v} \geq 0$ such that with ${ }^{T} \boldsymbol{v} * A * \boldsymbol{v}-{ }^{T} \boldsymbol{w} * A * \boldsymbol{w} \geq 0$ and τ arbitrary follows ${ }^{T} \boldsymbol{w} * A * \boldsymbol{v}=0$. Since this is true for every $\boldsymbol{w} \in S$ with $\langle\boldsymbol{w}, \boldsymbol{v}\rangle=0$ we have shown that $A * \boldsymbol{v}=\mu \boldsymbol{v}$ for some $\mu \in \mathbb{R}$ whence $\lambda={ }^{T} \boldsymbol{v} * A * \boldsymbol{v}=\mu \lambda={ }^{T} \boldsymbol{v} * \boldsymbol{v}=\mu$.

6.11 Adjoint maps

In a unitary vector space $(X,\langle \rangle)$ with an inner product the isomorphism $\Phi: X \rightarrow X^{*}$ with $\Phi\left(\boldsymbol{a}_{i}\right)=$ \boldsymbol{a}_{i}^{*} for a given basis $\mathcal{A}=\left(\boldsymbol{a}_{i}\right)_{i \in I}$ from 3.12 can be replaced by the canonical semi-isomorphism $\Phi(\boldsymbol{x})=\langle, \boldsymbol{x}\rangle$ with $\Phi(\alpha \boldsymbol{x}+\beta \boldsymbol{y})=\bar{\alpha} \Phi(\boldsymbol{x})+\bar{\beta} \Phi(\boldsymbol{y})$ being independent of the basis. Note that Φ is injective since \rangle is positive definite.
For every vector subspace $E \subset X$ and the annihilator $E^{0}=\left\{\boldsymbol{x}^{*} \in X^{*}: \boldsymbol{x}^{*} \boldsymbol{x}=0 \forall \boldsymbol{x} \in E\right\}$ defined in 3.15 we obviously have $\Phi\left[E^{\perp}\right]=E^{0}$ and for every orthonormal basis $\mathcal{A}=\left(\boldsymbol{a}_{i}\right)_{i \in I}$ resp. the dual othonormal basis $\mathcal{A}^{*}=\left(\boldsymbol{a}_{i}^{*}\right)_{i \in I}$ determined by $\boldsymbol{a}_{i}^{*} \boldsymbol{a}_{j}=\delta_{j}^{i}$ holds $\Phi\left(\boldsymbol{a}_{i}\right)=\boldsymbol{a}_{i}^{*}$.
For every $\boldsymbol{f} \in L(X ; Y)$ between unitary finite dimensional vector spaces $X=$ $\left\langle\boldsymbol{a}_{i}\right\rangle_{1 \leq i \leq m}$ resp. $Y=\left\langle\boldsymbol{b}_{j}\right\rangle_{1 \leq j \leq n}$ generated by bases $\mathcal{A}=\left(\boldsymbol{a}_{i}\right)_{1 \leq i \leq m}$ resp. $\mathcal{B}=$ $\left(\boldsymbol{b}_{j}\right)_{1 \leq j \leq n}$ the adjoint map $\boldsymbol{f}^{\text {ad }}: Y \rightarrow X$ is defined by $\langle\boldsymbol{f}(\boldsymbol{x}), \boldsymbol{y}\rangle=\left\langle\boldsymbol{x}, \boldsymbol{f}^{\text {ad }}(\boldsymbol{y})\right\rangle$. According to the definitions of the canonical semi-isomorphisms $\Phi: X \rightarrow X^{*}$ with $\Phi(\boldsymbol{x})=\langle, \boldsymbol{x}\rangle$ resp. $\Psi: Y \rightarrow Y^{*}$ with $\Psi(\boldsymbol{y})=\langle, \boldsymbol{y}\rangle$ and the dual linear map
 $\boldsymbol{f}^{*}: Y^{*} \rightarrow X^{*}$ with $\boldsymbol{f}\left(\boldsymbol{y}^{*}\right)=\boldsymbol{y}^{*} \circ \boldsymbol{f}$ we have

$$
\left(\boldsymbol{f}^{*} \circ \Psi\right)(\boldsymbol{y})=\langle\boldsymbol{f}(), \boldsymbol{y}\rangle=\left\langle, \boldsymbol{f}^{\mathrm{ad}}(\boldsymbol{y})\right\rangle=\left(\Phi \circ \boldsymbol{f}^{\mathrm{ad}}\right)(\boldsymbol{y})
$$

whence $\boldsymbol{f}^{\text {ad }}=\Phi^{-1} \circ \boldsymbol{f}^{*} \circ \Psi$. In particular for $\boldsymbol{x}=\sum_{i=1}^{m} x_{\mathcal{A} i} \boldsymbol{a}_{i}, \boldsymbol{y}=\sum_{j=1}^{n} y_{\mathcal{B} j} \boldsymbol{b}_{j}$ and $M_{\mathcal{B}}^{\mathcal{A}}(\boldsymbol{f})=F \in$ $M(n \times m ; \mathbb{C})$ we have

$$
\begin{aligned}
\left(\Phi \circ \boldsymbol{f}^{\mathrm{ad}}\right)(\boldsymbol{y})(\boldsymbol{x}) & =\left(\boldsymbol{f}^{*} \circ \Psi\right)(\boldsymbol{y})(\boldsymbol{x}) \\
& =\langle\boldsymbol{f}(\boldsymbol{x}), \boldsymbol{y}\rangle \\
& ={ }^{T}\left(F * \boldsymbol{x}_{\mathcal{A}}\right) * \overline{\boldsymbol{y}_{\mathcal{B}}} \\
& ={ }^{T} \boldsymbol{x}_{\mathcal{A}} *{ }^{T} F * \overline{\boldsymbol{y}_{\mathcal{B}}} \\
& ={ }^{T} \boldsymbol{x}_{\mathcal{A}} *{ }^{T} \overline{\bar{F}} * \boldsymbol{y}_{\mathcal{B}}
\end{aligned}
$$

whence $\boldsymbol{f}^{\text {ad }}(\boldsymbol{y})=\sum_{i=1}^{m} z_{\mathcal{A} i} \boldsymbol{a}_{i}$ with the coordinate vector $\boldsymbol{z}_{A}={ }^{T} \bar{F} * \boldsymbol{y}_{\mathcal{B}}$ of $\boldsymbol{f}^{\text {ad }}(\boldsymbol{y})$ and the representing matrix

$$
M_{\mathcal{A}}^{\mathcal{B}}\left(\boldsymbol{f}^{\mathrm{ad}}\right)={ }^{T} \bar{F}={ }^{T} \overline{M_{\mathcal{B}}^{\mathcal{A}}(\boldsymbol{f})}
$$

of $\boldsymbol{f}^{\text {ad }}$. According to 3.15 we also have

$$
\operatorname{ker} \boldsymbol{f}^{\mathrm{ad}}=(\operatorname{im} \boldsymbol{f})^{\perp} \text { and } \operatorname{im} \boldsymbol{f}^{\text {ad }}=(\operatorname{ker} \boldsymbol{f})^{\perp}
$$

6.12 Normal endomorphisms

An endomorphism \boldsymbol{f} on a unitary vector space $(X ;\langle \rangle)$ is normal iff $\boldsymbol{f} \circ \boldsymbol{f}^{\text {ad }}=\boldsymbol{f}^{\text {ad }} \circ \boldsymbol{f}$. Correspondingly a matrix $A \in M(n ; \mathbb{C})$ is normal iff $A *^{T} \bar{A}={ }^{T} \bar{A} * A$.
Since $\boldsymbol{x} \in \operatorname{ker} \boldsymbol{f} \Leftrightarrow 0=\langle\boldsymbol{f}(\boldsymbol{x}), \boldsymbol{f}(\boldsymbol{x})\rangle=\left\langle\boldsymbol{x}, \boldsymbol{f}^{\text {ad }}(\boldsymbol{f}(\boldsymbol{x}))\right\rangle=\left\langle\boldsymbol{x}, \boldsymbol{f}\left(\boldsymbol{f}^{\text {ad }}(\boldsymbol{x})\right)\right\rangle=\overline{\left\langle\boldsymbol{f}\left(\boldsymbol{f}^{\text {ad }}(\boldsymbol{x})\right), \boldsymbol{x}\right\rangle}=$ $\left\langle\boldsymbol{f}^{\text {ad }}(\boldsymbol{x}), \boldsymbol{f}^{\text {ad }}(\boldsymbol{x})\right\rangle=\overline{0} \Leftrightarrow \boldsymbol{x} \in \operatorname{ker} \boldsymbol{f}^{\text {ad }}$ we have

$$
\operatorname{ker} \boldsymbol{f}^{\mathrm{ad}}=\operatorname{ker} \boldsymbol{f} \text { and } \operatorname{im} \boldsymbol{f}^{\mathrm{ad}}=\operatorname{im} \boldsymbol{f}
$$

according to the preceding paragraph 6.11.
Also for any eigenvalue λ and $\boldsymbol{g}=\boldsymbol{f}-\lambda$ id we have $\boldsymbol{g}^{\text {ad }}=\boldsymbol{f}^{\text {ad }}-\bar{\lambda}$ id and for every $\boldsymbol{x} \in X$ holds $\boldsymbol{g}^{\text {ad }}(\boldsymbol{g}(\boldsymbol{x}))=\boldsymbol{f}^{\text {ad }}(\boldsymbol{f}(\boldsymbol{x}))-\bar{\lambda} \boldsymbol{f}(\boldsymbol{x})+\boldsymbol{f}^{\text {ad }}(-\lambda \boldsymbol{x})+\bar{\lambda} \lambda \boldsymbol{x}=\boldsymbol{f}\left(\boldsymbol{f}^{\text {ad }}(\boldsymbol{x})\right)-\lambda \boldsymbol{f}^{\text {ad }}(\boldsymbol{x})+\boldsymbol{f}(-\bar{\lambda} \boldsymbol{x})+\lambda \bar{\lambda} \boldsymbol{x}=$ $\boldsymbol{g}\left(\boldsymbol{g}^{\text {ad }}(\boldsymbol{x})\right)$, i.e. \boldsymbol{g} is normal such that from the preceding paragraph follows

$$
\operatorname{Eig}(\boldsymbol{f}, \lambda)=\operatorname{ker} \boldsymbol{g}=\operatorname{ker} \boldsymbol{g}^{\mathrm{ad}}=\operatorname{Eig}\left(\boldsymbol{f}^{\mathrm{ad}}, \bar{\lambda}\right)
$$

6.13 Diagonalization of normal endomorphisms

An endomorphism \boldsymbol{f} on a unitary vector space $(X ;\langle \rangle)$ is normal iff its eigenvectors form an orthonormal basis of X.

Proof:

\Rightarrow : For an orthonormal basis $\mathcal{B}=\left(\boldsymbol{v}_{i}\right)_{1 \leq i \leq n}$ with $\boldsymbol{f}\left(\boldsymbol{v}_{i}\right)=\lambda_{i} \boldsymbol{v}_{i}$ for $1 \leq i \leq n$ we have $\boldsymbol{f}^{\text {ad }}\left(\boldsymbol{v}_{i}\right)=\overline{\lambda_{i}} \boldsymbol{v}_{i}$ and thus $\boldsymbol{f}\left(\boldsymbol{f}^{\text {ad }}\left(\boldsymbol{v}_{i}\right)\right)=\boldsymbol{f}\left(\overline{\lambda_{i}} \boldsymbol{v}_{i}\right)=\lambda_{i} \overline{\lambda_{i}} \boldsymbol{v}_{i}=\overline{\lambda_{i}} \lambda_{i} \boldsymbol{v}_{i}=\boldsymbol{f}^{\text {ad }}\left(\boldsymbol{f}\left(\boldsymbol{v}_{i}\right)\right)$ for every basis vector \boldsymbol{v}_{i} and hence for every $\mathbf{x} \in X$.
\Leftarrow : As usual we proceed by induction over the dimension n of X and assume the hypothesis for $n-1$. According to 5.2 we have the characteristic polynomial $P_{f}(t)= \pm \prod_{i=1}^{n}\left(t-\lambda_{i}\right)$ with eigenvalues $\lambda_{i} \in \mathbb{C}$ and an eigenvector $\boldsymbol{v}_{1} \in X$ with $\boldsymbol{f}\left(\boldsymbol{v}_{1}\right)=\lambda_{1} \boldsymbol{v}_{1}$. For $\boldsymbol{w} \in W=\left\langle\boldsymbol{v}_{1}\right\rangle^{\perp}$ holds $\left\langle\boldsymbol{f}(\boldsymbol{w}), \boldsymbol{v}_{1}\right\rangle=\left\langle\boldsymbol{w}, \boldsymbol{f}^{\text {ad }}\left(\boldsymbol{v}_{1}\right)\right\rangle=\left\langle\boldsymbol{w}, \overline{\lambda_{1}} \boldsymbol{v}_{1}\right\rangle=\lambda_{1}\left\langle\boldsymbol{w}, \boldsymbol{v}_{1}\right\rangle=0$ whence follows $\boldsymbol{f}[W] \subset W$. Also we have $\left\langle\boldsymbol{v}_{1}, \boldsymbol{f}^{\text {ad }}(\boldsymbol{w})\right\rangle=\left\langle\boldsymbol{f}^{\text {ad }}\left(\boldsymbol{v}_{1}\right), \boldsymbol{w}\right\rangle=\lambda_{1}\left\langle\boldsymbol{v}_{1}, \boldsymbol{w}\right\rangle=0$, i.e. $\left.\boldsymbol{f}\right|_{W}$ is normal such that we can apply the induction hypothesis whence the assertion follows.

7 Multilinear algebra

7.1 Multilinear maps

1. A map $\varphi: \prod_{i \in I_{p}} X_{i} \rightarrow Y$ from a product $\prod_{i \in I_{p}} X_{i}=\left\{\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right): \boldsymbol{x}_{i} \in X_{i} ; i \in I_{p}\right\}$ of complex vector spaces X_{i} for $i \in I_{p}=\{1 ; \ldots ; p\}$ into a real vector space Y is p-linear iff every projection $\varphi_{x_{1} ; \ldots ; \boldsymbol{x}_{k-1} ; \boldsymbol{x}_{k+1} ; \ldots ; \boldsymbol{x}_{p}}: \boldsymbol{x}_{k} \rightarrow \varphi\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right)$ is linear in $\boldsymbol{x}_{k} \in X_{k}$ for fixed $\boldsymbol{x}_{i} \in X_{i}$ and $k \in I_{p}$. For vector spaces X_{i} with bases $\left(\boldsymbol{e}_{i \mu}\right)_{\mu \in J_{i}}$ and every function $\boldsymbol{y}: I^{p} \rightarrow Y$ there is a uniquely determined p-linear $\varphi: \prod_{i \in I_{p}} X_{i} \rightarrow Y$ with $\varphi\left(\boldsymbol{e}_{1 \mu_{1}} ; \ldots ; \boldsymbol{e}_{p \mu_{p}}\right)=\boldsymbol{y}_{\mu_{1} ; \ldots ; \mu_{p}}$ for every $\left(\mu_{1} ; \ldots ; \mu_{p}\right) \in$ $\Pi_{1 \leq i \leq p} J_{i}$. According to 3.2 every $\boldsymbol{x}_{i} \in X_{i}$ can be expressed as a finite sum $\boldsymbol{x}_{i}=x^{i \mu} \boldsymbol{e}_{i \mu}$ with complex coefficients $x^{i \mu} \neq 0$ for finitely many $\mu \in J_{i}$. Observing the Einstein summation convention 3.13 the desired p-linearity implies $\varphi\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right)=\varphi\left(x^{1 \mu_{1}} \boldsymbol{e}_{1 \mu_{1}} ; \ldots ; x^{p \mu_{p}} \boldsymbol{e}_{p \mu_{p}}\right)=$ $x^{1 \mu_{1}} \cdot \ldots \cdot x^{p \mu_{p}} \cdot \varphi\left(\boldsymbol{e}_{1 \mu_{1}} ; \ldots ; \boldsymbol{e}_{p \mu_{p}}\right)=x^{1 \mu_{1}} \cdot \ldots \cdot x^{p \mu_{p}} \cdot \boldsymbol{y}_{1 \mu_{1} ; \ldots ; p \mu_{p}}$ and this is already a uniquely determined definition.
2. For every $k \in I_{p}$ by $\omega(\vartheta)\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right)=\vartheta\left(\boldsymbol{x}_{k}\right)\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{k-1} ; \boldsymbol{x}_{k+1} ; \ldots ; \boldsymbol{x}_{p}\right)$ defined for every linear $\vartheta: X_{k} \rightarrow L_{p}\left(\prod_{i \in I_{p} \backslash\{k\}} X_{i} ; Y\right)$ with the inverse $\omega^{-1}(\eta)\left(\boldsymbol{x}_{k}\right)\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{k-1} ; \boldsymbol{x}_{k+1} ; \ldots ; \boldsymbol{x}_{p}\right)=$ $\eta\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right)$ defined for every p-linear $\eta: \prod_{i \in I_{p}} X_{i} \rightarrow Y$ the spaces $L\left(X_{k} ; L_{p-1}\left(\prod_{i \in I_{p} \backslash\{k\}} X_{i} ; Y\right)\right)$ are isomorphic to $L_{p}\left(\prod_{i \in I_{p}} X_{i} ; Y\right)$. For finite dimensional $X_{i} ; Y$ due to 3.7 we have $\operatorname{dim} L\left(X_{1} ; Y\right)=\operatorname{dim} X_{1} \cdot \operatorname{dim} Y$ and by induction we conclude that

$$
\operatorname{dim} L_{p}\left(\prod_{i=1}^{p} X_{i} ; Y\right)=\operatorname{dim} X_{k} \cdot \operatorname{dim} L_{p-1}\left(\prod_{i \in I_{p} \backslash\{k\}} X_{i} ; Y\right)=\prod_{i=1}^{p} \operatorname{dim} X_{i} \cdot \operatorname{dim} Y .
$$

Example: The vector space $L_{2}\left(X^{2} ; \mathbb{C}\right)$ of bilinear forms $\left(\boldsymbol{x}_{1} ; \boldsymbol{x}_{2}\right) \mapsto \omega\left(\boldsymbol{x}_{1} ; \boldsymbol{x}_{2}\right)$ on $X=\mathbb{C}^{n}$ is isomorphic to

1. $M(n ; \mathbb{C})$ by $\omega \mapsto a^{i j} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j}$ with $a^{i j}=\omega\left(\boldsymbol{e}_{i} ; \boldsymbol{e}_{j}\right)$ and the basis $\left(\boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j}\right)_{1 \leq i ; j \leq n}$ of $M(n ; \mathbb{C})$ defined in 7.2
2. End $(M(n ; \mathbb{C}))$ by $\omega \mapsto\left(m^{j k} \boldsymbol{e}_{j} \otimes \boldsymbol{e}_{k} \mapsto a_{i j} m^{j k} \boldsymbol{e}^{i} \otimes \boldsymbol{e}_{k}\right)$ with $a_{i j}=\omega\left(\boldsymbol{e}_{i} ; \boldsymbol{e}_{j}\right)$
3. End $(X)=L(X ; X)$ by $\omega \mapsto\left(x^{i} \boldsymbol{e}_{i} \mapsto a_{i}^{j} x^{i} \boldsymbol{e}_{j}\right)$ with $a_{i}^{j}=\omega\left(\boldsymbol{e}_{i} ; \boldsymbol{e}_{j}\right)$
4. $L\left(X ; X^{*}\right)$ by $\omega \mapsto\left(x^{i} \boldsymbol{e}_{i} \mapsto a_{i j} x^{i} \boldsymbol{e}^{j}\right)$ with $a_{i j}=\omega\left(\boldsymbol{e}_{i} ; \boldsymbol{e}_{j}\right)$
5. $L\left(X^{*} ; X\right)$ by $\omega \mapsto\left(x_{i} \boldsymbol{e}^{i} \mapsto a^{i j} x_{i} \boldsymbol{e}_{j}\right)$ with $a^{i j}=\omega\left(\boldsymbol{e}_{i} ; \boldsymbol{e}_{j}\right)$
6. End $\left(X^{*}\right)=L\left(X^{*} ; X^{*}\right)$ by $\omega \mapsto\left(x^{i} \boldsymbol{e}_{i} \mapsto a_{j}^{i} x_{i} \boldsymbol{e}_{j}\right)$ with $a_{j}^{i}=\omega\left(\boldsymbol{e}_{i} ; \boldsymbol{e}_{j}\right)$

These cases are subsumed under the following generalization of the matrix:

7.2 Tensors

For every product $\prod_{i \in I_{p}} X_{i}=\left\{\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right): \boldsymbol{x}_{i} \in X_{i} ; i \in I_{p}\right\}$ of complex vector spaces X_{i} for $i \in I_{p}=\{1 ; \ldots ; p\}$ exists a complex vector space $\otimes_{i \in I_{p}} X_{i}$ and a p-linear map $\pi_{\otimes}: \prod_{i \in I_{p}} X_{i} \rightarrow \otimes_{i \in I_{p}} X_{i}$ such that for every p-linear $\varphi: \prod_{i \in I_{p}} X_{i} \rightarrow Y$ into a complex vector space Y exists a linear $\varphi_{\otimes}: \otimes_{i \in I_{p}} X_{i} \rightarrow Y$ with $\varphi=\varphi_{\otimes} \circ \pi_{\otimes}$.
The vector space $\otimes_{i \in I_{p}} X_{i}$ is the tensor product of the vector spaces $\left(X_{i}\right)_{i \in I_{p}}$ and its elements are called tensors. The images $\boldsymbol{x}_{1} \otimes \ldots \otimes \boldsymbol{x}_{p}=\pi_{\otimes}\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right)$ are the tensor products of the vectors $\left(\boldsymbol{x}_{i}\right)_{i \in I_{p}}$. The tensor product is uniquely determined in the sense
 that every complex vector space Z is isomorphic to $\otimes_{i \in I_{p}} X_{i}$ iff there is a p-linear $\pi_{Z}: \prod_{i \in I_{p}} X_{i} \rightarrow Z$ such that for every p-linear $\varphi: \prod_{i \in I_{p}} X_{i} \rightarrow Y$ exists a unique linear $\varphi_{Z}: Z \rightarrow Y$ with $\varphi=\varphi_{Z} \circ \pi_{Z}$. Also the map $\vartheta: L_{p}\left(\prod_{i \in I_{p}} X_{i} ; Y\right) \rightarrow L\left(\otimes_{i \in I_{p}} X_{i} ; Y\right)$ with $\vartheta(\varphi)=\varphi_{\otimes}$ is an isomorphism.

Notes:

1. The tensor product of the vectors $\boldsymbol{x}_{1}=x^{1 \mu_{1}} \boldsymbol{e}_{1 j_{1}} ; \ldots ; \boldsymbol{x}_{p}=x^{p \mu_{p}} \boldsymbol{e}_{p j_{p}}$ is $\boldsymbol{x}_{1} \otimes \ldots \otimes \boldsymbol{x}_{p}=x^{1 \mu_{1}}$. $\ldots \cdot x^{p \mu_{p}} \cdot \boldsymbol{e}_{1 \mu_{1}} \otimes \ldots \otimes \boldsymbol{e}_{p \mu_{p}}$ while a general tensor has the form $x^{1 \mu_{1} \ldots ; j \mu_{p}} \cdot \boldsymbol{e}_{1 \mu_{1}} \otimes \ldots \otimes \boldsymbol{e}_{p \mu_{p}}$ with arbitrary complex coefficients $x^{1 \mu_{1} ; \ldots ; p \mu_{p}}$.
2. In the finite dimensional case with identical factors $X_{i}=X$ and $\operatorname{dim} X=n$ the Einstein summation produces $\boldsymbol{x}_{1} \otimes \ldots \otimes \boldsymbol{x}_{p}=\sum_{1 \leq \mu_{1} ; \ldots ; \mu_{p} \leq n} x^{\mu_{1}} \cdot \ldots \cdot x^{\mu_{p}} \cdot \boldsymbol{e}_{\mu_{1}} \otimes \ldots \otimes \boldsymbol{e}_{\mu_{p}}$ whence dim $\prod_{i=1}^{p}$ $X_{i}=p \cdot n$ and $\operatorname{dim} \bigotimes_{i=1}^{p} X_{i}=n^{p}$. In particular the family $E_{p}=\left(\boldsymbol{e}_{\mu_{1}} ; \ldots ; \boldsymbol{e}_{\mu_{p}}\right)_{1 \leq \mu_{1} ; \ldots ; \mu_{p} \leq n}$ is not a basis and not even linearly independent in X^{p} since e.g. $\left(\boldsymbol{e}_{1} ; \mathbf{0}\right) \notin\left\langle E_{2}\right\rangle$ and $\left(\boldsymbol{e}_{1} ; \boldsymbol{e}_{1}\right)-\left(\boldsymbol{e}_{1} ; \mathbf{0}\right)$ $-\left(\mathbf{0} ; \boldsymbol{e}_{1}\right)=(\mathbf{0} ; \mathbf{0})$.

Proof:

Existence and p-linearity of π_{\otimes} : According to 7.1 the complex vector space $\bigotimes_{i \in I_{p}} X_{i}=L_{p}\left(\Pi_{i \in I_{p}} X_{i} ; \mathbb{C}\right)$ $=\left\langle\boldsymbol{e}_{1 \mu_{1}} \otimes \ldots \otimes \boldsymbol{e}_{p \mu_{p}}\right\rangle_{\mu_{i} \in J_{i} ; ; I_{p}}$ with basis tensors $\boldsymbol{e}_{1 \mu_{1}} \otimes \ldots \otimes \boldsymbol{e}_{p \mu_{p}}=\pi_{\otimes}^{1 \mu_{1} ; \ldots ; p \mu_{p}}\left(\boldsymbol{e}_{1 \nu_{1}} ; \ldots ; \boldsymbol{e}_{p \nu_{p}}\right)=$ $\delta_{\nu_{1}}^{\mu_{1}} \cdot \ldots \cdot \delta_{\nu_{p}}^{\mu_{p}}$ is well defined and so is the map $\pi_{\otimes}: \prod_{i \in I_{p}} X_{i} \rightarrow \otimes_{i \in I_{p}} X_{i}$ given by $\pi_{\otimes}\left(\boldsymbol{e}_{1 \nu_{1}} ; \ldots ; \boldsymbol{e}_{p \nu_{p}}\right)=$ $\boldsymbol{e}_{1 \mu_{1}} \otimes \ldots \otimes \boldsymbol{e}_{p \mu_{p}}$.
Existence and linearity of φ_{\otimes} : For any given p-linear $\varphi: \prod_{i \in I_{p}} X_{i} \rightarrow Y$ into a complex vector space Y the map $\varphi \otimes$ defined by $\varphi \otimes\left(\boldsymbol{e}_{1 \mu_{1}} \otimes \ldots \otimes \boldsymbol{e}_{p \mu_{p}}\right)=\varphi\left(\boldsymbol{e}_{1 \nu_{1}} ; \ldots ; \boldsymbol{e}_{p \nu_{p}}\right)$ is linear and satisfies $\varphi=$ $\varphi_{\otimes} \circ \pi_{\otimes}$.
Uniqueness of φ_{\otimes} : For any given linear $\psi_{\otimes}: \bigotimes_{i=1}^{p} X_{i} \rightarrow Y$ with $\varphi=\psi_{\otimes} \circ \pi_{\otimes}$ and $\boldsymbol{x}_{1} \otimes \ldots \otimes \boldsymbol{x}_{p} \in \bigotimes_{i=1}^{p} X_{i}$ we have $\psi_{\otimes}\left(\boldsymbol{x}_{1} \otimes \ldots \otimes \boldsymbol{x}_{p}\right)=\left(\psi_{\otimes} \circ \pi_{\otimes}\right)\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right)=\left(\varphi_{\otimes} \circ \pi_{\otimes}\right)\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right)=\varphi_{\otimes}\left(\boldsymbol{x}_{1} \otimes \ldots \otimes \boldsymbol{x}_{p}\right)$ whence $\psi_{\otimes}=\varphi_{\otimes}$.
Uniqueness of $\underset{i=1}{p} X_{i}$: Assuming there is an $\boldsymbol{a} \in Z \backslash V$ with $V=\operatorname{span}\left\{\pi_{Z}\left[\prod_{i=1}^{p} X_{i}\right]\right\}$ there exists a $\omega_{Z} \in \operatorname{End}(Z)$ with $\omega_{Z}(\boldsymbol{a})=\boldsymbol{a}$ and $V \subset \operatorname{ker} \omega_{Z}$ resp. $\prod_{i=1}^{p} X_{i} \subset \operatorname{ker}\left(\omega_{Z} \circ \pi_{Z}\right)$. Since $\prod_{i=1}^{p} X_{i}=\operatorname{dom} \pi_{Z}$ this means $\mathbf{0}=\omega_{Z} \circ \pi_{Z}=\mathbf{0} \circ \pi_{Z}$ hence 1. implies $\omega_{Z} \stackrel{i=1}{=}$ in contradiction to the assumption whence we conclude that $V=Z$. A second application of 1 . yields a linear $\eta_{\otimes}: \bigotimes_{i=1}^{p} X_{i} \rightarrow Z$ with $\pi_{Z}=\eta_{\otimes} \circ \pi_{\otimes}$ while the hypothesis in 3. provides a linear $\eta_{Z}: Z \rightarrow \bigotimes_{i=1}^{p} X_{i}$ with $\pi_{\otimes}=\eta_{Z} \circ \pi_{Z}$. On the one hand we have $\left(\eta_{Z} \circ \eta_{\otimes}\right)\left(\boldsymbol{x}_{1} \otimes \ldots \otimes \boldsymbol{x}_{n}\right)=\left(\eta_{Z} \circ \eta_{\otimes} \circ \pi_{\otimes}\right)\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{n}\right)=\left(\eta_{Z} \circ \pi_{Z}\right)\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{n}\right)=\pi_{\otimes}\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{n}\right)=$ $\boldsymbol{x}_{1} \otimes \ldots \otimes \boldsymbol{x}_{n}$ whence $\eta_{Z} \circ \eta_{\otimes}=\mathrm{id}: \bigotimes_{i=1}^{p} X_{i} \rightarrow \bigotimes_{i=1}^{p} X_{i}$ and on the other hand $\left(\eta_{\otimes} \circ \eta_{Z}\right)\left(\pi_{Z}\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{n}\right)\right)=$ $\left(\eta_{\otimes} \circ \pi_{\otimes}\right)\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{n}\right)=\pi_{Z}\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{n}\right)$ such that $\eta_{\otimes} \circ \eta_{Z}=\mathrm{id}: Z \rightarrow Z=\operatorname{span}\left\{\pi_{Z}\left[\prod_{i=1}^{p} X_{i}\right]\right\}$. Hence η_{\otimes} and η_{Z} are isomorphisms.
Existence and linearity of ϑ : Due to the preceding arguments the map $\vartheta: L_{p}\left(\prod_{i=1}^{p} X_{i} ; Y\right) \rightarrow$ $L\left(\bigotimes_{i=1}^{p} X_{i} ; Y\right)$ is well defined by $\varphi=\vartheta(\varphi) \circ \pi_{\otimes}$. Hence for p-linear maps $\varphi, \psi: \prod_{i=1}^{p} X_{i} \rightarrow Y$ we have $\varphi+\psi=\vartheta(\varphi) \circ \pi_{\otimes}+\vartheta(\psi) \circ \pi_{\otimes}=(\vartheta(\varphi)+\vartheta(\psi)) \circ \pi_{\otimes}$ whence $\vartheta(\varphi+\psi)=\vartheta(\varphi)+\vartheta(\psi)$ and $c \varphi=c \cdot\left(\vartheta(\varphi) \circ \pi_{\otimes}\right)=(c \cdot \vartheta(\psi)) \circ \pi_{\otimes}$ so that $\vartheta(c \cdot \varphi)=c \cdot \vartheta(\varphi)$.
Injectivity of $\vartheta: \vartheta(\varphi)=\vartheta(\psi) \Rightarrow \varphi=\vartheta(\varphi) \circ \pi_{\otimes}=\vartheta(\psi) \circ \pi_{\otimes}=\psi$.
Surjectivity of ϑ : For any $\varphi_{\otimes} \in L\left(\otimes_{i=1}^{p} X_{i} ; Y\right)$ follows $\varphi=\varphi_{\otimes} \circ \pi_{\otimes} \in L_{p}\left(\prod_{i=1}^{p} X_{i} ; Y\right)$ and hence $\vartheta(\varphi)=\varphi_{\otimes}$.
Examples: The familiar notation can be used for $p \leq 3$ e.g. for $\boldsymbol{x} \in X=\mathbb{R}^{4}, \boldsymbol{y} \in Y=\mathbb{R}^{3}$ and $z \in Z=\mathbb{R}^{2}$:

tensor product

7.3 Tensors and multilinear forms

$\operatorname{By} \vartheta: L_{p}\left(\prod_{i=1}^{p} X_{i} ; \mathbb{R}\right) \rightarrow \bigotimes_{i=1}^{p} X_{i}$ with $\vartheta(\varphi)=\varphi\left(\boldsymbol{e}_{\mu_{1}} ; \ldots ; \boldsymbol{e}_{\mu_{p}}\right) \cdot \boldsymbol{e}_{\mu_{1}} \otimes \ldots \otimes \boldsymbol{e}_{\mu_{p}}$ for $X_{i}=\operatorname{span}\left\{\boldsymbol{e}_{1} ; \ldots ; \boldsymbol{e}_{n}\right\}$ and $1 \leq \mu_{i} \leq n$ for $1 \leq i \leq p$ with inverse $\vartheta^{-1}\left(c^{\mu_{1} ; \ldots ; \mu_{p}} \cdot \boldsymbol{e}_{\mu_{1}} \otimes \ldots \otimes \boldsymbol{e}_{\mu_{p}}\right)=\varphi$ defined by $\varphi\left(\boldsymbol{e}_{\mu_{1}} ; \ldots ; \boldsymbol{e}_{\mu_{p}}\right)$
 On account of the linear character of the X_{i} every p-linear $\varphi: \prod_{i=1}^{p} X_{i} \rightarrow \mathbb{C}$ is determined by $\varphi\left(\sum_{1 \leq \mu_{1} ; \ldots ; \mu_{p} \leq n} c^{\mu_{1} ; \ldots ; \mu_{p}} \cdot\left(\boldsymbol{e}_{\mu_{1}} ; \ldots ; \boldsymbol{e}_{\mu_{p}}\right)\right)=\sum_{1 \leq \mu_{1} ; \ldots ; \mu_{p} \leq n} c^{\mu_{1} ; \ldots ; \mu_{p}} \cdot \varphi\left(\boldsymbol{e}_{\mu_{1}} ; \ldots ; \boldsymbol{e}_{\mu_{p}}\right)$ whence follows again $\operatorname{dim} \bigotimes_{i=1}^{p} X_{i}=\operatorname{dim} \prod_{i=1}^{p} X_{i}=n^{p} .($ cf. 7.2$)$

7.3.1 Dyads and symmetric tensors

The $2 n$-dimensional vector space $D_{2}=\{\boldsymbol{x} \otimes \boldsymbol{y}: \boldsymbol{x} ; \boldsymbol{y} \in X\} \simeq X^{2}$ of the dyads generates the n^{2} dimensional dyadic tensors $\left\langle D_{2}\right\rangle=\left\{\left(m_{i j} \mathbf{e}^{i} \otimes \mathbf{e}^{j}\right)_{1 \leq i ; j \leq n}: m_{i j} \in \mathbb{R}\right\}=X_{2}$ since every $m_{i j} \mathbf{e}^{i} \otimes \mathbf{e}^{j}$ $\in X_{2}$ can be expressed as a linear combination
$\left(\begin{array}{cccc}m_{11} & m_{12} & \cdots & m_{1 n} \\ m_{21} & m_{22} & \cdots & m_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ m_{n 1} & m_{n 2} & \cdots & m_{n n}\end{array}\right)=\left(\begin{array}{c}a_{n ; 1} \\ a_{n ; 2} \\ \vdots \\ a_{n ; n}\end{array}\right) \otimes\left(\begin{array}{c}b_{n ; 1} \\ b_{n ; 2} \\ \vdots \\ b_{n ; n}\end{array}\right)+\left(\begin{array}{c}0 \\ a_{n-1 ; 2} \\ \vdots \\ a_{n-1 ; n}\end{array}\right) \otimes\left(\begin{array}{c}0 \\ b_{n-1 ; 2} \\ \vdots \\ b_{n-1 ; n}\end{array}\right)+\ldots+\left(\begin{array}{c}0 \\ \vdots \\ 0 \\ a_{1 ; n}\end{array}\right) \otimes$
$\left(\begin{array}{c}0 \\ \vdots \\ 0 \\ b_{1 ; n}\end{array}\right)$
of dyads $\boldsymbol{a}_{k} \otimes \boldsymbol{b}_{k} \in D_{2}$. The n-dimensional subspace $S D_{2}=\{\boldsymbol{x} \otimes \boldsymbol{x}: \boldsymbol{x} \in X\} \simeq X$ of the symmetric dyads forms a subspace of the $\frac{n(n+1)}{2}$-dimensional space of the symmetric tensors $S_{2}=$ $\{\boldsymbol{x} \otimes \boldsymbol{y}-\boldsymbol{y} \otimes \boldsymbol{x}: \boldsymbol{x} ; \boldsymbol{y} \in X\}$. Note that S_{2} is closed under addtition since the distributive law of the tensor product resp. the bilinearity of π_{\otimes} imply $(\boldsymbol{x} \otimes \boldsymbol{y}-\boldsymbol{y} \otimes \boldsymbol{x})+(\boldsymbol{u} \otimes \boldsymbol{v}-\boldsymbol{v} \otimes \boldsymbol{u})=(\boldsymbol{x}+\boldsymbol{u}) \otimes(\boldsymbol{y}+\boldsymbol{v})$ $-(\boldsymbol{y}+\boldsymbol{v}) \otimes(\boldsymbol{x}+\boldsymbol{u})-(\boldsymbol{u} \otimes \boldsymbol{y}-\boldsymbol{y} \otimes \boldsymbol{u})-(\boldsymbol{x} \otimes \boldsymbol{v}-\boldsymbol{v} \otimes \boldsymbol{x})$.

7.3.2 Trilinear forms

For $\boldsymbol{x}=x^{i} \boldsymbol{e}_{i}, \boldsymbol{y}=y^{j} \boldsymbol{e}_{j}, \boldsymbol{z}=z^{k} \boldsymbol{e}_{j} \in X=\mathbb{R}^{n}$ every cubic tensor $C=\left(c_{i j k}\right)_{1 \leq i ; j ; k \leq n}$ represents the trilinear form $\left\rangle_{C}: X^{3} \rightarrow \mathbb{C}\right.$ with $\langle\boldsymbol{x} ; \boldsymbol{y} ; \boldsymbol{z}\rangle_{C}=x^{i} y^{j} z^{k} c_{i j k}$. The graphical representation of this computation shows the reduction of the cuboid tensor via matrix and vector to a number: Multiplying the first factor $\left(x^{i}\right)_{1 \leq i \leq n}$ with the n^{2} corresponding vectors $\left(c_{i j k}\right)_{1 \leq i \leq n}$ for $1 \leq j ; k \leq n$ results in the matrix $\left(x^{i} c_{i j k}\right)_{1 \leq j ; k \leq n}$. Multiplying the second factor $\left(y^{j}\right)_{1 \leq j \leq n}$ with the n corresponding vectors $\left(x^{i} c_{i j k}\right)_{1 \leq j \leq n}$ for $1 \leq k \leq n$ results in the vector $\left(x^{i} y^{j} c_{i j k}\right)_{1 \leq k \leq n}$ which in turn combines with the third factor $\left(z^{k}\right)_{1 \leq k \leq n}$ to the final result $x^{i} y^{j} z^{k} c_{i j k}$:

7.4 Coordinate transformations

For a complex vector space $X=\operatorname{span} \mathcal{A}$ with basis $\mathcal{A}=\left(\boldsymbol{e}_{i}\right)_{1 \leq i \leq n}$ and its dual space $X^{*}=\operatorname{span} \mathcal{A}^{*}$ with the dual basis $\mathcal{A}^{*}=\left(e^{j}\right)_{1 \leq j \leq n}$ defined by $e^{j} e_{i}=\delta_{i}^{j}$ the space $X_{p}^{q}=\otimes_{1 \leq i \leq p} X \otimes_{1 \leq j \leq q} X^{*}$ of p contravariant and q-covariant tensor of type $(p ; q)$ with $p ; q \geq 1$ and $\operatorname{dim} X_{p}^{q}=n^{p+q}$ contains elements of the form

$$
\begin{aligned}
\boldsymbol{x} & =\bigotimes_{1 \leq i \leq p} \boldsymbol{x}_{i} \bigotimes_{1 \leq j \leq q} \boldsymbol{x}^{j} \\
& =\mathcal{A}^{x_{1}^{\mu_{1}} \cdot \ldots \cdot \mathcal{A}^{x_{p}} \cdot \mathcal{A}^{\mu_{p}} x_{\nu_{1}}^{1} \cdot \ldots \cdot \mathcal{A} x_{\nu_{q}}^{q} \cdot \boldsymbol{e}_{\mu_{1}} \otimes \ldots \otimes \boldsymbol{e}_{\mu_{p}} \otimes \boldsymbol{e}^{\nu_{1}} \otimes \ldots \otimes \boldsymbol{e}^{\nu_{q}}} \\
& =\mathcal{A}^{x_{\nu_{1}, \ldots ; \nu_{q}}^{\mu_{1} ; \ldots ; \mu_{p}} \cdot \boldsymbol{e}_{\mu_{1}} \otimes \ldots \otimes \boldsymbol{e}_{\mu_{p}} \otimes \boldsymbol{e}^{\nu_{1}} \otimes \ldots \otimes \boldsymbol{e}^{\nu_{q}}}
\end{aligned}
$$

type	object
$(0 ; 0)$	scalar
$(1 ; 0)$	vector
$(0 ; 1)$	linear form
$(1 ; 1)$	endomorphism
$(2 ; 0)$	quadratic matrix
$(0 ; 2)$	bilinear form

Also we define $X_{0}^{0}=\mathbb{R} ; X_{1}=X$ and $X^{1}=X^{*}$. According to 3.10 a tensor is transformed to a new basis \mathcal{B} defined by the transformation matrix $T_{\mathcal{B}}^{\mathcal{A}}=t_{i}^{j} \in G L(n ; \mathbb{R})$ by

$$
{ }_{\mathcal{B}} x_{\beta_{1} ; \ldots ; \beta_{q}}^{\alpha_{1} ; \ldots ; \alpha_{p}}=\left(t^{-1}\right)_{\mu_{1}}^{\alpha_{1}} \cdot \ldots \cdot\left(t^{-1}\right)_{\mu_{p}}^{\alpha_{p}} \cdot \mathcal{A} x_{\nu_{1} ; \ldots ; \nu_{q}}^{\mu_{1} ; \ldots ; \mu_{p}} \cdot t_{\beta_{1}}^{\nu_{1}} \cdot \ldots \cdot t_{\beta_{q}}^{\nu_{q}} .
$$

Analogously to 7.3 the following drawing shows the graphical representation of these summations in the case of $p+q=3$. Note the different transpositions of the transformation matrices according to the direction of the corresponding matrices resp. layers in the tensor:

7.5 The general tensor product

The definition of tensor product $\pi_{\otimes} X^{p} \rightarrow X_{p}$ from 7.2 can be extended to the general tensor product $\pi_{\otimes}:\left(X_{p}^{q} \times X_{r}^{s}\right) \rightarrow X_{p+r}^{q+s}$ by

$$
\begin{aligned}
\boldsymbol{x} \otimes \boldsymbol{y} & =\pi_{\otimes}(\boldsymbol{x} ; \boldsymbol{y}) \\
& =\left(\boldsymbol{x}_{1} \otimes \ldots \otimes \boldsymbol{x}_{p} \otimes \boldsymbol{x}^{1} \otimes \ldots \otimes \boldsymbol{x}^{q}\right) \otimes\left(\boldsymbol{y}_{1} \otimes \ldots \otimes \boldsymbol{y}_{r} \otimes \boldsymbol{y}^{1} \otimes \ldots \otimes \boldsymbol{y}^{s}\right) \\
& =\boldsymbol{x}_{1} \otimes \ldots \otimes \boldsymbol{x}_{p} \otimes \boldsymbol{y}_{1} \otimes \ldots \otimes \boldsymbol{y}_{r} \otimes \boldsymbol{x}^{1} \otimes \ldots \otimes \boldsymbol{x}^{q} \otimes \boldsymbol{y}^{1} \otimes \ldots \otimes \boldsymbol{y}^{s}
\end{aligned}
$$

with

1. associativity: $(\boldsymbol{x} \otimes \boldsymbol{y}) \otimes \boldsymbol{z}=\boldsymbol{x} \otimes(\boldsymbol{y} \otimes \boldsymbol{z})$
2. associativity with the scalar multiplication: $(c \boldsymbol{x}) \otimes \boldsymbol{y}=\boldsymbol{x} \otimes(c \boldsymbol{y})=c \cdot(\boldsymbol{x} \otimes \boldsymbol{y})$
3. associativity with the scalar product: $\left(\boldsymbol{x} \otimes \boldsymbol{y}^{*}\right) * \boldsymbol{z}=x^{i} y_{j} z^{j} \boldsymbol{e}_{i}=\boldsymbol{x} \cdot\left(\boldsymbol{y}^{*} * \boldsymbol{z}\right)$
4. distributivity: $\boldsymbol{x} \otimes(\boldsymbol{y}+\boldsymbol{z})=\boldsymbol{x} \otimes \boldsymbol{y}+\boldsymbol{x} \otimes \boldsymbol{z}$ resp. $(\boldsymbol{x}+\boldsymbol{y}) \otimes \boldsymbol{z}=\boldsymbol{x} \otimes \boldsymbol{z}+\boldsymbol{y} \otimes \boldsymbol{z}$
for $c \in \mathbb{C}$ and $\boldsymbol{x} ; \boldsymbol{y} ; \boldsymbol{z} \in X$ but in general no commutativity. Concerning the relationship with the cross product cf. 7.16.5. Hence every tensor may be written as the product of tensors of type ($1 ; 0$) resp. $(0 ; 1)$ or even using the basis $\mathcal{B}=\left(\boldsymbol{e}_{i}\right)_{1 \leq i \leq n}$ of X in the form

$$
\boldsymbol{x}=\boldsymbol{x}_{1} \otimes \ldots \otimes \boldsymbol{x}_{p} \otimes \boldsymbol{x}^{1} \otimes \ldots \otimes \boldsymbol{x}^{q}=x_{\nu_{1} ; \ldots ; \nu_{q}}^{\mu_{1} ; \ldots ; \mu_{p}} \cdot \boldsymbol{e}_{\mu_{1}} \otimes \ldots \otimes \boldsymbol{e}_{\mu_{p}} \otimes \boldsymbol{e}^{\nu_{1}} \otimes \ldots \otimes \boldsymbol{e}^{\nu_{q}}
$$

and its product with

$$
\boldsymbol{y}=\boldsymbol{y}_{1} \otimes \ldots \otimes \boldsymbol{y}_{r} \otimes \boldsymbol{y}^{1} \otimes \ldots \otimes \boldsymbol{y}^{s}=y_{\chi_{1} ; \ldots ; \chi_{s}}^{\lambda_{1} ; \ldots ; \lambda_{r}} \boldsymbol{e}_{\lambda_{1}} \otimes \ldots \otimes \boldsymbol{e}_{\lambda_{r}} \otimes \boldsymbol{e}^{\chi_{1}} \otimes \ldots \otimes \boldsymbol{e}^{\chi_{s}}
$$

can be written as

$$
\boldsymbol{x} \otimes \boldsymbol{y}=x_{\nu_{1} ; \ldots ; \nu_{q}}^{\mu_{1} ; \ldots ; \mu_{p}} \cdot y_{\chi_{1} ; \ldots ; \chi_{s}}^{\lambda_{1} ; \ldots ; \lambda_{r}} \boldsymbol{e}_{\mu_{1}} \otimes \ldots \otimes \boldsymbol{e}_{\mu_{p}} \otimes \boldsymbol{e}_{\lambda_{1}} \otimes \ldots \otimes \boldsymbol{e}_{\lambda_{r}} \otimes \boldsymbol{e}^{\nu_{1}} \otimes \ldots \otimes \boldsymbol{e}^{\nu_{q}} \otimes \boldsymbol{e}^{\chi_{1}} \otimes \ldots \otimes \boldsymbol{e}^{\chi_{s}}
$$

7.6 Contractions

The contraction $\gamma_{i}^{k}: X_{p}^{q} \rightarrow X_{p-1}^{q-1}$ is defined as

$$
\begin{aligned}
\gamma_{i}^{k}(\boldsymbol{x}) & =x_{\nu_{1}, \ldots ; \nu_{q}}^{\mu_{1} ; \ldots \mu_{p}} \cdot\left(\boldsymbol{e}^{k} \boldsymbol{e}_{i}\right) \boldsymbol{e}_{\mu_{1}} \otimes \ldots \otimes \boldsymbol{e}_{\mu_{i-1}} \otimes \boldsymbol{e}_{\mu_{i+1}} \otimes \ldots \otimes \boldsymbol{e}_{\mu_{p}} \otimes \boldsymbol{e}^{\nu_{1}} \otimes \ldots \otimes \boldsymbol{e}^{\nu_{k-1}} \otimes \boldsymbol{e}^{\nu_{k+1}} \otimes \ldots \otimes \boldsymbol{e}^{\nu_{q}} \\
& =x_{\nu_{1} \ldots ; \nu_{k-1} ; \lambda ; \nu_{k+1} ; \ldots, \nu_{q}}^{\mu_{1} ; \ldots \mu_{i-1} ; \lambda ; \mu_{i+1} ; \ldots ; \mu_{p}} \cdot \boldsymbol{e}_{\mu_{1}} \otimes \ldots \otimes \boldsymbol{e}_{\mu_{i-1}} \otimes \boldsymbol{e}_{\mu_{i+1}} \otimes \ldots \otimes \boldsymbol{e}_{\mu_{p}} \otimes \boldsymbol{e}^{\nu_{1}} \otimes \ldots \otimes \boldsymbol{e}^{\nu_{k-1}} \otimes \boldsymbol{e}^{\nu_{k+1}} \otimes \ldots \otimes \boldsymbol{e}^{\nu_{q}}
\end{aligned}
$$

and due to $\boldsymbol{e}^{k} \boldsymbol{e}_{i}=\delta_{i}^{k}$ it can be computed by cancelling $\boldsymbol{e}_{\nu_{k}}$ resp. $\boldsymbol{e}^{\mu_{i}}$, replacing the respective indices by a common $\nu_{k}=\mu_{i}=\lambda$ and replacing the two independent summations over $1 \leq \nu_{k} ; \mu_{i} \leq n$ by a single summation of

$$
x_{\nu_{1} ; \ldots ; \nu_{k-1} ; \lambda ; \nu_{k+1} ; \ldots, \nu_{q}}^{\mu_{1} ; \ldots \mu_{i-1}, \lambda \mu_{i+1} ; \ldots ; \mu_{1}}=x_{1}^{\mu_{1}} \cdot \ldots \cdot x_{i-1}^{\mu_{i-1}} \cdot x_{i}^{\lambda} \cdot x_{i+1}^{\mu_{i+1}} \cdot \ldots \cdot x_{p}^{\mu_{p}} \cdot x_{\nu_{1}}^{1} \cdot \ldots \cdot x_{\nu_{k-1}}^{k-1} \cdot x_{\lambda}^{k} \cdot x_{\nu_{k+1}}^{k+1} \cdot \ldots \cdot x_{\nu_{q}}^{q}
$$

over $1 \leq \lambda \leq n$ each summand being multiplied with the identical tensor product of the basis vectors $\mathbf{a}_{\nu_{k}}$ resp. $\mathbf{a}^{\mu_{i}}$ with fixed values for ν_{k} resp. μ_{i}.
Example: In the two dimensional real vector space $X=\operatorname{span}\left\{\boldsymbol{e}_{1} ; \boldsymbol{e}_{2}\right\}$ with its dual space $X^{*}=$ $\operatorname{span}\left\{\boldsymbol{e}^{1} ; \boldsymbol{e}^{2}\right\}$ and

$$
\begin{aligned}
\boldsymbol{x} & =2 \boldsymbol{e}_{1} \otimes \boldsymbol{e}^{1}+3 \boldsymbol{e}_{1} \otimes \boldsymbol{e}^{2}-\boldsymbol{e}_{2} \otimes \boldsymbol{e}^{1}+4 \boldsymbol{e}_{2} \otimes \boldsymbol{e}^{2} \in X_{1}^{1} \\
\boldsymbol{y} & =5 \boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1} \otimes \boldsymbol{e}^{1}-2 \boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1} \otimes \boldsymbol{e}^{2} \\
& +0 e_{1} \otimes \boldsymbol{e}_{2} \otimes \boldsymbol{e}^{1}-0 \boldsymbol{e}_{1} \otimes \boldsymbol{e}_{2} \otimes \boldsymbol{e}^{2} \\
& +0 \boldsymbol{e}_{2} \otimes \boldsymbol{e}_{1} \otimes \boldsymbol{e}^{1}-0 e_{2} \otimes \boldsymbol{e}_{1} \otimes \boldsymbol{e}^{2} \\
& +0 \boldsymbol{e}_{2} \otimes \boldsymbol{e}_{2} \otimes \boldsymbol{e}^{1}-0 \boldsymbol{e}_{2} \otimes \boldsymbol{e}_{2} \otimes \boldsymbol{e}^{2} \in X_{2}^{1}
\end{aligned}
$$

we have the tensor product

$$
\begin{aligned}
\boldsymbol{x} \otimes \boldsymbol{y} & =10 \boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1} \otimes \boldsymbol{e}^{1} \otimes \boldsymbol{e}^{1}+15 \boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1} \otimes \boldsymbol{e}^{2} \otimes \boldsymbol{e}^{1} \\
& -5 \boldsymbol{e}_{2} \otimes \boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1} \otimes \boldsymbol{e}^{1} \otimes \boldsymbol{e}^{1}+20 e_{2} \otimes \boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1} \otimes \boldsymbol{e}^{2} \otimes \boldsymbol{e}^{1} \\
& -4 \boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1} \otimes \boldsymbol{e}^{1} \otimes \boldsymbol{e}^{2}-6 e_{1} \otimes \boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1} \otimes \boldsymbol{e}^{2} \otimes \boldsymbol{e}^{2} \\
& +2 e_{2} \otimes \boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1} \otimes \boldsymbol{e}^{1} \otimes \boldsymbol{e}^{2}-8 e_{2} \otimes \boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1} \otimes \boldsymbol{e}^{2} \otimes \boldsymbol{e}^{2} \\
& \in X_{3}^{2}
\end{aligned}
$$

For the contraction γ_{1}^{2} we replace the first contravariant vector \boldsymbol{e}_{i} and the second covariant vector e^{j} by δ_{i}^{j} such that

$$
\begin{aligned}
\gamma_{1}^{2}(\boldsymbol{x} \otimes \boldsymbol{y}) & =10 \boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1} \otimes \boldsymbol{e}^{1}+15 \boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1} \otimes \boldsymbol{e}^{2} \\
& +2 \boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1} \otimes \boldsymbol{e}^{1}-8 \boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1} \otimes \boldsymbol{e}^{2} \\
& =12 \boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1} \otimes \boldsymbol{e}^{1}+7 \boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1} \otimes \boldsymbol{e}^{2}
\end{aligned}
$$

A second contraction results e.g. in
$\gamma_{1}^{1}\left(\gamma_{1}^{2}(\boldsymbol{x} \otimes \boldsymbol{y})\right)=12 \boldsymbol{e}_{1}$.

7.7 Raising and lowering of indices

Symmetric and positive definite tensors $g_{i j} \boldsymbol{e}^{i} \otimes \boldsymbol{e}^{j} \in X_{2}$ resp. $g^{i j} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \in X^{2}$ are called metric tensors since the corresponding bilinear forms $\left\rangle_{g}: X^{2} \rightarrow \mathbb{R}\right.$ with $\langle\boldsymbol{x} ; \boldsymbol{y}\rangle_{g}=x^{i} g_{i j} y^{j}$ for $\boldsymbol{x}=x^{i} \boldsymbol{e}_{i}$ resp. $\boldsymbol{y}=x^{j} \mathbf{e}_{j}$ define a norm $\left\|\|: X \rightarrow \mathbb{R}^{+}\right.$with $\| \boldsymbol{x} \|=\langle\boldsymbol{x} ; \boldsymbol{x}\rangle_{g}$ and hence a metric on X resp. X^{*}. They also provide the coordinates $x_{i}=x^{j} g_{i j}$ of the associated duals $\boldsymbol{x}^{*}=\langle\boldsymbol{x} ;\rangle_{g} \in X^{*}$ for any $\boldsymbol{x} \in X$ with reference to the dual basis defined by $\mathbf{e}^{j}=\left\langle\boldsymbol{e}_{j} ;\right\rangle_{g}$. In physics the transposition from $\boldsymbol{x}=x^{j} \boldsymbol{e}_{j}$ to $\tau_{X}(\boldsymbol{x})=\boldsymbol{x}^{*}=x_{i} \boldsymbol{e}^{i}=g_{i j} x^{j} \boldsymbol{e}^{i}$ is called the lowering of the index and the reverse step from $\boldsymbol{x}^{*}=x_{i} \boldsymbol{e}^{i}$ to $\boldsymbol{x}=\tau_{X}^{-1}\left(\boldsymbol{x}^{*}\right)=x^{j} \boldsymbol{e}_{j}=g^{j i} x_{i} \boldsymbol{e}_{j}$ is the raising of the index.

7.8 Symmetric maps

For complex vector spaces X and Y for $1 \leq i \leq p \geq 2$ and the symmetric tensors

$$
S_{p}=\operatorname{span}\left\{\left(\boldsymbol{x}_{\omega(1)} \otimes \ldots \otimes \boldsymbol{x}_{\omega(p)}\right)-\left(\boldsymbol{x}_{1} \otimes \ldots \otimes \boldsymbol{x}_{p}\right): \boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p} \in X ; \omega \in S_{p}\right\}
$$

from 7.3.1 the p-linear map $\varphi: X^{p} \rightarrow Y$ is symmetric iff it satisfies one of the following obviously equivalent conditions:

1. $\varphi\left(\boldsymbol{x}_{\omega(1)} ; \ldots ; \boldsymbol{x}_{\omega(p)}\right)=\varphi\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right)$ for every permutation $\omega \in S_{p}$
2. $S_{p} \subset \operatorname{ker} \varphi_{\otimes}$.

7.9 The symmetric product

For every power X^{p} of a complex vector space X to an exponent $p \geq 0$ exists a complex vector space $\bigvee^{p} X$ and a symmetric map $\vee: X^{p} \rightarrow \bigvee^{p} X$ such that for every symmetric $\varphi: X^{p} \rightarrow Y$ into a complex vector space Y exists a uniquely determined linear $\varphi_{\vee}: \bigvee^{p} X \rightarrow Y$ with $\varphi=\varphi_{\vee} \circ \vee$.
The symmetric product $\bigvee^{p} X=X_{p} / S_{p}$ is the quotient space of the tensor product $X_{p}=\otimes^{p} X$ defined in 7.2 and 7.4 over the subspace S_{p} from 7.8 and its elements $\boldsymbol{x}_{1} \vee \ldots \vee \boldsymbol{x}_{p}=\pi_{\vee}\left(\boldsymbol{x}_{1} \otimes \ldots \otimes \boldsymbol{x}_{p}\right)$ $=\vee\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right)$ for $\vee=\pi_{\vee} \circ \pi_{\otimes}$ with the p-linear map $\pi_{\otimes}: X^{p} \rightarrow X_{p}$ from 7.2 and the linear projection $\pi_{\vee}: X_{p} \rightarrow \bigvee^{p} X$ are the symmetric products of the vectors $\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p} \in X$. According to 7.4 we have $\bigvee^{0} X=X_{0}=\mathbb{C}$ and $\bigvee^{1} X=X_{1}=X$. In the finite dimensional case with $\operatorname{dim} X=n$ resp. $\operatorname{dim} Y=r$ the symmetric product has the dimension

$$
\operatorname{dim} S_{p}\left(X^{p}, Y\right)=\binom{n+p-1}{p} \cdot r .
$$

Proof: The linearity of π_{\vee} and 7.2 and the p-linearity of π_{\otimes} imply the p-linearity of $\vee=\pi_{\vee} \circ \pi_{\otimes}$, i.e. $\ldots \vee\left(c \boldsymbol{y}_{k}+d \boldsymbol{z}_{k}\right) \vee \ldots=c\left(\ldots \vee \boldsymbol{y}_{k} \vee \ldots\right)+d\left(\ldots \vee \boldsymbol{z}_{k} \vee \ldots\right)$. Also we have $S_{p} \subset \operatorname{ker}\left(\pi_{\vee} \circ \pi_{\otimes}\right)$ whence according to 7.8 .2 the map $\vee=\pi_{\vee} \circ \pi_{\otimes}$ is symmetric, i.e. for every permutation $\sigma \in S_{p}$ holds $\boldsymbol{x}_{\sigma(1)} \vee \ldots \vee \boldsymbol{x}_{\sigma(p)}=\boldsymbol{x}_{1} \vee \ldots \vee \boldsymbol{x}_{p}$ and in particular $\boldsymbol{x}_{2} \vee \boldsymbol{x}_{1}=\boldsymbol{x}_{1} \vee \boldsymbol{x}_{2}$. According to 7.2 for every symmtric $\varphi: X^{p} \rightarrow Y$ there is a uniquely determined and linear $\varphi_{\otimes}: X_{p} \rightarrow Y$ with $\varphi=\varphi_{\otimes} \circ \pi_{\otimes}$. Then due to 3.8 exists a uniquely determined and linear $\varphi_{V}: \bigvee^{p} X \rightarrow Y$ with $\varphi_{\vee} \circ \pi_{\vee}$ $=\varphi_{\otimes}$ whence follows $\varphi_{\vee} \circ \vee=\varphi_{\vee} \circ \pi_{\vee} \circ \pi_{\otimes}=\varphi_{\otimes} \circ \pi_{\otimes}=\varphi$. In the finite dimensional
 case with $\operatorname{dim} X=n$ and basis $\left\{\boldsymbol{e}_{1} ; \ldots ; \boldsymbol{e}_{n}\right\}$ we draw p vectors from an urn containing n marked basis vectors e_{i} plus $p-1$ unmarked dummy vectors for possible repeats without replacing. Due to the symmetry we do not consider the order of the combinations whence

$$
\operatorname{dim} \bigvee^{p}=\operatorname{card}\left\{\boldsymbol{e}_{\mu_{1}} \vee \ldots \vee \boldsymbol{e}_{\mu_{p}}: 1 \leq \mu_{1} \leq \ldots \leq \mu_{p} \leq n\right\}=\binom{n+p-1}{p}
$$

Combining these basis vectors with the r basis vectors of Y yields the desired dimension formula.

7.10 Antisymmetric maps

For complex vector spaces X and Y for $1 \leq i \leq p \geq 2$ with

$$
A_{p}=\operatorname{span}\left\{\left(\boldsymbol{x}_{1} \otimes \ldots \otimes \boldsymbol{x}_{p}\right): \boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p} \in X ; \exists 1 \leq i<j \leq p: \boldsymbol{x}_{i}=\boldsymbol{x}_{j}\right\}
$$

the p-linear map $\varphi: X^{p} \rightarrow Y$ is alternating or antisymmetric iff it satisfies one of the following equivalent conditions:

1. $\varphi\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right)=0 \Leftrightarrow \exists 1 \leq i<j \leq p: \boldsymbol{x}_{i}=\boldsymbol{x}_{j}$.
2. $\varphi\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right)=0 \Leftrightarrow \boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p} \in X$ are linearly dependent.
3. $\varphi\left(\boldsymbol{x}_{\omega(1)} ; \ldots ; \boldsymbol{x}_{\omega(p)}\right)=\operatorname{sgn}(\omega) \cdot \varphi\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right)$ for every $\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p} \in X$ and every permutation $\omega \in S_{p}$.
4. The uniquely determined linear map $\varphi_{\otimes}: X_{p} \rightarrow Y$ is alternating, i.e. $A_{p} \subset \operatorname{ker} \varphi_{\otimes}$.

The vector subspaces of the alternating p-linear resp. linear maps are denoted as $A_{p}\left(X^{p} ; Y\right) \subset$ $L_{p}\left(X^{p} ; Y\right)$ resp. $A\left(X_{p} ; Y\right) \subset L\left(X_{p} ; Y\right)$. In the case of $Y=\mathbb{C}$ from $L_{p}\left(X^{p} ; \mathbb{C}\right) \cong L\left(X_{p} ; \mathbb{C}\right)=\left(X_{p} ; \mathbb{C}\right)^{*}$ follows $A_{p}\left(X^{p} ; \mathbb{C}\right) \cong A\left(X_{p} ; \mathbb{C}\right)$. Note that for $p>\operatorname{dim} X$ every alternating map on X^{p} resp. X_{p} is the null map.
Proof:

1. \Rightarrow 2. : As in 4.1.10 this follows from $\varphi\left(\ldots ; \boldsymbol{x}_{i}+\boldsymbol{x}_{j} ; \ldots ; \boldsymbol{x}_{j} ; \ldots\right) \stackrel{2 .}{=} \varphi\left(\ldots ; \boldsymbol{x}_{i} ; \ldots ; \boldsymbol{x}_{j} ; \ldots\right)$ for every $1 \leq i<$ $j \leq p$.
2. \Rightarrow 1. : trivial.
3. \Rightarrow 3. : As in 4.1.12 with $\tau=\langle i ; j\rangle$ this follows from $\varphi\left(\boldsymbol{x}_{\tau(1)} ; \ldots ; \boldsymbol{x}_{\tau(p)}\right)=\varphi\left(\ldots ; \boldsymbol{x}_{j} ; \ldots ; \boldsymbol{x}_{i} ; \ldots\right){ }^{2}$. $\varphi\left(\ldots ; \boldsymbol{x}_{i}+\boldsymbol{x}_{j} ; \ldots ; \boldsymbol{x}_{i} ; \ldots\right) \stackrel{2 .}{=} \varphi\left(\ldots ; \boldsymbol{x}_{i}+\boldsymbol{x}_{j} ; \ldots ;-\boldsymbol{x}_{j} ; \ldots\right) \stackrel{2}{=} \varphi\left(\ldots ; \boldsymbol{x}_{i} ; \ldots ;-\boldsymbol{x}_{j} ; \ldots\right)=-\varphi\left(\ldots ; \boldsymbol{x}_{i} ; \ldots ; \boldsymbol{x}_{j} ; \ldots\right)=$ $\operatorname{sgn}(\tau) \cdot \varphi\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right)$.
4. $\Rightarrow 1$. : Obvious with the transposition $\omega=\tau_{i ; j}$.
$1 . \Leftrightarrow 4$. : trivial.

7.11 Antisymmetrization

For every p-linear $\varphi: X^{p} \rightarrow Y$ its antisymmetrical map $\varphi_{a}: X^{p} \rightarrow Y$ defined by $\varphi_{a}\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right)=$ $\frac{1}{p!} \sum_{\sigma \in S_{p}} \operatorname{sgn}(\sigma) \cdot \varphi\left(\boldsymbol{x}_{\sigma(1)} ; \ldots ; \boldsymbol{x}_{\sigma(p)}\right)$ is antisymmetric since due to $\operatorname{sgn}(\sigma)=(\operatorname{sgn}(\omega))^{2} \cdot \operatorname{sgn}(\sigma)=$ $\operatorname{sgn}(\omega) \cdot \operatorname{sgn}(\sigma \circ \omega)$ for every $\omega \in S_{n}$ we have

$$
\begin{aligned}
\varphi_{a}\left(\boldsymbol{x}_{\omega(1)} ; \ldots ; \boldsymbol{x}_{\omega(p)}\right) & =\frac{1}{p!} \sum_{\sigma \in S_{p}} \operatorname{sgn}(\omega) \cdot \operatorname{sgn}(\sigma \circ \omega) \cdot \varphi\left(\boldsymbol{x}_{(\sigma \circ \omega)(1)} ; \ldots ; \boldsymbol{x}_{(\sigma \circ \omega)(p)}\right) \\
& =\frac{1}{p!} \operatorname{sgn}(\omega) \cdot \sum_{\sigma \circ \omega \in S_{p}} \operatorname{sgn}(\sigma \circ \omega) \cdot \varphi\left(\boldsymbol{x}_{(\sigma \circ \omega)(1)} ; \ldots ; \boldsymbol{x}_{(\sigma \circ \omega)(p)}\right) \\
& =\frac{1}{p!} \operatorname{sgn}(\omega) \cdot \varphi_{a}\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right) .
\end{aligned}
$$

Equivalently it is alternating since in the case of $\boldsymbol{x}_{i}=\boldsymbol{x}_{j}$ due to 1.16 .1 we have $S_{p}=\tau \circ S_{p}$ with $\tau=\langle i ; j\rangle$ whence $\varphi_{a}\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right)=\frac{1}{p!} \sum_{\sigma \in S_{p}} \operatorname{sgn}(\sigma) \cdot \varphi\left(\boldsymbol{x}_{\sigma(1)} ; \ldots ; \boldsymbol{x}_{\sigma(p)}\right)=\frac{1}{p!} \sum_{\sigma \in S_{p}} \operatorname{sgn}\left(\tau_{i, j} \circ \sigma\right)$. $\varphi\left(\boldsymbol{x}_{\tau \circ \sigma(1)} ; \ldots ; \boldsymbol{x}_{\tau \circ \sigma(p)}\right)=-\frac{1}{p!} \sum_{\sigma \in S_{p}} \operatorname{sgn}(\sigma) \cdot \varphi\left(\boldsymbol{x}_{\sigma(1)} ; \ldots ; \boldsymbol{x}_{\sigma(p)}\right)=-\varphi_{a}\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right)=0$. The asymmetrical map of an already asymmetric map $\varphi: X^{p} \rightarrow Y$ is $\varphi_{a}\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right)=\frac{1}{p!} \sum_{\sigma \in S_{p}} \operatorname{sgn}(\sigma)$. $\varphi\left(\boldsymbol{x}_{\sigma(1)} ; \ldots ; \boldsymbol{x}_{\sigma(p)}\right)=\frac{1}{p!} \sum_{\sigma \in S_{p}}(\operatorname{sgn}(\sigma))^{2} \cdot \varphi\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right)=\frac{\left|S_{p}\right|}{p!} \cdot \varphi\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right)=\varphi\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right)$.

7.12 The exterior product

For every power X^{p} of a complex vector space X to an exponent $p \geq 0$ exists a complex vector space $\Lambda^{p} X$ and an alternating map $\wedge: X^{p} \rightarrow \bigwedge^{p} X$ such that for every alternating $\varphi: X^{p} \rightarrow Y$ into a complex vector space Y exists a uniquely determined linear $\varphi_{\wedge}: \Lambda^{p} X \rightarrow Y$ with $\varphi=\varphi_{\wedge} \circ \wedge$. The exterior product $\wedge^{p} X=X_{p} / A_{p}$ is the quotient space of the tensor product $X_{p}=\otimes^{p} X$ defined in 7.2 and 7.4 over the subspace A_{p} from 7.10 and its elements $\boldsymbol{x}_{1} \wedge \ldots \wedge \boldsymbol{x}_{p}=\pi_{\wedge}\left(\boldsymbol{x}_{1} \otimes \ldots \otimes \boldsymbol{x}_{p}\right)$ $=\wedge\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right)$ for $\wedge=\pi_{\wedge} \circ \pi_{\otimes}$ with the p-linear map $\pi_{\otimes}: X^{p} \rightarrow X_{p}$ from 7.2 and the linear projection $\pi_{\wedge}: X_{p} \rightarrow \wedge^{p} X$ are the exterior products of the vectors $\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p} \in X$. According to 7.4 we have $\wedge^{0} X=X_{0}=\mathbb{C}$ and $\wedge^{1} X=X_{1}=X$.

Proof: The linearity of π_{\wedge} and 7.2 and the p-linearity of π_{\otimes} imply the p linearity of $\wedge=\pi_{\wedge} \circ \pi_{\otimes}$, i.e. $\boldsymbol{x}_{1} \wedge \ldots \wedge\left(c \boldsymbol{y}_{k}+d \boldsymbol{z}_{k}\right) \wedge \ldots \wedge \boldsymbol{x}_{p}=c\left(\boldsymbol{x}_{1} \wedge \ldots \wedge \boldsymbol{y}_{k} \wedge \ldots \wedge \boldsymbol{x}_{p}\right)$ $+d\left(\boldsymbol{x}_{1} \wedge \ldots \wedge \boldsymbol{z}_{k} \wedge \ldots \wedge \boldsymbol{x}_{p}\right)$. Also we have $A_{p} \subset \operatorname{ker}\left(\pi_{\wedge} \circ \pi_{\otimes}\right)$ whence according to 7.10.4 the map $\wedge=\pi_{\wedge} \circ \pi_{\otimes}$ is alternating, i.e. for every permutation $\sigma \in S_{p}$ holds $\boldsymbol{x}_{\sigma(1)} \wedge \ldots \wedge \boldsymbol{x}_{\sigma(p)}=\operatorname{sgn}(\sigma) \cdot\left(\boldsymbol{x}_{1} \wedge \ldots \wedge \boldsymbol{x}_{p}\right)$ and in particular $\boldsymbol{x}_{2} \wedge \boldsymbol{x}_{1}=-\boldsymbol{x}_{1} \wedge \boldsymbol{x}_{2}$. Also we have $\ldots \wedge\left(\boldsymbol{x}_{k}+c \boldsymbol{x}_{l}\right) \wedge \ldots \wedge \boldsymbol{x}_{l} \wedge \ldots=\ldots \wedge \boldsymbol{x}_{k} \wedge \ldots \wedge \boldsymbol{x}_{l} \wedge \ldots$ whence follows $\boldsymbol{x}_{1} \wedge \ldots \wedge \boldsymbol{x}_{p}=0$ iff $\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}$ are linearly independent. In particular $X_{p}=\{\mathbf{0}\}$
 if $p>n=\operatorname{dim} X$. According to 7.2 for every alternating $\varphi: X^{p} \rightarrow Y$ there is a uniquely determined and linear $\varphi_{\otimes}: X_{p} \rightarrow Y$ with $\varphi=\varphi_{\otimes} \circ \pi_{\otimes}$. Then due to 3.8 exists a uniquely determined and linear $\varphi_{\wedge}: \Lambda^{p} X \rightarrow Y$ with $\varphi_{\wedge} \circ \pi_{\wedge}=\varphi_{\otimes}$ whence follows $\varphi_{\wedge} \circ \wedge=$ $\varphi_{\wedge} \circ \pi_{\wedge} \circ \pi_{\otimes}=\varphi_{\otimes} \circ \pi_{\otimes}=\varphi$.

7.13 The finite dimensional case

For finite dimensional vector spaces X with $\operatorname{dim} X=n$ and basis $\left\{\boldsymbol{e}_{1} ; \ldots ; \boldsymbol{e}_{n}\right\}$ resp. Y with $\operatorname{dim} Y=$ r and basis $\left\{\boldsymbol{b}_{1} ; \ldots ; \boldsymbol{b}_{r}\right\}$ the vector space $A_{p}\left(X^{p}, Y\right)$ of all p-linear alternating maps $\varphi: X^{p} \rightarrow$ Y has the basis $\mathcal{B}=\left\{\psi_{\mu_{1} ; \ldots ; \mu_{p}}^{\rho} \cdot \boldsymbol{b}_{\rho}: 1 \leq \mu_{1}<\ldots<\mu_{p} \leq n ; 1 \leq \rho \leq r\right\}$ with $\psi_{\mu_{1} ; \ldots ; \mu_{p}}^{\rho}\left(\boldsymbol{e}_{\nu_{1}} ; \ldots ; \boldsymbol{e}_{\nu_{p}}\right)=$ $\delta_{\mu_{1}}^{\nu_{1}} \cdot \ldots \cdot \delta_{\mu_{p}}^{\nu_{p}}$ and

$$
\operatorname{dim} A_{p}\left(X^{p}, Y\right)=\binom{n}{p} \cdot r
$$

Proof: Any p-linear map $\varphi: X^{p} \rightarrow Y$ has the form $\varphi\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right)=\sum_{\iota_{k} \in I} x_{1}^{\iota_{1}} \cdot \ldots \cdot x_{p}^{\iota_{p}} \cdot \varphi\left(\boldsymbol{e}_{\iota_{1}} ; \ldots ; \boldsymbol{e}_{\iota_{p}}\right)$ for $\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right) \in X^{p}$ with $\boldsymbol{x}_{k}=\sum_{\iota_{k} \in I} x_{k}^{\iota_{k}} \boldsymbol{e}_{\iota_{k}}$. Since φ is alternating every summand with index vector $\left(\iota_{1} ; \ldots ; \iota_{p}\right)$ having two identical indices must vanish and every remaining summand is a permutation of exactly one ordered combination $\left(\iota_{1}<\ldots<\iota_{p}\right)$ such that according to 7.10 .3 follows

$$
\begin{aligned}
\varphi\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right) & =\sum_{\iota_{1}<\ldots<\iota_{p} \in I \sigma \in S_{p}} x_{1}^{\iota_{\sigma(1)}} \cdot \ldots \cdot x_{p}^{\iota_{\sigma(p)}} \cdot \varphi\left(\boldsymbol{e}_{\iota_{\sigma(1)}} ; \ldots ; \boldsymbol{e}_{\iota_{\sigma(p)}}\right) \\
& =\sum_{\iota_{1}<\ldots<\iota_{p} \in I}\left(\sum_{\sigma \in S_{p}} \operatorname{sgn}(\sigma) \cdot x_{1}^{\iota_{\sigma(1)}} \cdot \ldots \cdot x_{p}^{\iota_{\sigma(p)}}\right) \cdot \varphi\left(\boldsymbol{e}_{\iota_{1}} ; \ldots ; \boldsymbol{e}_{\iota_{p}}\right) \\
& =\sum_{\iota_{1}<\ldots<\iota_{p} \in I} \operatorname{det}\left(\begin{array}{ccc}
x_{1}^{\iota_{1}} & \cdots & x_{1}^{\iota_{p}} \\
\vdots & \ddots & \vdots \\
x_{p}^{\iota_{1}} & \cdots & x_{p}^{\iota_{p}}
\end{array}\right) \cdot \varphi_{\times}\left(\boldsymbol{e}_{\iota_{1}} \wedge \ldots \wedge \boldsymbol{e}_{\iota_{p}}\right) \\
& =\varphi_{\times}\left(\boldsymbol{x}_{1} \wedge \ldots \wedge \boldsymbol{x}_{p}\right)
\end{aligned}
$$

due to 4.2 with the linear $\varphi_{\times}: \wedge^{p} X \rightarrow Y$ from 7.12 uniquely determined by $\varphi_{\times}\left(\boldsymbol{e}_{\iota_{1}} \wedge \ldots \wedge \boldsymbol{e}_{\iota_{p}}\right)$ $=\varphi\left(\boldsymbol{e}_{\iota_{1}} ; \ldots ; \boldsymbol{e}_{\iota_{p}}\right)$ for every $\iota_{1}<\ldots<\iota_{p} \in I$. Note that in the case of coinciding indices follows $\boldsymbol{e}_{\iota_{1}} \wedge \ldots \wedge \boldsymbol{e}_{\iota_{p}}=0$ whence $\varphi_{\times}\left(\boldsymbol{e}_{\iota_{1}} \wedge \ldots \wedge \boldsymbol{e}_{\iota_{p}}\right)=\varphi\left(\boldsymbol{e}_{\iota_{1}} ; \ldots ; \boldsymbol{e}_{\iota_{p}}\right)=0$. Also for every permutation $\sigma \in S_{p}$ holds $\boldsymbol{e}_{\sigma(1)} \wedge \ldots \wedge \boldsymbol{e}_{\sigma(p)}=\operatorname{sgn}(\sigma) \cdot\left(\boldsymbol{e}_{1} \wedge \ldots \wedge \boldsymbol{e}_{p}\right)$ whence $\varphi_{\times}\left(\boldsymbol{e}_{\sigma(1)} \wedge \ldots \wedge \boldsymbol{e}_{\sigma(p)}\right)=\operatorname{sgn}(\sigma) \cdot \varphi\left(\boldsymbol{e}_{\iota_{1}} ; \ldots ; \boldsymbol{e}_{\iota_{p}}\right)$ $=\operatorname{sgn}(\sigma) \cdot \varphi\left(\boldsymbol{e}_{\iota_{1}} ; \ldots ; \boldsymbol{e}_{\iota_{p}}\right)$. Hence follows $A_{p}\left(X^{p}, Y\right) \cong L\left(\bigwedge^{p} X ; Y\right)$ and since $L\left(\bigwedge^{p} X ; \mathbb{R}\right) \cong\left(\bigwedge^{p} X\right)^{*}$ $\cong \bigwedge^{p} X$ with $\varphi\left(\boldsymbol{e}_{\iota_{1}} ; \ldots ; \boldsymbol{e}_{\iota_{p}}\right)=\sum_{1 \leq \rho \leq \iota_{1}<\ldots<\iota_{p} \in I} c_{\iota_{1} ; \ldots ; \iota_{p}}^{\rho} \cdot \psi_{\iota_{1} ; \ldots ; \iota_{p}}^{\rho}\left(\boldsymbol{e}_{\iota_{1}} ; \ldots ; \boldsymbol{e}_{\iota_{p}}\right) \cdot \boldsymbol{b}_{\rho} \in Y$ with coefficients $c_{\iota_{1} ; \ldots ; \iota_{p}}^{\rho} \in \mathbb{C}$ for each of the $\binom{n}{p}$ combinations $\iota_{1}<\ldots<\iota_{p} \in I$ of indices and each of the r basis vectors $\boldsymbol{b}_{\rho} \in Y$ this implies the assertion.
The extension of the exterior product from vectors to antisymmetric tensors analogously to the extension of the tensor product from vectors in 7.2 to tensors in 7.4 will be introduced in 7.18.

7.14 Antisymmetric tensors

According to 7.11 for every vector space X and $p \geq 0$ the antisymmetrical map $\pi_{\otimes a}: X^{p} \rightarrow X_{p}$ of $\pi_{\otimes}: X^{p} \rightarrow X_{p}$ is alternating such that according to 7.12 there is a uniquely determined alternating endomorphism $\tau_{\otimes} \in$ end $\left(X_{p}\right)$ with $\pi_{\otimes a}=\tau_{\otimes} \circ \pi_{\otimes}$. The antisymmetrical tensors $\tau_{\otimes}\left(\boldsymbol{x}_{1} \otimes \ldots \otimes \boldsymbol{x}_{p}\right)=\pi_{\otimes a}\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right)$ for $\boldsymbol{x}_{i} \in X$ with $1 \leq i \leq p$ form the vector subspace $U_{p}=\tau_{\otimes}\left[X_{p}\right] \subset X_{p}$. Note that
 the cases $\Lambda^{0} X=X_{0}=\mathbb{R}$ and $\bigwedge^{1} X=X_{1}=X$ are covered by $\pi_{\otimes}=\pi_{\otimes a}=\tau_{\otimes}=\mathrm{id}$ and that every 0 - resp. 1-dimensional vector is trivially antisymmetrical.
Theorem: $A_{p}=\operatorname{ker} \tau_{\otimes}$. Hence the antisymmetrical tensors are isomorphic to the exterior products of vectors and to alternating linear forms: $U_{p} \cong \Lambda^{p} X=X_{p} / A_{p} \cong A_{p}\left(X^{p}\right.$, $\left.\mathbb{R}\right)$, i.e. $\tau_{\otimes}\left(\boldsymbol{x}_{1} \otimes \ldots \otimes \boldsymbol{x}_{p}\right)=\pi_{\otimes a}\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right) \cong \boldsymbol{x}_{1} \wedge \ldots \wedge \boldsymbol{x}_{p} \cong\left(\boldsymbol{x}_{1} \wedge \ldots \wedge \boldsymbol{x}_{p}\right)^{*}$. In particular the antisymmetrical tensor $\tau_{\otimes}\left(\boldsymbol{x}_{1} \otimes \ldots \otimes \boldsymbol{x}_{p}\right)$ vanishes iff the $\left(\boldsymbol{x}_{i}\right)_{i \in I_{p}}$ are linearly dependent.
Proof: According to 7.10 .4 it suffices to show that for every $\boldsymbol{x}_{1} \otimes \ldots \otimes \boldsymbol{x}_{p} \in \operatorname{ker} \tau_{\otimes}$ and every alternating $\varphi: X^{p} \rightarrow Y$ holds $\varphi_{\otimes}\left(\boldsymbol{x}_{1} \otimes \ldots \otimes \boldsymbol{x}_{p}\right)=0$ which implies $\boldsymbol{x} \in A_{p}$: According to 7.11 for $\varphi=\varphi_{\otimes} \circ \pi_{\otimes}$ there exists a p-linear $\psi: X^{p} \rightarrow Y$ with antisymmetrical $\psi_{a}=\varphi$. Then for every $\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right) \in X^{p}$ and the corresponding linear $\psi_{\otimes}: X_{p} \rightarrow Y$ holds

$$
\begin{aligned}
\varphi_{\otimes}\left(\boldsymbol{x}_{1} \otimes \ldots \otimes \boldsymbol{x}_{p}\right) & =\varphi\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right) \\
& =\psi_{a}\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right) \\
& =\sum_{\sigma \in S_{p}} \operatorname{sgn}(\sigma) \cdot \psi\left(\boldsymbol{x}_{\sigma(1)} ; \ldots ; \boldsymbol{x}_{\sigma(p)}\right) \\
& =\sum_{\sigma \in S_{p}} \operatorname{sgn}(\sigma) \cdot \psi_{\otimes}\left(\boldsymbol{x}_{\sigma(1)} \otimes \ldots \otimes \boldsymbol{x}_{\sigma(p)}\right) \\
& =\psi_{\otimes}\left(\sum_{\sigma \in S_{p}} \operatorname{sgn}(\sigma) \cdot \boldsymbol{x}_{\sigma(1)} \otimes \ldots \otimes \boldsymbol{x}_{\sigma(p)}\right) \\
& =\left(\psi_{\otimes} \circ \tau_{\otimes}\right)\left(\boldsymbol{x}_{1} \otimes \ldots \otimes \boldsymbol{x}_{p}\right)
\end{aligned}
$$

whence follows $\varphi_{\otimes}=\psi_{\otimes} \circ \tau_{\otimes}$ which implies the assertion.

7.15 Exterior products in three dimensions

In the case of $p=2$ we have a simple expression of antisymmetry by

$$
\begin{aligned}
\pi_{\otimes a}(\boldsymbol{x} ; \boldsymbol{y}) & =\pi_{\otimes}(\boldsymbol{x} ; \boldsymbol{y})-\pi_{\otimes}(\boldsymbol{y} ; \boldsymbol{x}) \text { resp. } \\
\boldsymbol{x} \wedge \boldsymbol{y} & =\boldsymbol{x} \otimes \boldsymbol{y}-\boldsymbol{y} \otimes \boldsymbol{x} \text { and } \\
\pi_{\otimes a}(\boldsymbol{y} ; \boldsymbol{x}) & =\pi_{\otimes}(\boldsymbol{y} ; \boldsymbol{x})-\pi_{\otimes}(\boldsymbol{x} ; \boldsymbol{y}) \text { resp. } \\
\boldsymbol{y} \wedge \boldsymbol{x} & =\boldsymbol{y} \otimes \boldsymbol{x}-\boldsymbol{x} \otimes \boldsymbol{y} \\
& =-\boldsymbol{x} \wedge \boldsymbol{y} .
\end{aligned}
$$

Hence the exterior product $\boldsymbol{x} \wedge \boldsymbol{y} \in \mathbb{R}^{3} \wedge \mathbb{R}^{3}$ of two vectors $\boldsymbol{x}=x^{i} \boldsymbol{e}_{i} \in \mathbb{R}^{3}$ and $\boldsymbol{y}=y^{j} \boldsymbol{e}_{j} \in \mathbb{R}^{3}$ is computed by

$$
\boldsymbol{x} \wedge \boldsymbol{y}=\left(\begin{array}{ccc}
0 & x^{1} y^{2}-x^{2} y^{1} & x^{1} y^{3}-x^{3} y^{1} \\
y^{1} x^{2}-y^{2} x^{1} & 0 & x^{2} y^{3}-x^{3} y^{2} \\
y^{1} x^{3}-y^{3} x^{1} & y^{3} x^{2}-y^{2} x^{3} & 0
\end{array}\right)
$$

The comparison with the tensor product 7.4 may be illustrated by some numerical computations with reference to the canonical basis, e.g.

$$
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \otimes\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \in \mathbb{R}^{3} \otimes \mathbb{R}^{3} \text { but }\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \wedge\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \in \mathbb{R}^{3} \wedge \mathbb{R}^{3}
$$

$$
\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \otimes\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 2 & 0 \\
0 & 3 & 0
\end{array}\right) \in \mathbb{R}^{3} \otimes \mathbb{R}^{3} \text { but }\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \wedge\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & -3 \\
0 & 3 & 0
\end{array}\right) \in \mathbb{R}^{3} \wedge \mathbb{R}^{3}
$$

The representing asymmetric tensor $T=t_{i j} e^{i} \wedge e^{j} \in\left(\mathbb{R}^{3} \wedge \mathbb{R}^{3}\right)^{*}$ of a general alternating bilinear form $\varphi \in A_{2}\left(\mathbb{R}^{3} \times \mathbb{R}^{3} ; \mathbb{R}\right)$ has the form

$$
T=\left(\begin{array}{ccc}
0 & t_{12} & t_{13} \\
-t_{12} & 0 & t_{23} \\
-t_{13} & -t_{23} & 0
\end{array}\right)
$$

with $t_{i j}=\varphi\left(\boldsymbol{e}_{i} ; \boldsymbol{e}_{j}\right)=-\varphi\left(\boldsymbol{e}_{j} ; \boldsymbol{e}_{i}\right)=-t_{j i}$ whence $\operatorname{dim}\left(\mathbb{R}^{3} \wedge \mathbb{R}^{3}\right)=\operatorname{dim} A_{2}\left(\mathbb{R}^{3} \times \mathbb{R}^{3} ; \mathbb{R}\right)=\frac{n(n-1)}{2}=3$. The representing symmetric tensor $s_{i j}$ of a symmetric bilinear form $\varphi \in S_{2}\left(\mathbb{R}^{3} \times \mathbb{R}^{3} ; \mathbb{R}\right)$ has the form

$$
S=\left(\begin{array}{lll}
t_{11} & t_{12} & t_{13} \\
t_{12} & t_{22} & t_{21} \\
t_{13} & t_{21} & t_{33}
\end{array}\right)
$$

with $t_{i j}=\varphi\left(\boldsymbol{e}_{i} ; \boldsymbol{e}_{j}\right)=\varphi\left(\boldsymbol{e}_{j} ; \boldsymbol{e}_{i}\right)=t_{j i}$ whence $\operatorname{dim} S_{2}\left(\mathbb{R}^{3} \times \mathbb{R}^{3} ; \mathbb{R}\right)=\frac{n(n+1)}{2}=6$.

7.16 The cross product

An alternating map $x \in A_{2}\left(\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right) ; \mathbb{R}^{3}\right)$ is determined by $\binom{3}{2}=3$ conditions in the 3dimensional image space \mathbb{R}^{3}. If we choose $\times\left(\boldsymbol{e}_{1} ; \boldsymbol{e}_{2}\right)=\boldsymbol{e}_{3}, \times\left(\boldsymbol{e}_{1} ; \boldsymbol{e}_{3}\right)=-\boldsymbol{e}_{2}$ and $\times\left(\boldsymbol{e}_{2} ; \boldsymbol{e}_{3}\right)=\boldsymbol{e}_{1}$ we obtain the cross product :

$$
\boldsymbol{x} \times \boldsymbol{y}=\times(\boldsymbol{x} ; \boldsymbol{y})=\epsilon_{i j k} x^{i} y^{j} \boldsymbol{e}_{k}
$$

with the Levi-Civita-symbol $\epsilon_{i j k}=\left\{\begin{array}{ll}\operatorname{sgn}(\sigma) & \text { for }(i ; j ; k)=\sigma(1 ; 2 ; 3) \text { and } \sigma \in S_{3} \\ 0 & \text { for } i=j \vee j=k \vee i=k\end{array}\right.$. Explicitly we have

$$
\left(\begin{array}{l}
x^{1} \\
x^{2} \\
x^{3}
\end{array}\right) \times\left(\begin{array}{l}
y^{1} \\
y^{2} \\
y^{3}
\end{array}\right)=\left(\begin{array}{c}
x^{2} y^{3}-x^{3} y^{2} \\
x^{3} y^{1}-x^{1} y^{3} \\
x^{1} y^{2}-x^{2} y^{1}
\end{array}\right)=\left(\begin{array}{ccc}
0 & -x^{3} & x_{2} \\
x^{3} & 0 & -x^{1} \\
-x^{2} & x^{1} & 0
\end{array}\right) *\left(\begin{array}{l}
y^{1} \\
y^{2} \\
y^{3}
\end{array}\right)
$$

with the corresponding linear map

$$
\times_{\otimes}: \mathbb{R}^{3} \otimes \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \text { given by } \times_{\otimes}\left(\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{array}\right)=\left(\begin{array}{c}
m_{23}-m_{32} \\
m_{31}-m_{13} \\
m_{12}-m_{21}
\end{array}\right) .
$$

It is not injective and its kernel are the symmetric tensors $S_{2}=$ ker $\times \otimes$ introduced in 7.3.1.

Pseudovectors or axial vectors like the the angular velocity ω and every result from a cross product as opposed to contravariant polar vectors are neither contravariant nor covariant. They transform in the usual contravariant way for coordinate transformations $T_{\mathcal{B}}^{\mathcal{A}}$ preserving orientation (cf. 4.5) with $\operatorname{det} T_{\mathcal{B}}^{\mathcal{A}}>0$ e.g. for translations, shears and rotations. However in the case of reflections the right-hand-orientation of $\boldsymbol{x} \times \boldsymbol{y}$ towards $\boldsymbol{x} ; \boldsymbol{y}$ is changed. Since the index notation cannot be applied the transformations are
 computed separately for each component.

Identities involving the cross product include:

1. Antisymmetry: $\boldsymbol{x} \times \boldsymbol{y}=-\boldsymbol{y} \times \boldsymbol{x}$
2. Distributivity: $\boldsymbol{x} \times(\boldsymbol{y}+\boldsymbol{z})=\boldsymbol{x} \times \boldsymbol{y}+\boldsymbol{x} \times \boldsymbol{z}$
3. Associativity with the scalar multiplication $(c \cdot \boldsymbol{x}) \times \boldsymbol{y}=c \cdot(\boldsymbol{x} \times \boldsymbol{y})$
4. The determinant formula with the canonical inner product $\boldsymbol{x} *(\boldsymbol{y} \times \boldsymbol{z})=\epsilon_{i j k} x_{i} y_{j} z_{k}=$ $\operatorname{det}(\boldsymbol{x} ; \boldsymbol{y} ; \boldsymbol{z})$
5. The $B A C-C A B$-formula: (cf. 7.5.3)

$$
\boldsymbol{x} \times(\boldsymbol{y} \times \boldsymbol{z})=\left(\begin{array}{c}
x_{2} y_{1} z_{2}-x_{2} y_{2} z_{1}+x_{3} y_{1} z_{3}-x_{3} y_{3} z_{1} \pm x_{1} y_{1} z_{1} \\
-x_{1} y_{1} z_{2}+x_{1} y_{2} z_{1}-x_{3} y_{2} z_{3}+x_{3} y_{3} z_{2} \pm x_{2} y_{2} z_{2} \\
x_{1} y_{1} z_{2}-x_{1} y_{2} z_{1}+x_{2} y_{2} z_{3}-x_{1} y_{3} z_{2} \pm x_{3} y_{3} z_{3}
\end{array}\right)=\boldsymbol{y} \cdot(\boldsymbol{x} * \boldsymbol{z})-\boldsymbol{z} \cdot(\boldsymbol{x} * \boldsymbol{y}) .
$$

7.17 The exterior product of linear maps

7.17.1 According to 7.12 for every real vector space X and $p \geq 0$ there is a uniquely determined linear $\hat{\tau}_{\otimes}: \bigwedge^{p} X \rightarrow X_{p}$ with $\tau_{\otimes}=\hat{\tau}_{\otimes} \circ \hat{\pi}$. Due to the preceding theorem 7.14 the map $\hat{\tau}_{\otimes}$ is injective whence $\wedge^{p} X \cong U_{p}=\tau_{\otimes}\left[X_{p}\right] \subset X_{p}$: The exterior products can be identified with the antisymmetric tensors.
7.17.2 For any vector spaces X and Y, every $p \geq 0$ and every linear $\varphi: X \rightarrow Y$ the map $\Phi: X^{p} \rightarrow \bigwedge^{p} Y$ defined by $\Phi\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p}\right)=\varphi\left(\boldsymbol{x}_{1}\right) \wedge \ldots \wedge \varphi\left(\boldsymbol{x}_{p}\right)$ according to 7.12 is p-linear and alternating. In the case of $p=0$ the definitions yield $\Phi=$ id $: X^{0}=\mathbb{R} \rightarrow \bigwedge^{0} Y=\mathbb{R}$ and for $p=1$ we have $\Phi=\varphi: X^{1}=X \rightarrow \bigwedge^{1} Y=Y$. Due to 7.10 the corresponding linear map $\Phi_{\otimes}: X_{p} \rightarrow \bigwedge^{p} Y$ is again alternating with $\Phi=\Phi_{\otimes} \circ \pi_{\otimes}$. Finally and due to 7.12 we have a uniquely determined linear alternating product $\hat{\Phi}: \bigwedge^{p} X \rightarrow \bigwedge^{p} Y$ with $\Phi_{\otimes}=\hat{\Phi} \circ \hat{\pi}$ resp.

$$
\hat{\Phi}\left(\boldsymbol{x}_{1} \wedge \ldots \wedge \boldsymbol{x}_{p}\right)=\varphi\left(\boldsymbol{x}_{1}\right) \wedge \ldots \wedge \varphi\left(\boldsymbol{x}_{p}\right)
$$

7.17.3 The inverse or pullback image of a differential form (cf. [2, th $5.3])$ is provided by the corresponding alternating product $\hat{\Phi}^{*}: \Lambda^{p} Y^{*} \rightarrow$ $\bigwedge^{p} X^{*}$ of the dual $\varphi^{*}: Y^{*} \rightarrow X^{*}$ of the linear map given by the derivative $\varphi=D \boldsymbol{f}(\boldsymbol{x}): X \rightarrow Y$ at the point $\boldsymbol{x} \in X$ such that

$$
\hat{\Phi}^{*}\left(\boldsymbol{y}^{1} \wedge \ldots \wedge \boldsymbol{y}^{p}\right)=\varphi^{*}\left(\boldsymbol{y}^{1}\right) \wedge \ldots \wedge \varphi^{*}\left(\boldsymbol{y}^{p}\right)=\boldsymbol{y}^{1} \circ \varphi \wedge \ldots \wedge \boldsymbol{y}^{p} \circ \varphi
$$

and

$$
\hat{\Phi}^{*}\left(\mathbf{y}^{p} \wedge \mathbf{y}^{q}\right)=\hat{\Phi}^{*}\left(\mathbf{y}^{p}\right) \wedge \hat{\Phi}^{*}\left(\mathbf{y}^{q}\right)
$$

for every $\boldsymbol{y}^{p} \in \bigwedge^{p} Y^{*}$ resp. $\boldsymbol{y}^{q} \in \bigwedge^{q} Y^{*}$. Consequently we have $\hat{\Phi}^{*}=\mathrm{id}: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}$ for $p=0$ and $\hat{\Phi}^{*}=\varphi^{*}: Y^{*} \rightarrow X^{*}$ for $p=1$.

7.18 The general exterior product

The general exterior product $\wedge:\left(\bigwedge^{p} X \times \bigwedge^{q} X\right) \rightarrow \bigwedge^{p+q} X$ defined by

$$
\hat{\boldsymbol{x}} \wedge \hat{\boldsymbol{y}}=\left(\boldsymbol{x}_{1} \wedge \ldots \wedge \boldsymbol{x}_{p}\right) \wedge\left(\boldsymbol{y}_{1} \wedge \ldots \wedge \boldsymbol{y}_{q}\right)=\boldsymbol{x}_{1} \wedge \ldots \wedge \boldsymbol{x}_{p} \wedge \boldsymbol{y}_{1} \wedge \ldots \wedge \boldsymbol{y}_{q}
$$

is a bilinear map between the asymmetric tensors $\hat{\boldsymbol{x}}=\boldsymbol{x}_{1} \wedge \ldots \wedge \boldsymbol{x}_{p} \in \bigwedge_{p} X$ and $\hat{\boldsymbol{y}}=\boldsymbol{y}_{1} \wedge \ldots \wedge \boldsymbol{y}_{q} \in$ $\bigwedge^{q} X$. According to 7.12 it coincides with the exterior product for 1 -vectors $\boldsymbol{x}=\hat{\boldsymbol{x}} ; \boldsymbol{y}=\hat{\boldsymbol{y}} \in X=$ $\wedge^{1} X$ with $\boldsymbol{x} \wedge \boldsymbol{y}=\hat{\boldsymbol{x}} \wedge \hat{\boldsymbol{y}}$. The following properties hold:

1. associativity: $(c \hat{\boldsymbol{x}}) \wedge \hat{\boldsymbol{y}}=\hat{\boldsymbol{x}} \wedge(c \hat{\boldsymbol{y}})=c \cdot(\hat{\boldsymbol{x}} \wedge \hat{\boldsymbol{y}})$ resp. $(\hat{\boldsymbol{x}} \wedge \hat{\boldsymbol{y}}) \wedge \hat{\boldsymbol{z}}=\hat{\boldsymbol{x}} \wedge(\hat{\boldsymbol{y}} \wedge \hat{\boldsymbol{z}})$
2. distributivity: $\hat{\boldsymbol{x}} \wedge(\hat{\boldsymbol{y}}+\hat{\boldsymbol{z}})=\hat{\boldsymbol{x}} \wedge \hat{\boldsymbol{y}}+\hat{\boldsymbol{x}} \wedge \hat{\boldsymbol{z}}$ resp. $(\hat{\boldsymbol{x}}+\hat{\boldsymbol{y}}) \wedge \hat{\boldsymbol{z}}=\hat{\boldsymbol{x}} \wedge \hat{\boldsymbol{z}}+\hat{\boldsymbol{y}} \wedge \hat{\boldsymbol{z}}$
3. anticommutativity: $\hat{\boldsymbol{x}} \wedge \hat{\boldsymbol{y}}=(-1)^{p q}(\hat{\boldsymbol{y}} \wedge \hat{\boldsymbol{x}})$.

Proof: Due to 7.3 for the $p+q$-linear $\varphi: X^{p+q} \rightarrow \bigwedge^{p+q} X$ defined by

$$
\varphi\left(\boldsymbol{x}_{1} ; \ldots ; \boldsymbol{x}_{p} ; \boldsymbol{y}_{1} ; \ldots ; \boldsymbol{y}_{q}\right)=\boldsymbol{x}_{1} \wedge \ldots \wedge \boldsymbol{x}_{p} \wedge \boldsymbol{y}_{1} \wedge \ldots \wedge \boldsymbol{y}_{q}
$$

there is a unique linear $\varphi_{\otimes}: X_{p+q} \rightarrow \bigwedge^{p+q} X$ with $\varphi=\varphi_{\otimes} \circ \pi_{\otimes}=\hat{\pi} \circ \pi_{\otimes}$, i.e.

$$
\varphi_{\otimes}\left(\boldsymbol{x}_{1} \otimes \ldots \otimes \boldsymbol{x}_{p} \otimes \boldsymbol{y}_{1} \otimes \ldots \otimes \boldsymbol{y}_{q}\right)=\boldsymbol{x}_{1} \wedge \ldots \wedge \boldsymbol{x}_{p} \wedge \boldsymbol{y}_{1} \wedge \ldots \wedge \boldsymbol{y}_{q}
$$

Hence owing to the distributivity of the tensor product 7.4 the map $\Psi:\left(X_{p} \times X_{q}\right) \rightarrow \bigwedge^{p+q} X$ with

$$
\Psi(\boldsymbol{x} ; \boldsymbol{y})=\varphi_{\otimes}(\boldsymbol{x} \otimes \boldsymbol{y})=\boldsymbol{x}_{1} \wedge \ldots \wedge \boldsymbol{x}_{p} \wedge \boldsymbol{y}_{1} \wedge \ldots \wedge \boldsymbol{y}_{q}
$$

is bilinear in $\boldsymbol{x}=\boldsymbol{x}_{1} \otimes \ldots \otimes \boldsymbol{x}_{p} \in X_{p}$ and $\boldsymbol{y}=\boldsymbol{y}_{1} \otimes \ldots \otimes \boldsymbol{y}_{q} \in X_{q}$. Due to the linearity of the canonical projections $\hat{\pi}_{p}: X_{p} \rightarrow \Lambda^{p} X$ resp. $\hat{\pi}_{q}: X_{q} \rightarrow \Lambda^{q} X$ the map $\wedge:\left(\Lambda^{p} X \times \Lambda^{q} X\right) \rightarrow \Lambda^{p+q} X$ defined by $\Psi=\wedge \circ\left(\hat{\pi}_{p} ; \hat{\pi}_{q}\right)$ is still bilinear and obviously coincides with the desired exterior product. The properties 1.-3. directly follow from the definition.

7.19 The scalar product

For $p ; q \geq 1$ and a finite-dimensional unitary vector space X with an orthonormal basis $\mathcal{B}=$ $\left(e_{i}\right)_{1 \leq i \leq n}$ resp. the dual space X^{*} with the canonical dual basis $\mathcal{B}^{*}=\left(e^{i}\right)_{1 \leq i \leq n}$ determined by $\boldsymbol{e}^{j} \boldsymbol{e}_{i}=\left\langle\boldsymbol{e}_{i} ; \boldsymbol{e}^{j}\right\rangle=\delta_{i}^{j}$ the scalar product $\left\rangle: X_{p}^{q} \times X_{q}^{p} \rightarrow \mathbb{R}\right.$ is a bilinear form defined by

$$
\langle\boldsymbol{x} ; \boldsymbol{y}\rangle=\prod_{i=1}^{p}\left\langle\boldsymbol{x}_{i} ; \boldsymbol{y}^{i}\right\rangle \cdot \prod_{j=1}^{q}\left\langle\boldsymbol{y}_{j} ; \boldsymbol{x}^{j}\right\rangle=x_{\mu_{1}, \ldots ; \mu_{q}}^{\nu_{1} ; \ldots, \nu_{p}} \cdot y_{\nu_{1} ; \ldots, \nu_{p}}^{\mu_{1} ; \ldots ; \mu_{q}}
$$

for

$$
\boldsymbol{x}=\boldsymbol{x}_{1} \otimes \ldots \otimes \boldsymbol{x}_{p} \otimes \boldsymbol{x}^{1} \otimes \ldots \otimes \boldsymbol{x}^{q}=x_{\mu_{1} ; \ldots ; \mu_{p}}^{\nu_{1} ; \ldots \nu_{q}} \boldsymbol{e}_{\nu_{1}} \otimes \ldots \otimes \boldsymbol{e}_{\nu_{p}} \otimes \boldsymbol{e}^{\mu_{1}} \otimes \ldots \otimes \boldsymbol{e}^{\mu_{q}} \in X_{p}^{q}
$$

resp.

$$
\boldsymbol{y}=\boldsymbol{y}_{1} \otimes \ldots \otimes \boldsymbol{y}_{q} \otimes \boldsymbol{y}^{1} \otimes \ldots \otimes \boldsymbol{y}^{p}=y_{\nu_{1} ; \ldots, \nu_{p}}^{\mu_{1} ; \ldots \mu_{q}} \boldsymbol{e}_{\mu_{1}} \otimes \ldots \otimes \boldsymbol{e}_{\mu_{q}} \otimes \boldsymbol{e}^{\nu_{1}} \otimes \ldots \otimes \boldsymbol{e}^{\nu_{p}} \in X_{q}^{p}
$$

and the following properties for $c \in \mathbb{R}$ and $\boldsymbol{x} ; \boldsymbol{y} ; \mathbf{z} \in X$:

1. Associativity: $\langle(c \boldsymbol{x}) ; \boldsymbol{y}\rangle=c \cdot\langle\boldsymbol{x} ; \boldsymbol{y}\rangle=\langle\boldsymbol{x} ;(c \boldsymbol{y})\rangle$
2. Distributivity: $\langle\boldsymbol{x} ;(\boldsymbol{y}+\boldsymbol{z})\rangle=\langle\boldsymbol{x} ; \boldsymbol{y}\rangle+\langle\boldsymbol{x} ; \boldsymbol{z}\rangle$ resp. $\langle(\boldsymbol{x}+\boldsymbol{y}) ; \mathbf{z}\rangle=\langle\boldsymbol{x} ; \boldsymbol{z}\rangle+\langle\boldsymbol{y} ; \boldsymbol{z}\rangle$
3. Symmetry: $\langle\boldsymbol{x} ; \boldsymbol{y}\rangle=\langle\boldsymbol{y} ; \boldsymbol{x}\rangle$

In the case of $(p ; q)=(1 ; 0)$ and a finite-dimensional X the general scalar product assumes the form $\left\rangle:\left(X_{1} \times X^{1}=X \times X^{*} \rightarrow \mathbb{R}\right)\right.$ with $\left\langle\boldsymbol{e}_{i} ; \boldsymbol{e}_{j}^{*}\right\rangle=\boldsymbol{e}_{j}^{*} \boldsymbol{e}_{i}=\left\langle\boldsymbol{e}_{i} ; \boldsymbol{e}_{j}\right\rangle$ resp. $\left\langle\boldsymbol{x} ; \boldsymbol{y}^{*}\right\rangle=\boldsymbol{y}^{*} \boldsymbol{x}=x^{i} y_{i}=$ $\boldsymbol{x}_{\mathcal{A}} * \mathbf{y}_{\mathcal{A}}=\langle\boldsymbol{x} ; \boldsymbol{y}\rangle$ for $\boldsymbol{x}=x^{i} \boldsymbol{e}_{i}$ resp. $\boldsymbol{y}^{*}=y_{i} \boldsymbol{e}^{i}$ hence coinciding with the canonical bilinear form $\left\rangle:(X \times X \rightarrow \mathbb{R})\right.$ defined by $\langle\boldsymbol{x} ; \mathbf{y}\rangle=\mathbf{y}^{*} \boldsymbol{x}$. Thus the general scalar product provides a distinct interpretation of row vectors ${ }^{T} \boldsymbol{x} \in X_{1}$ and column vectors $\boldsymbol{x} \in X^{1}$. However this coincidence is confined to finite dimensional spaces since function spaces as e.g. $\mathcal{C}_{c}(\mathbb{R})$ (cf. [4, th. 10.12]) or $L^{p}(\lambda)(c f .[4$, th. 9.13]) in general are not isomorphic to their dual space any more. Note also that the distinction between row and column vectors is meaningless for $p+q>2$. (cf. 7.3)

7.20 The exterior algebra

For a real vector space X the vector space $\Lambda X=\bigoplus_{p \geq 0} \Lambda^{p} X=\left\{\sum_{p=0}^{m} \boldsymbol{x}_{p}: \boldsymbol{x}_{p} \in \Lambda^{p} X ; m \in \mathbb{N}\right\}$ with the exterior product $\wedge: \wedge X \rightarrow \Lambda X$ with $\hat{\boldsymbol{x}} \wedge \hat{\boldsymbol{y}}=\sum_{p=0}^{m} \sum_{q=0}^{n}\left(\boldsymbol{x}_{p} \wedge \boldsymbol{y}_{q}\right)$ for $\hat{\boldsymbol{x}}=\sum_{p=0}^{m} \boldsymbol{x}_{p}$ and $\hat{\boldsymbol{y}}=\sum_{q=0}^{n} \boldsymbol{y}_{q}$ is the exterior algebra over X. In the case of a finite dimensional with $\operatorname{dim} X=n$ according to 7.12 we have $X_{p}=\left\{\mathbf{0}_{n}\right\}$ if $p>n=\operatorname{dim} X$ which implies $\Lambda X=\bigoplus_{0 \leq p \leq n} \Lambda^{p} X$ with

$$
\operatorname{dim} \bigwedge X=\sum_{p=0}^{n} \operatorname{dim} \bigwedge^{p} X=\sum_{p=0}^{n}\binom{n}{p}=2^{n}
$$

According to 7.19 the scalar product $\left\rangle: X_{p} \times X^{p} \rightarrow \mathbb{R}\right.$ defined by $\left\langle\boldsymbol{x} ; \boldsymbol{y}^{*}\right\rangle=\prod_{i=1}^{p}\left\langle\boldsymbol{x}_{i} ; \boldsymbol{y}^{i}\right\rangle$ for $\boldsymbol{x}=\boldsymbol{x}_{1} \otimes \ldots \otimes \boldsymbol{x}_{p} \in X_{p}$ resp. $\boldsymbol{y}=\boldsymbol{y}^{1} \otimes \ldots \otimes \boldsymbol{y}^{p} \in X^{p}$ provides an isomorphism $\eta: X^{p} \rightarrow X_{p}^{*}$ given by $\eta \mathbf{y}^{*}: X_{p} \rightarrow \mathbb{C}$ with $\eta \boldsymbol{y}^{*} \boldsymbol{x}=\left\langle\boldsymbol{x} ; \boldsymbol{y}^{*}\right\rangle$. Hence p-covariant tensors can be identified with linear maps on the tensor product X_{p}. This isomorphism extends to the subspace $U^{p}=\tau_{\otimes}\left[X^{p}\right] \subset X^{p}$ of the antisymmetric p-covariant tensors $\tau_{\otimes} \boldsymbol{y}^{*}$ for $\boldsymbol{y}^{*} \in X^{p}$ defined in 7.14 and omitting the brackets for brevity resp. the subspace $A\left(X_{p}, \mathbb{R}\right) \subset X_{p}^{*}$ of all linear alternating forms $\varphi: X_{p} \rightarrow \mathbb{R}$ from 7.13: Due to 7.14 the antisymmetric tensor of \boldsymbol{y}^{*} is $\tau_{\otimes}\left(\boldsymbol{y}^{*}\right)=\sum_{\sigma \in S_{p}} \operatorname{sgn}(\sigma) \cdot \boldsymbol{y}^{\sigma(1)} \otimes \ldots \otimes \boldsymbol{y}^{\sigma(p)}$ such that

$$
\begin{aligned}
\left(\eta \circ \tau_{\otimes} \circ \boldsymbol{y}^{*}\right)(\boldsymbol{x}) & =\left\langle\boldsymbol{x} ; \tau_{\otimes} \boldsymbol{y}^{*}\right\rangle \\
& =\sum_{\sigma \in S_{p}} \operatorname{sgn}(\sigma) \cdot\left\langle\boldsymbol{x}_{1} ; \boldsymbol{y}^{\sigma(1)}\right\rangle \cdot \ldots \cdot\left\langle\boldsymbol{x}_{1} ; \boldsymbol{y}^{\sigma(p)}\right\rangle \\
& =\sum_{\sigma^{-1} \in S_{p}} \operatorname{sgn}\left(\sigma^{-1}\right) \cdot\left\langle\boldsymbol{x}_{\sigma^{-1}(1)} ; \boldsymbol{y}^{1}\right\rangle \cdot \ldots \cdot\left\langle\boldsymbol{x}_{\sigma^{-1}(p)} ; \boldsymbol{y}^{p}\right\rangle \\
& =\sum_{\sigma^{-1} \in S_{p}} \operatorname{sgn}\left(\sigma^{-1}\right) \cdot \eta \boldsymbol{y}^{*}\left(\boldsymbol{x}_{\sigma^{-1}(1)} \otimes \ldots \otimes \boldsymbol{x}_{\sigma^{-1}(p)}\right) \\
& =\left(\eta \boldsymbol{y}^{*}\right)_{a}(\boldsymbol{x})
\end{aligned}
$$

according to the definition of the antisymmetrical map in 7.11. Since the linear alternating forms $A\left(X_{p}, \mathbb{C}\right) \subset X_{p}^{*}$ defined in 7.10 .4 are exactly the antisymmetricals of all linear forms in $L\left(X_{p} ; \mathbb{C}\right)$ we conclude that $U^{p}=\tau_{\otimes}\left[X^{p}\right] \cong A\left(X_{p}, \mathbb{C}\right)$.

8 Affine spaces

8.1 Affine spaces

An affine space is a triple $\left(A ; X_{A} ; \rightarrow\right)$ of a set A, a vector space X_{A} and a map $\rightarrow: A \times A \rightarrow X_{A}$ such that

1. $\forall p \in A ; \boldsymbol{a} \in X_{A} \exists q \in A: \boldsymbol{a}=\overrightarrow{p q}$
2. $\overrightarrow{p q}+\overrightarrow{q r}=\overrightarrow{p r}$
with immediate consequences
3. $\overrightarrow{p p}=\mathbf{0}$
4. $\overrightarrow{q p}=-\overrightarrow{p q}$

Its dimension is $\operatorname{dim} A=\operatorname{dim} X_{A}$. The most common example is the affine subspace ($\boldsymbol{v}+W ; W$; $)$ with $\boldsymbol{v}+V=\{\boldsymbol{x} \in X: \boldsymbol{x}-\boldsymbol{v} \in V\}$ generated by a vector subspace $V \subset X$ of a vector space X and a vector $\boldsymbol{v} \in X \backslash V$. This example includes the vector space ($X ; X ;-$) itself regarded as a point set. Geometrically speaking an affine space is a vector space without a predetermined reference point resp. origin. The reference point resp. support \mathbf{v} can be chosen arbitrarily as a part of the coordinate system.

8.2 Affine subspaces

The set $U \subset A$ is an affine subspace iff $X_{U}=\{\overrightarrow{p q}: q \in U\}$ is a vector subspace for some $p \in U$ and this definition is independent of the choice of p. For any family \mathcal{U} of affine subspaces its intersection $\bigcap\{U: U \in \mathcal{U}\}$ is again an affine subspace with $X_{D}=\bigcap\left\{X_{U}: U \in \mathcal{U}\right\}$. Hence any subset $M \subset A$ generates an affine subspace $[M]$ defined as the intersection of all affine subspaces containing M. The affine subspace $\bigvee\{U: U \in \mathcal{U}\}=[\bigcup\{U: U \in \mathcal{U}\}]$ generated by their union is their affine hull. The affine hull of a point $p \in A$ is the point itself with the corresponding vector subspace $X_{p}=\{ \}$ and $\operatorname{dim} p=0$. The affine hull $p \vee q$ of two distinct points $p ; q \in A$ is a line with $\operatorname{dim} p \vee q=1$. The affine hull $p \vee q \vee r$ of three points $p ; q ; r \in A$ with linearly independent $\overrightarrow{p q} ; \overrightarrow{q r}$ is a plane with $\operatorname{dim} p \vee q \vee r=2$. An affine subspace $U \nsubseteq A$ is a hyperplane iff there is a point p with $p \vee U=A$. The affine hull of finite dimensional affine subspaces $U ; V \subset A$ has the dimension

$$
\operatorname{dim}(U \vee V)=\operatorname{dim} U+\operatorname{dim} V-\operatorname{dim}(U \cap V) .
$$

Two affine subspaces $U ; V \subset A$ are parallel, in short $U \| V$, iff $X_{U} \subset X_{V}$ or $X_{V} \subset X_{U}$ and in that case they are either disjoint or one of them is contained in the other. A nonempty subspace U and a hyperplane H are either parallel or $\operatorname{dim}(U \cap H)=\operatorname{dim} U-1$.

8.3 Affine coordinate systems

The points $\mathcal{P}=\left(p_{i}\right)_{0 \leq i \leq n} \subset A$ of an n-dimensional affine space A are a coordinate system of A iff $\left(\overrightarrow{p_{0} p_{i}}\right)_{1 \leq i \leq n} \subset X_{A}$ is a basis of X_{A} resp. iff $\bigvee\left(p_{i}\right)_{0 \leq i \leq n}=A$. Every point $q \in A$ has a uniquely determined coordinate vector $\boldsymbol{q}_{\mathcal{P}} \in \mathbb{C}^{n}$ with $\overrightarrow{p_{0} q}=\sum_{i=1}^{n} q_{\mathcal{P} i} \overrightarrow{p_{0} p_{i}}$ and for every other $r \in A$ we have $\overrightarrow{q r}=\sum_{i=1}^{n}\left(r_{\mathcal{P} i}-q_{\mathcal{P} i}\right) \overrightarrow{p_{0} p_{i}}$, i.e. $\boldsymbol{q} \boldsymbol{r}_{\mathcal{P}}=\boldsymbol{r}_{\mathcal{P}}-\boldsymbol{q}_{\mathcal{P}}$. The transformation from the affine coordinate system $\mathcal{P}=\left(p_{i}\right)_{0 \leq i \leq n}$ to the system $\mathcal{Q}=\left(q_{i}\right)_{0 \leq i \leq n}$ with $\overrightarrow{p_{0} p_{j}}=\sum_{i=1}^{n} t_{i ; j} \overrightarrow{q_{0} q_{i}}$ and $\overrightarrow{p_{0} q_{0}}=\sum_{i=1}^{n} s_{\mathcal{P} i} \overrightarrow{p_{0} p_{i}}$ is determined by the translation vector $\mathbf{s}=\overrightarrow{p_{0} q_{0}}$ with the coordinate vector $s_{P}=\left(s_{\mathcal{P} i}\right)_{0 \leq i \leq n}$ and
the transformation matrix $T=\left(t_{i ; j}\right)_{0 \leq i ; j \leq n}$. The coordinate vector \boldsymbol{r}_{Q} of a point $r \in A$ can be computed by

$$
\begin{aligned}
\overrightarrow{q_{0} r} & =\overrightarrow{q_{0} p_{0}}+\overrightarrow{p_{0} r} \\
& =-\sum_{j=1}^{n} s_{\mathcal{P} j} \overrightarrow{p_{0} p_{j}}+\sum_{j=1}^{n} r_{\mathcal{\mathcal { P } _ { j }}} \overrightarrow{p_{0} p_{j}} \\
& =\sum_{j=1}^{n} \sum_{i=1}^{n} t_{i ; j}\left(r_{\mathcal{P} j}-s_{\mathcal{P} j}\right) \overrightarrow{q_{0} q_{i}}
\end{aligned}
$$

whence

$$
\boldsymbol{r}_{Q}=T *\left(\boldsymbol{r}_{P}-\boldsymbol{s}_{P}\right)=T * \boldsymbol{r}_{P}-\boldsymbol{s}_{Q} \text { resp. } \boldsymbol{r}_{P}=T^{-1} *\left(\boldsymbol{r}_{Q}+\boldsymbol{s}_{Q}\right)=T^{-1} * \boldsymbol{r}_{Q}+\boldsymbol{s}_{P} .
$$

8.4 Affine maps

A map $\Phi: A \rightarrow B$ between affine spaces A and B is affine iff there is a linear $\varphi: X_{A} \rightarrow X_{B}$ with $\varphi(\overrightarrow{p r})=\overrightarrow{\Phi(p) \Phi(r)}$ for every $p ; r \in A$. Hence the affine map is determined by a linear map φ and a point $r_{0}=\Phi\left(p_{0}\right)$. Conversely for any points $\left(r_{i}\right)_{0 \leq i \leq n} \subset B$ given by the coordinates there is a uniquely determined affine map $\Phi: A \rightarrow \bigvee_{0 \leq i \leq n} r_{i}$ with $\Phi\left(p_{i}\right)=r_{i}$ for $0 \leq i \leq n$ and it is bijective iff $\left(r_{i}\right)_{0 \leq i \leq n}$ is a coordinate system. For affine coordinate systems $\mathcal{P}=\left(p_{i}\right)_{0 \leq i \leq n}$ of A resp. $\mathcal{Q}=\left(q_{i}\right)_{0 \leq i \leq n}$ of B and image points $\left(r_{i}\right)_{0 \leq i \leq n} \subset B$ with $r_{i}=\Phi\left(p_{i}\right)$ we have

$$
\begin{aligned}
\overrightarrow{q_{0} r_{i}} & =\overrightarrow{q_{0} r_{0}}+\overrightarrow{r_{0} r_{i}} \\
& =\overrightarrow{q_{0} r_{0}}+\overrightarrow{\Phi\left(p_{0}\right) \Phi\left(p_{i}\right)} \\
& =\overrightarrow{q_{0} r_{0}}+\varphi\left(\overrightarrow{p_{o} p_{i}}\right)
\end{aligned}
$$

resp.

$$
\begin{aligned}
\overrightarrow{q_{0} r_{i}} & =\sum_{j=1}^{n} r_{\mathcal{Q} j ; i} \overrightarrow{q_{0} q_{j}} \\
& =\sum_{j=1}^{n}\left(r_{\mathcal{Q} j ; 0}+\left(r_{\mathcal{Q} j ; i}-r_{\mathcal{Q} j ; 0}\right)\right) \overrightarrow{q_{0} q_{j}} \\
& =\sum_{j=1}^{n} f_{\mathcal{Q} j ; 0} \overrightarrow{q_{0} q_{j}}+\sum_{j=1}^{n} f_{\mathcal{Q} j ; i} \overrightarrow{q_{0} q_{j}}
\end{aligned}
$$

whence the coordinate vectors $\boldsymbol{r}_{\mathcal{Q} i}=\boldsymbol{f}_{\mathcal{Q} 0}+\boldsymbol{f}_{\mathcal{Q} i}$ with $f_{\mathcal{Q} j ; 0}=r_{\mathcal{Q} j ; 0}$ and $f_{\mathcal{Q}^{\prime} ; i}=r_{\mathcal{Q} j ; i}-r_{\mathcal{Q} j ; 0}$ of the points $r_{i}=\Phi\left(p_{i}\right)$ decompose into the fixed part $\boldsymbol{f}_{Q 0}$ representing the translation $\overrightarrow{q_{0} r_{0}}$ and the linear part $\boldsymbol{f}_{Q i}$ of the map $\overrightarrow{r_{0} r_{i}}=\varphi\left(\overrightarrow{p_{o} p_{i}}\right)$. The image of an arbitrary point $s \in A$ with $\overrightarrow{p_{0} s}=\sum_{i=1}^{n} s_{\mathcal{P} i} \overrightarrow{p_{0} p_{i}}$ can be computed by

$$
\begin{aligned}
\overrightarrow{q_{0} \Phi(s)} & =\overrightarrow{q_{0} r_{0}}+\overrightarrow{r_{0} \Phi(s)} \\
& =\overrightarrow{q_{0} r_{0}}+\overrightarrow{\Phi\left(p_{0}\right) \Phi(s)} \\
& =\sum_{j=1}^{n} f_{\mathcal{Q} 0 ; j} \overrightarrow{q_{0} q_{j}}+\varphi\left(\overrightarrow{p_{0} s}\right) \\
& =\sum_{j=1}^{n} f_{\mathcal{Q} 0 ; j} \overrightarrow{q_{0} q_{j}}+\sum_{i=1}^{n} s_{\mathcal{P} i} \cdot \varphi\left(\overrightarrow{p_{o} p_{i}}\right) \\
& =\sum_{j=1}^{n} f_{\mathcal{Q} 0 ; j} \overrightarrow{q_{0} q_{j}}+\sum_{i=1}^{n} \sum_{j=1}^{n} s_{\mathcal{P} i} \cdot f_{\mathcal{Q} j ; i} s_{\mathcal{P} i} \overrightarrow{q_{0} q_{j}}
\end{aligned}
$$

and its coordinate vector is

$$
(\Phi(s))_{\mathcal{Q}}=\boldsymbol{f}_{Q 0}+F * \boldsymbol{s}_{\mathcal{Q}}
$$

with the representing matrix $F=M_{Q}^{P}(\varphi)=\left(f_{\mathcal{Q} i ; j}\right)_{1 \leq i ; j \leq n}$. The maps Φ resp. φ are bijective iff the representing matrix F is invertible resp. iff its column vectors $\boldsymbol{f}_{Q i}$ are linearly independent since these are the coordinate vectors of $\overrightarrow{r_{0} r_{i}}$. In that case Φ is an affinity and A is affine to B. Every n-dimensional affine space $\left(A ; X_{A} ; \rightarrow\right)$ with $A=\bigvee_{i=0}^{n} p_{i}$ by $\Phi\left(p_{i}\right)=e_{i}$ is affine to the canonical affine space $\left(\mathbb{A}_{n} ; \mathbb{C}^{n} ; \rightarrow\right)$ with $\mathbb{A}_{n}=\bigvee_{i=0}^{n} e_{i}$ defined by an arbitrary origin e_{0} and $\overrightarrow{e_{0} e_{i}}=\boldsymbol{e}_{i}$ for the canonical basis $\left(\boldsymbol{e}_{i}\right)_{1 \leq i \leq n}$ of \mathbb{C}^{n}. The image $\Phi[U] \subset B$ of every affine subspace $U \subset A$ is again an affine subspace with $X_{\Phi[U]}=\varphi\left[X_{U}\right]$ and the reverse image $\Phi^{-1}[V] \subset A$ of every affine subspace $V \subset B$ is again an affine subspace with $X_{\Phi^{-1}[V]}=\varphi^{-1}\left[X_{V}\right]$. The composition $\Psi \circ \Phi: A \rightarrow C$ of affine maps $\Phi: A \rightarrow B$ and $\Psi: B \rightarrow C$ is again an affine map such that the set of affine bijections on an affine space A forms the affine group. In the case of $\varphi=\operatorname{id}_{A}$ we have a translation with $\overrightarrow{p \Phi(p)}=\overrightarrow{q \Phi(q)}$ for all points $p ; q \in A$.

9 Projective spaces

9.1 Definitions

The projective space $\mathbb{P} X$ of the finite dimensional vector space X over a field K is the quotient space $X \backslash\{0\} / R$ over the equivalence relation $R=\{(s \boldsymbol{x} ; \boldsymbol{t} \boldsymbol{x}): s ; t \in K ; \boldsymbol{x} \in X \backslash\{\mathbf{0}\}\}$. Its equivalence classes are the one dimensional vector subspaces resp. directions or straight lines in X. They are represented by homogenous coordinates $\bar{x}_{\mathcal{B}}=\left[x_{\mathcal{B} 0}: \ldots: x_{\mathcal{B} n}\right]=\left\{t \cdot \sum_{n=0}^{n} x_{\mathcal{B} i} e_{i}: t \in K\right\}$ $=\pi\left(\boldsymbol{x}_{\mathcal{B}}\right)$ with respect to the basis $\mathcal{B}=\left(\boldsymbol{e}_{i}\right)_{0 \leq i \leq n}$ of X. Although the projective space is not a vector space we define its dimension as $\operatorname{dim} \mathbb{P} X=\operatorname{dim} X-1$. A projective subspace is the projective space of the corresponding vector subspace and the projective hull $\mathbb{P} X \vee \mathbb{P} Y=$ $\mathbb{P}(X \oplus Y)$ is the projective space of the sum of the corresponding vector spaces with $\operatorname{dim}(\mathbb{P} X \vee \mathbb{P} Y)$ $=\operatorname{dim} \mathbb{P} X+\operatorname{dim} \mathbb{P} X-\operatorname{dim}(\mathbb{P} X \cap \mathbb{P} Y)$. The projective space $K \mathbb{P}^{n}=\mathbb{P} K^{n+1}$ of the vector space K^{n+1} over a field $K \in\{\mathbb{R} ; \mathbb{C}\}$ can be represented as a smooth K^{n}-manifold as defined in [2, def. 6.1] with the $n+1$ charts $\left(\left\{x_{i} \neq 0\right\} ; \varphi_{i}\right)$ given by the coordinates $\varphi_{i}:\left\{x_{i} \neq 0\right\} \rightarrow K^{n}$ with $\varphi_{i}\left[x_{0}: \ldots: x_{n}\right]$ $=\left(\frac{x_{0}}{x_{i}} ; \ldots ; \frac{x_{i-1}}{x_{i}} ; \frac{x_{i+1}}{x_{i}} ; \ldots ; \frac{x_{n}}{x_{i}}\right)$ resp. the parametrizations $\varphi_{i}^{-1}\left(x_{1} ; \ldots ; x_{n}\right)=\left[x_{0}: \ldots: 1: \ldots: x_{n}\right]$. Note that the set $\left\{x_{i} \neq 0\right\} \subset K \mathbb{P}^{n}$ is open in the quotient topology of $K \mathbb{P}^{n}$ and homeomorphic to K^{n} which is also open in K^{n}. The projective subspace $\left\{x_{i}=0\right\} \cong K \mathbb{P}^{n-1}$

9.2 Projective maps

A map $\Phi: \mathbb{P} X \rightarrow \mathbb{P} Y$ is projective iff there is an injective linear $\varphi: X \rightarrow Y$ with $\Phi[\overline{\boldsymbol{x}}]=\overline{\varphi(\boldsymbol{x})}$ for every $\mathbf{0} \neq \boldsymbol{x} \in X$. A bijective projective map is a projectivity. For linear maps $\varphi, \varphi^{\prime}: X \rightarrow Y$ with projective map $\Phi ; \Phi^{\prime}: \mathbb{P} X \rightarrow \mathbb{P} Y$ we have $\Phi=\Phi^{\prime}$ iff there is a $\lambda \in K \backslash\{0\}$ with $\lambda \cdot \varphi=\varphi^{\prime}$ since for every pair of linearly independent $\boldsymbol{x} ; \boldsymbol{y} \in X$ there are $\lambda ; \mu ; \nu \in K \backslash\{0\}$ with $\Phi^{\prime}(\boldsymbol{x})=\lambda \Phi(\boldsymbol{x})$, $\Phi^{\prime}(\boldsymbol{y})=\mu \Phi(\boldsymbol{y})$ and $\Phi^{\prime}(\boldsymbol{x}+\boldsymbol{y})=\nu \Phi(\boldsymbol{x}+\boldsymbol{y})$ resp. $(\lambda-\mu) \Phi(\boldsymbol{x})-(\lambda-\nu) \Phi(\boldsymbol{y})=\mathbf{0}$ whence from the linear independence of $\Phi(\boldsymbol{x})$ and $\Phi(\boldsymbol{x})$ follows $\lambda=\mu=\nu$.

9.3 Projective completion

1. For every vector space X with finite $\operatorname{dim} X=n \geq 1$ and every vector subspace $X_{A} \subset X$ with $\operatorname{dim} X_{A}=n-1$ there is an affine space $\left(A ; X_{A} ; \rightarrow\right)$ and a bijection $\Phi: \mathbb{P} X \backslash \mathbb{P} X_{A} \rightarrow A$ such that for every projectivity $\Psi: \mathbb{P} X \rightarrow \mathbb{P} X$ with $\Psi\left[\mathbb{P} X_{A}\right]=\mathbb{P} X_{A}$ the composition $\mathbf{g}=\Phi \circ \Psi \circ \Phi^{-1}: A \rightarrow A$ is an affinity.
2. Conversely for every affine space $\left(A ; X_{A} ; \rightarrow\right)$ over a complex vector space Y with $X_{A} \varsubsetneqq Y$ there is a vector subspace $X_{A} \subset X \subset Y$ and a bijection $\Phi: \mathbb{P} X \backslash \mathbb{P} X_{A} \rightarrow A$ such that for every affinity $\mathrm{g}: A \rightarrow A$ the composition $\Psi=\Phi^{-1} \circ \mathbf{g} \circ \Phi: \mathbb{P} X \backslash \mathbb{P} X_{A} \rightarrow \mathbb{P} X \backslash \mathbb{P} X_{A}$ is a projectivity .

The vector subspace X_{A} is the infinitely distant hyperplane and $\mathbb{P} X$ is the projective completion of the affine space A.

Proof:

\Rightarrow : We choose any $\boldsymbol{a} \in X \backslash X_{A}$ and consider the affine space $A=$ $\boldsymbol{a}+X_{A}=\left\{\boldsymbol{a}+\boldsymbol{x}_{A}: \boldsymbol{x}_{A} \in X_{A}\right\}$. According to the Steinitz basis exchange lemma 3.5 there are bases $\mathcal{B}_{A} \subset \mathcal{B}$ of $X_{A} \subset X$ with $\mathcal{B}=\{\boldsymbol{a}\} \cup \mathcal{B}_{A}$ such that every $\boldsymbol{y} \in X \backslash X_{A}$ there is are uniquely determined $\mathbf{y}_{A} \in X_{A}$ resp. $\lambda \in K$ with $\boldsymbol{a}+\boldsymbol{y}_{A}=\lambda \boldsymbol{y}$. Hence the $\operatorname{map} \Phi: \mathbb{P} X \backslash \mathbb{P} X_{A} \rightarrow A$ with $\Phi(K \cdot \boldsymbol{y})=\boldsymbol{a}+\boldsymbol{y}_{A}$ is well defined. Furthermore for every projectivity $\Psi: \mathbb{P} X \rightarrow \mathbb{P} X$ with $\Psi\left[\mathbb{P} X_{A}\right]=\mathbb{P} X_{A}$ there is an automorphism $\psi: X \rightarrow X$ with $K \cdot \psi(\boldsymbol{y})=\Psi(K \cdot \boldsymbol{y})$ and $\psi\left[X_{A}\right]=X_{A}$ and due to 9.2 by inserting a suitable factor $c \in K$ we can attain that $\psi(\boldsymbol{a}) \in$
 X_{A}. For every $\boldsymbol{y} \in X \backslash X_{A}$ follows that $(\psi(\boldsymbol{y}))_{A}-\psi\left(\boldsymbol{y}_{A}\right)=$ $\tau \cdot \psi(\boldsymbol{y})-\boldsymbol{a}-\psi(\lambda \cdot \boldsymbol{y})+\psi(\boldsymbol{a})=(\tau-\lambda) \psi(\boldsymbol{y})+\psi(\boldsymbol{a})-\boldsymbol{a} \in X_{A}$ which implies $(\tau-\lambda) \psi(\boldsymbol{y}) \in X_{A}$ whence $\tau=\lambda$ since $\psi(\boldsymbol{y}) \in X \backslash X_{A}$. Hence we have shown that $(\psi(\boldsymbol{y}))_{A}-\psi\left(\boldsymbol{y}_{A}\right)=\psi(\boldsymbol{a})-\boldsymbol{a}$ independently of \boldsymbol{y}. The affine character of $\boldsymbol{g}=\Phi \circ \Psi \circ \Phi^{-1}: A \rightarrow A$ then follows by

$$
\begin{aligned}
\psi\left(\overrightarrow{\boldsymbol{a}+\boldsymbol{y}_{A} ; \boldsymbol{a}+\boldsymbol{z}_{A}}\right) & =\psi\left(\boldsymbol{z}_{A}+\boldsymbol{a}-\boldsymbol{y}_{A}-\boldsymbol{a}\right) \\
& =\psi\left(\boldsymbol{z}_{A}+\boldsymbol{a}\right)-\psi\left(\boldsymbol{y}_{A}+\boldsymbol{a}\right) \\
& =\psi\left(\boldsymbol{z}_{A}\right)-\psi\left(\boldsymbol{y}_{A}\right) \\
& =(\psi(\boldsymbol{z}))_{A}-(\psi(\boldsymbol{y}))_{A} \\
& =\overrightarrow{\boldsymbol{a}+(\psi(\boldsymbol{y}))_{A} ; \boldsymbol{a}+(\psi(\boldsymbol{z}))_{A}} \\
& =\overrightarrow{\Phi(K \cdot \psi(\boldsymbol{y})) ; \Phi(K \cdot \psi(\boldsymbol{z}))} \\
& =\overrightarrow{(\Phi \circ \Psi)(K \cdot \boldsymbol{y}) ;(\Phi \circ \Psi)(K \cdot \boldsymbol{z})} \\
& =\overrightarrow{\mathbf{g}\left(\boldsymbol{a}+\boldsymbol{y}_{A}\right) ; \mathbf{g}\left(\boldsymbol{a}+\boldsymbol{z}_{A}\right)} .
\end{aligned}
$$

\Leftarrow : As in the first part we choose an $\boldsymbol{a} \in Y \backslash X_{A}$ and consider the vector space $X=\operatorname{span}(\mathcal{B})$ with $\mathcal{B}=\{\boldsymbol{a}\} \cup \mathcal{B}_{A}$ and a basis \mathcal{B}_{A} for $X_{A}=\operatorname{span}\left(\mathcal{B}_{A}\right)$. We define $\Phi: \mathbb{P} X \backslash \mathbb{P} X_{A} \rightarrow A$ with
$\Phi(K \cdot \mathbf{y})=\boldsymbol{a}+\boldsymbol{y}_{A}$ and consider an affinity $\mathbf{g}: \boldsymbol{a}+X_{A} \rightarrow \boldsymbol{a}+X_{A}$ with a linear injective $\varphi: X_{A} \rightarrow X_{A}$ such that for any $\boldsymbol{y}_{A} ; \boldsymbol{z}_{A} \in X_{A}$ holds $\varphi\left(\mathbf{z}_{A}-\boldsymbol{y}_{A}\right)=\varphi\left(\overrightarrow{\boldsymbol{a}+\boldsymbol{y}_{A} ; \boldsymbol{a}+\boldsymbol{z}_{A}}\right)=\overrightarrow{\boldsymbol{g}\left(\boldsymbol{a}+\boldsymbol{y}_{A}\right) \boldsymbol{g}\left(\boldsymbol{a}+\boldsymbol{z}_{A}\right)}=$ $\boldsymbol{g}\left(\boldsymbol{a}+\boldsymbol{z}_{A}\right)-\boldsymbol{g}\left(\boldsymbol{a}+\boldsymbol{y}_{A}\right)$. We define $\psi: X \rightarrow X$ by $\psi(\boldsymbol{y})=\boldsymbol{g}(\boldsymbol{a})+\varphi\left(\boldsymbol{y}_{A}\right)$ with the uniquely determined $\boldsymbol{y}_{A}=\tau \boldsymbol{y}-\boldsymbol{a}$ for $\boldsymbol{y} \in X \backslash X_{A}$ whence

$$
\begin{aligned}
\Psi(K \cdot \boldsymbol{y}) & =\left(\Phi^{-1} \circ \boldsymbol{g} \circ \Phi\right)(K \cdot \boldsymbol{y}) \\
& =\left(\Phi^{-1} \circ \boldsymbol{g}\right)\left(\boldsymbol{a}+\boldsymbol{y}_{A}\right) \\
& =\Phi^{-1}\left(\boldsymbol{g}(\boldsymbol{a}+\mathbf{0})+\varphi\left(\boldsymbol{y}_{A}-\mathbf{0}\right)\right) \\
& =K \cdot\left(\boldsymbol{g}(\boldsymbol{a})+\varphi\left(\boldsymbol{y}_{A}\right)\right) \\
& =K \cdot \psi(\boldsymbol{y})
\end{aligned}
$$

Hence $\Psi=\Phi^{-1} \circ \boldsymbol{g} \circ \Phi: \mathbb{P} X \backslash \mathbb{P} X_{A} \rightarrow \mathbb{P} X \backslash \mathbb{P} X_{A}$ is a projectivity and due to the first part of the proof we conclude that $\mathbb{P} X$ is the projective completion of A.

Example:

If we exclude the hyperplane $\mathbb{P} E_{n}=\left\{x_{\mathcal{B} n}=0\right\}$ the remaining set $\mathbb{P} X \backslash \mathbb{P} E_{n}=\{x \neq 0\}$ can be identified with the affine space $\boldsymbol{e}_{n}+E_{n}$ resp. the vector space E_{n} by the bijection $\Phi: \mathbb{P} X \backslash \mathbb{P} E_{n} \rightarrow \boldsymbol{e}_{n}+E_{n}$ with $\Phi\left[x_{\mathcal{B} 1}: \ldots: x_{\mathcal{B} n}\right]=\left(\frac{x_{\mathcal{B}}}{x_{\mathcal{B} n}} ; \ldots ; \frac{x_{\mathcal{B} n-1}}{x_{\mathcal{B} n}} ; 1\right)$. Geometrically speaking every line $\overline{\boldsymbol{x}}=\{t \boldsymbol{x}: t \in K\}$ in X except those parallel to the infinitely distant plane E_{n} will meet the affine plane $\boldsymbol{e}_{n}+E_{n}$ at a point $\Phi(\overline{\boldsymbol{x}})$. Hence the theorem provides the mathematical basis for the projection of three-dimensional objects onto a twodimensional screen as explained by Albrecht Dürer in his Underweysung mit dem Zirckel und Richtscheyt from 1525 . As already mentioned in 9.1 the projective completion is not an affine space any more but the quotient space obtained by gluing the two components together according to [6, th. 4.9] resp. [2, ex. 6.2.4] is homeomorph to a closed manifold.

9.4 Projective coordinates

The elements $\left(\mathbb{C} \cdot \boldsymbol{x}_{i}\right)_{1 \leq i \leq n} \subset \mathbb{P} X$ are projectively independent iff the $\left(\boldsymbol{x}_{i}\right)_{1 \leq i \leq n} \subset X$ are linearly independent. The family $\mathcal{B}=\left(\mathbb{C} \cdot \boldsymbol{v}_{i}\right)_{1 \leq i \leq n+2} \subset \mathbb{P} X$ with $\operatorname{dim} \mathbb{P} X=\operatorname{dim} X-1=n$ is a projective basis iff any subfamily of $n+1$ directions is projectively independent. A projective coordinate system is a projectivity $\kappa: \mathbb{P} \mathbb{C}^{n+1} \rightarrow \mathbb{P} X$ with homogenous coordinates $\left(x_{1}: \ldots: x_{n+1}\right):=\mathbb{C} \cdot \sum_{i=1}^{n+1}$ $x_{i} \boldsymbol{e}_{i}$ for the canonical basis $\left(\boldsymbol{e}_{i}\right)_{1 \leq i \leq n+1} \subset \mathbb{C}^{n+1}$. Usually we define $\kappa\left(x_{1}: \ldots: x_{n+1}\right):=\mathbb{C} \cdot \sum_{i=1}^{n+1} x_{i} \boldsymbol{v}_{i}$. The additional direction usually is defined by $\mathbb{C} \cdot \boldsymbol{v}_{n+2}=\mathbb{C} \cdot \sum_{i=1}^{n+1} \boldsymbol{v}_{i}$ and describes the orientation of the infinitely distant plane X_{A} with respect to the coordinate axes in the representation of the projective space $\mathbb{P} X$ as an affine space $A=\Phi\left[\mathbb{P} X \backslash \mathbb{P} X_{A}\right]$ e.g. in the following two representations of $\mathbb{A}_{2}=\Phi\left[\mathbb{P R}^{3} \backslash \mathbb{P} X_{\mathbb{A}_{2}}\right]$:

$$
\mathbb{A}_{2}=\Phi\left[\mathbb{P}\left(\mathbb{R}^{3}\right) \backslash \mathbb{P}\left(X_{\mathbb{A}_{2}}\right)\right]
$$

Example:

For a vector $\boldsymbol{a} \in \mathbb{C}^{3} \backslash \mathbb{C} \cdot(1 ; 1 ; 1)$ the projectivity $\Phi: \mathbb{P} \mathbb{C}^{3} \rightarrow \mathbb{P C}^{3}$ defined by $\Phi\left(x_{1}: x_{2}: x_{3}\right)=$ $\left(a_{1} x_{1}: a_{2} x_{2}: a_{3} x_{3}\right)$ with a corresponding linear $\varphi: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ defined by $\varphi\left(x_{1} ; x_{2} ; x_{3}\right)=\left(a_{1} x_{1} ; a_{2} x_{2} ; a_{3} x_{3}\right)$ has three fixed points resp. directions along the basis vectors
$\Phi(1: 0: 0)=\left(a_{1}: 0: 0\right)=(1: 0: 0)$
$\Phi(0: 1: 0)=\left(0: a_{2}: 0\right)=(0: 1: 0)$
$\Phi(0: 0: 1)=\left(0: 0: a_{3}\right)=(0: 0: 1)$ but
$\Phi(1: 1: 0)=\left(a_{1}: a_{2}: 0\right) \neq(1: 1: 0)$.

Index

$B A C-C A B$-formula, 57
$Q R$-decomposition, 39
p-linear, 45-47
abelian, 4, 5
adjoint, 43
adjoint map, 44
affine, 62
affine coordinate system, 60
affine group, 62
affine hull, 60
affine map, 61
affine space, 16, 60
affine subspace, 60
affinity, 62
Albrecht Dürer, 65
algebraically closed, 13
alternating, 22
alternating map, 52
alternating product of maps, 57
angular velocity, 57
annihilator, 21, 44
antisymmetric map, 52
antisymmetrical, 55, 59
antisymmetrical map, 53
antisymmetrical tensor, 55, 59
Antisymmetry, 22
associative law, 4, 13
automorphism, 5, 17
axial vectors, 57
basis, 13
bilinear, 58
bilinear form, 20
bilinearity, 38
canonical affine space, 62
canonical inner product, 15
canonical projection, 16
Cauchy-Schwarz inequality, 39
Cayley's theorem, 5
Cayley-Hamilton theorem, 31, 41
center, 6, 7
centralizer, 6
characteristic polynom, 28
characteristic polynomial, 45
class formula, 8
closed manifold, 65
column rank, 13
column vectors, 13,17
commutative law, 4
complementary Matrix, 24
complementary space, 15
complete space, 38
complex numbers, 12
composition, 5
conjugate, 7
conjugate symmetry, 38
conjugation, 7
connected components, 26
continuous, 43
contraction, 51
contravariant, 21, 49
contravariant vector, 19
convolution, 10
coordinate system, 17
coordinate transformation, 17, 19
coordinate vector, 17,38
coordinate vectors, 15
covariant, 21, 49
covariant vector, 19
covectors, 19
cross product, 50, 56
cycle, 8
cyclic group, 7
degree, 12
determinant, 22
differential form, 57
dilation, 18
dimension, 14, 63
dimension formula, 16
dimension of an affine space, 60
direct product, 4, 15
direct sum, 15
distribution law, 13
distributive laws, 9
Division rule, 4
division rule, 4
dual basis, 19
dual linear map, 44
dual space, 18, 49
dyad, 48
dyadic tensors, 48
Eigenspace, 28
Eigenvalue, 28, 42
eigenvalue, 41
Eigenvector, 28
eigenvector, 42
Einstein summation convention, 15, 19, 45
elementary matrix, 17
elementary transformation, 17
embedding, 5, 38
endomorphism, 5
endomorphisms, 10
equivalence classes, 12
equivalence relation, 5,12
Euclidean division, 10
Euclidean division algorithm, 31
Euclidean polynomial division, 12
euclidean space, 38
exterior algebra, 59
exterior product, $53,54,58$
factor group, 6,10
factor ring, 10
Fermat's little theorem, 7
field, 12, 13
Fitting's lemma, 33
fixed point, 7, 66
fundamental theorem of algebra, 12, 28, 31
Gauss algorithm, 17, 22
generalized eigenspaces, 33
generator, 4, 10
gluing, 65
Gram's determinant, 39
Gram-Schmidt orthonormalisation, 39, 43
Gram-Schmidt-orthonormalisation, 42
group, 4, 16
Hadamard's inequality, 39
hermitian, 38
hermitian matrix, 38, 43
Hilbert space, 38
homogenous coordinates, 63, 66
homomorphism, 5, 15
hyperplane, 18, 60, 64
ideal, 10
index, 5
index notation, 15, 19
inductively ordered, 14
inner automorphism, 7
inner product, 38, 44
integral domain, 9,11
intermediate value theorem, 13,27
invertible matrix, 17
isomorphism, 5
isotropy group, 7
Jordan matrix, 34
kernel, 5
Klein Vierergruppe, 8
Lagrange's theorem, 5, 16
Lebesgue integrable, 10
left coset, 5,7
left inverse element, 4
left neutral element, 4
left translation, 4, 5
left translations, 5
Levi-Civita-symbol, 56
line, 60
linear map, 15
linear maps, 10
linear span, 13
linearly independent, 13
linearly ordered, 14
lowering of the index, 51
manifold, 63
matrix, 13
maximal family, 14
maximal ideal, 11
mean value theorem, 13
metric, 38
metric tensors, 51
minimal polynom, 32
monoid, 4
neutral element, 13
nilpotent, 32
norm, 38, 51
normal, 39, 45
normal subgroup, 6, 41
normalizer, 6,8
normed, 22
operation, 7
orbit, 7,8
orbit decomposition formula, 8
order, 5
orientation, $26,41,57$
orthogonal, 17
orthogonal complement, 39
orthogonal matrix, 41
orthonormal, 39, 58
orthonormal basis, 15,17
othogonal, 39
parallel affine spaces, 60
Parallelogram equality, 39
path connected, 26
permutation, $8,52,53$
permutation group, 5
plane, 60
polar vectors, 57
Polarisation equality, 39
polynomial, 12
positive definite, 38 , 44
positive definite matrix, 38
powers, 7
prime ideal, 11
prime number, 7,12
principal, 32
principal ideal, 10
principal ring, 10
product, 10
product rule, 13
projection, 6
projective basis, 66
projective completion, 64
projective coordinate, 66
projective hull, 63
projective map, 64
projective space, 63
projective subspace, 63
projectively independent, 66
projectivity, 64
pseudovectors, 57
Pythagoras equality, 39
quadratic form, 43
quaternion group, 5
quotient set, 7
quotient space, 16, 52, 53, 63
raising of the index, 51
rank, 16
real linear, 18
real part, 18
reflection, 4, 57
regular, 4, 5
right inverse property, 4
right neutral property, 4
right translation, 4,5
ring, $9,15,16$
root, 12
rotation, 4,57
row linear, 22
row vectors, 17
scalar product, $38,58,59$
scalars, 13
Schroeder-Bernstein theorem, 14
self-adjoint, 43
semi-isomorphism, 44
semigroup, 4,5
sesquilinear, 38
shear, 18, 57
Steinitz basis exchange lemma, 14, 16
subgroup, 4, 7
sum of ideals, 10
supremum, 14
symmetric dyad, 48
symmetric group, 5, 8
symmetric map, 52
symmetric matrix, 43
symmetric product, 52
symmetric tensor, 48,52
symmetric tensors, 56
symmetry, 38
symmetry group of the square, 4
tensor, 20, 49
tensor product, 46, 50, 52-54
tensors, 46
transformation matrix, 17, 38, 61
translation, 7, 57, 62
translation vector, 60
transposition, $8,19,51,53$
transpositions, 20
Triangle inequality I, 39
Triangle inequality II, 39
trivial subgroup, 5
type of a tensor, 49
Underweysung, 65
uniqueness of the inverse, 4
uniqueness of the neutral element, 4
unit element, 9
unitary, 58
unitary endomorphism, 41
unitary matrix, 39,41
unitary space, 38
Vandermonde determinant, 27
vector, 13
vector space, 13
Weierstrass factorization theorem, 10
zero divisor, 9
Zorn's lemma, 11, 14

References

[1] John B. Conway. Functions of one complex variable. 2nd ed. Springer, 1978.
[2] Arne Vorwerg. "Analysis". In: (2023). URL: http://www . vorwerg-net . de / Mathematik / Analysis.pdf.
[3] Arne Vorwerg. "Functional Analysis". In: (2023). URL: http://www.vorwerg-net.de/Mathematik/ Functional\%20Analysis.pdf.
[4] Arne Vorwerg. "Measure Theory". In: (2023). URL: http://www.vorwerg-net.de/Mathematik/ Measure\%20Theory.pdf.
[5] Arne Vorwerg. "Mengenlehre". In: (2022). URL: http://www.vorwerg-net.de/Mathematik/ Mengenlehre.pdf.
[6] Arne Vorwerg. "Topology". In: (2020). URL: http://www.vorwerg-net/Mathematik/Topology. pdf.

