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1 Groups

1.1 Semigroups, monoids and groups

A semigroup (G;o) is a pair of a set G and a map o: G x G — G with
1. the associative law (aob)oc=ao (boc) for every a,b,c € G
(G;0) is abelian resp. regular iff it satisfies
2. the commutative law a o b = bo a for every a,b € G.
3. the division rule: aob=aoc<a=rc.
A semigroup (G;o) is a monoid iff it has
4. a left neutral element e € G such that eoca = a for every a € G
A monoid (G;o) is a group iff it has

5. a left inverse element a’ € G such that a’ o a = ¢ for every a € G

1.2 Translations

A semigroup (G;o) is a group iff for every a € G the left translation [, : G — G with [, () = aox
and the right translation r, : G — G with r, () = z o a are both surjective. In that case they are
both injective hence bijective.

1.3 Properties of a group

For elements a, b, c € G of a group G and left neutral elements e; eg resp. left inverse elements
a~'ag! we have

1 1 _

. . _ _ T _ -1 _
1. right inverse property: aoa ! =coaoa ! =(a"!) oaloaocal=(a"!) oceocal=
-l

(el T oat=e

1

2. right neutral property: aoce=aoa " oa=eca=c¢e

3. uniqueness of the inverse: ;' =coay' =a loaoca;' =atoe=d

4. uniqueness of the neutral element: e =eoey=c¢e

5. Division rule: aob=aoceb=aloaob=aloaoc=cresp. boa=coa < b=
boaoca '=boaocal=c

1.4 Direct products and subgroups

The direct product ([[;c; Gi;0) of groups (Gi);c; for any index set I refers to componentwise
composition (z;);c; o (¥i);c; = (%i 0 yi);c; on the set theoretic product [[;c; Gi = (vi);c; : L —
Uier Gi : = € G;. A subgroup H C G is a group included in G. A set H C G is a subgroup
iff for every a;b € H we have aob™! € H. Any set S C G may be the generator of a subgroup

n

(S) = { [[@:a; Ve, €eSVI<i<ne N}. Obviously (S) is the smallest subgroup containing S
i=1

and equal to the intersection of all such subgroups.

Examples: There are two non-abelian groups of order 8:

1. The symmetry group of the square is generated by the rotation o = -1 ) and the

1 0

reﬂect10n7—< 0 1>suchthata =T —e—< 0 1).
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0 1

: 4 4
1 0>W1thL = K" =ce.

2. The quaternion group is generated by ¢ = ( (Z) S ) and Kk = <

1.5 Homomorphisms

A mapping ¢ : G — G’ between two groups (G;o) and (G’;0’) is a homomorphism resp. endo-
morphism in the case of G’ = G iff p (a0 b) = ¢ (a) o’ ¢ (b) for every a;b € G. The left translation
l, and the right translation r, are homomorphisms iff @ = e. The mapping a — [, is always a
homomorphism but a — 7, only iff G is abelian. The composition 1) o ¢ : G — G” of two ho-
momorphisms ¢ : G — G’ resp ¢ : G’ — G” is again a homomorphism. Since we have ¢ (e) = ¢
and ¢ (a=1) = ¢ (a)"! the image Tmy = ¢ [H] C G’ as well as the inverse image ¢! [H'] C G of
subgroups H C G resp. H' C G’ under a homomorphism ¢ are again subgroups. A special case is the
kernel kerp = ¢! [{¢}], i.e. the inverse image of the trivial subgroup {e}. A homomorphism ¢ is
injective iff kerp = {e}. In this case it is also called an embedding. A bijective homomorphism is
an isomorphism resp. an automorphism in the case of G’ = G. The bijections on an arbitrary set
X constitute the symmetric group (S (X) ;o) with reference to the composition of mappings. Any
subgroup of S (X) is called a permutation group. In the case of a group G the family AutG C S (G)
of automorphisms on G is a subgroup of S (G). In particular the left translations /, € AutG are a
permutation group and since [ : G — AutG with [ (a) = [, is an isomorphism we have Cayley’s
theorem: Every group is isomorphic to a permutation group.

1.6 Extension of semigroups to groups

For every abelian and regular semigroup H exists an abelian group G and an
embedding ¢« : H — G such that for every homomorphism ¢ : H — G’ into an

Y
abelian group G’ there is a unique homomorphism 1 : G — G’ with ¥ o1 = ¢. GG

Proof: The set ~= {(a;b);(a’;0/) € H*: 3z € H : ab'x = d’bz} is an equiva- ]TI/(P

lence relation with obvious reflexivity resp. symmetry and transitivity since

a'bx = ab/z and a"b'y = 'y imply ab” (a'b'zy) = (ab'z) (d'V"y) = (a'bx) (a"b'y) =

a”’b (a'b'zy).

For [a;b];[c;d] € G = H x H the mapping o : [a;b] o [¢;d] — [ac;bd] is independent of the
representants since ab'z = d'bx and cd'y = dy imply abdd' (zy) = d'V/ed (zy). Tt is obviously
associative, commutative with the neutral element is 0 = [a; a] and the inverse [a;b] " = [b; ]
for each [a; b].

~

The mapping ¢ : H — H? with ¢(a) = [a% a] is a homomorphism since ¢ (ab) = [a?b?;ab] =

[a%;a] o [b%;0] = v(a) o (b). In the case of regularity and owing to the commutativity we have
[az,a} = [b%b] & a’bz = ab’x < a(ab) = (ab)b & a = b, i.e. ¢ is injective. It is also surjective
since for every [a;b] € G we have [a;b] = [a (ab) ;b (ab)] = [a%;a] o [b;b?] =1 (a) o v (b) ™.

For a homomorphism ¢ : H — G’ and [a;b] € G the mappmg ¢([ b)) = ( )o (b)) !is a

homomorphlsm since ¥ ([a; 0] o [¢;d]) = 9 ([ac; bd]) = ¢ (ac) o o (bd) ™ = (p(a) o p(c )o (b))t

o (d)™" =¥ ([a;b]) o ¥ ([e;d]). Tt is uniquely determined since for every [a;b] € G the condition
[a;

(¥o1) (x) = o (x) implies ¥ ([a;5]) =¥ (1(a) 01 (B) 1) = p(a) ' () " .

1.7 Index and order of a subgroup

Any subgroup H C G of a group G defines an equivalence relation a = bmodH < ab~! € H. The
equivalence classes aH = [, [H] or left cosets have the same cardinality or order ordH = (H : 1)
as H since the left translation [, is bijective. The order indH = (G : H) = (G/H : 1) of the quotient
set is called the index of H and in the case of two of theses indices being finite we have Lagrange’s
theorem (G: H)(H :1)=(G:1).



A second application of Lagrange’s theorem to a further subgroup K C H yields the generalization
(G:H)(H:K)=(G:K), cf. the second isomorphism theorem 1.11.

1.8 Normal subgroups

The composition o extends to the quotient set G/H such that the projection 7 : G — G/H with
7 (a) = ao H is a homomorphism iff ac H € G/H = aoHoa 'oH =eoH < aoHoa ' € H &
aoHoa '=H & aoH = Hoa. A subset satisfying this condition is normal and in this case the
pair (G/H; o) is the factor group with 7 (a)on (b) = aocHoboH = aoboHoH = aoboH =7 (aob).
In the following sections we abbreviate ab = a o b if no ambiguity is caused.

1.9 Fundamental theorem on homomorphisms

For every homomorphism ¢ : G — G’

1. the inverse image ¢! [N'] C G of a normal subgroup N’ C G’ is normal in G. In particular
the kernel kery is normal.

2. If ¢ is surjective the canonical injection ¢ : G/kerp — G’ with ((aokerp) = ¢ (a) is an
isomorphism and in that case the image ¢ [N] of a normal subgroup N is normal in G'.

On account of (zy) ' = y~'z~! for any subset S C G the normalizer Ny = {z € G : zSz~! = S}
and the centralizer Zs = {x € G : xsz~! = sVs € S} are subgroups. The center Z¢; is a normal
subgroup and the normalizer Ny of a subgroup H C G is the largest subgroup in which H is
normal. Also in that case for any other subgroup K C Np the product KH is a group and H is
normal in K H.

1.10 Noether’s first isomorphism theorem

For every subgroup H C G and every normal subgroup N C G.
1. the product HN is a subgroup of G.
2. N is a normal subgroup of HN. H N
3. HN N is a normal subgroup of H.
4

. the injection ¢ : H/(HNN) — HN/N with ¢ (a(HNN)) =aN
is an isomorphism.

1.11 Noether’s second isomorphism theorem

For normal subgroups M C N C G
1. the factor group N/M is normal in G/M .
U
2. the mapping N G/M

o+ (G/M) | (N/M) = G/N ! a N/UM\

with o . o o
o ((aM) (N/M)) = aN / (G/M) /(G/M)

is an isomorphism.



1.12 Cyclic groups

A single element S = {a} generates a cyclic group (a) := ({a}) = {a® : z € Z} with the inductively
defined powers a® = ¢ , a"™' = @aoa™ and a™" = (a™1)". A further induction yields a™ o a™ =
a™t™ such that for any cyclic group (a) of order n = ord (a) = orda we have an isomorphism
¢ Z/nZ — (a) with ¢ (m mod n) = a". Hence every subgroup H C (a) contains a smallest m € N
with a™ € H and since there is no m — k € Nwith "% € H we have H = (a™). In particular from

Lagrange’s theorem we infer
1. a" = e < ordaln
2. Every cyclic group is abelian.
3. Every subgroup of a cyclic group is cyclic.
4. Fermat’s little theorem: if ordG < oo for every a € G we have a®'9¢ = .
5

. If ordG € P is a prime number for every a € G we also have a” # e for n < ordG. In that
case G is cyclic and G = (a) for every a € G\ {e}.

For every a € G with ordG < co we have orda™ = Wdf‘mda).
(a) = (b) iff there is an m € Nwith GCD (m;orda) = 1 and b = a™.

For every m € Nwith m|orda resp. GCD (m;orda) = m there is a subgroup <a%> C (b).

© ® N>

Every group G # {e} without any subgroups apart from {e}and G itself is of prime order
ordG € P and hence cyclic.

Proof of 1.12.6: Since there are coprime m';n’ with m = m’ - GCD (m;orda) resp. orda = n’ -
GCD (m;orda) and a™ 97" = e = q°% on the one hand we have an n > 1 with m-orda™ = n-orda =
m/-orda™ = n-n’ =n’|orda™ and on the other hand (a™)" = a™" = g GOP(miorda)n’ _ jmeorda — ¢

whence orda™|n’. This proves orda™ = n’ and thus the assertion.

1.13 Operations

An operation is a homomorphism 7 : G — S (X) between a group G and the symmetric group
of a set X.

The translation [ : G — S (G) with [ (a) = I, : G — G and I, () = ax due to Kerl = 7! (id) =
171 (l.) = {e} is an injective operation and observing that in general (ab) z = a (bz) holds but not
a(xy) = (az)(ay) we note that | is a homomorphism but [, is not. The group G may also
operate by translation [ : G — S (P (G)) with [ (a) =l : P(G) — P(G) and [, (H) = aH on its
family P (G)of subsets. Note again that even for a subgroup H in general the image aH will only
be a left coset. Due to 1.7 the group G operates by translation on the quotient set G/H with
l(a)=1l,:G/H - G/H and l, (zH) = azH.

The conjugation ¢ : G — S(G) is defined by c(a) = ¢, : G — G and ¢, (z) = axa™'. Due to
1.9 its kernel Kerc = ¢! (id) = Zg is the center of G whence c is not injective but the inner
automorphism ¢, € AutG is. As above the group G by conjugation also operates on the families
of subsets resp. subgroups H € P(G). The resulting conjugations ¢, : P(G) — P (G) with
ca (H) = aHa™! are obviously bijective and the inverse image c;! (H) = a 'Ha = c, 1 (H) is the
conjugate of ac, ! (H)a ! = H.

1.14 Orbit and class formulae

For an operation 7 : G — S (X) and x € X the isotropy group is defined by G, = {a € G : 7, () = z}.
The kernel kerm = 771 (id) = N,cx G: is equal to the intersection of all isotropy groups. An
element x € X is a fixed point iff G, = G and 7¢ (¢) = Uyeq ™o (£) C X is the orbit of z. Since



for every x € X the mapping ¢ : G/G, — 7 (v) C X with ¢ (aGy) = 7, (x) is bijective we have
indG, = ordng (x). Since m, (x) = m (y) & my-14(x) = y & y € 7g (v) the orbits partition X
and in the case of a finite number n of orbits we can choose x; € X for 1 < ¢ < n such that
i # j e mg(x;) # ng(x;) and X = OKK”WG (z;) yielding the orbit decomposition formula

cardX =) ordng (z;).
i=1

In the case of the conjugation and due to 1.9 the isotropy group coincides with the normalizer:

G, = N, for x € X resp. Gg = Ny for H € P (G). For every z;y € X with 7, (z) = y the isotropy

groups are conjugate, i.e. G, = aGya 'since b € Gy = m,(y) = y = Ta-140 (T) = To-15 (y) =

o1 (y) = 7, (y) = 2 = atba € G, & b € aGra~! and vice versa. Since m, (1) # ™ (z) &

va~t # bxb~! & b7 lar # b~ la & b la ¢ N, < aN, # bN, we have ordrg (z) = indN, = indG,

such that in the case of the conjugation on a group G of finite order the orbit decomposition
n

formula becomes the class formula ordG =) indN,, with z; € X for 1 <1 < n chosen such that

=1

1.15 Permutations

A bijection o € S (X) is a cycle of length n € N iff there are x;;...;2, € X with ;41 = o (2;) =

o =0t m)for 1l <i<n—-1lresp. 1 = o(xy) = ... = 0" (x1) and o (z) = x for every
other x € X \ {z1;...;z,}. The set of all cycles is C (X) C S(X). In a simplified notation we
only mention the elements z; € X affected by ¢ and write o [X] = {..;0(z1);..;0(xn);...} =

(x1; . 52n) = (@150  (21) 5050 H(31)), eg. {1;4;3;6;5;2;7;8;9; 10} = (2;4;6). Also if there is
no ambiguity between the mapping o and its image o [S] the argument may be suppressed and
we write 0 = o [S] as in e.g. o = o[{1;2;3;4}] = {4;3;2;1}. For every 1 < j < n the image
(x1;.520) = (ol (25)5.50™ (25)) = (o), is the orbit of the cyclic subgroup generated by o on the
single element z;. A cycle T = (x;; ) of length n = 2 is a transposition 7 with 7 (z;) = z; and the
set of all transpositions is 7' (X) C C'(X) C S (X). Note that neither set is closed under composition,
e.g. (1;2) o (3;4) = {2;1;4;3} is not a cycle any more. (cf. 1.16.2) By x : {1;..;n} — {x1;..;2,}

with x(n) = x, and o (z,) = (0 ox)(n) every symmetric group S ({zi;...;z,}) of order n is
isomorphic to S, = S({1;..;n}) = S(x[{1;.. }]) such that any permutation o € S, may be
expressed simply in the form J[ ] ={o(1 ) o (n)}. For example the Klein Vierergruppe
H = (m;p) = {id;m; p;mo p} C Sy Wlt = {2,1,4,3}, p=13;4;1;2} and Trop=pom ={4;3;2;1}

is an abelian subgroup of Sy.

1.16 The symmetric group

For n > 2 the symmetric group S, has the following properties:

1. S, = (Ty,) is generated by the transpositions T}, = {7;;; = (1;7) : 1 <i < j < n}and is of order
ordS,, = n!.

2. Every p € S, is a finite product of disjoint cycles.
3. Disjoint cycles commutate: o o p = po o for every o,p € C (X)with o N p = 0.
4. Every 7 € S, is a finite product of disjoint transpositions.

Proof:

1. Follows by induction from the observation that for n > 2 there are n transpositions 7;., and
Sy =A{Tiznoop_1:0p-1 € Sp—1} whence ordS,, = n - ordS,_1.

2. Since with z; € X for 1 <4 <m < nsuch that i # j < 7w, (z;) # 7, (7;) the orbits 7,
{p(@i); s p™
o; (z;) = p (x;) partition X = U1<Z<m (py (i) such that for every x € X thereisan 1 <i<m
and a 1 < j < m; such that x = o7 (2;) € m(y (#;) whence 7 (x) = 7o ol (z;) = ol ().

(i) =

zi) =xi} = (@i p(z) 5.5 p™ (21)) resp images of cycles 0, € C'(X) with

<

8



3. obvious.

4. Follows from 2. since for every cycle we have (x1;...;2,) = (z1;2,) 0 (x1;2p-1) © ... 0 (x1; T2).

1.17 The signum of a permutation

For every n > 2 the signum sgn : S, — {+1} with sgn (o) = [[,; U(Q:?(j) is a homomorphism with
sgn (o o p) =sgn (o) -sgn(p) and sgn (1) = —1 for every transposition 7. Hence sgn (11 0...07,) =
(-=1)" and for A, = o~ '[{1}] the map ¢ + o o7 is a bijection A, — A, o7 such that from
Sp = ApUA, o7 follows |A,| = |4y 07| = %n!.

Proof:
o)~ [[ R0
_ g U(pp(iis - Z((jp)(j)) 1;[] p(iz :5(]’)
L T
' e s,
p(i)<p(j) | )<l
LSS 1
p(i)<p(j) P(6)<p(i)
e
= sgn (o) - sgn (p).
2 Rings
2.1 Rings

A ring (R;+-) is a triple of a set R and two maps +;-: R x R — R iff for every a;b;c € R we have:
1. (R;+) is an abelian group
. associativity of the multiplication : a-(b-¢c) = (a-b)-c
. distributivity a- (b+¢)=a-b+a-cand (a+b)-c=a-c+b-c
. a unit element 1 € Rwithl-a=a-1=a

2

3

4

5. A ring is commutative iff this property holds for the multiplication.

6. The unit elemt is uniquely determined and in the case of 0 = 1we have R = {0}
7

. The ring is an integral domain iff a-b6 =0« a =0V b = 0 for every a;b € R, i.e. it is free
(nullteilerfrei) of left resp. right zero divisorsa € R: 30 #be R:a-b=0resp b-a=0.

oo

.0-a=a-0=0since0-a=(04+0)-a=0-a+0-a and vice versa.

a-(—=b)=—(a-b)and (—a) - (-b)=a-bsincea-(-b)+a-b=a(-b+b)=a-0=0.

©



2.2 Examples

1. The set of maps G — G on an additive group (G; +) forms a ring with respect to the composi-
tion. Special cases are the endomorphisms (EndG; +;0) on G , linear maps (L (X);+;0) on
a complex vector space X and in the finite dimensional case the isomorphic set (M (n; C) ; +; %)
of complex quadratic matrices with respect to the matrix product.

2. The set of maps R — R on a ring (R;+;-) forms a ring with respect to the multiplication
with the unit 1 :r — 1 for » € R as well as with respect to the composition with the unit
id: R — R.

3. The set (L1 (C);+; ) of Lebesgue integrable complex functions with respect to the convo-
lution is not a ring since the convolution lacks a neutral element.

2.3 ldeals

A subring I C R of aring (R;+;-) is a left resp. right ideal iff RI C I resp. IR C R whence RI =1
resp. IR = I since 1 € R. Only for a two-sided or simply ideal I the factor group (R/I;+) with
the multiplication (r+1I)-(s+ 1) =x(r)-mw(s) = (rs) = rs+ I becomes a factor ring (R/I;+;")
since only in that case ' = r modl and s’ = s modI satisfy r's' —rs =1/ (s'—s) — (' =r)s eI
whence 7 (r's") = m(rs) modl while the associativity resp. the distributivity obviously extend
from (R;+;-) to (R/I;+;-).

The simplest ideals are the left principal ideals Ri for any generator 1 € R. This can be extended

to finitely many generators (ix);<<, C I such that Z Riy, = { > orpipirp € RV1I <k < n} and
k=1
likewise for right principal resp. two-sided principal ideals. In the latter case we use the
n n

notation (ix);<p<, = Rir =3, iR . A commutative nontrivial ring is principal iff every ideal
=T k= k=1

is principal.

Thesum [+ J ={i+j:i€IANje J}=1UJ of two ideals is again an ideal. In general this is not

true for the product IJ ={ij: i€ INje€ J} C INJ. The product of two principal ideals can

be represented by (i) (j) = { i ikje ik €LijreJ:1<k<nc¢ N}.
k=1

Examples:

1. The ring Z of integers is principal since for the smallest positive integer d € NN I of a given
ideal I C Zand any other n € I according to the Euclidean division there exist integers ¢ and
0 <r<dsuchthat n=dg+r < r=n—dqg € I whence r = 0 such that we obtain I = dZ.

2. The ring K [z] of polynomials in one variable z over a field K is principal since for
any polynomial d € K [x] N I with minimal degree degd in a given ideal I C K [z]and any
other n € I according to the Euclidean division there exist polynomials ¢,r € K [z] with
degr < degd such that n = dg+r < r = n —dq € I whence r = 0 such that we obtain
I =dK [x].

3. The ring H (C)of entire functions on the complex plane is principal since according to the
finite multiplicity of zeros of holomorphic functions [2, p. 2.11] the generators fi of the
ideal I = (fx);<j<, have at most finitely many common zeros a; with at most finite common
multiplicity ny such that due to the Weierstrass factorization theorem [1, th. 5.14] there is
an f € H (C)with exactly these zeros of matching multiplicity. Hence we have I = (f)
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2.4 Commutative rings

An ideal I C R in a commutative ring R is

1. prime iff the factor ring R/I is an integral domain

2. maximal iff there is no ideal I & M & R.
In a commutative ring R the following statements hold:

1. Every maximal ideal is prime.

2. Every ideal is contained in some maximal ideal.

3. {0} is prime ideal iff R is an integral domain.

4. For every maximal ideal Mthe factor ring R/M is a field.

5. If the factor ring R/M of an ideal M is a field, then M is maximal.
Proof:

1. For a maximal ideal M and r;s € R with rs € M. In the case of r ¢ Mdue to the maximal
character of M we have M C M + Rr = R whence there are n € M and t € R with 1 =n + tr.
Multiplication by s yields s = ns + trs € M whence M is prime.

2. For any given ideal I C R the family 7 of all ideals I C J & R in R is inductively ordered by
inclusion since every linearly ordered chain (Ij),cx C Z has an upper bound 1 ¢ Upey Ix & R
which is an ideal due to the increasing charachter of the chain such that Zorn’s lemma [5,
p. 14.2.4] provides the desired maximal ideal M C R.

3. obvious.

4. From 1 ¢ M follows 1 # OmodM whence for every r # OmodM due to the maximal character
of M the ideal M C M + Rr = R such that there are m € M and t € R with m +tr =1, i.e.
tr = 1lmodM resp. 7 (r) "' = 7 (t).

5. For every ¢ € I of an ideal M C I C R there is a j € R with ¢j = lmodM resp. an m € M with
1 =75 + m such that we obtain ¢ € M. Hence I C M and since obviously M & R the assertion
follows.

2.5 The Chinese remainder theorem

For ideals (Ix), <<, with Iy +1; = R for k # | in a commutative ring R and any set (1), <,,<,, C R
there is an r € R with r = rgmodly for every 1 < k < n.

Proof: According to the hypothesis for n = 2 there are i; € I; and iy € I with i1 4+ i = 1 such that
r = roi1 + 142 due to r —r1 = (ro — r1) 41 and vice versa satisfies the given congruences. For k > 2

n n
there are ay, € I; and by, € I, with ap + b = 1. Due to 2.3 this implies 1 =[] (ax +bx) € L1+ [1 I,
k=2

n n n
i.e. 1 =414+ [] ix for some iy € I. But then for every r € R follows r-1 = r-iy+r- [] ix € 1+ [ Ix
k=2 k=2 k=2

n
whence I1+ [] I = R. By the proven case for n = 2 we can find an s; € R with s; = 1lmodl/; resp.
k=2
n
s1 = Omod < I1 zk> whence in particular s; = OmodI}, for k # 1. Similarly we obtain (sy,)q<,, <, With
k=2 <m<

n
Sm = lmodl,, resp. s, = OmodlIy for k % m . Then r = " 7,8y is a solution for the given system

m=1
of congruences.
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2.6 Fields

A triple of a set K and two maps +;-: K x K — K is a field (Korper) (K;+-) iff
1. (K;+;-) is a ring
2. (K\{0};-) is an abelian group

Examples:

1. The ring Zmod p = Z/pZ with the equivalence relation r = smod p< Jz € Z:r—s=z-p
resp. the equivalence classes r mod p with 0 < r < p (cf. [5, p. 8.9]) isa domain iff p € Pisa
prime number, since for k < p and b,l,m € Z we have (mp+k)-b=Ip< kb= (l—mb) -p <
plb. For every p € P\ {2} the pair (Z/pZ;-) forms a cyclic and hence abelian group since for
Iim<pandn € Nwehavel-m=n-p+1<1-(m—1)=n-p. In these cases (Z/pZ;+;-) is a
field.

2. More generally every domain R of finite order with multiplicative unit is a field since
in that case for every a € R the mapping x — ax is injective and hence surjective. Conversely
the order of a finite field is a prime number since assuming n - m -1 = 0 implies m = 0 or

n = 0.

3. The ring R (z) mod (22 +1)=R(z)/(2? +1) - R(z) with the equivalence relation p(z) =
q(x) modz? +1 & Ir(x) € R(z) : p(z) —q(z) = r(z) - (#® +1) resp. the equivalence
classes (az +b) mod (2% + 1) with a;b € R is a field since with 22 = —1 mod (2% + 1) we
have (ax+b) (cx+d) =1mod (22 +1) & bd—ac=1Aad+bc=0< b*c+ad’c=—a&

c = a2+b2 ANd = a22b2, ie. (ax+ b)f1 = ;gﬁjzb. With the isomorphism x + i we obtain the

complex numbers: R () mod (2? +1) ~ C.

2.7 Polynomials

According to the fundamental theorem of algebra [2, p. 2.10] every non constant polynomial
p(z) = Z arz® € C(2) with a;, € C, a,, # 0, degree degp = n > 1 and 0 < k < n has a complex
root \ e (C with p (A) = 0. Due to the Euclidean polynomial division for every root A € C we have

p(z) =q(2)- (2 — ) with ¢(2) € C(z) and degq = degp — 1. According to the rules for complex
conjugation for every non real root A € C of a real polynom p(z) € R (2)we have 0 = p(A) =

p(\) =7 (X) =p (X) whence p(z) = q(2) - (2 — )\)“()‘) (z - X)ﬂo) with multiplicities p (\) = p (X)

ERTON
and the real polynom (z — )\)“()‘) (z — A)“( ) of even degree 24 (\). Hence every real polynom

k (n—k)/2 —

can be factorized in the form p(z) =] (z—X)- I (2 —N) (z - )\Z-) with Im)\; = 0 for ¢ < k
i=1 i=k

and ImA; # 0 for ¢ > k such that every real polynom of odd degree must have at least one

real root \; € R.

2.8 Descartes’ rule of signs

The number Z; of strictly positive real roots (counting multiplicity) of a real polynomial

p(z) = Z arz% € R (z) with integer powers 0 < by < b; < ... < b, and real coefficients a; € R\ {0} is
equal to the number Vy = >° o<p<n 1 of sign changes in the coefficients of f minus a nonnegative
even number. o0

Proof:

1. W.lo.g. we assume by = 0 since otherwise a division by z?would not change the number of
strictly positive roots.
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2. Zy is even iff a,ag > 0 since in the case of f(0) = ag > 0 and a,, > 0 we have f (z) — +oo for
x — 400 and due to the intermediate value theorem [6, p. 5.1] it must cross the positive
x-axis an even number of times (each of which contributes an odd number of roots) and glance
without crossing an arbitrary number of times (each of which contributes an odd number of
roots) such that Z; must be even. The other cases are dealt with analogously.

3. Since every coefficient a; with a agag < 0 produces a pair of sign changes it follows from 2. that
Zy and V; have the same parity.

4. It remains to show that Z; < Vy: For n = 0 and n = 1 the proposition is obvious. Assuming
n > 2 by the induction hypothesis we have Zj 4, = Virja, — 2m for some integer m > 0. By

the mean value theorem [2, th. 1.9] there is at least one positive root of % between any two
different roots of f. Due to the product rule [2, th. 4.4] any k-multiple positive root of f is a
k — 1-multiple root of %’ ie. Zgrjar > Zf — 1. Since Vg q, = Vy in the case of ajag > 0 and
Vdf/dm = Vf — 1 otherwise we have Vdf/dx S Vf Hence Zf S de/dm +1= Vdf/dm —2m +1 S
Vi —2m +1 < Vy + 1 whence the assertion follows from 3.

3 Vector spaces

3.1 Vector spaces
The Quadruple (X; K;+;-) of a set V, a field K € {R;C}, an internal addition + : X x X — X
and an external multiplication - : K x X — X is a vector space over K iff
1. (X;+)is an abelian group
2. For \;p € K and x;y € X we have
a) distribution laws A+ p) - z=A-z+p-xzand - (x+y)=X-x+ -y
b) associative law \- (u-x) = (A\u) -
c¢) compatibility of the neutral element 1 -z =«
These axioms imply the following properties:
3.0-rz=0and A-0=0
4. Az=0=2A=0Vx=0
5. (1) - x=—=

3.2 Vector subspaces

For a vector space X over a field K € {R;C} with subsets A,B C X and vectors = € X as
well as scalars a € K we define a4 := {Aa:a€ A}, x+ A :={x+a:ac A} and A+ B :=
{A+B:acAbec B} with —A = (—1) A. For vector subspaces A and B the sets aA, * + A and
A + B are still algebraically closed. We have 24 C A + A with equality if A is a vector subspace.

n
An arbitrary subset A generates its linear span (A) = (A) = { S oagxp o € K, € An € N}. A
k=1
family (z;),c; C X is linearly independent iff 3, ;; a;x; = 0 < o; = 0Vi € H for every finite H C
I. It is a basis of the subspace E C X iff it generates £} = (x;);c; = {3 ;cy 2ix; : H finite in I}.

The rank (A) of a matrix A = (aij)1<i<n~1<j<m € M (n x m;C) is the maximal number of linearly
independent column vectors z; = (%ij); ;-

13



3.3 The basis of a vector space

Every linearly independent family (x;);.; C X can be extended to a basis (x;),.; = X with I C J.

Proof: The set L of all linearly independent families A" C X containing the given set (x;),c; C N
is inductively ordered by inclusion since for every linearly ordered chain (./\/'j)je 5 with Nj =
(xi);e, the index sets (I;), ; are also linearly ordered such that N = Uje; N = (mi)iGUjEij €Lis
a supremum of (./\/'j)jE ;- According to Zorn’s lemma [5, th. 14.1.4] there is a maximal family
M € L. Since for every & € X we have (M) C (M U {x}) € L such that from the maximal character
of M follows x € (M) whence we conclude that X = (M).

3.4 The dimension of a vector space

All bases of a vector space X have the same cardinal number which is called the dimension dim X
of X.

Proof: For two bases B and C of X the family ® of injective maps ¢ : B D domy — imp C C' with
linearly independent sets im¢ U B\ domy is inductively odered by inclusion since for every linearly
ordered chain ®¢ the map ¢o = U e, ¢ € ® is an upper bound of ®¢; note that U cq,ime U B \
Upea, domp = Ugea, iImep U Noca, B \ dome is still linearly independent. By Zorn’s lemma [5, th.
14.2.4] the family ® has a maximal element ¢. Since any b € B\ dome is linearly independent of im¢p
we infer that impC C' is not a basis whence there exists a ¢g € C'\ imep.

On the one hand if this ¢y is linearly independent of imp U B\ domyp there is an extension ¢’ D ¢
defined by ¢’ (by) = ¢o for any by € B\ domgp and ¢’ (b) = ¢ (b) for every b € domgp contrary to the
maximal character of ¢.

On the other hand if ¢g is linearly dependent of imy U B\ dome it follows that co = > cimy AcC +
> _bgdomy Mob With at least one pp, 7 0 for some by ¢ domp Again we define an extension ¢’ D ¢ by
¢’ (bg) = ¢o and since ¢y is linearly independent of impU B\ domy’ the set imp’ U B\ domg' is linearly
independent whence ¢’ € ® contrary to the maximal character of (.

Thus we have shown that |X| C |Y| whence by the symmetry of the argument and the Schroeder-
Bernstein theorem [5, th. 15.4] follows the assertion.

3.5 The Steinitz basis exchange lemma

For every basis A = (a;),c; of a vector space X = (a;);c; and & = > ,c ;asa; € X with finite J C T
and ay # 0 for k € J the set A" = (a;);cp U{x} with I' = I/ {k} is again a basis since for every

Y = D en Bia; wlo.g. we can assume J C H whence y = %m + D ien (Bi — 6272”) a;. Also A’
is linearly independent since any nontrivial solution (v;);c; # (0);cp for my + > ey via; = 0
and finite H C I would either entail a nontrivial solution (v;);cy # (0);cg for >icy viai = 0 in
the case of 7, = 0 or =) iy %ai = x whence a = 0 in the case of 75 # 0 both in contradiction
to the hypotheses. Hence the dimension of a finite dimensional vector space is uniquely

determined.
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3.6 Direct sums

Due to the exchange lemma for any vector subspace £ = (v;);c; w.l.o.g. we can assume E = (a;),.;
with J C I such that X can be decomposed into a direct sum X = F® I’ with the complementary
space F' = (a;);cp ; and in the case of finite I follows

dim X =dim F + dim F.

Obviously the vector subspaces E;F C X are complementary to each other iff £ + F = X and
ENF = {0}. In the case of vector spaces, rings and abelian groups, the direct sum by
p: ExF — E®F with ¢ ((v;w)) = (v;0) 4 (0; w) is isomorphic to the direct product. Hence
we have

card X = card E - card F.

The isomorphism fails for nonabelian groups since

@ ((v1 +vo; w1 + w2)) = (v1 + v2;0) + (0; w1 + wa)
= (v1;0) + (v2;0) + (0; w1) + (0; wa)
7# (v1;0) 4 (0;w1) + (v2;0) + (0; w2) .

= ¢ ((vi;w1)) + ¢ ((v2;w2)).

3.7 Linear maps

To avoid excessive cluttering of the notation by indices we follow the Einstein summation con-
vention i.e. the summation sign is omitted for any index occurring twice. For the same reason we
introduce a special case of the index notation from 3.13 with uppercase indices for coordinate vectors.
A linear map f : X — Y between vector spaces X and Y satisfies f (ax + By) = af (x) + 8f (y)
for every ;8 € C and x;y € X. In particular it is a homomorphism on the additive group
(X;4) such that the corresponding terms resp. properties from 1.5 apply. Especially the image
Imf = f[E] C Y as well as the inverse image f ' [F] C X of vector subspaces E C X resp.
F C Y under a linear map f are again vector subspaces and f is injective iff kerf = {0}. The ring
L(X;Y) of linear maps f : X — Y between finite dimensional vector spaces X = (a;);-;-,,
resp. Y = (bi);<;<, generated by bases A = (a;);<;<,, resp. B = (bj),.;,, with m,n € N by
Mg L(X;Y) = M (n x m;C) defined by Mg (f) = (f7 (@i))1<;cpma<jcn for f(ai) = f7(a;) - b
€ L(X;Y) with components f/ € L(X;C) is isomorphic to the ring M (n x m;C) of complex
matrices. Since M (n x m;C) is also a complex vector space of dimension n - m we obtain

dimL(X;Y) = dim X - dim Y.

For «x = :cf4a,- € X resp. y = yébj € Y with coordinate vectors x4 = xfﬁlei € C™ resp. yg = yzgej
€ C" with regard to orthonormal bases of C™ = (€;);<;<,, resp. C" = (€;),;,, defined in 6.4 we
compute f (z) = f (z'4a;) = 24 f (a;) = 2% f; (a;) - bj. With the canonical inner product Az =

aé- -2’ - e; € C"™ between a vector = x'e; € C™ and a matrix A = € M (n xm;C)

SISMLS)S

this assumes the form

Typ = Mg (f) * @4
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3.8 Quotient spaces and rank

For any vector subspace £ C X the quotient space X/F is again a vector space.
Its elements 7 (x) = ¢ + F for * € X with 7 (x) = 7 (') & « — o’ € E for the
canonical projection 7 : X — X/F are affine spaces as defined in 8.1. In the case
of a finite dimensional vector space X = (a;);c; with I = {1;...;n} and a vector WT
subspace E = (a;);c; with J C I according to the Steinitz lemma 3.5 w.l.o.g. we X
can assume E = (a;);c; whence X/E = (a; + E);cp ; and

dimX = dimX/F + dimFE

in analogy to Lagrange’s theorem 1.7 for finite groups. For every linear map f : X — Y defined in
the obvious way in following section 3.7 into another vector space Y with E C ker ¢ exists a uniquely
determined and linear f_: X/E — Y with f = f_om and

ker f. = (ker f) /E.

These properties are obvious if we define f_ (7 (x)) = f (x) for every & € X. The following dimension
formula is a useful application: For every matrix A € M (n x m;C) we define its rank rank A =
dim imf < min {m;n} with regard to the corresponding linear map f : C™ — C" with A = M (f).
Then by f.: X/kerf — imf with f_ om = f we obtain

dimX = dim imf + dim kerf

3.9 Endomorphisms

The group End (X) of endomorphisms f : X — X on a finite dimensional vector spaces
X = (@i)1<i<;, = (bi)1<j<, generated by the bases A = (a;),<;<, and B = (b;),;,, by the map
Mg : End (X) — GL (n;C) defined as above is isomorphic to the ring (groupe linedire) GL (n;C)
of invertible complex matrices of rank n. For a matrix M = (fi;),<; <, € M (n;C) with the

corresponding endomorphism f € End (X)) defined by f (a;) = fi;b; for given bases A = (a;);-,<,
=1 ==

and B = (b;) the following conditions are equivalent:

1<j<n

n
1. The column vectors f; =} fije; are linearly independent.
i=1

2. Kerf = {0}

3. f is injective
4. M € GL(n;C)
5. f is surjective.

Proof: In the chain 1. = 2. = 3. = 4. = 5. = 1. only the third step may require a comment: For
injective f : X — imf C X we have an inverse f! : imf — X whence for every € X we infer

2= §71(f(2)) € imf.
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3.10 Coordinate transformations

n
As before every element v =3 x4;a; € X of a finite dimensional vector space

X ={ai); <<, is determined by the basis A = (a;),;<, and a coordinate vector o,
n
xq =), xaie; € C" with reference to the orthonormal basis £ = (e;),;,, of C". \
=1 o T3 X
The corresponding coordinate system @i : C" — X with @i (xa) :Zl T AiQ; 1S /
1= q)f%

an isomorphism with the representing matrix M (@i) = E, (cf 3.7). For brevity cnr

in the canonical case X = C" we will omit the symbol £ for the canonical basis

and also use the same notation for a matrix A € M (n x m;C) and its corresponding linear map
A:C"™ — C" with A(x) = A=*x. The transition from the basis A = (a;);-;<,, to another basis
B = (bj)<j<, of X =(ai)i<;<, = (bj),<,<, is given by the coordinate transformation

T3 = (@‘2)71 0 ®5 : C" - C"

with
TB e;) Ztﬂeﬂ

such that the column vectors (¢j;) of the transformation matrix

1<j<n

A _
15 = (tji)1§ij§n
coincide with the coordinate vectors of the orlglnal basis A C X exprebsed by the new basis

B. For an arbitrary vector v —Z T ;@ —Z xp;b; we have TA( ) Z T A Z tj;b; whence
i=1 j=1 '

rB; = Z tﬂ.TAZ, ie.

=1

.’BB:TK“;*:I:A.

-1
Vice versa the column vectors of the inverse (Té“) = TE coincide with the coordinate vectors
of the new basis B expressed by the original basis 4. In the orthogonal case according to 6.6 these

-1
coincide with the row vectors of T4, i.e. (Tg‘) = TTé“ and vice versa.

3.11 Change of bases

According to the Gauss algorithm every automorphism resp. every invertible matrix is the
product of elementary transformations resp. elementary matrices of the two following types:
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1 ko n 1 -k ---n
1 1 1 1
1 1 k Ero = Q k
Ep = :
1 l 1 n
1
" 100
Ex=]10 20
10 0 0 0 1
Eyxy=| 011
0 1 AT
“T_--]
AT3 : L
— __L” o
-=z x2
f 77 U By (Hs)
P :r;
e Es.3 (H3)
Multiplication of a matrix A € M (n x m;C) with Ex € GL (n;C)
from the left results in an addition of the I-th row to the k-th row M (f)
resp. a shear of the hyperplane span{e;: 1 <i <n;i#1[} in the cr cr
direction of e}, whereas multiplication with Ej; € GL (m;C) from the Pa ‘I’%
right results in an addition of the k-th column to the I-th column £
and the corresponding shear of span{e; : 1 <i < n; i # k} in the di- T4 X Y 7§
rection of ¢;.
D 4 Yt £ Py
Multiplication with Fp, results in a multiplication of the k£ th row cm 5 (f) cn
with the factor o € C resp. a dilation in the direction of e, with
factor a. ko om—k
Hence for every homomorphism f : X — Y between finite di- 0 } )
mensional vector spaces X and Y with bases A C X, BCY Mg (f) = <E’f >
there are bases A" C X, B’ C Y resp. coordinate transformations 0 0 } n—k

T =T% € GL(m;C) resp. S =T}5 € GL (n;C) such that

SxFxT™ ' =E,

, -1
with k = rankA for F = Mg‘ (f). The corresponding map is fé, = Tg, oféo (T““,) = id|x’ +0|Kers :

X=X ®Kerf - Y.

3.12 Dual spaces

The dual space X* of a vector space X is the vector space of all linear functionals * : X — C. If the
equation x*ax = ax*x only holds for real @ € R we have real linearity. In the case of complex
linearity we have Rex*ix + ilmx*ix = z*ix = ix*x = —Imz*x + iRex*x < Rex*ix = —Imx*x
whence the functional £* is uniquely determined by its real part Rex*. Hence every complex
linear x*x = Rex*x + iIlmx*x = Rex*x — iRex*ix is real linear and conversely for every real
linear u* : X — R the functional «* : X — C with #*x = u*x — iu™ix is complex linear, since for
a = [+ iy we have z*ax = fu'z + yu'ix — i (fuiz — yu'z) = (B +iv) (vx —iu*iz) = ax*x.
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In a topological vector space * € X* is continuous iff its real part is continuous and the dual
space X* usually is defined as the vector space of all continuous resp. due to [3, th. 5.1] bounded
linear functionals on X.

For a basis (e;);c; of X the dual space X* = (e}),; is generated by the dual basis (e]),.; defined
by eje; = d;;. Hence by the transposition 7x : X — X* with 7x (e;) = €] every vector space X is
isomorphic to its dual space X*.

The transformation ®4. : X* — X* of the dual basis A* = (a})<i<, into another dual basis
B = (b of X* = (a})1<ic, = (b}

]) ) is determined by the invariance with regard to
1<j<n
coordinate transformation of the linear functional z*x = Tap x xg =T (Té‘f * 2 A*) * Té“ * XA

>1§an
:TwA**TTZ;L**Té“*mA:chA**chwhence
T A* A\ L
T8 = (18) .

3.13 The index notation

n n n n
The coordinate vectors of ® =3 w4a; =) wpb; resp. its dual z* =3 z%,a; =) wj;b; are
i=1 i=1 i=1 i=1

-1
transformed from the original basis A to the new basis B by &z = Té“*m ATESp. T = T (Té“) *Ty

resp. Ta:};*T 1“34 = Ta::"A. The coordinate vectors & 4 and xg are called contravariant since the column

vectors of the transformation matrix Tg‘ = (tjr), <jik<n coincide with the coordinate vectors of the

n
original basis A expressed by the new basis B, i.e. a, =) t;b; “contrary” to the new basis
j=1

vectors. The dual coordinate vectors chjll and ch% are covariant vectors or covectors since the

row vectors of the transformation matrix Tg“ coincide with the coordinate vectors of the new basis
B expressed by the original basis A.

n

n n n n
The basis vectors a; are transformed to b; = 21 shpar = Zl ‘21 sitikb; whence 1 21 shptin = 0ij
1= 1=15=

1

resp. (i) | cipen = @ (T[;‘)_ = T4. Hence the basis vectors of X are of covariant type and

correspondingly the basis covectors of X* are of contravariant type.

The transformation behaviour of a vector is indicated by the index notation denoting contravariant
vectors with uppercase indices and covariant ones with lowercase indices.

Also we follow the Einstein summation convention introduced in 3.7 so that we have vectors
n . .
x =), x'4a; = r'4a; with contravariant coordinate vectors resp. covariant basis vectors or

=1
covectors ¥ =) z4a' = z4,a’. We will use both notations a' = a; depending on the context
i=1
of the behaviour of a' under coordinate transformation resp. the role of a; as a functional.

The representing matrix mfc = Mg (f) € M (n x m;C) of a homomorphism f : X — Y between
finite dimensional complex vector spaces X resp. Y with dim X = m resp. dimY = n for
bases A C X resp. B C Y has contravariant column vectors m; = mje; € C*; 1 < k < m

and covariant row vectors m/ = miek € (C™)*; 1 < j < n since the transformation into (m’ ); =

/ ) -1
Mg f € M (n x m;C) for bases A’ € X, B/ C Y with coordinate transformations (t‘l); = (TA,) €
GL (m;C) resp. s¥ =TE € GL (n;C) is given by

Mg (F) = S Mg (£« (T4)

resp.
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ne _ k J ( —1\¢
m ), =8 -my - (T .
(m')y = sf -mf - (7).
Accordingly the basis transformation of contravariant x = xf@ai = :L'jébj resp. covariant y* =
yaia' = ypja’ by t; = Tg‘ € GL (n;C) is given by

—1
rE = Té4 x x4 and Ty}‘g = Tyf4 * (Tlgf‘)

resp.

x% =t/ -2’y and yg; = Yy - (til)k with ¢ - (fl)k - 6i

Note that the distinction between column and row vectors as well as the transposition of ma-
trices becomes obsolete since the information about the assignment of the corresponding sum-
mands is completely determined by the indices. In 7.4 we will encounter representing matrices
mj = Ma(s) € M (m;C) of sesquilinear forms s : X x X — C with covariant column vec-
tors as well as covariant row vectors (m/); (mk) € (C™)* leading to the definition of the tensor
concept generalizing vectors and matrices.

3.14 Dual linear maps

The vector space L (X;Y) of linear maps f : X — Y between the vector spaces
X =(ai)1<i<p and Y = (bj), ., is isomorphic to the dual space L (Y*; X*) £*

of linear maps between X* = (a'),_,. and Y* = <b7>1< g with the dual
<i< <j<n

bases a' = 7x (a;) resp. b’ = 7y (b;) provided by the transpositions 7x resp.
Ty according to 3.12. The isomorphism is given by another transposition
1, L(X;Y) — L(Y*; X*) with 7, (f) = f* defined by f (y*) = y* o f for
every linear f = fijbjai € L(X;Y) with a‘ay = 6. whence f (a;) = fl-jbj and
every linear form y* = yjbj S

For = zFaj;, € X on the one hand we have
y = f (x) = f/bja’s"a; = fla'b;
resp. in coordinate vectors

y' fio I z!
A 3 R
and on the other hand due to b'b; = &% holds
=1 (") = yb' flba’ = fy;a’

resp. in coordinate vectors

T I
(2155 2m) = (Y153 Yn) *

P gn
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resp.
1 1
1 1 Im Y1

T o fm Yn

whence

ME(F) ="Mg (f)

3.15 Annihilator and rank

For the annihilator £ = {z* € X*: z*x =0Vz € E} of a vector subspace E C X and every
feL(X;Y) holds
kerf* = (imf)? and imf* = (kerf)’

since y* € Kerf* @ y*of =0 & y* (f(x)) = 0Vz € X < y* € (Imf)” and vice versa. Due
to 3.12 in the finite case we have aja; = §;; for every basis (aj)lgjgn with X = <aj>1§j§n resp.
X* =(a;),<;<, and hence

dimX = dimFE + dimE".

According to 3.7 it follows for every matrix F' = M (f) € M (n x m;C) associated to the uniquely
determined linear map f = M~ (F) : C™ — C" on canonical bases C™ = (e;) resp. C" =

<ei>1§z‘§n that

1<j<m

rank” F = dim imf* = dim (kerf)° = dim imf = rankF

3.16 Dual bases

x* € X* is a linear combination of the linearly independent family (x}),.,.,, C X™* iff

n
* *
ker * O m ker x;
i=1

n
Proof: = is trivial and concerning < we consider the linear map f = xje; : X = Y =C" =
i=1
n
(€i)1<ic, With ker f =) kerz} C kerx* whence imf* = (kerf)" O (kerz*)’ > &*, i.e. there is an
== i=1

n n
a* =% aje; € Y* such that * = f* (a*) = a* (f) =) a;x} on account of e (e;) = J;;.
i=1 i=1

4 Determinants

4.1 The Weierstrass axioms

In this section we write quadratic matrices as representing matrices of endomorphisms, i.e. as tensors
of type (1;1) with contravariant column vectors and covariant row vectors. The general deter-
minant as defined below is a function of a matrix resp. tensor of dgree 2 of arbitrary type (2;0),
(1;1) or (0;2) (cf. section 7) without regard to its transformation properties. In the followng section 5
the matrix will be defined as a function of an endomorphism and only in that context resp. only
on tensors of type (1;1) it is invariant under coordinate transformations. Also in this section we will
not use the Einstein summation convention.
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The map det : M (n;C) — C is a determinant, iff it is

1. linear in every row, i.e. det | Aa+pub | =Xdet| a | +pudet| b | for

ApeC,Ae M ((i—1)xn;C);Be M ((n—1i) xn;C), 0 <i<n and row vectors a;b € C".
al
2. alternating, i.e. det : =0iff a’ =a’ forsome 1 <i<j<n

an

3. normed, i.e. det F,, = 1.

The following properties are direct consequences of the definitions:

4. det(A-A) = A\"-det A

5 det| 0 | =det] a | +det] —a | =0.

a b a b b b a+b
6. det | : | +det| : | =det| : |+det| : |[+det| : |+det| : | =det :

b a b b a a a+b

= 0.
a a a a

7. det : =det| : [+ Adet| : [ =det

b+ a b a b

A1
8. det o = A1 ... A, due to the Gauss algorithm and 4.1.7.

0 An

9. det ( f(l)l f ) = det A1 - det Ay for quadratic matrices A; and As due to 4.1.8.
2

10. det A = 0 < rangA < n due to the Gauss algorithm and 4.1.7.

11. det (A x B) = det A-det B which in the case of rangA = rangB = n due to the Gauss algorithm
and 4.1.7 can be deduced from the diagonal case

A 0 1 0
det . = AL et Ap
0 An 0 thn
M 0 1 0
= det - det )
0 An 0 thn

and in the case of rangA < n or rangB < n is trivial due to 4.1.10.

12. Antisymmetry: According to 1.16.1, 1.17 and 4.1.6 for every permutation o = 1y0...07, € S,
we have

ao‘(l) al ea(l)

det : = sgn (o) - det : | and in particular det : =sgn (o).
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In the case of a transposition 7;,; = (i;j) exchanging to identical row vectors a; = a; we have

aT(l) al
det : = —det
aT(n) a™

I
o

whence the antisymmetry is equivalent to the alternating character 4.1.2 of the deter-
minant.
4.2 Leibniz’ formula

There exists a uniquely determined and continuous map det : M (n;C) — C with det A =

no
Yoes, 1 ag)sgn (o) satisfying the three conditions 4.1.1 - 4.1.3. In particular we have
i=1
n

detTA = Z H ag(k) = Z H ag(,]i)(o(k)) = Z H agil(m) = det A.

o€Sn k=1 o~1leS, o(k)=1 o~leS, m=1

Proof: Applying 4.1.1 to the row vectors Ta’ =3 a;Ta] we obtain

j=1
al ei1
a’ A1~ 1 a’
det . = a;, det )
: =1 :
a” a”
el
n n el2
4.1.1 1 2
15 0l 3 et |
1121 i2=1 *
an
e’
n n n ei2
41.1 1 2 n
=) an Y ag Y apdet |
2121 i2=1 in=1
eln
oo(1)
n o(2
412 i det| € )
- Z Haﬂ(i) ¢ :
oeSy i=1 .
ea(n)
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The above defined function satisfies

1. since

det | Aa’+pub' | = > ‘1(17(1) Ce ()\af,(i) + ubf,(i)> e Gy sen (o)
. oESy,

O’GSn

+p ZS aé(l) Ce bg(i) e ag,ysgn (o)
[fSery

=Adet | a | +pdet| d°

2. since in the case of a¥ = a! due to 1.17 we have a bijection A4,, — A, o7 with 7 (k)

for i # k;l and sgn[A,] =1 = —sgn [A,, o 7| such that

ak:
. _ 1 k l n
det : = Z (Io.(l) Cae st (Io.(k) et ag(l) C et (Io.(n)
al €A,
— Z al . ak a a
o(r(1)) " Po(r(k)) a(r(1) (m(n))
O'GAn
1
- Z Ag(1) " Qo(k) Qo (1) Qo (n)
O'GAn
1 k l n
= D g1y gty g(ry e ()
O'EAn
=0

3. since det E,, = 1" = 1.

4.3 Cramer’s rule

For A = (ai-) € M (n;C) and
7/ 1<i5<n
1 1 1 1
aj @iy 0 a.+1 a,, 1
. ]. ]. . al
i—1 i1 i—1 i—1 :
Ajj=det| 0 -~ 0 1 0 0 and Aj; =det | i
i+1 i+1 i+1 i+1 a;
a; a;’y a;iy a,, ‘
: n
a
n n n n 1
ax ajy 0 ajyy - ay

and the complementary A’ = (aé)K, - with a; ; = det A;; we have
<izj<n
—1 __  Ab
1A T detA

=1 7@)=1
1 1
1 anp
i1 i1
i+ i+1
i1 n
n n
ajiq (i

such that for every A € GL (n;C) and b € C" the solution of the linear equation A *x = b is given by

- __ det(a1;..;ai—1;b;ai41;.-5an) .
2‘$1_ det A fOrléZSn.
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Proof:
First we note that

1. det Aij = (—1)i+j det A;j

2. det Aij = det (al; @5 15€45 Q5415 -5 an) = det ej

since

1. A;j can be transformed into Aj; by (i — 1) row transpositions and (j — 1) column transpos-
tions due to 4.1.6

2. The row vector €’ can be transformed into a’ by adding aé»ei to the j-th column vectors of A;;

and
the column vector e; can be transformed into a; by adding agej to the i-th row vectors of A;;
due to 4.1.7.
In order to prove the formula for the inverse matrix we compute the components of A s A" :
z ag-lai :Z a{c -det Aj;
j=1 j=1
n .
Zak et(ay;...;a;—1;€5; Qi1 15...;Qn
j=1
n .
=det | ay;...;a;-1; Z aiej; Qit1;...;Qn
j=1

=det (ai;...;a;—1; QK; Qj11; ...; Qp)

= 0;, -det A
Applying this formula to the components of x = A~ xb = % yields
1 n
T; = m ; bj -detAji
1 n
= — Z b -det (a;...;ai—1;€5;Qi41;...;ap)
det A st

_det(ai;..;a;-1;b;ai11;...;a,)
det A

4.4 Laplace’s formula

For A€ M (n;C), n > 2 and every 1 <i;j < n we have

det A :Z (1) aé» - det Af; :Z (—=1)7H. a§~ - det A,
j=1 i=1

Proof: According to 4.3.1 and the subsequent formula 1. in the proof we have
n . . n . n . . . .
det A :Z a;agj :Z aj - det Ay :Z aj - (—1)"*7. a’ - det Aj;.
j=1 j=1 j=1
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4.5 Orientation

Two matrices A, B € GL (n;R) have the same orientation, i.e.
det A-det B >0
iff they are connected (cf. [6, p. 5.8]), i.e. there is a continuous path
¢ :]0;1] - GL (n;R) with ¢ (0) = A and ¢ (1) = B.

n . n .
Hence the family of all invertible matrices resp. bases A = (Z a}ei) and B = (E b5 ei>

i=1 1<j<n i=1 1<j<n
is decomposed into two equivalence classes resp. connected components with right resp. left
handed orientation.

Proof:
=: We show that every A € GL (n;R) with det A > 0 is path connected to E,.

Step I. According to the Gauss-algorithm the invertible matrix A can be transformed into a
diagonal matrix

A1 0
L= . with ()‘i)lgign cC
0 An

by adding multiples of rows to other rows. Due to 4.1.7 these operations leave the determinant
n

unchanged such that det A = det L =[] \;. Each row operation can be represented by a path as e.g.
i=1

for addition of the p-multiple of the i-th row a* to the j-th row a’

a;—1
e(t)=| a’+t-pa’ | with dety(t) =det A for 0 <¢ < 1.
a;j+1

Step II: The values of the diagonal elements are reduced to +1 without leaving GL (n;R): Due to
n n

4.1.1 we have det L =] A\; =[] |\i|det E with
i=1 i=1

1=

A A
Moo Mt (=) 0
E= and a path ¢ (t) = )
0 aar 0 Ap + (2o — A
[An] n An] = 71

such that det o (1) = [T (A +¢ (2 ) #0for 0<£ <1, 9(0) = L and (1) = E.
i=1 ’

Step III: Since det A = det L > 0 the number || with I, = {1 <i<mn: |§?‘ = —1} must be even
such that for each pair {i;j} C I, there is a path
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det

Aic1
[Ai—1]
—cosmt 0 0 —sinnt
Ait1
0 [Nit1l
p(t) =
/\j—l
0 [Aj—1l 0
sin 7wt 0 cee 0 —cost
Aj+1
[Aj+1]

with ¢ (0) = E and ¢ (0) = E’ with the values e! = e = —1 transformed to (e’);‘: = (e’)g = —1 without
without leaving GL (n;R) :

A1 i1 9 . 2\ [ Aig1 Aj—1 Aj+1 An
deto(t) = — -...- - ((cosmt)” + (sin 7t . 0.
o0 =5 gy (leosmd e tsinnt)?) 00 (2 ) R g

<: According to the hypothesis we have ¢ (t) € GL (n;R) whence det ¢ (t) # 0 for 0 < ¢ < 1 such

that det 9 A - det o B = det ¢ (0) - det ¢ (1) > 0 follows from the continuity of det : M (n;R) — R
shown in 4.2 and the intermediate value theorem [6, th. 5.1].

4.6 The Vandermonde determinant

Forn > 1and x € C with 2]’ = (x;)" meaning the n-th power of z; the Vandermonde determinant
is defined as

1 :c?fi
1 a9 b~
A, () = det ) ? = H (zj — i)
: : 1<i<j<n
1 =z, ant

Proof by induction: The case n = 2 is obvious. In order to prove the induction step n = n + 1 we
write

n—1 n—1 n—2 n—1
1z - 2] 7 1 zi—xpy1 0 ) —2 " Tpp1 27— Tpyd
1 x99 - :cg_l xy 1 xo—xpp1 - wg_l — mg_g “Tpyl TH — x’;_l T4l

= det .
n— n n—1 n—1 n n
1 zpp Tnt1l Tn+i I Tpp1 — g1 - N | Tn+1 — Tptl
n—2 n—1
L (z1—@ps1) 0 2f 7 (@1 —anp1) 27 - (21— Tpya)
n—2 n—1
1 (z2 —apt) -+ @y " (@2 —@pg1) @y - (@2 — pga)
= det . . .
1 0 0 0
1 n—1
1 x2 xy
=1-(x1 —xpy1) - - (Ty — Tpy1) - det . )
1 =z, a1

1<i<j<n+1
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5 Eigendecomposition

5.1 Eigenvectors and Eigenvalues

A vector 0 # v € X is an Eigenvector for the Eigenvalue A € C of the endomorphism f: X — X
iff f(v) = Av. Obviously the Eigenspace Eig (f,\) := Ker (f — Aid) C X of all Eigenvectors for the
Eigenvalue A is a vector subspace. Eigenvectors for different Eigenvalues are linearly independent.
This is obvious for n = 2 and follows by induction for n > 2. In the case of a finite dimensional vector
space X = (;),,,, the Eigenvalues of f are exactly the zeros of the characteristic polynom

fi—t fa no
Pr (t) = det (F —t - E,) = det = ()" + "> fi 4 det F

FEC =

with the representing matrix F' = M4 (f) for the given basis A = (a;),,.,. The characteristic
polynom and the eigenvalues are independent of the basis since for any transformation matrix
T € GL(n;C) we have det (T« F T 1 —t-E,) = det (T*F+«T ' —t- T+« E,«T™ 1) = detT
(F—t-Ey)*T ' =detT-det (F —t- E,) 57 = det (F — t - E,). The basis (v;),,,, of Eig (f,A) =

det T’
(Vi)1<i<m can be complemented to a basis A" = {v1;...;Vm;@m41;..;a,} of X with My (f) =
AN E, 0 ;i . . e e g _
0 I and F' = <fj)m+1Si;j§n such that the dimension m = dim Eig (f;\) < p(Pg; A) of

the Eigenspace cannot exceed the multiplicity of the Eigenvalue A in Pf.

5.2 Trigonalization of complex endomorphisms

For every endomorphism f € End (X) on an n-dimensional complex vector space X there is a
basis B = (v;);<;<, of C" such that f (vi) C (vi);<;<;, and

)\1 *
Mg (f) = g
0 Ar
with Py (\;) = 0 for every 1 < ¢ <n and the A\; not necessarily distinct from each other.

Proof: According to the fundamental theorem of algebra [2, th. 5.11] there are (not necessarily

n
distinct!) eigenvalues (\i);.;., such that P¢(t) =[] (A\; —t). For n = 1 the case is obvious.

n
Assuming the hypothesis for n — 1 we choose an eigenvalue \; € C and an eigenvector vi =)

i=1
vla; € C" expressed as linear combination of the basis A = (a1;...; a,) with f (v1) = \jv;. W.lo.g.
assuming v; # 0 and replacing a; by v1 we obtain a basis B’ = {v1; as; ...; @, } with the transformation
matrix

vi 0 0
) v o1 0
v 0 1

comprised of the column vectors of the new basis B’ expressed in linear combinations of the old basis.
Hence we obtain f = Té‘} o fﬁ o TEI resp. the transition from
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o S Ay o (),

P , 0 f3 .
Mﬁ(f): : : . tOMg' (f) = : : :
N A £ SR o fr - Iy

In the case of dimEig(A) < p(A) the subspace Wi = (ai);<;<, 4

is not f-invariant and the coefficients (f')3;...;(f'), do not van-

ish. We circumvene this complication by splitting the restriction

flw = g+ h into g : Wi — W; with g(a;) =X f}ai and
i=2

h : Wy — (v1) with h(a;) = (f’); v1. Now we can apply the hy-
pothesis to g and find a basis By, = (vi)yc;<,, of W1 = (@i)gcic),
such that g(vy) C (vi)yc;cp. Since the basis Ay, = By, did
not change on the subspace W; the coordinate transformation
Tj:vvi = (@21‘/1 (1)2);...;(I>;l‘ly1 (vn)) : €1 — €t given by the

. —1 . By Bw, .
coordinate vectors ® Aw, (v;) yields ggwi = TBW1 © G gy © T -AWII with
A1 *
By
]\413‘,‘,11 (9) = .
0 Ar

Then the basis B = {v1;...;v,} with the transformation TA = Tg, o Tf;} represented by

1 0 0

/ 1 0 ’U% 0
(18) =18 = (v1;..500) = :

0 vy vy

n
expressed in B’ = {vi;a2;...;a,} by v1 = v1 resp. v; =Y vjia;
i=2

resp. directly by

(Tg‘)_l =T5 = (v1;..5v,) =

33

U1

n . n .
expressed in A = {ay;...;a,} by v1 =Y v]a; resp. v; = vla;
J=1 J=2

results in

satisfying the assertion.
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Note:

1. The transformation matrix has an inverse triangular structure with zeroes obove the main
diagonal since all subsequent basis changes only affect the corresponding subspaces W; in the
chain X D Wy O ... O W,.

2. Every transformation changes every element of M, g (f) above the main diagonal as indicated by
the double dashes in the first row.

Example: For brevity we identify the representing matrices with the corresponding canonical maps

3 4 3
onR3, For A= | —1 0 —1 | we have P4 (t) = — (t —2)* with eigenvalue A = 2, A — 2F3 =
1 2 3

1 4 3
—1 —2 —1 |and rank(A —2E3) = 2 such that dimEig(A4;2) = 1 < 3 = u(P4;2) whence
1 2 1

A cannot be diagonalized. With the eigenvector v, = -1 and the completed basis B’ =
1
(v1;e2; e3) we obtain 51_1 =1 -1
1

1
resp. S1 = 1

— —
O~ O~__ ~

O~ O
= o O

0
0 | and Ay = Sy x AxS7! =
1

4
4
—2

On the vector subspace W = (es;e3) we choose an eigenvector vy = ez — ez of

S O N
S N W

2 2

the restriction with M (f|w — 2id) = S

The transformation is carried out by Sy =

1 0
-1 1

)
0
1
1 -1 1

— o O

0 1
0 suchthatA;),:SQ*A*S;l: 2
1 0

O O N
N DN W

1
resp. Sy = | 1
0

5.3 The Cayley-Hamilton theorem

For every endomorphism f € End (X) on a finite-dimensional vector space X we have P¢ (f) = 0

with the characteristic polynom Py € C|[g] on the commutative subring C[g] C End (X) of
n .

polynoms ) a;g" with complex coefficients a; € C resp. variables g € (End (X);+;0) with
i=0

g':=id, g' :=g,and g’ ;=g logfor1 <i<neN.

—s

Proof: With the notations from the preceding theorem 5.2 we have Py (g) =[] (\iid — g) for every

i=1

k
g € End (X) and the product referring to the composition. We prove that [ (\;id — f) [<Vj>1<j<k} =
i=1 ==

{0} for every 1 < j < k and the basis B = (Ui)lgign for the trigonalized form. For n = 1 the case is
obvious. Assuming the hypothesis for £ — 1 and choosing an arbitrary w + pvy, with w € (v;)
and p € C the matrix

1<j<k—1

Al *
MEf = .
0 Ar
shows that f (vg) —Agvk € (Vi)1<icp 1 and f (w) € (vi); ;<) ;- This implies (Agid — f) (w + povy) €

(Vi)1<j<p_1 whence ]E[ (Nid — f) (w + poy) :%]:[1 (Niid = f) o (M\gid — f) (w + pwyg)) = 0.

=1 =1
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5.4 Decomposition of real endomorphisms

For every endomorphism f € End (X) on an n-dimensional real vector space X there is a basis
B = (vi)<jcp Y (Wi f (wi)) 1<) With &+ 20 = n of R such that f(v;) C (vi);;<; for j <k,
F [(w; f (wi))] C <’Ui>1§i§k ® (wi; f (wi)>1§i§m for 1 <m <1 and

A %
Ak
ME (£) = -
0 —gm
0 I —pm

Proof: According to the fundamental theorem of algebra [2, th. 2.10] resp. the Euclidean
division algorithm for polynomials there are real eigenvalues ()\;),,., C R and real coefficients

k l
(pi; 4i)1<;<; C R such that P (t) =T (A; —t) II (¢* + pit + ¢;). Note that the \; are not necessarily
== i=1 i=1
different from each other and that the trigonalisation of the restriction f|y for V = (vi);.,«; is

guaranteed by 5.2. Similarly to the trigonalization we now split the the restriction f|w = h1 + g,
with by : W — W and g, : W — V on the complementing vector subspace W with X =V @ W. For
an arbitrary w € W according to the Cayley-Hamilton theorem 5.3 we can arrange the order of
the factors in the characteristic polynomial such that the iterated composition holds

wy = (ﬁ (h% +pi-hi+q idfw)) (w) #0

i=2
and
hi(hy (w1))+p1-hi(wi) +q1-wy = (h% +p1-h1+aq 'id|W) (w1) =0,
i.e. hy(hi(wy)) = —p1-hy (w1) — ¢ - w;y. Since hy has no eigenvectors w; and h; (w;) are linearly

independent such that we have obtained an h-invariant subspace Wi = (w1; hy (w1)) C W. W.l.o.g.
assuming nonzero coefficients in the linear combinations for w; and hy (w1) in terms of the original
basis we replace the first two of the previous basis vectors of W by w; and hj (w;) the representing
matrix with reference to the new basis 131 has the form

0 —q * *
I —pm
B
MBf (h)=10 o

By induction we proceed with the restriction f|y; on the complementing vector subspace Y; with
W = Wi @ Y: until we have a decomposition X =V aeW =VaeW a1 =VaeW  eWydY, =
e =V eW) @ ... ® W, such that h; [W;] C W;. Similarly to the trigonalization of complex matrices
5.2 the transformation matrices have the form
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Wit (h)*H (wn)

wi™t ()" (wy)

Pooeop o () w) o wp ()" (w)

U1

Hence the transition from B; to B;1 will change the elements above the 2 x 2 units in an undetermined
manner but leave the zeroes beneath unaffected such that we finally arrive at the asserted structure

of Mg (£).

5.5 Minimal polynoms

According to 2 for every f € End (X) with dim X =n € N the ideal Iy = {Q € C[z] : Q (f) =0} is
principal, i.e. Iy = (My) with the minimal polynom M. Since My € I¢ the minimal polynom
must have at least the same zeroes \; as Py. Since it is a divisor of P their multiplicities cannot

k k k
exceed those of My. Hence for Py (t) =[] (A\j —t)"7 with > r; = n we have My (t) =] (\; — t)%
j=1

J=1

J=1
with 1 S dj S T‘j.

For an endomorphism g € End (X) with dim X = n € N the following conditions are equivalent:

1. g is nilpotent, i.e. g* = 0 for some k € N

2. gk:()forsomelgkgn

3. Py (t) = £t"

0 *

4. There is a basis B of X such that M§ (g) = | : -
0 --- 0
Proof: 1. = 2. = 3. = 4. = 1. directly follows from the definitions resp. the preceding paragraph.

5.6 Fitting’s lemma

For an endomorphism g € End (X) with dim X = n € N and d = min {l : ker g! = ker gl+1} we have

1. d = min {l img! = imgl+1}.

2. ker g™ = ker g% and img?*t* = img? for every i € N.

3. glU] C U for U =kerg? and g[V] C V for V = img®.

4. (glr)* = 0 and gy is an isomorphism.

5. Mgy (t) =t

6. X =U®V withdimU =r > d with r = 1 (Pyg;0).

7. There is a basis B of X such that ME (g) = ( ](\)[ g > with N =0 and C € GL (n — r;C).
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Proof: I

! & .l
1. —4.: By 3.7 we conclude that kergt c V e

img*! = img' & dimimg*! = dim img' N I 11 U

& dimker g™ = dim ker g’ kergtl ¢ V2 im g/*!
& kerg't! = kerg!

whence gliygt img’ — img'*! is an isomorphism.

5.: Assuming My (t) = t?=resp. (g|U)CF1 = 0 would imply kerg? C ker g?!

minimal character of d.

6.: For v € UNW we have g% (v) = 0 and a w € V with g¢ (w) = v whence g?? (w) = 0, i.e.
w € ker g?? = kerg? such that 0 = g?(w) = v. Hence we conclude that X = U @ V. Owing
to kerg'~! ¢ kerg’ whence dimkerg'~! < dimkerg’ for 1 < i < d we have dimU > d. With
r = p(Pyg;0) we have t" - Q (t) = Py (t) = Py, (t) - Py, (t) for some polynomial @ with @ (0) # 0.
By 5.5.3 we have Py, (t) = &t with m = dimU whence p (FPy;0) = r = m = dim U since for the
characteristic polynomial of the isomorphism g|y holds P, (0) # 0.

contrary to the

5.7 Generalized eigenspaces

For every f € End(X) with dimX = n € N and characteristic polynomial Py (t) =]] (\; —t)"

===

7j=1

with Xk: r; = n there exists a decomposition into generalized eigenspaces (Hauptriume) U; =
Hau (Jf’l)\’) = (B;) with bases B; for 1 < j <k such that
1. f[U;] CcUj and dimU; = r;
2. X=U,0..0U;
AMEr + Ny 0
3. M§ (f) = with nilpotent matrices N; € M (r;; C).
0 MeEry, + Ny

Proof by induction over the number k of eigenvalues: For g = f — A\jid we have Py (t — A1) = Py (t)
whence r1 = p (Py;0) = pu (Pg; A1) such that Fitting’s lemma 5.6 yields X = Uy &W with g [U;] C Uy
resp. f[Ui] C Uy and g [W] C W resp. f[W] C W. The representing matrices have the form

0 *

ME(f)z(JXl g>withN1: Do € M (r1;C) and ME (glw) = C € GL(n—ry;C)
0 --- 0

resp.

ME(f) = ( ”\1E7"10+N1 g ) with M§ (flw) = D € GL (n—rq;C).

The induction hypothesis then applies to the isomorphism f|y with the characteristic polynom

k
Py, (1) = ]_[2 (Aj — )" which proves the theorem.

J=

5.8 The Jordan decomposition

For every nilpotent endomorphism g € End (X) with dim X = r € N and d = min {l €EN:gl = O}

d
there exist uniquely determined numbers s; € N such that )  j-s; = and a basis B of X such that

7=1
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with the Jordan matrices J; =

Ja 0

Ja
J1
0 J1
0 1 0
€ M (j;R) occurring s; times for 1 < j <d.
0 0

Proof: Consider the chain {0} = Uy C Uy € ... C Uy = X for U; = ker g with g~! [U;_1] = U; and
in particular g [U;] C Uj—1. Since for every vector subspace W with W N U; = {0} the restriction
glw is injective for every 1 < j < d there is a vector subspace W; such that U; = U;—1 @ W; with
g[W;] C Uj—1 and g [W;] C Uj—o = 0. Hence we obtain a decomposition according to the following

diagram:

{0}

X = U
§
\
He U
= \Udfl © Wy
o N
Gy &
5
= Ugo & Wy & Wy
9 8 I I
OTON &
¢ 8 I
e W & & Wi & Wy

In order to provide the corresponding bases we complete each U;_; with some W; such that U; =
Uj—1 @ W; and making use of the basis of the previous completion by g [Wj1] C W;:

R
o) e a(w®) L Wl el
g () e g () g () o g (D) o e )

with

Wi =U; =kerg

The matrix M (g) obtains the asserted form if the basis vectors in the above pattern are taken from

each column upwards starting on the left column with g¢—! (w&d)), moving upwards to wgd) then
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(d)

working up the the next column starting with g¢—! (wgd)) up to wy "’ and so on until we close with
gl) (1)
Y

s1 null vectors for wy’, ..., ws, .

Example:

As before we restrict the exposition to the matrix level. We want to separate as far as possible the
components of f : R> — R® defined by

2110 —2
1110 -1
M(f)=A=|10 2 0 -1
101 2 -2
1010 0

with the characteristic polynomial
Pa(t)=—(t—2)*-(t—-1)°

Its eigenvalues are A\ = 2 with mulitplicity r; = 2 and Ay = 1 wit ro = 3. For the sake of
simplification in the following calculations we identify matrices with maps. The map defined by

0 1 1 0 -2 10 0 0 -1
1 -1 1 0 -1 01 -1 0 O
A-MEs=]11 0 00 -1 |=]0O0 1 0 -1
1 0 1 0 -2 00 0 0 O
1 0 1 0 -2 00 0 0 O
provides the eigenspace
0 1
0 1
Vl = ker (A - )\1E5) = Span 0 5 1
1 0
0 1
Since dimV; = 2 = rg the restriction f|y;can be diagonalized:
100 00 2 01 1 =2
10010 0 21 -2
WithS™ =11 0 1 0 0 | weobtain B=S*AxS'=]00 1 -1 1
01 00O 000 0 1
1 00 01 000 -1 2
The second eigenspace V, = Ker (B — \2E5) is determined by
101 1 =2 101 00
011 0 =2 01100
B—XE;=]10 0 0 -1 1 =10 0010
000 —1 1 0 00 01
000 —1 1 0 000U O

with dimker (B — A2E5) = 1 < 3 = ry such that it is not diagonizable. By

1 10 1 00
1 01 1 00
ker (B — \yF5) = span ~1 andT'=[ 00 -1 00
0 00 0 10
0 00 0 01
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we obtain

200 0 -1 1 00 0 -1
020 -1 -1 010 -1 -1
C=T+«B«T'=[001 1 -1 |withC—XEs=|000 1 -1
000 O 1 000 -1 1
000 -1 2 000 -1 1
whence

0 1 00 00

0 01 00O

ker (C' — \yE5) = span 0 andU'=]001 0 0

1 00 0160

1 00 011

and the trigonalized form

20 0 -1 -1
020 -2 —1
D=UxC«xU'=[001 0 -1
000 1 1
000 —1 2

For the Jordan decomposition we consider the kernels Ul-l = kergé of the powers of g; = f— \;id.
Concerning Vi we have

0 -1 -1 0 2 -1 1 00 0
-1 2 —-100 0 -1 10 0
(A-ME5)? = | =11 0 00 |=[0o 0 20 -2
-1 1 -1 01 0 0 00 0
-1 1 -1 0 1 0 0 00 0
with
0 1
0 1
ker (A — M Es)*) = < 0o1l,] 1 >
1 0
0 1
1 0000 201 1 =2
10010 021 0 -2
whichby =11 0 1 0 0 | leadstoB=S*AxS =00 1 -1 1
01000 000 0 1
10001 000 —1 2

as before. Concerning Vo = Ker (B — A2 E5) we observe

101 1 =2 10100
011 0 =2 01100
B-XEs=|000 -1 1 =1 00O0T1O0
000 -1 1 0 00 01
000 -1 1 0 00 0O
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with dimker (B — A\yF5) = 1 < 3 = r9 such that B is not diagonizable. But its power

1011 -2
011 1 -3
(B=XE5)?=| 000 0 0
0000 0
0000 0
has dimker (B — )\2E5)2 = 3 = ry such that
1 1 2 10 1 1 2
1 1 3 01 1 1 3
ker(B—)\gE5)2:< -1 |, o [,]o0 >andT—1: 00 -1 0 0
0 -1 0 00 0 —10
0 0 1 00 0 0 1

yields the eigen decomposition resp. separation of eigenspaces by

200 0 0
020 0 0
C=T«BxT'=]1001 -1 -1
000 0 -1
000 1 2

The Jordan decomposition is attained by a further transformation of the mixed component

0 -1 -1 1 0
ker(C\Eig(q)\Q)—/\gEg):ker 0 -1 -1 :< ol,| -1 >:Eig(C,/\2)
0 1 1 0 1
such that
100 0 O 2 00 0 O
010 0 O 0200 O
U'l=[001 0 0 |yieldsD=UxC«U'=|00 10 -1
000 1 0 0 00 1 -1
000 -1 1 0000 1
0 0 —1
In a final step we reduce the nilpotent endomorphism represented by M (g) = | 0 0 —1 [ with
00 O

g?> = 0 into a Jordan matrix. With d = 2 we have

1 0 0 1 -1 0
(C3—U2—U169W2—< o, 1 >@< 0 >—< 0 >@< -1 >@< 0 >
0 0 1 0 0 1

with
0 -1 1
'ng): 0 ,g<w§2)): 1 | andwi” =] 0
1 0 0
such that
10 0 00 20000
01 0 00 02000
V3i=|00 -1 0 1 | whencefinaly E=V«D«Vi=|0 0 1 1 0
00 —1 00 00010
00 0 10 00001
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6 Unitary and euclidean vector spaces

6.1 Sesquilinear forms

A map (): X x X — C on a complex vector space X is

1. sesquilinear iff for x;y; z € X and «; 8 € C holds
(o + Py; z) = a(x; z) + 5 (y; z) (linearity in the first component)
(x;ay + Bz) = @ (x;y) + B (x; z) (conjugate linearity in the second component)

2. hermitian iff for x;y € X holds (z;y) = (y; ) (conjugate symmetry)
3. positive definite iff for z € X \ {0} holds (x;x) > 0.

With 1. and 2. the map s is a scalar product and with all three properties it is an inner product.
Note that 2. implies (z;x) € R. According to [6, th. 1.3] every inner product by ||z| = /(x;x)
generates a norm |||| : X — R which by d (z;y) = ||z — y|| produces a metric d: X x X — RJ.

A unitary space resp. euclidean is a pair (X;()) of a complex resp. real vector space X and
a scalar product. In the case of a real vector space the properties 6.1.1 resp. 6.1.2 become
bilinearity resp. symmetry. According to [6, th. 14.8] a space (X;()) with an inner product can
be embedded into a complete Hilbert space.

6.2 Bases

A scalar product () : X? — C is determined by its values (a;;a;) jer on a basis A = (a;);; of

X. In the finite dimensional case with dim X =n € N it is represer&ed by a hermitian covariant
matrix Su = sa;; = (a;;a;) with (@;y) = 254,74 = Txa* Sax Yy for & = 24a; resp. y = y'a,;.
Owing to 6.1.2 a quadratic matrix S € M (n; C) is hermitian iff 7S = S and it is positive definite
iff Tx xS+ € Ry for every x € C™.

6.3 Coordinate transformation

According to 3.10 the transformation from the basis A = (a;);<;<,, to gnother basis B = (b)),;<,
with b; = tja; is determined by the transformation matrix TE = t% such that the coordinate
vectors ¢4 = mf’Aei resp. xp = xpe; of every & = x’fgbk = :L‘f4ai = x’fgt};ai € X are transformed by
T = TE x . Consequently we have

. . T o
(x5 y) = 4547 ="x g xSA*xYQ
k 41 137 T B
= a:BtfcsAiijtf = (TA * m3> * Sy TE *Yg
j Zj— T TB B L —
:m'fgtfﬁsmjt{yég ='xpg * TA*SA*TE*’!JB
k 41 271 T —_—
= th}gsBklt{yB = IR * SB ES yB
with

SBrl = tg,5.4i5t

resp.

SB:TTE*SA*TiE

which proves the covariant character resp. the type (0;2) of the representing tensor S.
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6.4 The Gram-Schmidt-Orthonormalization

Two vectors u; v € X on a unitary vector space (X, ()) are orthogonal iff (u,v) = 0 and they are
normal iff |u|| = ||v|| = 1. Every finite dimensional vector space X has an orthonormal basis since
according to 3.3 for any given basis (a;),.;-,, the basis (b;);,., inductively defined by

2 (i, by)

b, for2<i<n
= (ak, by) g -

b1 = a1 and bi = a;—

is orthogonal and the basis (q;);<;<, With g; = ”b:” is orthonormal with <ql-;qj> = d;; and
(g;;ai) = (g;: bi) = [|bi.
Obviously for every vector subspace V' C X its orthogonal complement V+ = {u € X : (u,v) =0Vv € V}

is a vector subspace. Due to the above desribed Gram-Schmidt orthonormalisation for every vec-
tor subspace V C X we have an orthogonal decomposition X =V @ V! with

dim X = dimV + dim V.

Also every invertible matrix A € GL (n;C) has a Q R-decomposition

A=Qx*R

into a unitary matrix Q € U (n; C) with Q= = TQ (cf. 6.6.1) and an upper triangular matrix R €
GL (n;C) since the Gram-Schmidt-orthonormalization of the column vectors of the given matrix
A = (ai;...;a,) produces orthonormal column vectors of a unitary Q = (qy;...;q,,) € GL (n;C)

i . .
with q; :'21 sja; such that § = <s§) € GL (n;C) with s = 0 < i > j is an upper triangular
=

1<i;j<n

matrix with qf = afs?. Solving the Gram-Schmidt equations for the original basis (a;);,, yields
i .

a; :ng <qj; ai> q; whence A = Q * R with the inverse R = Sl =yl = <qj; ai>1§j§i§n € GL (n;C)

and ] =0« j >i,ie Risagain an upper triangular matrix.

6.5 Geometric formulae
For any u;v;u; € X on a unitary vector space (X, ()) resp. real vectors x; € R" and 1 <i<n
we have

1. The Cauchy-Schwarz inequality: |[(u,v)| < |lu] - ||v]|

2. The Triangle inequality I: ||u + v|| < ||u| + ||v||
with equality if x and y are orthogonal. (Pythagoras equality )

3. The Triangle inequality II: |||u| — [|v]|| < ||lu — V||
4. The Parallelogram equality: ||u + v|| + [[u — v| = 2 ||u|| + 2 ||v]]

5. The Polarisation equality: (u,v) =1 (Hu +o))? = flu—v|? +i|u+iv|* —i|u— iUH2)

n
6. Gram’s determinant: \" <{ ot 0<t;<1;1<i< n}) = det (x1;...;2p) = \/det ((mi,mj>1<ij<n>
i=1 <i,j<

n
7. Hadamard’s inequality: det (xy;...;x,) <[] |l@;| with equality iff the x; are orthogonal
i=1

with (x;, ;) =0 for 1 <i#j<n.
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Proof:

1. For all u;v € X holds
0 < ((v,v)u — (u,v)v, (v,v)u — (u,v)v)

= (v,0)? (u,u) — (u,v) (v,v) (v,u) — (v,0) (u,v) (u,v) + (u,v)? (v,0)
= (v,0) (Jlu] - o]l - (2, v) (u,v))
= (v,0) ([Ju] - [Jol] = [{w, v)]).

2. we hawe2
|u+v|" = {u+v;u+v)

= (u,u) + (u,v) +W+ (v,v)
= [lu]|* + 2Re (u, v) + [[v|
< Jull® + 2|, )| + o]
< Jull® + 2] - [Jol| + o]
< ([l + [lo]))
3. Follows from 2. by
[ull = vl = lu — v+ vl — [l
<lu—vf+v—|of
= ||u — v|| and vice versa.
4. obvious

5. obvious

6. according to [4, p. 8.9.3] with the matrix (x1;...;z,) = ¥ formed by the coordinate vectors
inx; = xfek we have

det (<“3 "’”J’>1sam) = det <(”3k zj )gum)
= det (T (T1;..5@,) - (21; ...;mn))
=det T (z1;...;2,) - det (z1;...;2,)

= (det (z1;...;2n))

n 2
= (A” ({Ztimizogtigl;lgign}>>
=1

7. On account of the previous result it suffices to consider linearly independent (z;);,,, such
that the @QR-decomposition 6.4 applies with A = (z1;...;2,), @ = (gy;..5q9,) € O(n) and

the upper triangular matrix R = <qj;aci> € GL (n;C) with r*z =0 <« j > ¢ whence

1<j<i<n
det A = det (Q * R) = det Q - det R, i.e. det (x1;...;2n) = 1+ [] (q;; @) =11 ||bi]|]- The equality
i=1 i=1

[ . 9
A= QxR also yields a; =) rzj-qj, ie. x; => <qj;a:i> q; whence from <qj; qi> = 0;; follows
j=1 j=1
. 2 .
2 llss g S N R 112
||| = ngl <qj;xz> q; ' —]El <qj,:vz> Hq]H —]gl <qj,xl> 1+ ||b;]|” - 1. Thus we conclude

that ||b;]| < ||@;]| and the assertion is proved.
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6.6 Unitary and orthogonal endomorphisms

1. An endomorphism f € End (X) on a unitary vector space (X; ()) is unitary iff (f (u), f (v)) =
(u,v) for all u,v € X. Correspondingly an invertible matrix A € GL (n;C) is unitary iff
A~1 = T4 and these matrices form the normal subgroup U (n) C GL (n;C). An invertible
matrix A = a} € GL (n;C) is unitary iff A+xTA = E,,, i.e. iff its column vectors (@j)1<j<, T€SP-
its row vectors (a'), ;.. are an orthonormal basis of (C"; ()). In the case of the canonical
scalar product (x,y) = 2,7, = Tx * Y for coordinate vectors = z’e; and y = y'e; on the
canonical basis B = (e;),;,, the two definitions coincide, i.e. f € End(X) is unitary iff
F = Mg (f) is unitary since

(F@) . F@)="(Fra)sFy="a+TF«Fry="ag=(a,y) < F+F=E,

2. For unitary matrices A € U(n) we have 1 = det A - det A = det A - det A = |det A|* whence
|det A| = 1. An invertible matrix A € GL (n;R) is orthogonal iff A=' = TA and these
matrices form the normal subgroup O (n) C GL (n;C) with det A € {£1} for A € O (n). The
normal subgroup SL(n) = {A€ O (n):detA =1} C O (n) (special linear group) according to
4.5 preserves the orientation of the basis.

3. Every eigenvalue A € C of a unitary endomorphism f : X — X has an absolute value
of |\| = 1 and in particular \ = % since for the corresponding eigenvector v € X we have

(v;v) = (f (v); F (v)) = (\v; Aw) = AX (v; v) whence form (v;v) # 0 follows [A]* = A\ = 1.

4. Eigenvectors v resp. w for different eigenvalues A resp. p of a unitary endomorphism f :
X — X are orthogonal to each other since (v;w) = (f (v); f (w)) = (\v; pw) = A\ (v; w)
whence form (v;w) # 0 follows A - % =g =1,ie. A= pu.

6.7 Decomposition of orthogonal endomorphisms

For every orthogonal endomorphism f € SL(n) on an n-dimensional euclidean vector space
X there is an orthonormal basis B = (u;);<;<; U (Vi3 vit1)1<;) With & + 21 = n of R™ such that
f [span{u;}] = span {u;} for i <k, f[span{v;;v,1}] =span{v;;v;41} for 1 <j <1 and

A1 0

Ak
cosay —sinag
sina;  cosaj

cosqp —sinq;
0 sinqg cosq

with \; € {£1} for 1 <i <k resp. o € ]0;2n[\ {r} for 1 < j <.

Proof: This almost diagonal separation is an improvement on the general decomposition of real
endomorphisms presented in 5.4 and can be proved in a similar way by utilizing the Cayley-Hamilton
theorem. In this case the invariance resp. separation of the two-dimensional subspaces extends to
the whole function f instead of only the restriction f|y to a subspace such that the representing
matrix has zeros both below and above the diagonal.

As usual we proceed by induction over the dimension n and assume the hypothesis for dimW = n—1.
Similarly to the first part of the proof of 5.4 we show the existence of a vector subspace V C X
with 1 < dimV < 2 and f[V] = V. The othogonality implies important additional properties of the
subspace V.
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First we extend the euclidean vector space (X;R;+;-;()) to a unitary space (Y; C;+; <>> by ad-
mitting complex scalars and generalizing the inner product (u,v) = Tz 474 for complex coordinate

vectors x4 = azféle,- € C" resp. yy = yf4€i € C" of u = x%ai and v = yf4ai referring to the original

k !

basis A = (a;);<;<,, C X. The characteristic polynomial Pf (t) =[] (\i —t) II (t* +pjt +q;)
- = 1= j:

with k£ 4 20 = n in the case of k > 1 provides an eigenvector u;with f (u1) = A\ju; and eigenvalue

A1 € {£1} such that we have f[V] =V for V = span{u;}.

In the case of k = 0 we have pair of conjugated complex eigenvalues \ resp. \ = e (g)2 —q€
C as zeros of the corresponding factor in with p = p; resp. ¢ = q1.

The corresponding orthogonal eigenvectors are also conjugated to each other since with F' =
M4 (f) € M (n;R) and eigenvector v = za; the identity v = f (v) resp. A\xz4 = &' (\v) =
@;ll(f('v)) =Fsxxyimplies \Tg = xg=Fxx g =A*xT4 < I\ = ®A<Xﬂ) =Qy(F*xTy) =
f (©). Hence we have (v;v) = ||v||* =1 = |©||* = (7; D) and (v;T) = (T;v) = 0. Note that due to the
definition of the canonical inner product on C" these equations imply Tx4 X1 = 1 but Tx4*x4 = 0.
By polarisation we obtain real valued orthonormal vectors v; = % (v+7)and vy = % (v —)
resp. v = /2 (v1 + iv2) and ¥ = v/2 (v1 — ivy) such that

F(v1) = &5 (2w +3w) = & (W +3w) = V2Re (W) = 2Re (A (v1 + iv2)) = 2 (Red) w1 — 2 (Im)) v

NG
and
fva) = 1 (Mo =7) = -1 (W = Jw) = V2Im (W) = 2Im (A (v1 + iv2)) = 2 (ImA) 142 (Re) vz
, 1.e.

f[V] CV for V =span{vi;vs}.
According to 3.7 and since orthogonal maps are injective we infer f [V] = V.

Since f~lis orthogonal as well for any v € V and w € VL = (£ [V])™* follows (f (w) ,v) = (w, f (v)) =
0 whence f {VJ-} =Vt

By the Gram-Schmidt-orthonormalisation 6.4 we find an orthonormal basis B = (v;);;,, such
that the representing matrix for h = f|y : V' — V has the form

M;s(m:(z Z)

with 1 = ||k (v1)| = Va2 + 2 = Vb2 +d? = |h(v2)]| and 0 = (vy;v2) = (h(v1);h(v2)) = ab+ cd

whence

B cosay —sinog cosaq Sinog sinap  cosag sinaqy — cosag
Mg (h) = or or or

cosqy  Sinag

sinay  COS —sinoa; cosaj —cosaq Sinag

for 0 < oy < 5. By extending the range of the argument to ay € |0;27[\ {n} all four possibilities can
be expressed by the first formula alone.

Thus f can be decomposed into f|y : V — V and f|y. : V — V+ with V@ V+ = X and an
orthonormal basis B with

A O cosay —sina; 0 - 0

01 K eee % sinay  cosay O 0

] 5 = B = 0 0 * *k
cither Mg (h)=1| . . . . | or Mg (h)=

0 ' . 0 0 % o e *k

such that we can apply the induction hypothesis to obtain the assertion.
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6.8 Self-adjoint endomorphisms

An endomorphism 24 : X — X is the adjoint to the endomorphism f : X — X on a unitary vector
space (X;()) iff (f (v),w) = <'v, Fad (w)> for every v;w € X. In the case of an orthonormal basis

n
A = (ai);<;<, of a finite dimensional X = (a;);,., with (u,v) = x4 *xyy for u =3 x4;a; resp.
== == i=1

v :i YA;a; we have Mﬁ (fad) = TM;‘ll (f). The endomorphism f is self-adjoint iff f2¢ = f resp.
=1

in the case of an orthonormal basis and finite dimension iff the representing matrix F' = M j‘ (f) is
hermitian with F = TF. In the real case we have F = TF and the matrix is symmetric. The
vector spaces (cf. 6.6!) of hermitian resp. symmetric matrices are denoted as S (n) resp. H (n).

Every eigenvalue \ with \v = f (v) of a self-adjoint endomorphism f is real since A (v,v) =
(f(v),v) = (v, f(v)) = X(v,v).
Eigenvectors v; w with different eigenvalues A; u € R are orthogonal since A (v, w) = (f (v),w) =

(v, f (w)) =7 (v, w).

6.9 Trigonalization of self-adjoint endomorphisms

For every self-adjoint endomorphism f : X — X on an n-dimensional euclidean or unitary
vector space X there is an orthonormal basis B = (u;), <i<n of eigenvectors u; with real eigenvalues
Ai € R such that f [span{u;}] = span {u;} for 1 <i <n and

A1 0
Mg (f) = .
0 An
Proof: Owing to the preceding paragraph it only remains to prove that dim Eig (f;\) = p (Pf; A)
for every eigenvalue A resp. zero of the characteristic polynomial Pg(cf. 5.1 and 5.7). As in 6.7
we proceed by induction over the dimension n. Assuming the hypothesis for n — 1 we choose a real

eigenvalue \; with eigenvector u; and according to the Gram-Schmidt orthonormalisation
determine an orthonormal basis B’ = {u1;ws;...;w,} such that X = V@ V+ with V = span {u;} and

V+ = span {wy;...;w,}. We have f[V] =V but also f [VL} =V since (f (w),v1) = (w, f (v1))

= Mw,v1) 0 for every w € VL. The latter condition provides the existence of a further linearly
independent eigenvector in the case of u (Pg; A) > 2. Hence both components are f-invariant and by
applying the induction hypothesis to f|i L we obtain the assertion.

6.10 Simultaneous determination of eigenvectors and eigenvalues

In the real case there is an effective optimizing procedure for the simultaneous determination of an
eigenvalue \ and its eigenvector v: For every symmetric matrix A € M (n;R) the quadratic form
q : R" — R with ¢(x) = Tx x A * ¢ is continuous such that according to [6, p. 9.8] it attains
its supremum A\ = sup{q(x): x € S} on the sphere S = {||z| = 1}, i.e. there is a v € S with
AN=TvsxAxv>Txx Axx for every x € S.

For every w € S with (w,v) = 0 we have x = cv+ 7w € S for 0 < 7 < 1 and
o0 =+/1—712. Hence with Tw + Axv =Tv* Axw and 1 = 02 4 72 follows

T 2T

vixAxsv>TexAsx=0Tvxs Axv+ 207 wsx Axv+ 7 Tws Axw

whence

2

-0 T T
TU*A*U——Tw*A*w:—(Tv*A*v—Tw*A*w).
oT 20 20

wx Axv <
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By exchanging w with —w we can assume 7w % Asv > 0 such that with Tvx Axv —Twsx Axw >0
and 7 arbitrary follows 7w * A x v = 0. Since this is true for every w € S with (w,v) = 0 we have
shown that A x v = pw for some 4 € R whence A\ = Tvx Axv=p\=Tv+v=p.

6.11 Adjoint maps

In a unitary vector space (X, ()) with an inner product the isomorphism ® : X — X* with ® (a;) =
a; for a given basis A = (a;),.; from 3.12 can be replaced by the canonical semi-isomorphism
¢ (x) = (,x) with ® (ax + fy) = a® (x) + P (y) being independent of the basis. Note that ¢ is
injective since () is positive definite.

For every vector subspace £ C X and the annihilator E° = {z* ¢ X* : z*x = 0Vx € E} defined in
3.15 we obviously have ® {El} = E" and for every orthonormal basis A = (a;),.; resp. the dual
othonormal basis A* = (a])

;er determined by afa; = 5; holds @ (a;) = a}.

For every f € L(X;Y) between unitary finite dimensional vector spaces X =
<ai)1§i§m resp. Y = <bj>1gjgn generated by bases A = (ai)lgz‘gm resp. B =
(bj)lgjgn the adjoint map 2 :Y — X is defined by (f (x),y) = <x,fad (y)> i Fad i\lf
According to the definitions of the canonical semi-isomorphisms ® : X — X* with i
®(x) = (,z) resp. ¥ :Y — Y* with ¥ (y) = (,y) and the dual linear map X~ Ly
Y = X* with f (y*) = y* o f we have

F

(Fow) @) =(FO.u =)= (2 ) ()

m n

whence f24 = & 1o f*o . In particular for z =5 zga;, y =5 yp;b; and Mé“(f) =F €
i=1 j=1

M (n x m;C) we have

(20 ) () (@) = (f 0 ) (v) ()
= (f (@).9)

:T(F*mA)*TB

=T« TF gz

m —_

whence £ (y) = z4;a; with the coordinate vector z4 = TF * yi of £24(y) and the representing
i=1

matrix

M (£4) = TF = T ()

of . According to 3.15 we also have

ker]“LCl = (imf)l and irnfad = (kerf)J‘
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6.12 Normal endomorphisms

An endomorphism f on a unitary vector space (X; ()) is normal iff fo f2d = fado £ Correspondingly
a matrix A € M (n;C) is normal iff A+xTA=TAxA.

Since x € ker f < 0= (f(x), f(x)) = <:13,fad (f (a:))> = <:13,f (fad (:n))> = <f (fad (;1})) ,33> =
<fad (), fad (a:)> =0« x € ker £24 we have

kerf*4 = kerf and imf*! = imf

according to the preceding paragraph 6.11.

Also for any eigenvalue X\ and g = f — Mid we have g?d = 2 — Xid and for every @ € X holds
9" (g (2)) = £ (f (@) = A (&) + £ (=2@) + Na = f (£ (@) = Af* (@) + f (—A2) + e =
g (gad (m)), i.e. g is normal such that from the preceding paragraph follows

Eig (f,\) = kerg = kerg®® = Eig (fad,X)

6.13 Diagonalization of normal endomorphisms

An endomorphism f on a unitary vector space (X;()) is normal iff its eigenvectors form an
orthonormal basis of X.

Proof:
=: For an orthonormal basis B = (vi)1<i§n with f (v;) = \jv; for 1 < i < n we have fad (v;) = \v;

and thus f (fad (vl)) =f ()TZUZ) = Aiivi = N\, = fd (f (v;)) for every basis vector v; and hence
for every x € X.

<: As usual we proceed by induction over the dimension n of X and assume the hypothesis for

n
n — 1. According to 5.2 we have the characteristic polynomial P;(t) = + [[ (¢t —\;) with
i=1

eigenvalues \; € C and an eigenvector v; € X with f(v;) = \jv;. Forw € W = <v1>J‘ holds
(f (w),v1) = <w,fad (’U1)> = <w,)\71v1> = A (w,v1) = 0 whence follows f[W] C W. Also we

have <'01, Fad (w)> = <fad (v1) ,'w> = A\ (v1,w) =0, i.e. flw is normal such that we can apply the
induction hypothesis whence the assertion follows.

7 Multilinear algebra

7.1 Multilinear maps

1. Amap ¢ : [[;e;, Xi = Y from a product [[;e;, Xi = {(@1;...;2p) : @i € Xis1 € Ip} of complex
vector spaces X; for i € I, = {1;...; p} into a real vector space Y is p-linear iff every projection
Oty 1i@piriizy - Th — @ (T15...52p) is linear in x;, € X}, for fixed x; € X; and k € I,. For
vector spaces X; with bases (e;,) uel; and every function y : I? — Y there is a uniquely
determined p-linear ¢ : [l;c; Xi — Y with ¢ (€155 €ppy,) = Yy, fOr every (uis..;pp) €
ngigp J;. According tQ 3.2 every x; € X; can be expressed as a finite sum x; = 2'e;, with
complex coefficients ' # 0 for finitely many u € J;. Observing the Einstein summation
convention 3.13 the desired p-linearity implies ¢ (@1;...;@p) = ¢ (¥ e1,,;...;aP 7 ep,,) =
gt aPtr g (e ep,) = @t L aPRr and this is already a uniquely
determined definition.

"Y1y sppp
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2. For every k € I, by w(9) (z1;...;2p) = V() (T1;...; k—1; Tht1; ...; Tp) defined for every lin-
ear ¥ : X — L, (Hielp\{k} Xi;Y> with the inverse w=! () (Tk) (T1; -} Tp—1; Tht1; -} Tp) =
n (x1;...;xp) defined for every p-linear 7 : [Licr, Xi — Y the spaces L (Xk; L, (Hz‘elp\{k} Xi; Y))
are isomorphic to L, (Hz‘elp XZ-;Y). For finite dimensional X;;Y due to 3.7 we have
dim L (X1;Y) = dim X; - dimY and by induction we conclude that

P P
dim L, (H X,;Y) = dim X - dim L, ( 11 Xi;Y) =] dim X; - dimY-
i=1 i€l \{k} i=1

Example: The vector space Lo (XQ;(C) of bilinear forms (xi;x2) — w(x;x2) on X = C" is
isomorphic to

1. M (n;C) by w — a”e;®@e; with a” = w (e;; ;) and the basis (e; @ e;)
in 7.2

2. End (M (n;C)) by w (mjkej ® ey, — a;jmife’ ® ek) with a;; = w (e;; €5)

of M (n; C) defined

1<i;j<n

. End (X)=L(X;X) by w+ (miei — agxiej) with ag =w(e;;ej)

3

4. L(X;X*) by w (2z'e; — a;jx'e?) with a;; = w (e;; €5)

5. L(X*X) by ws (v€' — a’z;e;) with a¥ = w (e;; €;)

6. End (X*) = L(X*;X*) by w (:L‘iei — aé-:piej) with a;'» =w(e;;ej)

These cases are subsumed under the following generalization of the matrix:

7.2 Tensors

For every product [[;c;, Xi = {(z1;...;2p) : @i € Xy5i € I} of com-

plex vector spaces X; for i € I, = {1;...;p} exists a complex vector

space @;c; X; and a p-linear map 7g : [[;c; Xi — &;er, Xi such /ﬂg/r\\
p . ; P P D

that for every p-linear ¢ : [];c 1, Xi = Y into a complex vector space &) X

Y exists a linear og : @y, Xi = Y with ¢ = g o mg. i=1

©® v
X
The vector space ®ielp X; is the tensor product of the vector k
p
I1

Yz 7
¢ iy
spaces (X;),c I and its elements are called tensors. The images
X

T1®..0%x, = Tg (x1;...;x,) are the tensor products of the vectors
(2i);c I The tensor product is uniquely determined in the sense i=1
that every complex vector space Z is isomorphic to &);c I, X iff there
is a p-linear w7 : [, Xi — Z such that for every p-linear ¢ : [[;c; Xi — Y exists a unique

linear ¢z : 7 — Y with ¢ = ¢z omz. Also the map ¥ : L, (Hz‘elp Xi;Y) — L <®i61p Xi;Y) with
Y () = pg is an isomorphism.

)

Notes:

1. The tensor product of the vectors &; = :131“161]'1; vy = 2Plrey; s T ® ... Qx, = .
oo xPPP ey, ® ... ® ey, while a general tensor has the form plHtPie e, ® ... ® €pu, With
arbitrary complex coefficients z!#1iPHe

2. In the finite dimensional case with identical factors X;= X and dim X = n the Einstein

p
summation produces €1 ® ... ® Tp = > 1<y, p<n T xt ey, ® LR ey, whence dim []
— ARG _— Z:1

p

X; =p-nand dim @ X; = nP. In particular the family E, = (ey,;...; eﬂp)1<m- < 18 100 &
2:1 = e P =

basis and not even linearly independent in X7 since e.g. (e;1;0) ¢ (E2) and (e1;e1) — (e1;0)

—(0;€1) = (0;0).
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Proof:
Existence and p-linearity of mg: According to 7.1 the complex vector space &);¢ I Xi=1L, (Hie I, X;; (C)

: . 1pas..;pp ..
= (e, @ ... ®ep“ﬁ>meJi~ieIp with basis tensors ei,, ® ... ® ey, = 7y P (et epy,) =
4t - ... - 0y, is well defined and so is the map 7 : [Tier, Xi = ez, Xi given by mg (€14, .- €p,) =

€y D ... D epy,.

Existence and linearity of ¢g: For any given p-linear ¢ : [];c 1, Xi — Y into a complex vector
space Y the map ¢g defined by ¢g (€1, @ ... ® ep“p) = @ (€15 ep,,p) is linear and satisfies ¢ =
SO(X) (¢] TR

P P

Uniqueness of ¢g: For any given linear 9g : @ X; — Y with ¢ = ¢gomg and 21 ®...0x, €Q X; we
i= i=1

have Yg (21 ® ... ® ®p) = (Vg 0 Te) (T1;..;p) = (P 0 Tg) (T15...5Tp) = g (T1 @ ... ® Tp) whence

Vo = Pe-

P p
Uniqueness of Q X;: Assuming there is an a € Z \ V with V' = span {ﬂ'Z H Xz} } there exists a

i=1
p
wz € End (Z) with wz (a) = a and V' C kerwyg resp. [[ X; C ker (wz o mz). Since H X; = dommy

=1
this means 0 = wy oz = 0 oz hence 1. implies wz = 0 in contradlctlon to the assumptlon whence

we conclude that V = Z. A second application of 1. yields a linear g :® X; = Z withmz =ngomng
i=1
P
while the hypothesis in 3. provides a linear 7z : Z — @ X; with mg = 1z omz. On the one hand we
i=1
have (nz ong) (1 ® ... ® &) = (Nz 0 Ng 0 Tg) (T1;...;%n) = (Nz 0 7Tz) (X1;...; Tn) = T (T1;...; Tn)

P P
1 ®...Qx, whence nzong =id :Q X; =@ X; and on the other hand (ng o nz) (77 (1;...;T,)) =

i=1 =1

p
(Ng o) (®1;...;Tn) = Tz (X1;...;T,) such that ng onz =id : Z — Z = span {TI'Z {Hl XZ} } Hence
1=

Ne and 1z are isomorphisms.

p
Existence and linearity of ¥: Due to the preceding arguments the map 9 : L, (H XZ-;Y) —

<® Xl,Y> is well defined by ¢ = ¥ (¢) o mg. Hence for p-linear maps ¢, : H X; = Y we

have ¢+ = 9 (ip) 0 7 + 9 (1)) 0 g = (9 () + 9 (1)) 0 me whence # (o + 1) = I (¢ )+79(¢) and
cp=c-(V(p)omg) = (c V(1)) omg so that ¥ (c-p) =c-9(p).

Injectivity of ¥: ¥ (p) =9 () = ¢ =9 (¢) omg =V (¢) o mg = 9.
p

Surjectivity of ¥: For any pg € L <® XZ,Y> follows ¢ = g o7y € Ly <H X,-;Y) and hence
i=1

I (o) = pg-

Examples: The familiar notation can be used for p < 3 eg. forx € X =R*, y € Y = R3 and
z€eZ =R~
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Yz Ty z Ty
11 12 13
m21 m22 m2 / ‘ / ‘ /
m m m?23 2lyls! zly?2! 2lyB 2!
m3l m32 33 ‘ ‘
mi mi2 3 22yl 22 22222 22322
1
T
22 m? e XY 211/ ‘ 221/ ‘ 231/
Yz Ty z TY°z
3
g | |
4
2 .
arbitrary tensor 23yls? 23y?2? 231322
1.1 1.2 .13 / ‘ / ‘ /
X Ty Ty Ty l‘SylZl x3y221 51733/321
T 200 2202 2203
yooxryT xty
w3yt 23y? 23yd 2yl 22 rhy222 2hy322
4.1 4,2 4,3
vector 4,11 4,21 4,3 1
rRyc XY oYz Ty z T Yz

TRYRzeXQY ®Z

tensor product
tensor product

7.3 Tensors and multilinear forms

p P

Bydv: L, <H XZ-;]R) —-Q X; with ¥ (¢) = (eu,;...;e,,) €4 ®...Qe,, for X; =span{e;;...;e,} and
i=1 i=1

1< p; <nforl<i<pwith inverse ¥~} (cHriitv e, ® ... ® eup) = ¢ defined by ¢ (e,,;..; eup)

p P
= cti#r € C the p-multilinear forms L, <H Xi;(C> are isomorphic to the tensors Q X;.
i=1 i=1
p
On account of the linear character of the X; every p-linear ¢ :[[ X; — C is determined by
i=1

© (Zlgm;.‘.;upgn R N (O eﬂp)> = Elgul;..,;upgn ciite . (e, .5 €,,) whence follows again

p p
dim Q X; =dim [[ X; = nP. (cf. 7.2)
i=1 i=1

7.3.1 Dyads and symmetric tensors

The 2n-dimensional vector space Dy = {x @y : x;y € X} ~ X? of the dyads generates the n?-
dimensional dyadic tensors (Dy) = {(mijei ® ej)1<i,j<n i mgj € R} = X, since every m;je’ ® e’
€ X5 can be expressed as a linear combination

mip Mz - My an;1 bn;1 0 0 0
mo1 Moz -+ May n;2 bn:2 (p—1;2 bp—1:2 :
= . ® . + . & . + ...+ 0 ®
Mnp1 Mn2 Mnn An;n bn;n an—1;n bn—l;n A1;n
0
0
bl;n
of dyads ay ® by € Dy. The n-dimensional subspace SDy = {x @z :x € X} ~ X of the sym-

metric dyads forms a subspace of the %-dimensional space of the symmetric tensors So =

{x@y—y®x: x;y € X}. Note that S is closed under addtition since the distributive law of the ten-
sor product resp. the bilinearity of 7g imply (x @y —y®z) + (UuRv—-—vQu) = (x+u)® (y + v)
Wt ®(@tu) - (UBY-yOU) - @6V o)
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7.3.2 Trilinear forms

For ¢ = z'e;,y = yjej,z = zkej € X = R” every cubic tensor C' = (c;ji) represents the

C 1<isjik<n
trilinear form (), : X® — C with (x;y; 2) = 2'y/2¥¢;;,. The graphical representation of this
computation shows the reduction of the cuboid tensor via matrix and vector to a number: Multiplying

the first factor (z?) <, With the n? corresponding vectors (Cijk)1<ijcn, for 1 < jsk < n results in the
matrix (:cicijk) with the n corresponding vectors

1<i :
|<jik<n- Multiplying the second factor (v7), <j<n

(xicijk)1§j§n for 1 < k < n results in the vector (a:iyjcl-jk)lgkgn which in turn combines with the

third factor (zk) to the final result xiyjzkcijk:
1<k<n

A

x

z! c111 c141 z'cin1 T'ciq1 'yl cij1
Y-
c114
zic, 4 i iyl e iyl ke
114 T7Ci44 Y’ Cija T Y 27Ci5k
K *,
4 *
e | 4
z
x4 C441 I /
C414 C444 yl y4 21

7.4 Coordinate transformations

For a complex vector space X = span A with basis A = (€;);;,
and its dual space X* = span A* with the dual basis A* = (ej)1<j<n ] type ‘ object
defined by ele; = 65 the space X = @<icp X ®1<j<q X™ of p- | (
contravariant and ¢g-covariant tensor of type (p;q) with p;¢g>1 | (
and dim X! = nP*9 contains elements of the form (
(
(
(

scalar

vector

linear form

endomorphism

:c:®a:i®mj

uadratic matrix
1<i<p  1<j<q 4

bilinear form

= HL o Hp L q . V1 v
= ATy - ... Axpp ATy * e ATy - €y ®.0€e, e Q...0e™
— M55l V1 Vq

= AT LS e X.0€e, e 8.0

Also we define X = R; X1 = X and X! = X*. According to 3.10 a tensor is transformed to a new
basis B defined by the transformation matrix T4' =t/ € GL (n;R) by

assap (=1 '<_1)ap. Bas-spp | gv1 4P
BT, .3, —(t )m ot " ATy tﬁl tﬂq'

Analogously to 7.3 the following drawing shows the graphical representation of these summations
in the case of p+ ¢ = 3. Note the different transpositions of the transformation matrices according to
the direction of the corresponding matrices resp. layers in the tensor:
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1
T 14
14
% 1
1 i CA111 CA141 CB111 CB141
1
CA114 CB114
. . S —
tl
1 CA441 CB441
CA414 CA444 CB414 CB444

I
td t‘ll *, \—W_—J
t}l %f—// CBuvw — titg)tgcAijk

7.5 The general tensor product

The definition of tensor product 7g X? — X, from 7.2 can be extended to the

. q+s
general tensor product g, : (Xg X Xf) — Xpip by X9 © X} ¥e Xgi:
TRY="g(x;Y) F®T /
- (a:l ®..0x, R x! ®...®;cq) ® <y1®...®yr®yl ®...®y5) X7 % X5
p T

=2 ®.02,0Y,0..0Y,0¢' ®@..02'0y' ®...0y°
with
1. associativity: (zQy)®z=zQ (y® 2)
2. associativity with the scalar multiplication: (cx)@y=xzQ (cy) =c- (xR y)
3. associativity with the scalar product: (z ® y*) x z = z'y;27e; = - (y* x 2)
4. distributivity: *® (y+2) =xQ@y+x@zresp. (z+y)Q®z=22+yR =z

for c € C and x;y;z € X but in general no commutativity. Concerning the relationship with the
cross product cf. 7.16.5. Hence every tensor may be written as the product of tensors of type (1;0)
resp. (0;1) or even using the basis B = (e;);,~,, of X in the form

1
T=T10.0x,R0T @.0x!=z)lir e, ®.. Qe, e ®.. Qe

and its product with

Y=90.0y,0y 0.0y =ylile, 0.0, e ®...0e"

can be written as

TRy =l e, ®..0e,0e, ®..0e, 9 Q.. 0e1ReN ®...Q ek
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7.6 Contractions

The contraction ¥ : Xg — Xg:ll is defined as

V(@) = abiiite - (Fe) e @ Den  Deu, ® . Be, 0t @ et Qe @@ e

_ x/’«l§~~~§Ni71§>\§/14i+1§~~-§/—‘p
V15 iVk— 15V 4155V

ey ®..0e, Qe, V.0, Qe"R.Qe ReM Q.. .Q e

and due to efe; = 65 it can be computed by cancelling e,, resp. e*i, replacing the respective indices
by a common v = u; = A and replacing the two independent summations over 1 < vi; u; < n by a
single summation of

PG i LA 15eesp i Hi—1 A Bkl o 1 k=1 k_k+l g
Vit Ny = L1 e T T T e TP Ty e Ty T TN Ty T

over 1 < A < n each summand being multiplied with the identical tensor product of the basis vectors
a,, resp. a* with fixed values for vy resp. ;.

Example: In the two dimensional real vector space X = span{e;;es} with its dual space X* =
span {e';e?} and
m:261®el+361®62—eg®el+4eg®e2 GXll
y=5e,Qe ®el —2e Qe ®e?
+ 0e1 ®ex @ e — 0ey @ ez ® €2
+ 062®61®61—062®61®62
+ Oes ® ey @ e — Oey ® ey @ €2 €X21
we have the tensor product
rRy=10e,0e1Qe®e'®e' +15e;1 ®e Re e’ Qe
~be; e ®e e ®e' +20e0e e ®e’ e
—de1®eRe®e ®e’—Gey®e e ®el® e
+250eRe0e'®e’?—8es e ®e ®e’R e’
c X3
For the contraction 7% we replace the first contravariant vector e; and the second covariant vector
e’ by d7such that
fy%(m@)y) =10e; ® e; ® e + 15e; ® e ® e
+2el®el®e1 —861®61®62
= 12€1®el®el+7€1®61®62

A second contraction results e.g. in

1 (1 (x®y)) = 12€.

7.7 Raising and lowering of indices

Symmetric and positive definite tensors gijei ®el € Xy resp. gile; ® ej € X 2 are called metric
tensors since the corresponding bilinear forms (), : X? — R with (z3y), = z'gijy) for x = x'e;
resp. y = z/e; define a norm ||| : X — RT with |z| = (z; ), and hence a metric on X resp.
X*. They also provide the coordinates x; = 27g;; of the associated duals =* = (x; ) g € X* for any
x € X with reference to the dual basis defined by e/ = (e;; ) v In physics the transposition from
x =a'ej to 7x (x) = &* = x;€’ = g;ja7€’ is called the lowering of the index and the reverse step
from x* = z;e’ to ® = 75" (z*) = 2/e; = g/'x;e; is the raising of the index.
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7.8 Symmetric maps
For complex vector spaces X and Y for 1 <4 < p > 2 and the symmetric tensors
Sp = span {(%;(1) ®.Q® :L'w(p)) — (1 ®..0xp) 121552y € X;wE Sp}

from 7.3.1 the p-linear map ¢ : XP — Y is symmetric iff it satisfies one of the following obviously
equivalent conditions:

1. ¢ (acw(l); sl mw(p)> = ¢ (x1;...;xp) for every permutation w € 5,

2. Sp C ker pg.

7.9 The symmetric product

For every power X? of a complex vector space X to an exponent p > 0 exists a complex vector
space \/’ X and a symmetric map V : X? — \/? X such that for every symmetric ¢ : X? — Y into
a complex vector space Y exists a uniquely determined linear ¢\ : \/* X — Y with o = ¢y o V.

The symmetric product \/’ X = X,,/S, is the quotient space of the tensor product X, = Q" X
defined in 7.2 and 7.4 over the subspace S, from 7.8 and its elements & V...V, = my (1 ® ... ® T})
= V(x1;...;xp) for V = m, o 1y with the p-linear map 7g : X — X, from 7.2 and the linear
projection 7, : X, — \/? X are the symmetric products of the vectors x1;...;x, € X. According
to 7.4 we have \/° X = Xy = C and /! X = X; = X. In the finite dimensional case with dim X = n
resp. dim Y = r the symmetric product has the dimension

dim S, (XP,Y) = ( ”+£_1 ) .

Proof: The linearity of m, and 7.2 and the p-linearity of g imply the p-linearity

of V.=myonmg,ie ..V(cypy+dzp)V..=c(..Vy,V..)+d(..VzV..). Also VX Z>Y
we have S, C ker (my omg) whence according to 7.8.2 the map V = my o g is i /
symmetric, i.e. for every permutation o € S, holds x,()V...V&,) = T1V...VT) v ©
and in particular oVa, = x1Vaes. According to 7.2 for every symmtric p : XP — Y Xp 0
there is a uniquely determined and linear ¢g : X, — Y with ¢ = pg omg. Then ﬂ@T

due to 3.8 exists a uniquely determined and linear ¢y : \/’? X — Y with ¢y o7y

= g whence follows oy oV = @y om0y = pgomy = . In the finite dimensional ~ X?

case with dim X = n and basis {ey;...; e, } we draw p vectors from an urn containing

n marked basis vectors e; plus p — 1 unmarked dummy vectors for possible repeats

without replacing. Due to the symmetry we do not consider the order of the combinations
whence

P
—1
dim\/:card {em\/...\/eup:lgulg...g,upgn}:<n+£ )

Combining these basis vectors with the r basis vectors of Y yields the desired dimension formula.

7.10 Antisymmetric maps
For complex vector spaces X and Y for 1 <17 < p > 2 with
A, =span {(£1 ®...Qxp) :x1;..;xp € X; I <i<j<p:zx =x;}

the p-linear map ¢ : X? — Y is alternating or antisymmetric iff it satisfies one of the following
equivalent conditions:
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Lop(x1;..52p) =031 <i<j<p:z, =z

)
2. ¢(x1;..;2p) =0 & x1;...;xp € X are linearly dependent.
3. (mw(l); ...;a:w(p)) = sgn (w) - ¢ (x1;...;zp) for every xi;..;x, € X and every permutation

w € Sp.
4. The uniquely determined linear map ¢y : X;, — Y is alternating, i.e. A, C ker ¢g.

The vector subspaces of the alternating p-linear resp. linear maps are denoted as A, (X?;Y) C
L, (XP;Y)resp. A(X,;Y) C L(Xp;Y). Inthe case of Y = C from L, (X?;C) = L (X,;C) = (X,;C)"
follows A, (X?;C) = A(X,;C). Note that for p > dim X every alternating map on X? resp. X, is
the null map.

Proof:
1. = 2.: As in 4.1.10 this follows from ¢ (...; x; + x;;...; x;; ...) Z @ (o5 x5y @y ...) for every 1 <i <
J=<p
2. = 1. : trivial.
1. = 3. : As in 4.1.12 with 7 = (i;7) this follows from ¢ (mT(l);...;mT(p)) = @ (5@ xs..) z
2. 2.

olazitxy.cx;...) =gzt x;.—2j.) = 0T —x5;..) = —@ (T Ty ) =
sgn (7) - @ (T1;...;Tp).
3. = 1. : Obvious with the transposition w = 7;,;.
1. & 4. : trivial.
7.11 Antisymmetrization
For every p-linear ¢ : X? — Y its antisymmetrical map ¢, : X? — Y defined by ¢, (z1;...;2,) =
}%desp sgn (o) - ¢ (:1:0(1); o a:a(p)) is antisymmetric since due to sgn (o) = (sgn (w))? - sgn (o) =
sgn (w) - sgn (0 o w) for every w € S, we have

1
©Ya (:Bw(l); o ccw(p)) =— Z sgn (w) -sgn(cow) - (x(aow)(l); ol :zz(aow)(p))

p: o€Sp

1

= —sgn(w)- > sgn(oow)-p <$(Jow)(1); ---;$(aow)(p)>
p: ooweS),
1
= Hsgn (W) - @a (T15 .5 2p) -

Equivalently it is alternating since in the case of x; = x; due to 1.16.1 we have S, = 705,
with 7 = (¢; j) whence ¢, (21;...;2p) = z%! Yoes, sgn (o) ¢ (wg(l); s wg(p)) = ;%Zaesp sgn (1j00) -
¥ (wTOU(l); e mTOO’(p)) = _I% ZO’GSP Sgn (U) TP (mo(l); T wo‘(p)) = ~¥a (-’.Ul; e mp) = 0. The asym-
metrical map of an already asymmetric map ¢ : X? — Y is @4 (x1;...;2p) = Z%Zaesp sgn (o) -

© (wg(l); ...;a:a(p)> = ]%ZUGSP (sgn (0‘))2 cp(T1s . p) = % (s p) = @ (21505 2p).

7.12 The exterior product

For every power X? of a complex vector space X to an exponent p > 0 exists a complex vector
space AP X and an alternating map A : X? — AP X such that for every alternating ¢ : X? — Y into
a complex vector space Y exists a uniquely determined linear o, : AP X — Y with ¢ = ¢, o A.

The exterior product \? X = X, /A, is the quotient space of the tensor product X, = ®” X
defined in 7.2 and 7.4 over the subspace A, from 7.10 and its elements £ A...Axp = mA (1 ® ... @ Tp)
= A(x1;...;xp) for A = m\ o Ty with the p-linear map 7g : X — X, from 7.2 and the linear
projection 7, : X;, - AP X are the exterior products of the vectors xi;...;x, € X. According to
7.4 we have A\’ X = Xg=C and A' X = X; = X.
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Proof: The linearity of mn and 7.2 and the p-linearity of mg imply the p- p NP X vy

linearity of A = mromg, i.e. T1IAA(cyy, +dzp) AN AXp=c(T1 A .. AYp Ao ATp)
+d(xi Ao A ZE Ao Axp). Also we have A, C ker (w5 o mg) whence according to MT ©

7.10.4 the map A = m o Mg is alternating, i.e. for every permutation o € 5, X, o
holds T, (1) A...AZy(p) = sgn (o) (21 A ... A xp) and in particular zaAx; = —21 Ax2. W

Also we have ... A (g +cx)) AN .. Axg A .. = . AT A ... A&y A ... whence follows ®T

1 A ... Nxp = 0 iff &1;...;z, are linearly independent. In particular X, = {0} XP

if p >n =dimX. According to 7.2 for every alternating ¢ : X? — Y there is
a uniquely determined and linear ¢g : X, = Y with ¢ = ¢g o mg. Then due to 3.8 exists a
uniquely determined and linear ¢, : AP X — Y with p5 o m1A = g whence follows pp o A =

PAOTAOCT R = PR 0Ty = P.

7.13 The finite dimensional case

For finite dimensional vector spaces X with dim X = n and basis {e;;...;e,} resp. Y with dimY =
r and basis {bi;...;b,} the vector space A, (XP,Y) of all p-linear alternating maps ¢ : X? —

Y has the basis B = {wp by: 1< <..<pp<n;1<p< r} with ¢ﬁ1;--~;#p (€y1; ---;eu,,) =

H15--5p
Sl/] 51/19 d
m *ees * Up an

dim A, (X?,Y) = ( " ) r

p

Proof: Any p-linear map ¢ : X? — Y has the form ¢ (x1;..;2p) = > af - ... T @ (€ ...;eLp)

el
for (x1;...;@p) € XP with @, = Y x;*e,, . Since ¢ is alternating every summand with index vector
el
(t1;...; tp) having two identical indices must vanish and every remaining summand is a permutation of

exactly one ordered combination (11 < ... < ¢p) such that according to 7.10.3 follows

Ly Lo
Sp(mlaﬂmp) = Z Z:L'l @ xp @ '@(ebg(l);"';ebg(p))

11<...<tp€loeSy

- Z ( Z Sgn (U) ’ xia(l) T x;o(p)) P (eu; X3 eLp)

n<...<tpel \oes,
L1 lp
xl « o e :L'l
= Z det oo cox (e N Ney,)
1< <tp€l L D
P T, Zp

=px (@1 N..Axp)

due to 4.2 with the linear ¢y : AP X — Y from 7.12 uniquely determined by ¢« (e, A... Ae,,)
= (ebl; ...;ebp) for every 11 < ... < 1, € I. Note that in the case of coinciding indices follows
e, N...Ne, =0 whence ¢y (e, N...Ne,) = ¢ (e,;..;e,) =0. Also for every permutation o € S,
holds e, (1) A ... A€,y = sgn (o) -(e1 A ... A ep) whence px (ea(l) A A eg(,p)) =sgn (o) ¢ (ey:.-;e,)
=sgn (o) - ¢ (e,;...;e,). Hence follows A, (X?,Y) = L (AP X;Y) and since L (A X;R) = (AP X)"
= AP X with ¢ (e,;..5e,) = X S P (€;-.1€,,) - by, € Y with coefficients

L15..5L L1505l
1<p<rig <..<tp€l r .

;.. € Cfor each of the » ) combinations ¢; < ... <, € I of indices and each of the r basis

vectors b, € Y this implies the assertion.

The extension of the exterior product from vectors to antisymmetric tensors analogously to
the extension of the tensor product from vectors in 7.2 to tensors in 7.4 will be introduced in
7.18.
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7.14 Antisymmetric tensors

According to 7.11 for every vector space X and p > 0 the antisymmetrical map

Tga @ XP — X, of mg : XP — X, is alternating such that according to 7.12 x . x
there is a uniquely determined alternating endomorphism 7y € end (X)) with P P
Toa = Te © Tg. The antisymmetrical tensors 75 (21 ® ... ® T)) = Tgq (T1;...; Tp) “®T A;
for ¢; € X with 1 <4 < p form the vector subspace U, = 75 [X,] C X},. Note that ~ xp

the cases A\’ X = Xg =R and A' X = X; = X are covered by g = Tgq = T = id

and that every 0- resp. 1-dimensional vector is trivially antisymmetrical.

Theorem: A, = ker7g. Hence the antisymmetrical tensors are isomorphic to the exterior
products of vectors and to alternating linear forms: U, = A\’ X = X,/A4, = A, (X?,R), i.e.
Te (1 @ ... ® Tp) = Tgqe (T1;...;Tp) Z 1A ATy = (X1 A ... Axp)”. In particular the antisymmetrical
tensor 7g (€1 ® ... ® @) vanishes iff the (x;),c; are linearly dependent.

Proof: According to 7.10.4 it suffices to show that for every ;®...@x, € ker 75 and every alternating
¢ : XP =Y holds g (1 ® ... ® &,) = 0 which implies € Ap,: According to 7.11 for ¢ = pg o g
there exists a p-linear ¢ : X — Y with antisymmetrical ¢, = ¢. Then for every (x1;...;x,) € X?
and the corresponding linear g : X, — Y holds

Ve (T1 ® ... 0 xp) =@ (x15...;2p)

=1 (x15..5p)
= Z sgn (U) 1 (mo(l); e xo‘(p))
oSy
= Z sgn (o) - g (wg(l) R .. ® :co(p))
oSy
=g ( Y sen(0) o) @ . ® mo(p))
oES)

=(YgoTy) (1 ® ... ® xp)
whence follows g = g © Tg which implies the assertion.

7.15 Exterior products in three dimensions

In the case of p = 2 we have a simple expression of antisymmetry by
Tea (T3 Y) = 7 (®;y) — 7 (y; @) Tesp.
TANY=zy—y®x and
Twa (Y3 &) = Tg (Y; @) — Te (@ y) resp.
YAz =yYQ®r— QY
=—-xTANvy.

Hence the exterior product Ay € R? A R3 of two vectors & = z'e; € R and y = yjej € R3 is
computed by

0 2ly? — 22yl zlyd — 2Byl
e Ay = | yla® — 22! 0 w2y3 — 3y?
ylad — izl yBa? — g2 0

The comparison with the tensor product 7.4 may be illustrated by some numerical computations
with reference to the canonical basis, e.g.

1 0 01 0 1 0 0 10
0 lel 1 ]l=1000]erRraR3but | 0 |Al1]=|-100]cR>AR?
0 0 00 0 0 0 0 00
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or

1 0 010 1 0 0 1 0
2 el 1 |=1020]|cerRReaR3but | 2 |Al1]|=|] -1 0 -3 |ecrR*AR?
3 0 0 30 3 0 0 3 0

The representing asymmetric tensor 7' = ¢;;e' A e/ € (R* AR3?)" of a general alternating bilinear
form ¢ € Ay (R3 x R% R) has the form

0 tio  t13
—t13 —toz 0

with t;; = ¢ (e;;€;) = —p (ej; €;) = —tj; whence dim (R3 A R?) = dim Ay (R3 x R%;R) = "("2_1) = 3.

The representing symmetric tensor s;; of a symmetric bilinear form ¢ € Sz (R3 X R3;R) has the
form

t11 ti2 ti3

S=| tiz ta2 t2
t13 t21 133
with t;; = o (e;;€;) = ¢ (ej; €;) = tj; whence dim Sz (R x R%;R) = ”("2+1) = 6.

7.16 The cross product

3
2
dimensional image space R3. If we choose x (e1;es) = e3, x (e1;e3) = —ey and x (eg;e3) = e; we
obtain the cross product :

An alternating map x € As ((R? x R3);R3) is determined by ( > = 3 conditions in the 3-

xxy=x(zy) = Eijkiviyjek:

sgn (o) for (i;4;k) =0 (1;2;3) and o € S

with the Levi-Civita-symbol ¢;;, = { . Explicitly we

0 fori=jVj=kVi=k
have

2l n 2293 — 23y? 0  —23 2 y!
22 | x| 2 | =] 2%~ | = 23 0 —ab | x| ¢
3 Y3 zly? — 22yt VRN | 0 y

with the corresponding linear map
mir Mmi2 Mi3 m23 — M32
Xg ! R3®@R? — R3 given by Xg | mo1 moa mag | = | ms; —mis
m31 M3z M33 mi2 —m21

It is not injective and its kernel are the symmetric tensors Sy = ker xXg introduced in 7.3.1.
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Pseudovectors or axial vectors like the the angular velocity w
and every result from a cross product as opposed to contravari-
ant polar vectors are neither contravariant nor covariant. They ; v
transform in the usual contravariant way for coordinate transforma- T : T
tions Tj4' preserving orientation (cf. 4.5) with det T4' > 0 e.g. for / wy Y & l\

translations, shears and rotations. However in the case of reflec-
tions the right-hand-orientation of x x y towards «; y is changed.
Since the index notation cannot be applied the transformations are
computed separately for each component.

Identities involving the cross product include:
1. Antisymmetry:  x y = -y x @
2. Distributivity: X (y+2)=xxy+z x 2
3. Associativity with the scalar multiplication (¢-z) x y =c- (z X y)
4

. The determinant formula with the canonical inner product x * (y X 2) = €;;,2;y;2, =
det (x; y; 2)

5. The BAC — CAB-formula: (cf. 7.5.3)

ToY122 — T2Y221 + T3Y123 — T3Y321 £ T1Y121
X (yxz)=| —x1y122 + T1Y221 — T3Y223 + T3ysze L xoyszo | =y -(x*x2)— 2z (T *y).
T1Y122 — T1Y221 + T2Y223 — T1Y322  T3y323

7.17 The exterior product of linear maps

7.17.1 According to 7.12 for every real vector space X and p > 0 there is a uniquely
determined linear 7g : A\ X — X, with 79 = 7g o 7. Due to the preceding theorem

P To s
7.14 the map 7y is injective whence \* X = U, = 75 [X,] C X,: The exterior N X Xp
products can be identified with the antisymmetric tensors. WT %
7.17.2 For any vector spaces X and Y, every p > 0 and every linear ¢ : X — Y X,
: p - _ : .
the map ® : X? — APY defined by ® (x1;...;2p) = ¢ (1) A ... A (xp) according APX P pry

to 7.12 is p-linear and alternating. In the case of p = 0 the definitions yield & = o
id: X°=R—=>AY=Randforp=1lwehave d=¢p: X' =X 5 AlY =Y. frT %
Due to 7.10 the corresponding linear map ®g : X;, = AP Y is again alternating

with & = &g omg. Finally and due to 7.12 we have a uniquely determined linear Xp ¢
alternating product ® : \? X — APY with &g = ® o 7 resp. W@T
S (@A Aay) =@ (@) A Ap(xp). XP

7.17.3 The inverse or pullback image of a differential form (cf. [2, th
5.3]) is provided by the corresponding alternating product ®* : APY* —
AP X* of the dual ¢* : Y* — X* of the linear map given by the derivative

p=Df(x): X - Y at the point x € X such that W®“T Tm“
X *P (#7505 w*)y*p
o+ (yl/\.../\yp) =" (yl) A A" (YP)=ylopA..AyPoy X+ <L _y*
TxT TTY
and =95 (x)
X ——Y

" (yP Ay?) = * (yP) A " (y9)

for every y? € APY™ resp. y? € AN?Y*. Consequently we have d* = id : R* — R* for p = 0 and
O* =" Y* - X* for p=1.
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7.18 The general exterior product

The general exterior product A : (A’ X x A?X) — APT? X defined by

:f:/\@z(:Bl/\.../\wp)/\(yl/\.../\yq) —ZIA AT AYA LAY,

is a bilinear map between the asymmetric tensors £ =x; A... Az, e AX and gy=y; A... ANy, €

P
A? X. According to 7.12 it coincides with the exterior product for 1-vectors x = &;y = 9y € X =
Al X with & Ay = & A 9. The following properties hold:

N>

)

<

A
A

Q>

1. associativity: (cZ) Agy=T A(cy) =c-(ZANY)resp. (EANY)NZ=TN(
Y)NZ=ENZ2+ Y

2. distributivity: A (§+2) =& Ay + & A2 resp. (& +
3. anticommutativity: £ A g = (—1)" (g A &).
Proof: Due to 7.3 for the p + ¢ -linear ¢ : XP*9 — APT? X defined by

® (331; e Tpy Y15 ...;yq) =TI N A ANYL AN AY,
there is a unique linear g : X, — APT? X with ¢ = g 0 1y = 7 0 g, i.e.

g0®<w1®...®xp®y1®...®yq):wl/\.../\:rp/\yl/\.../\yq

Hence owing to the distributivity of the tensor product 7.4 the map ¥ : (X, x X,) - APT?X
with

V(z;y) =pp(@@y) =21 A ATy Ay Ao AN Y,

is bilinear in ¢ = 1 ® ... ® )y € Xp and y = y; ® ... ® y, € X;. Due to the linearity of the
canonical projections 7, : X, = AP X resp. 7, : X; — A?X themap A: (AP X x A\ X) — APT2X
defined by W = Ao (f,; 7t,) is still bilinear and obviously coincides with the desired exterior product.
The properties 1. - 3. directly follow from the definition.

7.19 The scalar product

For p;q > 1 and a finite-dimensional unitary vector space X with an orthonormal basis B =
(ei)lgz‘gn resp. the dual space X* with the canonical dual basis B* = (ei)lgign determined by

ele; = (e;;€7) = § the scalar product () : X7 x XP — R is a bilinear form defined by

p
. _ gt P I Y 72 08 7 150003
<$,y> _H <w27y > H <y]7m3> - x,ul;.‘.;,upq ' ylctl;..‘;l/;q

i=1 j=1
for

1

T=21Q.0xpQT @.0xl =z e, 0. Qe,0e"®.. e e X]

resp.

Y=9,0.0Y,0y ®..0y’ =ylliile, ©.0e,0e" .07 XP
and the following properties for c € R and x;y;z € X :
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1. Associativity: ((cx);y) =c- (z;y) = (z; (cy))
2. Distributivity: (z;(y + 2)) = (z;y) + (x; 2) resp. (x +y);2z) = (x;2) + (y; 2)
3. Symmetry: (xz;y) = (y;x)

In the case of (p;q) = (1;0) and a finite-dimensional X the general scalar product assumes the
form () : (X1 x X' =X x X* —» R) with <ei;e;> = eje; = (e;;ej) resp. (x;y*) = y'z = zly; =
xA*xys = (x;y) for x = z'e; resp. y* = y;e’ hence coinciding with the canonical bilinear
form () : (X x X — R) defined by (z;y) = y*x. Thus the general scalar product provides a distinct
interpretation of row vectors "z € X; and column vectors € X!. However this coincidence is
confined to finite dimensional spaces since function spaces as e.g. C. (R) (cf. [4, th. 10.12]) or
LP (\) (cf. [4, th. 9.13]) in general are not isomorphic to their dual space any more. Note also

that the distinction between row and column vectors is meaningless for p + ¢ > 2. (cf. 7.3)
7.20 The exterior algebra

m
For a real vector space X the vector space A X = @,5o A" X = { Yoy, € NPX;m e N} with
> =

m n m n
the exterior product A : AX > AX withz Ay => > (a:p/\yq) forz =3 xpand g =3 y,
p=0g=0 p=0 q=0
is the exterior algebra over X. In the case of a finite dimensional with dim X = n according to
7.12 we have X, = {0,} if p > n = dim X which implies A X = @y<,<, A\’ X with

n p n
dim A X =Y dim A X =} ( " ) =",
p=0 p=0 p

p .
According to 7.19 the scalar product () : X, x X? — R defined by (z;y*) =[] (x;;y") for
=1

i=
T=21®..Q0x, € X, resp. Yy = y!' ® ... ® y? € XP provides an isomorphism 7 : X? — X, given
by ny* : X, = C with ny*x = (z; y*). Hence p-covariant tensors can be identified with linear
maps on the tensor product X,. This isomorphism extends to the subspace U?P = 7 [XP] C X? of
the antisymmetric p-covariant tensors 75y* for y* € XP defined in 7.14 and omitting the brackets
for brevity resp. the subspace A (X,,R) C X of all linear alternating forms ¢ : X, — R from 7.13:

Due to 7.14 the antisymmetric tensor of y* is 75 (y*) = desp sgn (o) - y°M @ ... ®@y’® such that

(motgoy™) (x) = (z; 70Y")
=y Sgn(0)~<-’E1;y"(1)>--.--<w1;y"(p)>

o€Sp

= Z sgn (U_1> : <$gfl(1);y1> Tt <$0*1(P)5yp>

o~les,

= X s (o) o (wo @ @)

o—lesS,
= (ny"), ()
according to the definition of the antisymmetrical map in 7.11. Since the linear alternating forms

A(X,,C) C X, defined in 7.10.4 are exactly the antisymmetricals of all linear forms in L (X; C)
we conclude that UP = 7 [XP] = A (X,,C).
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8 Affine spaces

8.1 Affine spaces

An affine space is a triple (A4; X4;—) of a set A, a vector space X and a map —: Ax A — X4
such that

1. VpEA;aEXAElqu:a:ﬁf

2. p+qf = pt oQ 9
with immediate consequences PO e|w

3. 0p=0 P

1 =7 w=gw g iw

Its dimension is dim A = dim X 4. The most common example is the affine subspace (v + W; W; —)
with v +V = {x € X : * — v € V} generated by a vector subspace V' C X of a vector space X and
a vector v € X \ V. This example includes the vector space (X; X; —) itself regarded as a point set.
Geometrically speaking an affine space is a vector space without a predetermined reference
point resp. origin. The reference point resp. support v can be chosen arbitrarily as a part of the
coordinate system.

8.2 Affine subspaces

The set U C A is an affine subspace iff Xy = {ﬁ :q € U} is a vector subspace for some p € U
and this definition is independent of the choice of p. For any family I/ of affine subspaces its
intersection N{U : U € U} is again an affine subspace with Xp = N{Xy :U € U}. Hence any
subset M C A generates an affine subspace [M] defined as the intersection of all affine subspaces
containing M. The affine subspace \/ {U : U € U}=[J{U : U € U}] generated by their union is their
affine hull. The affine hull of a point p € A is the point itself with the corresponding vector subspace
X, = {}and dimp = 0. The affine hull pV ¢ of two distinct points p; ¢ € A is a line with dimpVv ¢ = 1.
The affine hull p V g V r of three points p; ¢;r € A with linearly independent @; q7 is a plane with
dimpVqVr =2. An affine subspace U & A is a hyperplane iff there is a point p with pvU = A. The
affine hull of finite dimensional affine subspaces U;V C A has the dimension

dim(UVV)=dimU +dimV —dim (UNV).

Two affine subspaces U; V' C A are parallel, in short U||V, iff Xy C Xy or Xy C Xy and in that
case they are either disjoint or one of them is contained in the other. A nonempty subspace U and a
hyperplane H are either parallel or dim (U N H) = dimU — 1.

8.3 Affine coordinate systems

The points P = (pi)g<;j<n, C A of an n-dimensional affine space A are a coordinate system of
A iff (M)lsiﬁn C X4 is a basis of X4 resp. iff V(pi)y<;<,, = A. Every point ¢ € A has a

n
uniquely determined coordinate vector gp € C" with potd =3 qpipop, and for every other r € A
i=1

n
we have gf =Y (rpi — ¢pi) poDi, i.e. grp = rp — qp. The transformation from the affine coordinate
i=1

n n
system P = (pi)ogz‘gn to the system Q = (ql')ogz‘gn with popj :‘21 ti;jgm and poqd :‘21 swﬂ? is
1= 1=

determined by the translation vector s = pgqy with the coordinate vector sp = (sp;)j<;<, and
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the transformation matrix 7' = (ti§j)0<i~j<n' The coordinate vector rg of a point » € A can be
computed by -

Qo = qopt + pof

n n
== spjpop;+ Y _ rpjboD;
=1 j=1
n n
=N tiy (rp; — spj) G0t
j=li=1

whence

rq=Tx(rp—sp)=Txrp—sqresp.rp =T 'x(rq+sq) =T ' *rq+sp.

8.4 Affine maps

A map ® : A — B between affine spaces A and B is affine iff there is a linear ¢ : X, — Xp

with ¢ (p7) =o(p) (ri for every p;r € A. Hence the affine map is determined by a linear map
¢ and a point 79 = ® (pg). Conversely for any points (7;),<;<,, C B given by the coordinates there
is a uniquely determined affine map ® : A — \/y<;,, 7 with @ (p;) = 7; for 0 < i < n and it is
bijective iff (7;)y<;<, is a coordinate system. For affine coordinate systems P = (p;)g<;<,, of A
resp. Q@ = (¢;)g<;<, of B and image points (r;)y<;<,, C B with r; = ® (p;) we have o

— s —
qoTi = qoTo + ToT%

— b+ @ (po) @ (pi)

= Goro + ¢ (Dop})

resp.

—
T'Qj;i904;

(=)
o
=l
z
I
Q.
I M:
5

—
(rojio + (rgji — rj0)) 904;

s

<
Il
—

n
— —
fojo@od+ Y fojidod;
=1

Y-

I
—

J

whence the coordinate vectors ro; = foo + fgi with foj,0 = rgj0 and fgji = roji — 7gj;0 of the
points r; = ® (p;) decompose into the fixed part f, representing the translation gorg and the linear

n
part fg, of the map For = © (@) The image of an arbitrary point s € A with pg$ = > spiPoDs can
i=1

be computed by

qO(I)(S ZM‘{'TO(I)(S
= G0t + @ (po) @ ()

n
=>" fouja0d; + ¢ (pob)
j=1
n n
=Y fouj@d;+ Y spi- ¢ (Pobi)
=1 i—1
=Y foo @@+ Y. spi - fojispidod;
j=1 i=1j=1
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and its coordinate vector is

(@ (s))g = Fqo+ Fxsq

with the representing matrix F' = M5 (p) = (fQi%j>1§i;j§n' The maps ® resp. ¢ are bijective iff
the representing matrix /' is invertible resp. iff its column vectors f(),; are linearly independent
since these are the coordinate vectors of 7or,. In that case ® is an affinity and A is affine to B.

n
Every n-dimensional affine space (A4; X 4;—) with A=Y\ p; by ® (p;) = e; is affine to the canonical
i=0

n
affine space (A,;C"; —) with A, =\ e; defined by an arbitrary origin ¢y and eoe, = e; for the

canonical basis (€;);<;<, of C". The image ® [U] C B of every affine subspace U C A is again an
affine subspace with Xg] = ¢ [Xy] and the reverse image ®~' [V] C A of every affine subspace
V' C B is again an affine subspace with Xg-1(y] = ¢ ! [Xy]. The composition Vo ® : A — C of
affine maps ® : A — B and ¥ : B — (C is again an affine map such that the set of affine bijections
on an affine space A forms the affine group. In the case of ¢ = id4 we have a translation with

pd (p) =qd (q) for all points p;q € A.
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9 Projective spaces

9.1 Definitions

The projective space PX of the finite dimensional vector space X over a field K is the quotient
space X \ {0} /R over the equivalence relation R = {(sx;tx): s;t € K;x € X \ {0}}. Its equiva-
lence classes are the one dimensional vector subspaces resp. directions or straight lines in X.

n
They are represented by homogenous coordinates Tg = [0 : ... : Tp,] = {t- > xzpie;:te K}
n=0

= 7 (xp) with respect to the basis B = (e;)j,~,, of X. Although the projective space is not
a vector space we define its dimension as dimPX = dim X — 1. A projective subspace is
the projective space of the corresponding vector subspace and the projective hull PX v PY =
P(X @Y) is the projective space of the sum of the corresponding vector spaces with dim (PX Vv PY)
= dimPX + dimPX — dim (PX NPY). The projective space KP* = PK"*! of the vector space
K" lover a field K € {R;C} can be represented as a smooth K"-manifold as defined in [2, def. 6.1]
with the n+1 charts ({z; # 0} ; ¢;) given by the coordinates ¢; : {z; # 0} — K™ with ¢; [z : ... : 2]

— (Zo. Zi-1,Titl., . Zp
$i""’ x; ) x; 1Y s

that the set {z; # 0} C KP" is open in the quotient topology of KP" and homeomorphic to K"
which is also open in K". The projective subspace {z; = 0} & KP"!

resp. the parametrizations ¢; ' (z1;...;2,) = [zg: ... : 1: ... : x,]. Note

Ei A {z1 =1} = e; + E; @ RP' \ RP’

(1;22)

{z2 =1} = ez + F2 = RP! \ RP?

L (z151)

0 1~ ~
R C RP! x RP! RP RP! = S5 /R = S,

RP \ RP? 2 (S5 /R) \ (S1/R) = By

{Z2 # 0} C RP? RP!
{Z1 # 0} C RP!

T3
b o, + E; = RP2\ RP!

(0;0;1)
SR OO

RP? \ RP! 2 (S3/R) \ (S2/R) = Ba

(y1 : y2 2\0} SO

N
e
[

N
R
AN

N
N
S

‘\

7

R
S
N
RN
3
S

R
O
X
S
X
et

o

5

R
2>
-

22
X
X

%
o,

e RN LY . — RP! RCS%x 582
- \ rp2 D3 =RF 5 o3 RP? = S3/R
[y1: y2 : y3] RCSTxS RPIES/RES

(—fr 1) RP’ S
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9.2 Projective maps

A map ® : PX — PY is projective iff there is an injective linear ¢ : X — Y with @[] = ¢ (x)
for every 0 # x € X. A bijective projective map is a projectivity. For linear maps ¢, ¢’ : X =Y
with projective map ®; @' : PX — PY we have ® = @’ iff there isa A € K \ {0} with A - ¢ = ¢’ since
for every pair of linearly independent x;y € X there are \; y;v € K \ {0} with &' (z) = \® (x),
P (y) = p® (y) and ' (x + y) = v® (x + y) resp. (A —p) @ () — (A —v) @ (y) = 0 whence from the

linear independence of ® () and ® (x) follows A = u = v.

9.3 Projective completion

1. For every vector space X with finite dim X = n > 1 and every vector subspace X4 C X
with dim X4 = n — 1 there is an affine space (A; X4;—) and a bijection ® : PX \PX4 — A

such that for every projectivity ¥ : PX — PX with ¥ [PX4]

g=PoVod!:A— Ais an affinity.

= PX4 the composition

2. Conversely for every affine space (A; X 4;—) over a complex vector space Y with X4 ¢ Y
there is a vector subspace X4 C X C Y and a bijection ® : PX \ PX4 — A such that for
every affinity g : A — A the composition ¥ = ® logo® : PX \ PX4 — PX \PX,4 is a

projectivity .

The vector subspace X 4 is the infinitely distant hyperplane and PX is the projective completion

of the affine space A.
Proof:

=: We choose any a € X \ X4 and consider the affine space A =
a+Xy={a+xs:xs € X4} According to the Steinitz basis
exchange lemma 3.5 there are bases B4 C B of X4 C X with
B = {a} U B4 such that every y € X \ X4 there is are uniquely
determined y4 € X4 resp. A € K with a + y4 = Ay. Hence
the map @ : PX \ PX4 — A with ® (K -y) = a + y, is well
defined. Furthermore for every projectivity ¥ : PX — PX
with W [PX 4] = PX4 there is an automorphism ¢ : X — X
with K - ¢ (y) = ¥ (K -y) and ¥ [X4] = X4 and due to 9.2
by inserting a suitable factor ¢ € K we can attain that ¢ (a) €
Xa. For every y € X \ X4 follows that (¢ (y)), — ¢ (ya) =

T Y(y)—a—vNy)+¢v(a)=(t—NY(y)+¢(a) —a € X4 which implies (7 — )
whence 7 = A since ¢ (y) € X \ X4. Hence we have shown that (¢ (y)) 4

YA

- v (y

¢ (ya)

independently of y. The affine character of g = ® o Wo ®~! : 4 — A then follows by

(y
a) = ¥(a) -

(P(¥)a

)GXA

v(atyratzi)=v(zata—ys—a)
=1 (za+a)—1(ys+a)
=9 (za) =¥ (ya)
= (W (2)a— (@ @)a
—a+ ¥ (y)a;a+ @ (2),
=P (K -4 (y); 2 (K- (2)
=(®oW) (K y);(®o¥)(K - 2)
=gla+ya); (G+ZA5-

<: As in the first part we choose an @ € Y \ X4 and consider the vector space X = span (B)
with B = {a} U B4 and a basis By for X4 = span(B4). We define & : PX \ PX4 — A with
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¢ (K -y) = a+y4 and consider an affinity g : a+X 4 — a+ X4 with a linear injective o : X4 — X4

—
such that for any y4;24 € X4 holds ¢ (z4 —y,) = go(a—l—yA;a—i-zA) —gla+tysgla+tza)=
gla+za)—g(a+yy). Wedefiney : X — X by ¢ (y) = g (a)+¢ (y4) with the uniquely determined
ys =71y —a for y € X \ X4 whence

V(K y)= (0 ogo®) (K y)
= (@ og)(a+y,)
=2 ' (g(a+0)+p(ys—0)

Hence ¥ = ¢ 1ogo®: PX \ PX,4 — PX \ PX, is a projectivity and due to the first part of the
proof we conclude that PX is the projective completion of A.

Example:

If we exclude the hyperplane PE,, = {zp,, = 0} the remaining set PX \PPE,, = {x # 0} can be identified
with the affine space e, + F,, resp. the vector space E, by the bijection ® : PX \ PE, — e, + E,
with @ [z : ... xg,) = (%; sl %; 1). Geometrically speaking every line T = {tx : t € K} in X
except those parallel to the infinitely distant plane FE, will meet the affine plane e, + F,, at a point
® (). Hence the theorem provides the mathematical basis for the projection of three-dimensional
objects onto a twodimensional screen as explained by Albrecht Diirer in his Underweysung mit
dem Zirckel und Richtscheyt from 1525. As already mentioned in 9.1 the projective completion
is not an affine space any more but the quotient space obtained by gluing the two components

together according to [6, th. 4.9] resp. [2, ex. 6.2.4] is homeomorph to a closed manifold.
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9.4 Projective coordinates

The elements (C - x;),;<,, C PX are projectively independent iff the (z;),;,.,, C X are linearly
independent. The family B = (C-v;);;<,, 1o C PX with dimPX = dim X —1 =n is a projective

basis iff any subfamily of n 4+ 1 directions is projectively independent. A projective coordinate
n+1
system is a projectivity » : PC"*! — PX with homogenous coordinates (71 : ... : 7, 41) := C-
i=1

n+1
z;e; for the canonical basis (€;);<;<, 1 C Cn*l. Usually we define & (1 : ... : py1) := C- > 250,
== i=1

n+1
The additional direction usually is defined by C - v,42 = C- > v; and describes the orientation of
i=1
the infinitely distant plane X 4 with respect to the coordinate axes in the representation of
the projective space PX as an affine space A = ® [PX \ PX 4] e.g. in the following two representations

of Ay = ® [PR® \ PX,,]:

(0:0:1)

] (0:1:0)
(1:1:1)

ha =@ [ (5) \ ()]

> (1:0:0)

M){M:(l:l:l#

(0:0:1)

(1:1:1)

X, =(3:-1: -1t

(1:0:0)

Example:

For a vector @ € C3\ C- (1;1;1) the projectivity ® : PC* — PC3 defined by ® (z1: a9 : x3) =
(a1w1 : asxs : agxr3) with a corresponding linear ¢ : C* — C3defined by ¢ (z1; 29; 23) = (a121; a2w2; azx3)
has three fixed points resp. directions along the basis vectors

®(1:0:0)=(a1:0:0)=(1:0:0)

(0:1:0)=(0:a2:0)=(0:1:0)

(0:0:1)=(0:0:a3)=(0:0:1) but

(1:1:0)=(a1:a2:0)#(1:1:0).
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Index

BAC — CAB-formula, 57 complementary space, 15

() R-decomposition, 39 complete space, 38

p-linear, 45-47 complex numbers, 12
composition, 5

abelian, 4, 5 conjugate, 7

adjoint, 43 conjugate symmetry, 38

adjoint map, 44 conjugation, 7

affine, 62

connected components, 26
continuous, 43
contraction, 51
contravariant, 21, 49
contravariant vector, 19
convolution, 10
coordinate system, 17
coordinate transformation, 17, 19
coordinate vector, 17, 38
coordinate vectors, 15
covariant, 21, 49
covariant vector, 19
covectors, 19

cross product, 50, 56
cycle, 8

cyclic group, 7

affine coordinate system, 60
affine group, 62

affine hull, 60

affine map, 61

affine space, 16, 60

affine subspace, 60

affinity, 62

Albrecht Diirer, 65
algebraically closed, 13
alternating, 22

alternating map, 52
alternating product of maps, 57
angular velocity, 57
annihilator, 21, 44
antisymmetric map, 52
antisymmetrical, 55, 59

antisymmetrical map, 53 degree, 12

antisymmetrical tensor, 55, 59 determinant, 22

Antisymmetry, 22 differential form, 57

associative law, 4, 13 dilation, 18

automorphism, 5, 17 dimension, 14, 63

axial vectors, 57 dimension formula, 16
dimension of an affine space, 60

basis, 13 direct product, 4, 15

bilinear, 58 direct sum, 15

bilinear form, 20 distribution law, 13

bilinearity, 38 distributive laws, 9

Division rule, 4
division rule, 4
dual basis, 19

dual linear map, 44
dual space, 18, 49
dyad, 48

dyadic tensors, 48

canonical affine space, 62
canonical inner product, 15
canonical projection, 16
Cauchy-Schwarz inequality, 39
Cayley’s theorem, 5
Cayley-Hamilton theorem, 31, 41
center, 6, 7

centralizer, 6 Eigenspace, 28
characteristic polynom, 28 Eigenvalue, 28, 42
characteristic polynomial, 45
class formula, 8

closed manifold, 65

column rank, 13

column vectors, 13, 17
commutative law, 4
complementary Matrix, 24

eigenvalue, 41

Eigenvector, 28

eigenvector, 42

Einstein summation convention, 15, 19, 45
elementary matrix, 17

elementary transformation, 17
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embedding, 5, 38
endomorphism, 5
endomorphisms, 10

equivalence classes, 12
equivalence relation, 5, 12
Euclidean division, 10
Euclidean division algorithm, 31
Fuclidean polynomial division, 12
euclidean space, 38

exterior algebra, 59

exterior product, 53, 54, 58

factor group, 6, 10

factor ring, 10

Fermat’s little theorem, 7

field, 12, 13

Fitting’s lemma, 33

fixed point, 7, 66

fundamental theorem of algebra, 12, 28, 31

Gauss algorithm, 17, 22

generalized eigenspaces, 33

generator, 4, 10

gluing, 65

Gram’s determinant, 39

Gram-Schmidt orthonormalisation, 39, 43
Gram-Schmidt-orthonormalisation, 42
group, 4, 16

Hadamard’s inequality, 39
hermitian, 38

hermitian matrix, 38, 43
Hilbert space, 38

homogenous coordinates, 63, 66
homomorphism, 5, 15
hyperplane, 18, 60, 64

ideal, 10

index, 5

index notation, 15, 19
inductively ordered, 14
inner automorphism, 7
inner product, 38, 44
integral domain, 9, 11
intermediate value theorem, 13, 27
invertible matrix, 17
isomorphism, 5
isotropy group, 7

Jordan matrix, 34

kernel, 5
Klein Vierergruppe, 8

Lagrange’s theorem, 5, 16
Lebesgue integrable, 10
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left coset, 5, 7

left inverse element, 4
left neutral element, 4
left translation, 4, 5

left translations, 5
Levi-Civita-symbol, 56
line, 60

linear map, 15

linear maps, 10

linear span, 13

linearly independent, 13
linearly ordered, 14
lowering of the index, 51

manifold, 63

matrix, 13

maximal family, 14
maximal ideal, 11
mean value theorem, 13
metric, 38

metric tensors, 51
minimal polynom, 32
monoid, 4

neutral element, 13
nilpotent, 32

norm, 38, 51

normal, 39, 45

normal subgroup, 6, 41
normalizer, 6, 8
normed, 22

operation, 7

orbit, 7, 8

orbit decomposition formula, 8
order, 5

orientation, 26, 41, 57
orthogonal, 17

orthogonal complement, 39
orthogonal matrix, 41
orthonormal, 39, 58
orthonormal basis, 15, 17
othogonal, 39

parallel affine spaces, 60
Parallelogram equality, 39
path connected, 26
permutation, 8, 52, 53
permutation group, 5
plane, 60

polar vectors, 57
Polarisation equality, 39
polynomial, 12

positive definite, 38, 44
positive definite matrix, 38



powers, 7 symmetric group, 5, 8

prime ideal; 11 symmetric map, 52

prime number, 7, 12 symmetric matrix, 43

principal, 32 symmetric product, 52

principal ideal, 10 symmetric tensor, 48, 52
principal ring, 10 symmetric tensors, 56

product, 10 symmetry, 38

product rule, 13 symmetry group of the square, 4

projection, 6

projective basis, 66
projective completion, 64
projective coordinate, 66
projective hull, 63
projective map, 64
projective space, 63
projective subspace, 63
projectively independent, 66
projectivity, 64
pseudovectors, 57
Pythagoras equality, 39

tensor, 20, 49

tensor product, 46, 50, 52—-54
tensors, 46

transformation matrix, 17, 38, 61
translation, 7, 57, 62

translation vector, 60
transposition, 8, 19, 51, 53
transpositions, 20

Triangle inequality I, 39

Triangle inequality 11, 39

trivial subgroup, 5

type of a tensor, 49

quadratic form, 43
quaternion group, 5
quotient set, 7

Underweysung, 65
uniqueness of the inverse, 4

quotient space, 16, 52, 53, 63 uniqueness of the neutral element, 4
unit element, 9

raising of the index, 51 unitary, 58

rank, 16 unitary endomorphism, 41

real linear, 18 unitary matrix, 39, 41

real part, 18 unitary space, 38

reflection, 4, 57

regular, 4, 5 Vandermonde determinant, 27

vector, 13
vector space, 13

right inverse property, 4
right neutral property, 4

right translation, 4, 5 Weierstrass factorization theorem, 10

ring, 9, 15, 16
root, 12 zero divisor, 9
rotation, 4, 57 Zorn’s lemma, 11, 14

row linear, 22
row vectors, 17

scalar product, 38, 58, 59
scalars, 13

Schroeder-Bernstein theorem, 14
self-adjoint, 43
semi-isomorphism, 44
semigroup, 4, 5

sesquilinear, 38

shear, 18, 57

Steinitz basis exchange lemma, 14, 16
subgroup, 4, 7

sum of ideals, 10

supremum, 14

symmetric dyad, 48
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