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Preface

This text is essentially a working reference and follows the classical expositions of Bauer [1], Forster
[3], Hewitt/Stromberg [4], Lang [5] and Rudin [7] to develop the foundations of the analysis
of functions needed for the research on partial differential equations in probability and physics.The
necessary results from set theory and topology can be found in [11] and [13]; the corresponding
references are given in the text. For reasons of brevity motivations and proofs for simple definitions
and propositions are omitted.

The exposition starts with measure theory which is the field of mathematics dedicated to the study
of the content or weight of a set expressed by its measure. If the set is defined by a function on a
certain domain its measure can be written as an integral. In this case the function turns out to be
the derivative of the measure, i.e. it is itself a measure for the rate of change of the given measure
depending on the change of the domain. Thus measure theory provides one of the basic methods for
the study of functions in analysis. Since the measure of a set can be interpreted as the probability
for the realization of the events represented by its elements measure theory has proved to be a very
useful foundation of probability theory and statistics.

The first section introduces measurable sets, measures and measurable functions in a pronounced
analogy to the open sets, metrics and continuous functions in topology. The concept of integration
provides the basis for the extension of measures on product spaces. For the sake of clarity the integral
is introduced in the generalized Bochner variant for functions with values in Banach spaces and
later specialized to the usual Lebesgue integral so as to profit from the full range of possibilities of
differentiation. The Lebesgue integral and the associated product measures on countable products
of measure spaces prove to be a very useful concept for the description of sequences of independent
random variables and their mean rep. expected values leading to the strong law of large numbers.
In analysis they constitute the foundation for the integral transformations needed for the solution
of partial differential equations, e.g. convolutions, distributions and fourier transforms.
These integral transformations also provide an easy approach to the central limit theorem of
probability theory. Mean values resp. integrals of functions on subsets are themselves measures and
the Lebesgue-Radon-Nikodym theorem states that in fact every positive o-finite measure can
be represented as an integral over a suitable second measure. This result provides the foundation
for two central theorems in functional resp. real analysis: Positive resp. bounded measures on
locally compact vector spaces prove to be eqiuvalent to the corresponding functionals. Hence the
set of all such measures on such a space is the dual space of a locally compact vector space. This is
the content of the Riesz representation theorem.
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1 Measurable sets

1.1 o-algebrae

A family A C P (X) is an algebra iff

1. e A

2. ABeA=ANB;AUB;A\Bec A
In the case of

3. Xe A

4 (An)yen CAA(M#EmM = Ay N Ay =0) & UpenAn € A
we have a o-algebra. The pair (X;.4) then is a measurable space. Every o-algebra is closed
under arbitrary countable unions and intersections since for (A,), .y C Aowe obtain paiwise
disjoint A, := Ay \ Ur<ken Ak = Mi<ken (An \ Ax) € D whence U,eny An = Unen4, € D and
Mnen An =X \ Unen (X \ Ap).

1.2 Borel s-algebrae

For an arbitrary M C P(X) the intersection o (M) of all o-algebrae containing M is again a o-algebra.
It is the o-algebra induced by M and M is its basis. On a topological space (X;O) we have the
Borel g-algebra B (X) = o (O) induced by the topology O. Owing to 1.1 it contains the open sets
and their countable intersections, i.e. the Gs-sets as well as the closed sets and their countable
unions, i.e. the F,-sets. The Borel o-algebra of a second countable topological space O ()
induced by a countable topogical basis £ is induced by & itself, i.e. B(X)=0(0O(€)) =0(E). In
a Hausdorff space all compact sets are closed and hence Borel measurable, i.e. measurable with
respect to B(X). For a locally compact X which is countable at infinity the Borel o-algebra
B (X) = o0 (K) is induced by the family /C of all compact sets since due to [13, p. 10.6] every closed set is
the countable intersection of compact sets. In a discrete space X with B(X) =0(0)=0 =P (X)
a set is compact iff it is finite and o (K) is the o-algebra of all sets A C X with countable A or X \ A.
Using Zorn’s lemma ([11, p. 14.2.4]) we can infer that o (K) = B(X) iff X itself is countable.

1.3 The trace of a s-algebra

The trace o-algebra AN B := {ANB:Ac A} on a subset B C X of a measurable space (X;.A)
simply consists of the inter sections of measurable A in X with B. On account of (O; NO2) N B
= (OlﬂB)ﬁ(OgﬂB), (OlUOQ)ﬂB = (OlﬂB)U(OzﬂB), (01\02)03 = (OlﬁB)\(OgﬂB)
and (U,eny On) = Upen (On N B) the trace o (O) N B of the Borel o-algebra B(X) = 0 (0) on a
topological space (X; Q) is identical with the o-algebra o (O N B) of the trace ONB of the topology
O on B.

1.4 Intervals and figures

The finite unions of pairwise disjoint left-open intervals Z = {|a;b] : a < b € R} form the alge-
bra F = {OO<k<mIk L, eT0<k#I<m=IL,Nn;=0me N} of the one-dimensional figures

since ) = Ja;a] € Z and for I,J € Z we have INJ € Z, I\ J € T as well as [ U J € T in the case of
INJ #0resp. IUJ € F for INJ = (). Hence for F = U0<k<mlk€]:andG U0<l<nJl€]:vve

have FNG = Uogkgmuogkzgmlk NJeF, F\G=F\ (FNG) € Fand FUG € F. The left-open
intervals ]a; b] are Gs-sets hence they are Borel-measurable and because of |a;b[ = UkeN]a; b— %

they induce the Borel o-algebra on R as well as the algebra of figures: B =0 (F) = o (Z). Alter-
native basis families are the closed rays |—oo;b] = UneN]a; b— H since Ja; b] = |—00;b] \ |—00; a] as
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well as the open rays |—oo; b[, Ja; oo[, [a; 0o[ and by analogous arguments the right-open intervals
[a;b] for a < b€ R.

1.5 Dynkin systems

A family D C P (X) is a Dynkin system or §-system iff
1. 0eD.
2. Ae D X\AeD
3. (An)ey CDA(#m= AN Ay =0) & UpenAn €D

1.6 The Dynkin /-m-theorem

The Dynkin system 46(€) generated by a m-basis £ C P(X) being closed under intersections
coincides with the corresponding o-algebra o (£).

Proof: For every B C A we have A\ B= X \ (X \ 4A)UB) whence (X \ A)ND =D\ (AND)eD
for every D € §(€) and A C X. Hence the family Dp := {AC X : AN D € §(€)} is itself a Dynkin
system including £ and consequently §(£). Hence § (€) is closed under intersection. On account of
AUB=X\((X\A)N(X\B)), A\B=AN(X\ B) resp. 1.5.3 it is a o-algebra, i.e. (&) C 4(&)
and since every o-algebra is a Dynkin system we have o(€) = §(E).

1.7 The monotone class theorem

A class M C P (X)is monotone iff it is closed under the formation of monotone unions and intersec-
tions, i.e. for every increasing sequence (A),~,; we have J,~; A, € M and for every decreasing
sequence (A,),~; we have (,~; A, € M. Every monotone class M including an algebra A c M
also includes the o-algebra o (A) C M generated by A.

Proof: We apply the “good set principle” three times in a row: Since every monotone algebra
is a o-algebra it suffices to show that the monotone class m (A) generated by A, i.e. the intersection
of all monotone classes including A, is an algebra: The class F = {ACX: X\Aem(A)} is
monotone and includes A whence follows m (A) C F, i.e. m(A) is closed under complementation.
The class G ={A C X : AUB € m(A)VB € A} is monotone and includes A, hence m (A). The class
H={ACX:AUuBem(A)VBem(A)} is monotone and includes A since m (A) C G. Hence
m(A) C H, ie. m(A) is closed under formation of unions. Due to ANB =X\ (X \ A) U (X \ B))
we obtain the intersections which completes the proof.

2 Pre-measures

2.1 Pre-measures

The inclusion of big sets like X = C into the domain of a measure makes it necessary to include
the corresponding value co into its range. Since we expect integrals of vanishing functions on sets of
infinite measure to have the value zero we define co -0 := 0- 00 := 0. The corresponding extended
ranges are denoted as R U {oo} = R resp. CU {oc} = C resp. [0;00[U {00} = [0;00]. A set function
A — [0;00] on an algreba A C P (X) is finitely additive iff u (AUB) = p (A) +p (B) for disjoint
A, B € A. In the general case with AN B € A follows the subadditivity u (AU B) < u(A) +u(B).
If there is an A € A with p1 (A) < co we have p () = p (AU D) — pu(A) = 0. Also p is monotone: For
A C Band p(A) < oo on account of A\ B € Aand B=AUB\ A we have u(B\ A) = pu(B)—pu(A)
and particularly p(A) < p(B). Note that @ (B) = 0o = pu(B\ A) = oo if p(A) < co. In the case



of o-additivity with u (OneNAn) = > nen M (Ap) for pairwise disjoint (An),cy C A it is a pre-
measure. The supremum property (cf. [13, p. 14.12]) of the real numbers permits the extension
of the subadditivity to countable unions: p(U,cn An) < X nen it (An).

2.2 Characterization of pre-measures

A finite and finitely additive set function p : A — [0;00[ on an algebra A C P (X) is a pre-
measure if one of the following equivalent conditions holds.

1. o-additivity: For a sequence (A4,), .y C A of pairwise disjoint measurable sets with OnGNAn €
A we have p (UnENATL> =2 nen 1 (An).

2. Continuity from below: For an increasing sequence of measurable sets Ag C A; C ... with
Unen An € A we have 711131\1” (An) = u(Upen An)-

3. Continuity from above: For a decreasing sequence of measurable sets Ag D A; D ... with
Maen An € A we have limpe (4n) = g (Nscrs An)

4. (-Continuity: For a decreasing sequence of measurable sets Ay D A1 D ... with (,ey An =0
we have lir%,u (An) = 0.
ne

Note: Owing to the o-additivity every set A with finite pre-measure p(A) < oo has at most
countably many disjoint subsets A; C A, i € I of non-zero pre-measure 1 (A;) > 0Vi € [ since

every subfamily I, = {z el: p(A) > %A)} must be finite and I = | I,,.
n>1

Proof:

1.=2.: With A7 := A, \ A,_; we obtain a pairwise disjoint family (A;},), .y C A with 1 (A,) =
p (Ulgkgn A%) = Yi<k<n 1 (A}) such that }Lig\llﬂ (An) = Znen s (47) = 1 (Unen 4Ar) =
1(Unen An)-

2. = 3.: Weapply 2. to the increasing sequence () = A, C A} C ... of the complements A/, := A\

An € Asuch that limp (A,) = limp (Ao \ A7) = lim (4 (Ao) — p (A7) = g (Ao) —limp (A7)
= 1 (A0) = p (Unen 4n) = 1 (A0 \ Upen 47) = 1 (Nper Ao \ A7) = 1 (Mnery An)-

3. = 4.: Obvious.

4.=1.: With A}, := U,-,An we obtain a decreasing sequence (A} peny With Ngen A = 0 and
p (A}) < oo such that due to 4. we have 0 = iig\l]u (A) =p (OneNAn) — Eg\l{u (OngkAn) =

12 (OneNAn) — 2 neN M (An).

2.3 Examples

lLxe A

0,2¢A for A C X and z € X is a pre-measure on every

1. The Dirac measure 0, (A4) := {

ring on a set X.

on the algebra P (X) of a discrete space X

f table A
2. The measure M(A) = {0 or countable

oo else
according to 1.2.



3 Measures

3.1 Measures

A pre-measure p on a o-algebra A is a measure and (X;A; 1) is a measure space. Probability
measures have the range [0; 1] and in that case (X;.A; 1) is a probability space.

3.2 Outer measures

A set function fi : P(X) — [0;00] is an outer measure iff for all A, B, A, € A,n € N the following
properties hold:

1. Homogeneity: ji()) =0

2. Monotonicity: A C B = i(A) < i(B)

3. Sub-additivity: g (U,enAn) < Xnen it (An)
A set A C X is fi-measurable iff for every @) C X we have

4 Q) = (Q@NA)+ i (Q\A).

3.3 Carathéodory’s theorem

For an outer measure fi on a set X the system A of all fi-measurable sets A C X is a o-algebra and
the restriction fi| 4 is a measure.

Proof: Obviously we have ), X € A and on account of 3.2.4 every A € A has a measurable com-
plement X \ A € A. For A,B € A the union AU B € A is measurable too since by applying
3.2.4 successively we obtain first an equation (I): 4(Q) = p(Q@NA)+ a2 (Q\A) = (QNANB) +
R(QNA\B)+ a2 (Q\ANB)+ a(Q\ A\ B) and if we substitute @ with @ N (AU B) in (I) we ar-
rive at another equatiuon (II): f(QN(AUB))=a(QNANB)+a(QNA\B)+ia(Q\ANDB). We
can substitute the first three terms in (I) by (II) and hence obtain the measurability of the union:
Q) = (Q@N(AUB))+ i (Q\ (AU B)). Thuas and because of ANB = X\ (X \A)U(X\ B))
and A\ B= AN (X \ B) the family A is an algebra.

For a sequence (A,), .y C A of pairwise disjoint measurable sets A := |J,,cy A equation (IT) yields

QN (AgUAL)) =a(QNAg) + i (QN Ap) resp. by induction [ (Qﬂ kLiJO Ak> = ]ﬁ:o A (Q N Ag).

On account of G Aj € A and 3.2.2 we conclude that (ITI): 4(Q) = 1 (Qﬂ G Ak) + i (Q\ CJ Ak)
k=0 k=0 k=0

n
> > p(@Q@NAg)+ i (Q\ A). Since this estimate holds for all n € N it extends to n — oo such that
k=0
by 3.2.3 we arrive at the measurability criterion 3.2.4 for A. Due to 1.5.3 the family A is a Dynkin

system which is closed under intersection and in accordance with 1.6 it is a o-algebra. If in (III)
we substitute @ = A and observe 3.2.3 we obtain the o-additivity of ji on A, i.e. fi| 4 is a measure.

3.4 The uniqueness theorem

Two measures p1 and pg on a o-Algebra o (£) induced by a m-basis £ C P (X) are identical iff they
coincide on £ and are o-finite on &, i.e. 3(E,),cy C € with U, ey En = X and py (Ey) = po (E,) < 00
for all n € N.

Proof: For £ € £ with pu1 (E) = pg (E) < oo the family D :={D € 0 (£) : 1 (END) = p2 (EN D)}
is a Dynkin system since () € Dg and for every D € Dg on account of p; (EN X\ D) = u1(E) —
p1(END) = pe(E) — pe(END) = us(ENX\ D) we also have X \ D € Dg. Criterion 1.5.3
follows from the o-additivity of p; and pe. Since £ is closed under intersection we have £ C Dg
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and since Dg is a Dynkin system 1.6 entails 0 (£) = 6(£) C Dg C o (&), i.e.Dg = o (E) resp.
p1(ENA)=p(ENA)forall E€ & and A€o (E).
As in the proof of 2.2.2 we define a sequence of pairwise disjoint sets Ej, := Ep \ Uj<gepn Er € 0 (E)

with OnENE;L = X such that for A € o () we have E, N A € o (), hence pu; (B, NE,NA) =
p2 (En, N E;, N A) and the o-additivity of py resp. us yields pg (A) = pa (A4).

3.5 Hahn’s extension theorem

Every o-finite pre-measure . on an algebra A can be extended in a unique way to a measure
pon o (A).
Proof: For every set Q C X let U (Q) # () be the family of sequences (A,,),,cy C A with Q C U, cn An.

Then fi(Q) = inf {3, cn i (An) : (An),eny €U (Q)} in case of U (Q) # 0 and i(Q) = oo else is an
outer measure since obviously we have i(()) = 0 and for P C @ follows U (P) D U (Q) and hence
A(P) < (@), particularly i(Q) > 0 VQ C X. For every sequence (Qn),cy C P(X), € > 0 and
n € N there is a sequence (Anm) ey C U (Qn) # 0 with 32, en p (Anm) < 1(Qn) + €271 and since
(Anm)pmen €U (Upen @n) it follows that i (U,en @n) < 225 men # (Anm) < Xpen i (Qm) + €. Since
€ > 0 is arbitrary condition 3.2.3 is satisfied.

The algebra A is fi-measurable since for every A € A and Q C X with (A,), .y C U (Q) we have
(An N A) ey CU@QNA) resp. (Ap\ A)eny CU(Q\ A) and since p (An) = p (A NA) + p(An \ A)
we obtain 4(Q) > p(QNA)+ i (Q\ A) and hence equality on account of 3.2.3. The assertion then
follows from 3.3 and 3.4.

3.6 The approximation property

Every set @ € o (A) with finite measure p(Q) < co on a o-algebra o (A) induced by an algebra
A can be approximated in measure by a sequence (Cy,), .y C A such that li_)m w(QAC,) =0 and
n—oo

particularly nhﬁrgo,u (Cn) =1 (Q).

Proof: As in the proof for 3.5 and since p (Q) < oo for every € > 0 we can find a sequence of w.l.0.g.
(cf. proof of 2.2.2) pairwise disjoint sets (Ay),cy C A with Q C OkeNAk and p (OkeNAk) —p(Q) =
>oren 4 (Ax) — 1 (Q) < §. The unions C,, := OogkgnAk already constitute the desired sequence since
owing to p (OkeNAk> < oo we can apply 2.2.2 such that there is an ng € N with p (OneNAn) — 1 (Chy)

°

< § and hence ;1 (QACy) = 11 (Q \ Cog) 11 (Cog \ @) < 1t (UpenAn \ Cug ) +11 (UnewAn \ Q) < §+5
= e. The second assertion follows from p (Cy,) = p(Q) + 1 (Cp \ C) and p (C, \ C) < u(QAC,,).

3.7 Distribution functions and Lebesgue-Stieltjes measures

The real vector space of nondecreasing and right continuous distribu-

tion functions f : R — R with existing left limits (cddldg = continue d y

droite et limite d gauche) and f (0) = 0 by ug (la;b]) = f(b) — f (a) for every —

left-open interval |a;b] € Z resp. f, (z) = {M (0;a]) —:z20 for x € R is J
p(]=z;0]) <0 — Ar(05a) = (@)

isomorphic to the real vector space M (B (R);R™) of positive measures on -

the Borel o-algebra on the real numbers. right continuous

left limits
Notes:

1. These measures are sometimes called Lebesgue-Stieltjes measures and in the case of the
identity f (z) = = we have the Lebesgue-Borel measure A = p;q. Another example is the
Dirac measure 0, = iy, from 2.3.1 generated by X[z;ccf-
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2. According to [12, th. 3.1] every distribution function has at most a countable number of
simple discontinuities.

Proof: The linearity of the map f — py is obvious. For a given distribution function f the
set function iy defined as above is obviously finite and finitely additive on the m-system of the

left-open intervals 7 = {]a;b] : a < b e R}. Hence its extension by ps (F) = Z pr (1) = Z Z

pr(IxNJp) = Z pg (Ji) for any F' = U0<k<mIk = UO<l<nJl € F to the algebra F of the one-
dimensional ﬁgures from 1.4 is well defined and independent of the representation of F.

For every decreasing sequence of figures Fyp D F; D ... with F,, = Uo<kn<ln]akn§bkn] € F and
Mpen Fr = () the decreasing character implies that Vm > 0 Vn > m VO < ky < 1, 30 < Ky, <
Ly with Jag,;b,] C lag,,;bk,], i.e. from every m > 0 onwards we are left with at most [, + 1
decreasing sequences (Jax,,;bk,]),>,, of intervals. Furthermore the condition (,cy Fn = () implies
that each of these decreasing sequences must terminate in an empty set after finitely many steps:
V(lak,:0k,]) > 3N € N with agy = by, since otherwise due to the supremum property [13, th.
14.12] of the real numbers we had limits a = sup ag, < 1nf bk = b and consequently () # [a;b] C

n—oo
N Jag,;bk,]. Hence Jim i (F,) = 0 whence by 2.2.4 uy is a pre-measure on F. By pf (J—n;n])
neN
= f(n) — f(—n) it is o-finite such that according to Hahn’s extension theorem 3.5 there is a

uniquely determined extension to a measure ¢ on o (F) = B(R) according to 1.4.

Conversely for a given measure p € M (B(R);R") the obviously nondecreasing distribution
function f, as defined above must be the right continuous for x > 0 since the continuity from

above 2.2.3 of u implies nh—>nolof”‘ (a: + %) = lim p GO;x + %D =pu (ﬂnzl}o;x + %D = 1 (]0;2]) =

n—oo

[ (x) and also for x < 0 since owing to the continuity from below 2.2.4 we have h_}m fu (x + %)
n—oo

= — 11mu(}x+%;0}) = —u (Un21}$+ %;OD = —pu(Jz;0]) = f(x). For every x > 0 must exist

a le;:imit since the continuity from below implies nli_}rgofu (;1: — %) = nh_}rgo,u GO;JE — %D =
o (Unzd(}; T — %D = 1 (]0;z[) € R and likewise for z < 0 since by the continuity from above we
e by (= 4) =~ i $0]) = (e o $0]) = -0 < R

3.8 Continuous Lebesgue-Stieltjes measures

Continuous distribution functions f € C (R;R) imply pur ({2}) = pf (ﬂnzdx — x4 %D =
lim o (Jo— L+ 3]) = tim f(z+ 1) = f(2+ 1) = 0 whence ps (Ja;b]) = piy ([a;b]) = py ([asb])

n—ﬁzof (Ja;b)) = f(b) — f(a) for a < b € R. Thus every countable union of single points is a -
null set, in particular the rational numbers: iy (Q) = 0. The Cantor set T := g {{O; 2}N} with
g(r) = 3,51 5% for any sequence z = (v),-, with z,, € {0;2} (cf. [13, p. 2.10] is a A-null set
since T = ey Tn with Ty = [0;1] and 75,41 is a union of 2" disjoint and closed intervals with
length resp. measure 3,1% obtained by removing the middle third from the 2" closed intervals 7;,
with length - such that A (7,,) = % and A\ (T) = }lier%)\ (T},) = 0 due to the continuity from above
(2.2.3). The Gs-set U = (,>; U, with dense open sets U,, = U;>1 Bj,-1.0-i-1(¢;) based on the
enumeration Q = (¢;);~, includes Q and hence is dense in R. Again due to 2.2.3 and since A (Uy,) < 1
it also is a A-null set: A (U) = 0. The complements R \ U,, are closed and nowhere dense in R

but with measure A (R\ U,,) = oo and R\ U is an example for a set of first category with measure
AR\ U) = 0o. (cf. [13, th. 16.1])
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3.9 Complete measures

A measure u is complete iff every subset of a p-null set is measurable.

1. A o-algebra A can be completed to a o-Algebra Ag ={AUM: Ac ANM CNecA:u(N)=0}
by simply adding the requested subset of null sets to the given measurable sets: For A, B € A
resp. Ms4 C Na, Mp C Np and u(Ny) = p(Np) = 0 we have (AUM4) \ (BUMp) =
A\(BUMB)UMA\(BUMB) = (A\B)Q(A\NB)U(NB\MB)UMA\(BUMB) € Ay since
(A\B)Q(A\NB) € A and (NB\MB)UMA\(BUMB) C Ny U Npg with M(NAUNB) = 0.
The o-additivity is obvious.

2. A set E is Ag-measurable iff there are A,B € A with A C E C B and u(B\ A) = 0: One
the one hand for any £ = AU M with M C N € A and p(N) = 0 the measurable sets A and
B := AU N satisfy the criterion. On the other hand for any E and measurable A, B according
to the criterion we have £ = AU (B\ ANE) with B\ ANE C B\ A and hence E € A.

3. The corresponding extension o O p with pg(AUN) := p(A) for A€ Aand N C M : u(M) =0
obviously is a complete measure. Thus the Lebesgue-Borel measure A on the g-algebra B of
the Borel sets is extended to the Lebesgue measure )y on the completed o-algebra By of
the Lebesgue sets. In the following section the index is usually omitted such that the complete
Lebesgue space is still denoted as (X;B; ).

3.10 Almost everywhere existing properties

In probability theory the completion is seldom used since it is not generated by the open sets
any more and hence restricts the choice of possible measures resp. distributions without granting
any gain in information. In analysis it is widely adopted though not always necessarily so since a
o-algebra is a family e.g. larger by far than the topology on R such that it is not a trivial exercise
to find non measurable sets at all. In any case we speak of a property E(z) being satisfied y-almost
everywhere (p-a.e.) iff it is satsfied everywhere with the exception of p-null sets, i.e. iff u (-F) = 0.

3.11 Vitali's theorem on non-measurable sets

There is a set K C R which is not Lebesgue measurable.

Proof: The equivalence relation defined by zRY < x —y € Q generates a disjoint cover of R
by equivalence classes with the class 0 = Q and all other classes represented by irrational numbers.
Since Q is dense in R every class has representants z € [0; 1] and the axiom of choice [11, p. 14.2.1]
permits us to choose exactly one of those for every equivalence class and thus define a set
K C [0;1] such that we obtain a disjoint and countable cover R = Oqu (¢ + K) which due to
the o-additivity and the translation invariance must satisfy co = A (R) = >- .o A (K) and hence
A (K) > 0. On the other hand we have Oqum[o;l} (¢ + K)C [0;2] and due to the monotonicity of the
measure >_,.o A (K) < A([0;2]) = 2 hence A (K) = 0. From this contradiction we must infer that K
is not measurable.

4 Measurable functions

4.1 Measurable functions

A mapping f : (X;A) — (Y;B) between measurable spaces is measurable iff every inverse image
f~1(B) of a measurable set B € B is again measurable in (X;.A),i.e. f~!(B) € A. Since all necessary
set operations transfer to inverse images (cf. [11, p. 9.2]) it is sufficient that the inverse images of
basis sets are measurable in X (cf. [13, p. 3.1]). In analysis the usual basis is the topology O on
Y and the function is Borel measurable iff it is measurable with reference to B = ¢ (O). Hence a
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function f : (X;.A4) — (Y;d) into a metric space is Borel measurable iff f~![B, (y)] € A for every
e>0and yeY.

4.2 Real valued Borel measurable functions

According to 2.1 a function f : X — R is measurable iff the sets {f > a} := f~![[a;00[] or the
analogously defined {f > a}, {f <a} resp. {f < a} are measurable in X. In particular for a Borel
measurable f : X — R the positive part f* := max {f;0}, the negative part f~ := min {f;0} are
Borel measurable. Since Q is countable and dense in R the sets {f > g} = U,eq ({f > a} N{a > g})
and {f > g} = X \ {f < g} are measurable. Hence the maximum max {f; ¢} and the minimum
min { f; g} are Borel measurable for any for measurable f,g : X — R. In the expression for the
measure u of the set of all z € X for which A (f (x)) is true we will often omit not only the argument
but also the curly brackets: p(A(f)) =pn({A(f)}) =p{r e X A(f(x))}) aseg. inu(|f]|<e) =

p{[f] < e€}).

4.3 The image of a measure space

The image f (A) := {B CY : f~1[B] € A} of ag-algebra Aon X under f : X — Y isa o-algebraon Y
and the largest o-algebra such that f is measurable. The image of the measure fop : f (A) — [0; 00]
with (fop) (B) := u(f 1 [B]) resp. (fou)(f[B]) = pu(B) is a measure on f(A) and transitive
with regard to composition: go fopu: go f(A) — [0;00] obviously is again a measure. E.g. the
Lebesgue measure \ is invariant under the translation 7.(x) = x + ¢ with (T, o f) ([a;0]) =
AT [a;0]]) = A(Ja — ;b — ¢]) = A ([a; b]) but not under dilation g(z) = mx since (g o A) ([a; b]) =

Mo~ Hlal) = A ([ 2]) = 52 (lasD:

4.4 The inverse image of a measurable space

The inverse image o (f~1(€)) = f~1 (0 (€)) of the o-algebra o (£) on Y induced by & C P (Y)
under f : X — Y is the smallest o-algebra such that f is measurable. The inclusion C holds since
f71 (o (€)) is a o-algebra containing f~!(£). The inclusion O follows from 4.3 since f (o (f~1(£)))
is a o-algebra on Y including £ and hence o (£).

4.5 Continuous functions

On account of 4.4 a function f : (X;A) — (Y;0(Oy)) into a topological space (Y;Oy) is Borel
measurable iff the inverse image of every open set in measurable in (X;A): f~1(Oy) C A =
f (o (Oy)) = o (f1(Oy)) C A. In the case of A = o (Ox) also being induced by a topology Ox
on X every continuous function is Borel measurable. A real function f : X — R on a topological
space (X;0) is lower resp. upper semicontinuous iff f=![]a; 0[] € O resp. f~![]—o00;b[] € O for
Va,b € R. (cf. [13, p. 3.3]) According to 1.4 resp. 4.1 these functions are again Borel measurable.

4.6 Compositions
The composition h = go f : X — Z is measurable iff f : X — Y and g : Y — Z are measurable.
Due to [13, 3.1, 4.2.3 and 10.7]

 the projections 7; : [[,c; X; = X; on a product space [[,.; X,

o the metric d : X? — [0;00[ on a metric space (X;d),

o the norm || : X — [0;00], the multiple a- : X — X for fixed @« € C and the addition
+: X% — X on a Banach space (X;||) (cf. [13, p. 21.9]) ,
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o the multiplication - : X2 — X on a Banach algebra (X;||) (cf. [13, p. 18.9]) and

e the multiple z — «a-z resp. the powers z — z for a € C as well as in particular the reciprocal
an—)%onaﬁeldlikeRor(C

are continuous and hence Borel measurable. Hence for Borel measurable f,g : X — C the real
part Ref, imaginary part Imf and absolute value |f| are Borel measurable mappings X — R;
likewise the complex conjugate f as well as a - f , f<, %, f+ g and f-g are Borel measurable
mappings X — C.

4.7 Measurable functions into product spaces

A Borel measurable function f : (X;A) = ([[;c; Yi; 0 (®;er Oi)) has Borel measurable components
fi :=m; o f. Since the cylinder sets ;e m; * [OZ] Wlth O; open in Y; and finite J C I form a basis
for the product topology @;.; O; (cf. [13, p. 4.2]) the converse is true if this basis is countable (i.e.
the product topology is first countable, cf. [13, p. 2.6]) such that the inverse image of every open set
in [[;c; Yi is the countable union of inverse images of cylinder sets and hence contained in the o-algebra
A on X. This condition is satisfied for every finite product H Y; of first countable components

=1
Y; and in particular C”. Note that the countability condition 1s not needed for the corresponding

statement on continuous functions since a topology O on X includes arbitrary unions of cylinder
sets. Hence f: X — C" is Borel measurable iff every component f; is Borel measurable.

4.8 Vector spaces of measurable functions

The product Y? of two Banach spaces (Y;||) is first countable if Y itself is the finite product of
first countable spaces, e.g. C" or separable, e.g. the space C2° (C) of infinitely derivable functions
f: C — C with compact support. In these cases the ordered pair (f,g) : X — Y? is Borel measurable
if each f,g : X — Y is Borel measurable and so is their sum f + g such that the Borel measurable
functions f : X — Y into finite dimensional or separable Banach spaces Y themselves form a
vector space.

4.9 Pointwise limits of measurable functions

The pointwise limit f = li_)m fn of a sequence (fy),~; of Borel measurable functions f, : X — Y
n—oo -

from a measurable space (X;.A) into a metric space (Y, d) is again Borel measurable.
Proof: For any open U C Y and f (z) € U there is an m € N with f; (z) € U for all ¥ > m and
hence f~L U] Cc U N sz_l wjcn U f,;1 [U]. On the other hand every closed A C Y containing
m=1lk=m m=1k=m
infinitely many fx () must contain the limit f (x), i.e. ﬂ U f,;l [A] € f~![A]. For the open sets
Vn:{meU:d(a:;X\U)<%} we have U = U v —U V,, and hence U N U fk {7} cy
n=1

n=lm=1k=m

1 [7”} =f1U] = U 1w ]CU ﬂ U fit [Vi] whence follows equality since V,, C V..

n=1lm=1k=m

4.10 Convergence in measure and j-almost everywhere

A sequence (fn),>; of Borel measurable functions f,, : X —Y from a measure space (X;A; u) into
a Banach space (Y, ||) converges to a Borel measurable f: X — Y:

1. p-almost everywhere (u-a.e.) iff one of the following equivalent conditions is satisfied:
a) w(X\ {Jim o~ 1 =0}) =0
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b) lim pu (sup|fn —f] > 6) = lim,u(Un>k{|fn —f] > e}) = 0 for every e > 0
k—o0 n>k k—o00 =

= (ﬂk21 Unsk U fn — fI = 5}> =0 for every € > 0

) Jim (ig,fn_fy > i) = tim o (Unsi {1 = f1 2 £}) = 0
= M(ﬂk21 Un>k {|fn —fl= %}) =0.

2. in measure p iff for every A € A with p(A) < 0o one of the following equivalent conditions is
satisfied

a) nlgngou]A(|fn—f| > ¢€) =0 for every € > 0 &

b) For every k € N there is an ny € N such that p|4 (]fnk —fl> 2"“) <27k,
Notes:

1. The preceding definition is also known as local convergence in measure as opposed to the
stronger global convergence in measure without the restriction to sets with finite measure
i (A) < oo. For an apriori finite measure with p(X) < oo the two definitions obviously
coincide. In the case of a probability measure the convergence in measure is called stochastic
convergence.

2. The inclusions = become equivalences if we can presume the continuity from above 2.2.3,
ie. p(X) < oo or at least the existence of a k € N such that p (UnZk {|fn —fl> %}) <
oo. Many of the subsequent convergence theorems also depend heavily on 2.2.3 and hence are
restricted to finite measure spaces resp. to local convergence in measure. In partucular
for the Lebesgue measure A they do not extend to global convergence.

3. Both convergence criterions imply that the limit function f as well as finally (i.e. all except for
a finite number) all f,, are py-a.e. finite.

4.11 Lebesgue’s convergence theorem

A sequence (fy),~, of Borel measurable functions f, : X — Y from a measure space (X;A; 1) into
a Banach space (Y ||) converging p-a.e. to a Borel measurable function f : X — Y also converges
in measure to f.

Proof: For every A € A with u(A) < oo and € > 0 we have li€r>1flsupu|A({|fn—f\ > €}) 222
Zin>k

: 2.2.3

4 (Unse {1Fn = £12 ) "2 il (Moa Unse 1~ £1 2 6}) =0

Example: The Lebesgue measure A is not continuous from above, e.g. A (), xR\ B, (0)) =

A(0) = 0 but ing)\ (R\ By, (0)) = oo since A (R\ By, (0)) = oo for every n € N. Hence in the case
ne

of fn(x) = %2 we observe pointwise convergence and particularly A-a.e. convergence as well

as compact convergence to f(x) = 0 hence local convergence in measure but not global

convergence in measure since A (|z| > €) = A (|f, — f| > /ne) = oo for every n € N and € > 0.

4.12 The Borel-Cantelli lemma

For every sequence (A;),~; of measurable sets A, € A on a measure space (X;A;u) we have

dons1 M (An) <oo=p (ﬂk21 Un>k An> = 0 and in the case of a probability measure and pairwise
independent A, i.e. u (A, N A)) = pu(Ag)-p(4A) for k # [ the converse is also true: >, - pu(A,) =

00 = [ (X \ N1 Un>k An) = 0.

15



Proof: In the first case for every ¢ > 0 there is a ke > 1 with >3, -, p(An) < € such that
1 (nkzl Un>k An) < (Unzke An) < Ynsk M (An) < € and hence the assertion. In the second

case with i (X) = 1 and the continuity of the exponential function we have y (ﬂk21 Un>k An) =

2.2.2 2.2.3 . n . 7
1=t (Uit Nuzie X\ An) 222 1—suppe (Mo, X\ A7) 22 l—Suplnfu<ﬂ X\Ai)zl—supmf 11
k>1 k>1n2k \j=k k>1n>k

n

(1 —pu(A;)) > 1—supinf exp (—u (A;)) = 1 — supinf exp (— Donsisk M (AZ)) = 1.
E>1n2k =k k>1n>k

4.13 Completeness and p-a.e. convergent subsequence for convergence in measure

For a sequence ( fn)nzl of Borel measurable functions f,, : X — Y from a measure space (X;A; )
into a Banach space (Y, ||) the following statements are equivalent::

1. (fn),>; is a Cauchy sequence in measure, i.e. EQSUPM’A (Ifn — fx| >€) =0forevery A€ A
- Zin>k
with p (A) < oo and € > 0.
2. (fn),>; converges in measure to a Borel measurable function f: X — Y.

3. Riesz convergence theorem: Every subsequence of (f,),~; has another subsequence
converging p-a.e. to the same Borel measurable function f: X — Y

Proof: Let A € A with p(A) < o0,

1. = 2. : Due to the hypothesis for every k > 1 there is an ny > 1 with u|a (]fn — fon| > 2*’“) <27k
for all n > ng. Hence we have a partial sequence (fy,),~;With w.lLo.g. ngp1 > np and By =

{|fn,€Jrl — [ > 2"“} such that 37y~ p1|4 (By) < oo. According to 4.12 we obtain j[ 4 (ﬂm21 Usk>m (Bk))
= pu(X\B) =0 for B=U;>1MNg>m (X \ By). Hence for every x € B there is an m > 1 such that

U fy (@) = foe @) € Tt [Frisn () = for @) € iz 27 = 271 Thus we have a pr-ace.

Cauchy sequence (fy,),~; which due to the completeness of Y and according to 4.7 converges
p-a.e. to a measurable f : B — Y. Due to u(A) < oo we can apply 4.11 to find for every ¢ > 0
an me > 1 such that pla (|fn, — f| > §) < § for every m > m.. Hence for every n > n,, with m >
max (me; k) and 27 < § we obtain pla (|fo — f| > €) < pla ({|fo = fam| > ST U {|fom — F1 > §}) <
pla (| fm = faml > 5) + 1la (| fn, — f| > §) < e. This converse-triangle-inequality argument will be
repeatedly used in the subsequent proofs.

2. = 3. : Due to 4.10.2 b) for every k > 1 there is an nj > 1 such that u(By) < 27F for B, =
{|fnk —fl = %} whence 4 (Ukzm Bk> < 27+ due to the subadditivity 2.2.1 and |4 (ﬂmZI Uksm Bk) =

0 due to the continuity from above 2.2.3. Both properties require p (A) < oo . The assertion then
follows from 4.10.1 c).

3. = 1. : Suppose there is an € > 0 such that Yny > 1 3nggy > ng with pla (| foe — fon] > €)
> €. As above we get pila (fa, — f > 5) + ula ([freer — F1 > 5) = pla ([far — frea| > €) > € de
either pi|a (|fu, — f1 > 5) = § or pla(|fap — ] >5) = §. For each k € N we choose the f,,

with respectively larger probability u (...) of deviation and thus obtain a subsequence ( ﬂlk>k>1 with

| A ( ;Lk — f‘ > %) > § for all k > 1 such that no part of this subsequence can possibly converge in

measure to f and according to 4.11 with u (A) < oo this behaviour transfers to p-a.e. convergence.
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4.14 Completeness of ji-a.e. convergence

A sequence (fy,),~; of Borel measurable functions f,, : X — Y from a measure space (X;A; ;1) into a

Banach space (Y, ||) converges u-a.e. to a Borel measurable f : X — Y iff klim wla <sup |fre — fn] > e) =
—00 77»2]@

0 for every € > 0.

Proof:

=: Applying the converse-triangle-inequality argument to suprema we obtain

1A (Sup\fk — [ > €> < pla (|fk - fl> > + pla <Sup!f ful > >
n>k

The assertion follows from the convergence in measure due to 4.11 presuming p (A) < oo resp. the
p-a.e. convergence due to 4.10.1 b).

<: Due to the continuity from below 2.2.2 we obtain

SupM|A (Ifk = fal > €) < pla (U | fre = fal > 6) = pila (Sup | fre = ful > 6) ;
n>k

i.e. (fn),>, converges in measure to f . Using again the converse-triangle-inequality we get

1la (Sup\f — fal > 6) < pla <|f frl > ) + pla (SUP|fk — fal > >
n>k

and hence the p-a.e. convergence to f due to 4.10.1 b).

4.15 Egorov’s convergence theorem

For every sequence (fp),,~; of Borel measurable functions f, : X — Y from a finite measure space
(X; A; ) into a Banach space (Y,||) converging p-a.e. to a Borel measurable f : X — Y and
every € > 0 there is a set A. € A with p (Ac) < € such that (fy),~,; uniformly converges to f on
X\ A B

Proof: Follows directly from 4.10.1 b) since for € > 0 there is a k. > 1 such that we have p(A¢) < e
for Ac == U,>k, {|fn( ) — f(z)] > %} and (fp),,~; obviously converges uniformly to f on X \ A..

4.16 Examples

1. The function sequence (f),>; with f, = X[ ] forn =2F+4,0<j<2fand k > 1

J Tl
2k ok

n ([O; 1] 58[0;1}3>\[0;1]) converges globally in measure ) to f = 0 but the point sequences
(fn (), converge for no x € [0;1] hence (f,),>; converges not A-a.e.

2. The function sequence (fn),>; With fn = Xu;ni1) for n > 1 on (R; B; A) converges for every
z € R hence XM-a.e. to f = 0 and hence locally in measure but not globally so since for
e < 1 there is no k > 1 such that A (UnZk Ufn = f1 > 6}) < oo: The continuity from above
2.2.3 resp. theorem 4.12 do not apply.
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5 Integration

Throughout this section and if not specified otherwise any function from X to Y is Borel measurable
from a measure space (X;.A; ) with positive measure p : A — [0;00] into a Banach space (Y, ||)
over a field K.

5.1 Step functions

The characteristic functions x4 : X — {0;1} for a measurable support A € A with xa(z) =
l,xe A
0,z ¢ A

identical with the Dirac measure ¢, from 2.3.1 albeit with interchanged roles for x and A. The

family S(X;Y’) denotes the step functions of the form in: yix 4, with m € N such that 6 A =X
i=0 1=0

with values y; € Y and p (4;) < oo for 1 <4 < m but vanishing outside of these sets, i.e. ag = 0. The

step functions form a vector space of Borel measurable functions and according to 4.9 their closure

S(X;Y) with regard to pointwise convergence includes Borel measurable maps with separable range

and vanishing outside of a countable union of sets with finite measure. Countable unions

of sets with finite measure are called o-finite with the most prominent example represented by C"

which is also separable. The following theorem shows that under these two conditions S(X;Y") already

contains all Borel measurable functions modulo null sets, i.e. S(X;Y') is dense in the quotient space

of the Borel measurable functions with regard to the equivalence relation f ~ g < f =g p-a.e.

are the most simple measurable functions on a measurable space (X;.A). They are

5.2 Limits of step functions

For every Borel measurable function f : X — Y from a o-finite measure space (X;.A;u) into a
separable Banach space (Y, ||) there is a sequence (), oy C S(X;Y) of step functions converging
p-a.e. to f. Also for every set A of finite measure p(A) < oo and € > 0 there is a set Z, C X with
measure /i (Z) < € such that (¢n), oy converges uniformly on A\ Z.

Note: With 4.9 we obtain a necessary and sufficient condition for measurability: A function f :
X — Y from a o-finite measure space (X;A; u) into a separable Banach space (Y, ||) is Borel
measurable iff there is a sequence (¢n), .y C S(X;Y) of step functions converging p-a.e. to f.

Proof: The image f[A] of a set with finite measure p (A) < oo includes a dense subset (y;);5, such

that for every n > 1 we have f [A] CEJO By (y1) resp. A COLj Cipn with Cp,, = f71 {Bl/n (yl)} and
=1 =1

Ly,
consequently there is an L, € N with p <A\ U Cl,n) <27,
=1

L, -1
Then the step functions ¢, =3 yixp, with D; = C,\ U C;,, converge to f
=1 i=1

Ly, L,
o uniformly on every AN U C,, with p(Z,) <27 for Z, = A\ U Cj, andn > 1
=1 =1

oo Ly oo Ln
 pointwise on AN U U Cip with p(Z) =0for Z=A\ U U Cip.
n=11=1 n=11=1

o
For X = J Ay with w.l.o.g. pairwise disjoint Ay and p (Ag) < oo for every k > 1 there is a sequence
k=1
(gak;j)j>1 of step functions converging to f
o uniformly on Ay \ Zj, with p(Zy,) <277

 pointwise on Ay \ Zy with pu(Z;) = 0.
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Ok () fr €A 1<k <n

Then for every set A CkL:Jl Aj with m > 1 the step functions ¢, (z) = { 0 ite € X\ kL_Jl Ay

converges to f

o0 o0
o uniformly on A\ U Zgntm with p < U Zk,n+m> < 27™ and
k=1 k=1

oo o0
o pointwise on X\ |J Zj with p ( U Zk> =0.
k=1 k=1

5.3 The integral for step functions

For any step function ¢ = > i<, ¥ixa, with y; € Y and A; € A the integral is defined by
[ edp == > gcicm yir (4;). Uniqueness and linearity [ (ap + S¢)du = o [ @dp + B [ dp for
o, 8 € K are obvious if we consider representations with common and pairwise disjoint supports
A; N Bj for two elementary functions f und g as in 5.1 and observe the additivity 2.2.1 of the
measure. Also we define integrals on measurable subsets as jA edp == [ ¢|adp. On account
of ¢lasp = ¢la + vlp we have [,.p@du = [, odu + [5edu. For positive integrands ¢ with
¢ [X] C [0; 0o we have monotonicity in the form ¢ < ¢ = [ pdu < [1pdu. In general Banach spaces
we still have | [, odu| < [, [l dp < [|¢|| 1 (A) with the supremum norm |||/ = su)p; |o (x)]. The
fAS

expression ||¢|; := [ |¢|du defines the £1- seminorm (c.f. [13, p. 1.3]) on S(X;Y) with obvious
linearity ||ap + B[l = |- |l¢ll; + 18] |¢]]; and the triangle inequality ||¢ + ||, < |l¢ll; + 1%
The latter follows from an application of the triangle inequality |y, + ¥yl < [Z4| 5 +[5| 5 on the field
K to representations with common as well as pairwise disjoint supports A; N B; and invoking the
monotonicity of the integral for the positive integrand [p|. A sequence (¢y), oy of step functions
converges in mean or with respect to £! to a step function ¢ iff Jim llon —¢ll; = 0.

5.4 Convergence of step functions

For any £!- Cauchy sequence (@n)pen of step functions ¢, : X — Y there exists a subsequence
(¢ny)peny and for every € > 0 a set Ze C X with measure p(Z) < € such that (py, ),y converges
absolutely and uniformly on X \ Z, as well as u-a.e. on X.

Proof: For every k > 1 there is an nj, > ng—1 € Nsuch that [|¢, — ¢p, [|; < 2% for every n > nyg. Then
for Yy, = {|¢k+1 — x| > 2%} with ¢ := @, we have spp (Vi) = [y grdi < [ [Wps1 — il dp < 53

oo
whence p (Yy) < 2% Hence u(Zy,) < Qm%l for Z, :kU Y and |piq (z) — ¥ ()] < 2% for every
=m

[&.°]
x € X\ Zy, resp. k> m such that Y (141 — ¥x) converges absolutely and uniformly on X\ Z,,.
k=m

[e.e]
Hence (¢n,)gs,, converges absolutely and uniformly on X \ Z,, resp. pointwise on X\ [ Z,,.
=z m=1

[e.e]
Due to the continuity from above 2.2.3 we have p ( N Zm) =0.
m=1

5.5 The Bochner integral

The Bochner integral [ fdu := h_}m [ ondp < oo is well defined and finite for every function
n—oo

f X — Y with an approximating sequence (¢,),cy, i.e. an L'-Cauchy sequence of step
functions converging p-a.e. to f. The vector space 5 (X;Y) of these integrable functions is the
Bochner space whereas £ (X;Y) = {f: X = Y : | f|; < oo} C B(X;Y) of Lebesgue integrable
functions is called the Lebesgue space. Hence the integral is a linear functional / : B — K.
According to 4.9 every integrable f : X — Y from a o-finite measure space (X;.A4;u) into a
separable Banach space (Y, ||) is measurable.
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In order to prove that the definition is independent of the approximating sequence we show: For
two £!- Cauchy sequences (Yn)pen and (¢n), oy of step functions converging p-a.e. to the same
function f: X — Y we have Jgngofwndu = nlgngof¢ndu < 00 as well as nangO lon — Unll; = 0.

Proof: The existence of the limits is a consequence of the completeness of Y since | [ (¢n — om) dp| <
lon — @mll; such that ([ ¢ndu), . and likewise ([ 4ndu), oy are again Cauchy sequences in Y. The
differences 7, = ¢, — 1, also are £'-Cauchy and converge p-a.e. to 0 such that for every € > 0 there
is an N € Nwith ||y, —yn|l; < € for all m,n > N. According to definition 5.1 there is a set A with
f(A) < ooand X \ A C {yy =0} such that fX\A [l dp = fX\A [ — Nl dp < Iy — Nl < e

By the preceding lemma 5.4 there exists a subset Z C A with pu(Z2) < m and a subsequence

converging to 0 uniformly on A\ Z such that there is an M > N with IA\Z |vn| du < € for all n > M.
Finally for n > N we have [, |yn|dp < [ |y — | dut [ [yvldie < e — il Nl 1 (Z) < 26
In sum we arrive at fX\A || du + IA\Z V| dpn + [, |7n| dp < 4€ which proves the assertion.

5.6 u-a.e. properties of integrable functions

1. Due to 5.1 integrable functions with approximating sequence (¢y), .y vanish outside of the
o-finite set J,, ey {¢n # 0}.

2. According to 5.4 the integrable functions are u-a.e. finite and bounded outside of a set of
finite measure: Since the ¢,, converge uniformly outside of a set Z, with p (Z,) < € for any ¢ > 0
there is an n € N such that {|f| > c}\Z. C {|¢n| > §} and hence 1 (| f| > ¢) < p (Jpn] > §) < o0.

3. In the case of positive integrands we have [ fdu=0= f =0 p-a.e. since for A, = {f > 0}
the estimate %u (An) < [y, fdp < [ fdp =0 yields p(f > 0) = p(Upen An) = 0 on account of
the continuity form above 2.2.3. In particular for positive integrable f,g € £! (X;R) with
f <gwehave [ fdu= [gdu= f =g pae.

5.7 Special cases

For every integrable f with approximating sequence (@), cy the restriction f|4 on any measurable
subset is again integrable with the approximating sequence (¢,|4),cyn. Hence we can define the
integral on measurable subsets [, fdu = [ fladp with additivity extending to domains by
Jaop fdp = [ flaogde = [ (fla+ flB)dp = [4 fdu+ [ fdp. Likewise the components of functions
in finite dimensional Banach spaces can be integrated separately since for every continuous
g :Y — Z into another Banach space Z we have an approximating sequence (g o ¢,,),, oy for go f with
nh_}rréo (gopn) =go nli_}n;ogon and in the case of continuous and linear g we even have [go fdu =

go [ fdu. For' Y =Y, x Y, and the continuous as well as linear projections g = m : ¥ — V3
resp. g = m2 : Y — Ya we obtain [ (f1, fo)du = ([ fidu, [ fodu). In particular f is integrable
iff each of its components is integrable or in the case of ¥ = C iff Ref and Imf are integrable
with [ (Ref +ilmf)dy = [Refdu + i [Imfdu. For Z = R and the continuous but not linear
Banach norm g = || we see that for every f € B(X;Y) its Banach norm |f| € £ (X;R) is also
integrable with approximating sequence (|¢nl),cn. Note that in particular (|¢n|),cy is £1-Cauchy
since |||on] — lomlll; < llon — ¢mll;- The converse statement |f| € L1 (X;R) = f € £ (X;Y)
is only true for o-finite (X;.A;u) and separable (Y,||). (cf. 5.16). The well ordering of the
real numbers provides the space £! (X;R) with additional properties: For f,g € £! (X;R) we have
sup {f;9} = 5 (f+9+[f —gl) € L' (X;R) and inf {f;9} = 5(f+g—|f —gl) € LY (XR). [ =
fr— f~ € L£Y(X;R) iff its positive part fT = sup{f;0} € £!(X;R) and its negative part
f~ =inf{f;0} € £ (X;R). Also for real valued functions the integral is monotone, i.e. f < g =
[ fdu < [ gdp which for positive integrands f > 0 extends to the domain in the foorm A C B =

[ fln < [ fp.
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5.8 The integral transformation formula

For every Borel measurable 7': X — Y from a measure space (X;.A; u) into a into a separable
Banach space (Y, ||y/) and every Borel measurable f : Y — Z into a further separable Banach
space (Z,||,) the composition foT : X — Z is p-integrable iff f is (T o p)-integrable and in that
case we have [ fd(Tou) = [(foT)du.

kn
Proof: For an approximating sequence (¢n),cn € S (Y5 2) of f with ¢, =3 2n.ixB,,We have

=1

(T'o p)-a-e. lim o = f

0 i 27)

Spl(T7 | lim >e] | =0Ve>0
n—oo

4A1<0:.;.C)/~L (T_l (ﬁ Ej ]Ej {y € Bnsi t |2n: — [ (y)| 2 5}>> =0Ve>0

k=1n=ki=1

Z anXBnZ _f

=M ( ﬁ 6 IU {m eT! [Bni] @ [2ni — f (T ()] > 6}) =0Ve>0
k=1n=ki=1

M(ﬂ U
k=1n=k
u(1Lm¢n0T¢foT):o

& p-a.e. 7}1_)1{)109% ol =foTl

kn
Z Zn;iXT =1 By, ]—fOT

=1

>e>:0V6>0

and also

0= lim sup/rson—somm(Tom

= nlinéo,ii% Z:Z1 Zn;iX By — JZ1 Zmig X By | 4 (T 0 1)
kn km
= i op 33 lans 2l (77 1B 1 By

kn km
= lim sup > > [z — Zmyj] u( '[Bul N T [Bm;j])

m2n ;_ 1j=1

ZzanT B4l — ZZWJXT 1[ij]

7j=1

= i sup [

m>n

— lim sup/rsonoT—somoTrdu

n%oom>n

whence (¢, o T) is an approximating sequence of f o T. Hence
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/fd(Tou) =nlgngo/¢nd(TOM)
kn
= lim Z Zn;iXBn;id (T o :U‘)
i=1

n—o0

kn
i 3% o (171152

n—o0

En
= Jlim [ zixrii,.di
i=1

= lim [ (ppoT)dp

n—o0

:/(foT)d,u.

5.9 The seminorm for Lebesgue integrable functions

According to 5.7 for every f € £! (X;Y) the integral || f||; := [ |f| dp = Jim |onlly is well defined and
a pseudonorm on £! (X;Y): For f,g € £L! (X;Y) with approximating sequences (@n)nen s (Wn)pen €
S(X;Y) we have |f + g| € £! (X;Y) with approximating sequence (¢, + 1),y 2nd by continuity
of the addition we obtain |f+g[l;, = nh_{go [on +¥nll; < nh_)rgo(|’90n”1 + llenlly) = nlggo llonlly +
lim |[¢nll; = [|fll; +1lgll;, i-e. the triangle inequality. Likewise the continuity of the absolute

n—oo

value extends the continuity of the integral from S (X;Y) to £ (X;Y): |[ fdu| = ‘nhﬁrréo Ik cpnd,u‘ =
Jim | [ondu| < lim_ [ |en|du = [|fldp = |[f]];-

5.10 Completeness of L'

The space (L' (X;Y);]||l;) of Lebesgue integrable functions is complete.

Proof: For an £!-Cauchy sequence (fy),cy C £ (X;Y) there is a ¢, € S (X;Y) with || f, — ¢nll; <
1. Hence for every € > 0 there is an N € N such that for every n,m > N we have || f, — fm|; < &
and consequently H‘Pn - QDmHl < H‘Pn - anl + an - fm”l + Hfm - Somul < % + § + % <eforn,m>
max {N; %}, i.e. (¢n)nen is L£'-Cauchy. Due to the 5.4 a subsequence (pn, )ycy converges p-a.e. to
an f € L1 (X;Y), whence 5.5 yields [ fdu = klim J ¢n,dp and furthermore || f]|; = llim lon,|l; and
—00 —00
particularly || f — ¢, |l; = llim lon, — @n,ll; for every k € N with 5.7. Since (@) ey is £'-Cauchy
—00

for every € > 0 there is an k € N with n; > 2 such that on the one hand ||¢n, — ¢n,|l; < § and on
the other hand ||| f — Onilly = llen, — Sonk||1| < § for every I > k whence [|f — fu, |l; < If = @nlly +
lon, — frlly < llon — enlly + £+ nik < e. Hence (pn;) ey 18 L'-convergent to f and due to its

L'-Cauchy property the convergence extends to the complete sequence (©n)nen-

5.11 Convergence in mean and y-a.e

For any £!'-Cauchy sequence (fa)nen C L' (X;Y) of Lebesgue integrable functions f, : X — Y
there exists a subsequence (fp, ), cy and for every € > 0 a set Z. C X with measure p(Zc) < € such
that (fn, ),y converges absolutely and uniformly on X \ Z. as well as p-a.e. and in mean on X
to an integrable f € £! (X;Y).

Proof: According to the preceding theorem (fy,),,cy converges in mean to an f € £! (X;Y) such that
for every k > 1 there is an ny > np_; € N with || f — fo, ||, < 2% Then for Yy, = {]f — fopl = 2%}
we have 2%“ (Ye) = Jy, 2%(1,11 < Jx |If = faldp < 2% whence p (Yy) < 2% Hence u(Z,,) < 27,1%1 for

22



[e.e]
Zm=U Yy and |f () — fa, (¥)| < 55 for every v € X \ Z,,, resp. k > m, i.e. (fn,);>,, converges to
k=m 2

o oo
f absolutely and uniformly on X \ Z,, as well as pointwise on X\ (\ Z,, with u ( N Zm) =0.
m=1

m=1

5.12 The norm for Lebesgue integrable functions

Lebesgue integrable functions with common approximatig sequences are p-a.e. equal and partition
L' (X;Y) into equivalence classes (c.f. 5.1). The corresponding quotient space is equally called
a Lebesgue space and denoted as L' (X;Y). On this quotient space | f||, is positive definite and
hence a norm, since for [|f||; = 0 the null sequence (0),yconverges in mean to f and due to the
preceding paragraph it also converges p-a.e. to f whence p-a.e. f =0. Note that (L' (X;Y);]||,) is
a Banach space, but there is no topology on £! (X;Y) corresponding to p-a.e. convergence. (cf.

[6])

5.13 Levi’s monotone convergence theorem

For every monotone sequence (fy),cy € L' (X;R) of real valued f, : X — R we have | lir% fndp =

ne
lir%ffnd,u. In the case of lin& |[ fndp| < oo the sequence converges both in mean and p-a.e. to
ne ne

— i 1 .
f—}blé’%fn e L' (X;R).

Proof: Due to the monotonicity of the integral 5.7 in the case of an increasing sequence we have

sup [ frdp < fsup [ndp which proves the assertion in the case of sup [ f,dp = co. For sup [ fdp < o0
neN

and n > m we have | fr = foully = [ (fno — fm) dp = [ fodp— [ fmdp whence follows that (fn) ey is L=
Cauchy. According to 5.11 a subsequence converges p-a.e. and in mean to an f = hg\lI fn € L1 (X;R)

and due to the increasing character this must be true for the complete sequence. Finally for every ¢ > 0

there is an n € Nwith [ (f — f,)dp < e and hence [ fdu = [(f — fn)dp+ [ fudp = e+ [ fndu which

proves [ supfpdp = sup [ fudp. In the case of a decreasing sequence apply the proof to (= fy),cn-
neN neN

5.14 Fatou’s lemma

For every sequence (f,),,cn € L' (X ; R(J{ ) of positive Borel measurable functions with klim ]i1<1f J fadp <
—ook<n

oo we have f = lim inf f,, € L <X R+) with f hm mffn 1w < hm mf ffnd,u

k—ook<n

Proof: For every k € N the decreasing sequence ( 1n£ fn> converges p-a.e. to inf fn such
m meN

that due to the preceding theorem we have f mf fnd,u = lim [ inf f,du < lim 1nf f frndp =

m—00 " k<n<m m—ook<n<m
énf J fadp < hm 1nf f fndu. Now we apply the monotone convergence theorem a second time to the
increasing sequence (inf fn> and obtain [ lim inf f,dy = lim [ inf f,dp < lim inf [ f,dp.
keN k—ook<n k—oo " k<n k—ook<n

<n

5.15 Lebesgue’s dominated convergence theorem
A sequence (fn),eny C L' (X;Y) converging p-a. e. to some f converges in mean to f with

f € L' (X;Y) iff there is an Lebesgue integrable majorant g € L'(X;R{) such that for every
n € N and p-a.e. we have |f,| <g .
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Proof: For every K € N the increasing sequence sup | fn — fml is p-a.e. bounded by
k<m;n<l ISk

|fn — fm| < 2¢ and hence has bounded integrals [ ( sup | fn — fm|> dp < 2 [ gdu. According to

k<m;n<l

k<m;n
k € N. Hence we can apply the monotone convergence theorem a second time to the decreasing

the monotone convergence theorem 5.13 we conclude [ ( sup |fn — fm]> du < 2 [ gdu for every

sequence | sup |fn — fml converging p-a.e. to 0 to obtain lim [ | sup |fn — fm||du = 0.
k<m;n E>1 k—o0 k<m;n

Hence (fn),cn 18 L!'-Cauchy and due to the completeness 5.10 of L' (X;Y) it converges in mean
to an f#* € L' (X;Y) coninciding p-a.e. with f according to 5.11.

5.16 The absolute value of integrable functions

A Borel measurable function f : X — Y from a o-finite measure space (X; .A4; i) into a separable
Banach space (Y, ||) is integrable with [ fdu < [|f|du < [ gdu if there is a g € L' (X;R) with
p-a.e. |f| < g. In particular f is integrable if its absolute value |f| is integrable. The inequality
is a trivial consequence of the continuity of the integral according to 5.9. The converse is true
for the subset of the Lebesgue-integrable functions but neither for the Bochner integral nor for
the improper Riemann integral which is not included in the Lebesgue integral (cf. 5.26). E.g.
f(z)= Smmﬁ is integrable with Bochner and Riemann but not with Lebesgue.

Proof: According to 5.2 there is a sequence (¢n),cy C S (X;Y) of step functions converging u-a.e.
to f. Due to 5.5 the function g is Borel measurable. Hence the sets {|p,| < 2¢} are measurable and by

i <
p(x) = g" () ii ig” Eg; ; ;g g; we have a sequence of integrable step functions bounded
n

by g and converging p-a.e. to f . Due to 5.15 the convergence is also in mean and f is integrable.

5.17 Dominated convergence for series

For a sequence (fy),cy of functions f,, : X — Y from a o-finite measure space (X;A;p) into a
separable Banach space (Y,||) with Y [|fn|dp < oo the series > f,, := f converges p-a.e. as
neN

neN
well as in mean: Y [ f,du = [ fdu.
neN

5.8 5.15
Proof: Since | [ fdu| < [| S foldp < [ S |faldp ®2 S [ |fa]dp < oo the limit f € L' (X;Y)
neN neN neN
is Lebesgue integrable and also p-a.e. finite resp. convergent due to monotone convergence

5.13. The convergence in mean follows by 5.15 with the majorant g := Y |f,|.
neN

5.18 Sequences with bounded norms

For the p-a. e. limit f : X — Y of a sequence (fn),cny C L' (X;Y) of Lebesgue integrable

functions from a o-finite measure space (X;.4;u) into a separable Banach space (Y, ||) with

bounded norms | f,||; < C for some C' > 0 and every n € N we have ||f|; < C and in particular

feL (X;Y).

Proof: The f, are measurable due to 5.5 and so is f according to 4.9. Because of li_>m | frl = |f] we
n—oo

can apply first Fatou’s lemma 5.14 to obtain || f||; < C and then 5.16 to infer f € L' (X;Y).

Note: Due to the missing bound for the absolute values |f,,| we can not assert convergence in
mean. E.g. for the sequence (¢n),~; with ¢, =n- X[o;1] We have nh_}rglo lon| = 0 but nh_{réo lenll; = 1.
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5.19 Products of Lebesgue integrable and bounded functions

For o-finite measure space (X;.4; 1) and a separable Banach space (Y ||) the product fg of an
(Lebesgue) integrable f : X — Y and a bounded measurable g : X — K into the normed,
complete and separable field K is (Lebesgue) integrable.

Proof: Due to 5.2, 5.5 and 5.10 there are sequences (¢n),cny C S (X;Y) and (¢),cny € S (X; K) of
step functions with (), oy converging both in mean and p-a.e. to f and (), oy converging pu-a.e.
to g. Then (¢n - ),y CS(X3Y) is a L'-Cauchy sequence converging ji-a.e. and according to 5.4
also in mean to fg which is hence integrable with |fg| < |f|- ||l < co. In the case of f € L' (X;Y)
we have |f| € L' (X;Y) whence |f| - |g|l, € L' (X;Y) and hence |fg| € L' (X;Y) due to 5.16.

5.20 The mean value theorem for integration

For every integrable f € B(X;Y) from a o-finite measure space (X;.A;u) into a separable
Banach space (Y, ||) with the mean value ﬁ Ju fdp € S for some closed subset S C Y and every
Ae Awith 0 < u(A) < oo we have p(f ¢ S) =0.

Proof: In the case of u(X) < oo for any closed disk B,(z) C Y\ S
with pu(A) > 0 for A = f~1 [77“(,2)} we have ’u(% fAfd,u— ‘ =
‘ﬁfA( d,u‘< fA\f z| dp < r contrary to (A fAfd,uE
S. Therefore we must assume ( f e B.(z )) = 0 and since Y \ S is

a countable union of such disks the assertion follows from the o-
additivity of u. Hence if we assume the hypothesis for every A N X,
with A € A, p(X,) < oo and X = U, ey X we obtain f(z) € S for
every x € X, \ Z, with p(Z,) = 0 and hence for X \ U,cy £, with

2 (UnEN Zn) =0.

The following theorem asserts that step functions on arbitrary measurable sets can be approximated
by step functions on an algebra of sets with finite measures, e.g. the algebra F of figures in R".
This step is necessary to identify the Lebesgue integral as special case of the Bochner integral.
The theorem will be prepared by two lemmata:

5.21 L'-limits of sets of finite measure

For every algebra F C A of sets of finite measure in a measure space (X; A; 1) and every F' € F we
m
consider the vector space S (Fp;R) of step functions on the trace algebra Fp of the form 2. YiXF

m
with m € N on sets Fy = X \ F resp. F; € Fp with |J F; = F and with values yp = 0 resp. y; € R

i=1
for 1 < i < m. Then for every F € F the familyNF:{AE.AF:XAE( (Fr;R) 5 14 )}C.AF is a
o-algebra on the set F'.

Proof: Note that every A € Nr must be of finite measure but not necessarily be an element of
the algebra Fp. Since for p,¢ € S (Fr;R) we obviously have sup {¢; ¢}, inf {p;9} € S (Fr;R) the
closure (S (Fr;R); ||l;) is again a vector space closed with respect to sup and inf. N is an algebra
since obviously () € N and for every A, B € N the characteristic functions xaup = sup {x4; x5},
xanB = inf {xa;xp} as well as xq\p = xa — xp are all in (S (Fr;R);||[|;)and consequently their
supports AUB , AN B resp. A\ B are in Np. It is a o-algebra since F' € N and for every paiwise
disjoint sequence (Ay),cy € Np with union A = OnENAn and every € > 0 due to the continuity
from below 2.2.2 we have an N € N with p (U, ny Ax) < € and approximating step functions
(Yn)pen C S (Fr;R) such that [|xa, — ¢nll; < 57 for n € N whence
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n n
XA~ Z en| = ‘ XA~ XU0<k<n Ap + ’|XUO<k<n Ae Z Pn
k=0 1 - 1 - k=0 1
n n
- HXUk>NAk T 2 XA~ D
k=0 k=0 1
n
<p| U 4|+ lIxa, —enlly
k>N k=0
< 2e.

5.22 Coverings of L!'-limits of sets of finite measure

For an algebra F C A of sets with finite measure in a measure space (X;A; u) and F,cy € F with
X = Upen Fr with o-algebrae N, C Ap, according to 5.21 the family N'= {4 C X : AN F,, € N;,Vn € N}
is a o-algebra on X.

Proof: For every A € N we have X \ AN F,, € N,, whence X \ A € N. For every A, B € N we have
(ANB)NF, = (ANF,)N(BNF,) € Nywhence AN B € N. Finally for (A,),,cy C NV the equality

o

(Umen Am) N Ey = Upen (A N Fy) shows that U,,eny Am € N

5.23 L!-limits of step functions

For every algebra F C A of sets with finite measure generating A = o (F) on a o-finite measure
space (X; A; u) we have (S (F;Y);|lll,) = B(X;Y).

Proof:

According to the hypothesis there is a sequence (F,),~; C F of w.lo.g. pairwise disjoint sets with

finite measure u (F,) < oo and On21Fn = X. By lemma 5.21 N, C Ap is a o-algebra and by
lemma 5.22 the family N is a o-algebra containing F and hence A = o (F) such that for every
measurable set A € A with finite measure p(A) < oo we have ANF, € Ng,, i.e. for every € > 0
there is a ¢, € S (Fr,;R) with ||[xanr, — @nll; < 57. Due to the continuity from above 2.2.3 there
N N N
XA— > XAanH = u (A— U (AﬂFn)> < € whence
n=1

XA— 2 ¢n|| <
n=1 1 n=1

1

is an N € N such that

N N m
+ 1Y xanE,— X ¢n|| < 2e. Thus for every step map ¢ = vixa, € S(A;Y)
1 n=1 n=1 1 =0
m
with m € N such that A; = X with values y; € Y and p(A4;) < oo for 1 <i < m and ag = 0 there
i=0

N
XA— 2. XANE,
n=

1
m

I —¢ll; < e with ¢ =3 yipi € S(F;Y). The assertion now follows from the definition 5.5 of
1=0

me|y;|

N
are step maps ¢; =y, @i, € S(F;R) with ||xa, — ¢il|; < 5 such that
n=1

m m
D YiXA,— D Yipi
1=0 1=0

integrable functions since (S (A;Y);|||l;) = B(X;Y).

5.24 Uniqueness of integrable functions

For every algebra F C A of sets with finite measure generating A = o (F) on a o-finite measure
space (X;A;u) and every integrable f € B(X;Y) into a separable Banach space (Y,||) the
following propositions hold:

1. If [ fdu =0 for every F' € F then f =0 p-a.e.
2. If [ fedu = 0 for every ¢ € S (F;R) then f =0 p-a.e.
3. If [p fdu < c-p(F) for some ¢ > 0 and every F € F with p (F) > 0 then |f| < ¢ p-a.e.
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Proof: According to 5.5 and 5.23 f or every measurable set A € A with finite measure u(A) < oo
there exists a sequence (¢n),cy C S (F;Y) converging in mean as well as p-a.e. to x4. Taking
sup {¢n;0} resp. inf{e,;1} we can w.lo.g. assume 0 < ¢, < 1. Then we have |p,f| < |f| for
every n € N and (¢, f), oy converges p-a.e. to xaf. By dominated convergence 5.15 and since
[ onfdp = 0 we conclude [ xafdu = 0. Now every measurable set is a countable union of w.l.o.g.
pairwise disjoint sets of finite measure such that a second instance of dominated convergence
yields [xafdu = 0 for every measurable A € A. Proposition 1. now follows from the mean
value theorem for integrals 5.20 applied to S = {0}. Proposition 2. is obtained from 1. by taking
¢ = xr. Finally we derive Proposition 3. from 5.20 applied to S,, = Ecﬂ/n (0) for n > 1 and

considering {|f| < ¢} = Npen {f € Sn}

5.25 Characterization of integrable functions

A function f: X — Y from a o-finite measure space (X; A; ) into a separable Banach space
(Y,[]) is integrable iff there is an increasing sequence (A;,), .y C A with U,eyA4n = X and
7}1_{20 Ja, fdu € Y exists. In that case we have [ fdu = nh_}rgo Ja, fdu.

Proof: =: Take A, = X for n € N. <«: Due to the hypothesis for every m > 1 there is
an n(m) € N such that ’S—fAn(m) fd,u’ < 5 with § = Jim Ja, fdp. Also due to 5.4 there
is a wpm) € S(X;Y) with [ ’f'XAn(m) — gpn(m)’d,u < % and ’f(:c) ~ Pn(m) (ZE)‘ < % for every
T € Apim) \ Znm) With p (Zn(m)) < % Hence we have ‘S— fgon(m)du‘ < ‘S— fAn(m) fdu‘ +
[, fdi = [ engmydn| < 5k + [ |F X = @nim| di < 5. Furthermore lim (py(m)(z)) =
f(ﬂ?) for every T € Ule (An(m)\Zn(m)) = Ule An(m) \ anI Zn(m) =X \ mmZI Zn(m) with
7 (ﬂmZI Zn(m)) = 0. Hence (Lpn(m)> o C S(X;Y) is an approximating sequence for f and we

have §'= lim [, fdp= lim [ @nmdp= [ fdp.

5.26 Comparison with the Riemann integral

1. Every Riemann integrable function f : [a;b] — R is integrable and the two integrals are
b
equal: [, f(z)dz = [, fdA.
2. f:R — R is integrable on R iff the improper Riemann integral exists and in this case the
two integrals again coincide: lin& " f(x)de = [ fd.
ne

Proofs:

1. For every partition z, := (a <a; <...<a,=0>) of the interval [a;b] we can compare the

lower Darboux sum L, := i (a; —a;— 1) < f[a b] l,,d\ with 7, := inf f [[a;—1; a;]] resp. the

upper Darboux sum U,

agp
27
i=0
Z i (@i = ai—1) 2 Jigp) wz, dA with Ty := sup f [[a;—1; a;]] to the

n
integrals of the corresponding step functions I, :=3" ViX[q,_, 0, Withy; := inf f [[a;—1;ai[] >
i=0

n —
Vi resp. Uz, = >, LiX{a,_ ;a,[ With I'; := sup f[[ai—1;a;[] < T';. According to the hypothesis
i=0
there are sequences (Z”)nEN of partitions such that z,.1 is a refinement of z, such that due to
the monotonicity of the integral 5.7 we obtain fff(a:) x = hm L, < hm f[a b lzn dA <
. . b b
Jim Jiap) WendA < Jim U, = I f(x)dx whence [ f(z)dx = nlgIC}O f[a;b] Ly, d\ = nhi& Jiasp) Wen dA-
Since (uz, ),y decreases, (I, ),cy increases, (u., — I, ),cy is a decreasing sequence bounded

below by 0 such that due to the completeness of the real numbers there must be a limit
linI%] (uz, —lz,) > 0. According to 4.9 this limit function is measurable and from 5.14 follows
ne

27



0 < [lim (us, —lz,) < liminf (U,, — L,,) = 0 whence A-a.e. lim (u,, —1,,) = 0 due to 5.6.3.
neN neN neN

Since A-a.e. [,, < f < wu,, we infer that A-a.e. hHI\l]lzn = f. By dominated convergence 5.15
ne
with majorant u,, we obtain fff(x)dx = liélfl\lI Jiast) Len @A = Jia) (hml )d/\ = Jiay fAA

2. Follows directly from the preceding theorem 5.25.

Note: In essential, 5.13, 5.14 and 5.15 assert the continuity of the Bochner and Lebesgue
integrals regarding pointwise esp. p-a.e. convergence whereas the Riemann integral is only
continuous with reference to uniform convergence (cf.[8, Th 7.16]).

The classical definition of the Lebesgue integral is restricted to positive functions such that the
Lebesgue integral of real functions requires separate computing of positive and negative parts
entailing the failure of this method in the case of certain integrands with alternating signs like e.g.
f Sm(x) de = lim [" Sm(x) dr = 7. (cf. [9, p. 3.7.1]). Theorem 5.25 does not work with the Lebesgue

n—00
1ntegral.

6 Lebesgue spaces

6.1 Convex functions

A real function f : R — R is convex on the open interval ]a;b[ iff f(s) < f(r)+ (s —1) - fO=1)

t—r
fO—=f(r) fO=f(s) < f(t) fr)  f&)=f(r)
f@t) = (t —s) - 55— resp. 5= — > DL for every a < r < s <t < b. Every
convex function is continuous and in partlcular Borel-measurable since for s €]a;b[ and w.l.o.g.

min{1;b—s} > ¢ > 0 we have |f(r) — f(s)] < |r — s|- M < € for every |r —s| < 6 =
2

max{1;|f(s+€)—f(s)|}"

6.2 Jensen’s inequality

For every integrable g : A —]a;b[C R with A C X and p(A) < oo on a measure space (X;.A, 1) and
every convex f :]Ja;b[— R we have f ( fA gd,u> 1A [4(fog)du.

(S) f( ) < (tz—f(S)

Proof: For s := (A ngdu we have a < s < b and due to 6.1 also  := sup for

a<r<s

all s <t < b, hence f(s)+ S(t —s) < f(t) resp. f(s)+ B(g(x) —s) < f(g(x)). All summands of this
inequality are integrable over A such that on account of the monotonicity of the integral we can infer
p(A) - f(s) < [, (fog)du and hence the assertion.

6.3 Applications

Choosing A = {p1;...;pn} C [0;00[ and p ({pi}) = a; with u (A) :i a; =1 as well as g(p;) = In (z;)
and f(z) = exp(x) Jensen’s inequality yields the following very usgllﬂ special cases:

Loaf - oaf <aqzg + ..o+ apy,

2. (g xn)% < 1(z1+..+2,) (geometric and arithmetic mean for o; := 1)

3. F-G< %Fp—l—éGq for %—l—% = 1 with equality iff FP = G? for oy = %;Oég = %;ml = FP;x9 = G1.

6.4 Holder and Minkowski inequalities

For any positive Borel measurable f,g: X — Y from a measure space (X; A, 1) into a Banach space
1
(Y5||) and % + % = lresp. p+q=p-qwith |[f[l,:= ([ |f["du)» we have
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L |lfgl < If1l, - lgll, (H8lder resp. Schwarz for p = ¢ = 2) with equality iff y-a.e. ;

2. |l +gll < IfIl, + llgll, (Minkowski) with equality iff /-a.e. ﬁ‘}ﬁi - ﬁéﬁ’i - 7f|<|§>jgj‘<:> .

Proof: The integrand is measurable on account of 4.6. For one of the integrals disappearing 5.12 tells
us that the integrands f - g, f + g, f and ¢ will disappear p-a.e. too such that we have equality in this
case. Therefore we can assume all integrals > 0 in the following proof.

1. With F := % resp. G := ﬁ in 6.3.3 an integration yields [(F-G)du < %4— % = 1 and
p q

hence the assertion. In particular f - g is integrable if fP and g? are integrable.
2. Applying 1. twice to (f + g)” = f-(f + 9)* " +g-(f + g)’ " and observing ¢(p—1) = p we obtain
g9
1 —1 > s
1 +ally < 1l |7+ 977 Nl |7+ 977 = (161, +llgll,) - 17 + gll3 - Substituting

p— g = 1 yields the assertion. The convexity of t¥ provides the inequality (%)p < L;rgp, i.e.
the integrability of fP and g” entails the integrability of (f + g).

6.5 LP-spaces

For 1 <p < oo and any f: X — Y from a measure space (X;.A; u) into a Banach space (Y| |) the
1
expressions || f||, :== (| f[Pdp)? resp. || f[lo :=inf{0 < a <oo:p(|f] > a) =0} define a seminorm

(cf. [13, p. 21.1]) on the vector space LP(u) := {f X =Y f], < oo}. The absolute homo-
geneity follows from the linearity 5.5 whereas the triangle inequation is provided by the Holder
inequality 6.4.2. L£'(p) contains the Lebesgue integrable functions and £>(u) is the set of all
p-a.e. bounded and measurable functions furnished with the supremum norm |||/ . Analogously
to 5.1 resp. 5.12 the contraction to the quotient space LP(u) := LP/ ~ defined by the equivalence
relation f ~ g < p(f # g) = 0 makes ||[|, a norm. Convergence with respect to |||, is called in the
p-th mean. On account of 5.6 all f € LP are p-a.e. finite for 1 < p < 0.

6.6 Relations between [’-spaces

For 1 < p,q < oo we have
1. For u bounded above , ie. u(A) < avVA € A we have p < ¢ = LP D L1.
2. For ;1 bounded below, i.e. u(A) > aVA € A we have p < ¢ = LP C L1.

Note : The Lebesgue measure p = A" satisfies none of the above requested conditions such that
LP (A\™) cannot be linearly ordered by inclusion. E.g. owing to 5.26.2 on the one hand for g,(x) :=
min {1; |z| ™"} we have g, € LP & n > % but in the other hand fro hy(z) := max {1;|z|~"} the relation
gn € LP & n < holds.
Proof:

L. Withp==%2>1, f=h%and g =1 Hélder 6.4.1 yields [ |h|*du < (f b7 dp) T - ([ 1d,u)? resp.

1 1 11 11 .
1Plls = ([ IRldp)s < (J[R["dp)7 - (u(X))s " = [|All, - (1 (X))s "+ and hence the assertion.
2. On account of Zorn’s lemma ([13, p. 14.2.4]) the set {|f| > 1} possesses a maximal cover

of measurable sets referring to inclusion resp. refinement and since A is closed under inter-
section this mus be a partition. Due to [|f|[Pdy < oo we have p(f > 1) < oo and since

i is bounded below this maximal partition consists of n := @ + 1 sets (Ai)lgign with
n
i (A;) > a. Owing to 5.3 for every e > 0 there is an elementary function e =% a;x4, < f
i=1
n
with f{|f|>1} edp =Y a;u(A;) > f{\f|>1} |f|Pdp — € - a. Hence on the one hand for every
> = >

q

x € A; with 1 < i < n we have |f[P(z) > a; < |f|%(z) > o and on the other hand for every
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q
1 < i < n there is an z; € A; with «; > |fP(z;)] — € & of > (|fP(x;)] — 6)% > | fUxxi)| —€-
Lo (1fP ()] - e)%_l > x| — € -q% | f97P(x;)| since the tangent t(x + €) = zF + e L x%_ql
on the convex function g(z) = x? always runs below the curve, i.e. g(x +¢€) = (z+¢€)r.

n a
Thus follows f{|f‘>1} |f|%dpn <> (af +e- % . \fqp(:ci)> X4, < oo and also on the whole set
= i=1
I dp = [ paay 1%+ Jypsn 19 < fpay PR+ Jops0 [ f17dp < oo

6.7 Completeness
Every LP-Cauchy sequence(f,),.y C LP (1) with 1 < p < oo converges in the p-th mean to a
f € LP(u). Hence LP (1) is a Banach space.

Proof: For a Cauchy sequence (fy),cny C LP (1) with p < oo exists a partial sequence (fp,);cy With

[ee)
| sy — s < 1 due to 6.4.2, hence ‘Zo | friis — [
P = P

k
» < 21% which entails | Y | fn,, — fn, <1
i=0

o0
owing to 5.13 and finally p-a.e. g :=>" |fm+1 — fn;| < 00 according to 5.6.2. Since Y is complete
i=0

the sequence (fp,);cny = XZ: (fnx — fupsr) p-a.e. converges to an f = lim f,, :ioj (fnisr — fny) with
k=1 Undes i=0
|f| < g. On account of the completeness of x (cf. 3.10) we can define f(z) = 0 on the remaining null

set {|f| = oo}. According to the hypothesis for every € > 0 there is a j € N with Hfm — [n, H < € for
P

Fon = I, = fo;| € L1 (X3 R)

P
> = lim inf
m>n;

all m > n; whence Fatou’s lemma 5.14 yields (lim inf
m>n; n;

with [ (Iim>inf ‘fm — [, 7’) dp < Iim>inff ’fm — fn, pdu < €P Since p-a.e. f = lim f,,, we have p-a.e
m2>mn; m2>mn; 1—00

fm = fuy| = ’f—fnj‘ so that Hf_f"ij = fm—fnj‘

(fn:)ien and hence the entire Cauchy sequence (fy),cy (cf. [13, p. 14.1.2]) converges in the p-th mean
to f. On account of ||f||, < ||f — fall, + || fall, < 0o we have f C LP (u).

For p = oo let A := Um,neN {Ufm = ful > [ fm = fulloo} ULl fml > | fmlloo})- Then we have p(A) =0
and (fn),cy is a Cauchy sequence on X \ A referring to the supremum norm. Due to the
completeness of Y it converges uniformly and in particular with reference to |||, to a bounded
function |f| < nh_{réo | fnllo- Again we define f(x) =0 for € A and finally obtain f C L™ (u).

lim inf
m>n;

lim inf
m>n;

‘ < €, i.e. the subsequence

6.8 Special cases

1. The sequence (fy),cny C LP (A) with f,, := x4, for A, := {l' ”—“} with k(n) = min {k in < 2’“}

2ky 9k
shows that in general the p-a.e. convergence cannot be extended to the entire sequence::
1 k(n)
. IR T n.n+l P . —-== . 1 . 1.
Jm Mol = Jim (3 ([g57]))" = Hm2™ " = lim Sy = 0 but for every = € [5:1]

and k > 1 there is an n € N with z € [2%, "Q—ng} such that (fy),cy does not converge for any

x € B, 1} whereas the partial sequence (fyr ),y converges for every z # 3.

2. L?(u) is a Hilbert space with the inner product (f,g) := [ fgdu and the norm |[|f| :=
i N 1
(f.902 = (S fFdu)® = ([ 1f17 du)?.
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6.9 Convergence in the p-th mean, in measure and y-a.e

Every sequence (fy),cy C LP (1) with 1 < p < oo converging in the p-th mean to an f € LP (u)
converges in measure to f. Also there exists a subsequence ( fy, ),y converging p-a.e. to f and for
every € > 0 there is a set Z. C X with measure 1 (Z.) < € such that (fy, ),y converges absolutely
and uniformly on X \ Z..

Proof: The convergence in measure follows at once from e-p (|f — fn| =€) = P (|f — ful’ > €P) <
[|f = fulP du According to the hypothesis for every k& > 1 there is an ng > ngp_1 € N such that

If = faill, < 5. Then for Y, = {yf — fanlP > 2%} we have st (Vi) = [y gedp < [ |f = fo, [P dp <
53 whence  (Y}) < 5. Hence i (Zy,) < 5=t for Zp, :kijm Yy, and |f () — fu, (2)[P < 5 for every
v € X\ Zy resp. k > m such that (fn,);,, converges to f absolutely and uniformly on on X'\ Zy,
as well as pointwise on X\ ﬁl Zm with p < Oﬁl Zm> =0.

m=

m=

6.10 Lebesgue’s dominated convergence theorem for LP-spaces

A sequence (fn),cny C LP (X;Y) converging p-a. e. to some f converges in the p-th mean to
f € LP(X;Y) iff there is an integrable majorant g € LP(X;R{) such that for every n € N and
p-a.e. we have |f,| <g .

Proof: For every K € N the increasing sequence | sup |fn, — fim|” is bounded by | f, — fm|” <
k<m;n<lI Ik

2PgP and hence has bounded integrals [ ( sup | fn — fm\p> du < 2P [ gPdu = 27 ||g||}. According
k<m;in<l

k<m;n

to the monotone convergence theorem 5.13 we conclude [ ( sup |fn — fml? | du < 2P [ gPdu for
every k € N. Hence we can apply the monotone convergence theorem a second time to the decreasing

converging p-a.e. to 0 to obtain klim Ik ( sup |fn — fm|p> dp = 0.
— 00

smin

sequence | sup |fn — fm|"
k<m;n E>1
Hence (fn),,cy is LP-Cauchy and due to the completeness 6.7 of L” (X;Y) it converges in the p-th

mean to an f# € LP (X;Y) coninciding p-a.e. with f according to 5.11.

Note: The proofs of the preceding two theorems is completely analogous to those of the corresponding
statements 5.11 resp. 5.14 for L' with the small but essential difference that the generalized theorems
6.9 resp. 6.10 require the completeness 6.7 of LP which like the dominated convergence for L' is based
in the completeness5.10 of L'. Alas the proof of this latter property depends on an elementary
approximation by step functions and cannot be duplicated for LP.

6.11 LP- and uniform limits of step functions

1. For 1 < p < 00 we have (S (A4 Y);]ll,) = L” (X;Y)

2. For a finite measure space (X; A; 1) and a finite dimensional Banach space (K";||) we have
(S (A K™ 5 [lloo) = L2 (X5 K™).

Proof:

1. According to 5.5 for every f € LP(u) resp. fP € L'(u) and p < oo there is a sequence
(@n)neny € S (A;Y) of step functions converging p-a.e. to f. The truncated version v, (z) =

{'“0“0(“”)‘ for |<,0n(l“1)|e§2|f @I gtill converges p-a-e- to f and satisfies the hypothesis for 6.10 with

els
the majorant 2|f| € LP(X;R{) which yields the convergence in tne p-th mean and hence the
assertion.
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2. For|f| < N; M > 1 and k = (ki;...;kn) € Ky = [-NM; NM[" C Z™ we define oy =
D keK %XAk,M € S(A;K™) with Agpr = ! {H [%7 kﬂl[ € A and p (Ag,n) such that

=1
1f = onrlle < L.

6.12 Continuity of the integral measure

For an integrable f € LP (X;Y) and every € > 0 there is a 6 > 0 such that for every E € A with
p(E) < 6 we have [ |f|dp <e.

Proof: The sequence (¢n),>; with ¢y, () = { |f(qf )|, for |J; f;)‘gn satisfies the conditions for monotone

convergence 5.13 such that nli_)ngofnpndu = [|f|dp. Hence for € > 0 there is an ny > 1 such that
J(If] = ¢n) du < §. Since for 6 = o~ and every £ € A with p (E) < § we have [ ondp <n-p(E) = §
it follows that [ |f|dp < [ (If] = ¢n) dp+ [5 ondp < €.

6.13 Vitali’s convergence theorem

A sequence (f,),~; C LP (1) converging p-a.e. for 1 < p < oo to some f also converges in the
p-th mean to f € LP (u) iff for every e > 0

1. there is an A, € A with p (A.) < oo and fX\Ae |fnl? du < € for all n > 1.

2. there is a 0 > 0 such that for every E € A with p (E) < § we have [ |fn|" dp < € for all n > 1.
Proof:
=: 1.: Due to the hypothesis for ¢ > 0 there is an ng > 1 such that [ |f, — f|" du < € for all n > ny.
Owing to 5.13 with [f|P = Slu>p1\f\p X{|gps1) and f € LP(u) there is an mg > 1 with [|f[" -

X{ipenydn =S du = F1FP g aydn < cand (1 < 5) < p(IF17 < 5) < S dp < o0
for all m > mg. For those f, with 1 < n < ng we use the same reasoning as above to find an

my > mp such that the sets B, = {|f\p > L} € Aresp. C. = 4 max [f,|P >+ € A with
mi 1<n<ng mi

p(X\Be), n(X\Ce) < oo satisty [x\p |f["du < eresp. [x\c, [fal"dp < €forall 1 < n < no.
1 1
For A. = B, UC, Minkowski’s inequality 6.4.2 yields (fX\Ae | fnlP du) P < (fX\Ae |fn — fIP d,u) Py

1
(fX\A€ | [P dﬂ)p < 6% + 6% resp. fX\Ae | fnlP du < 2P€ for all n > 1.

2.: For a given € > 0 choose ng > 1 as in 1. such that [|f, — f[’ du < € for all n > ny. According to
the preceding lemma 6.12 there is a ¢ > 0 such that for all E € A with p (E) < § we have [ |f|Pdu < e
resp. [p|fnlfdp < eforall 1 <n < mng. Asin 1. Minkowski’s inequality 6.4.2 yields the desired
estimate [ |fnl? du < 2Pe for the remaining n > nyg.

<: According to 1. for € > 0 there is an A, € A with p(A¢) < oo such that fX\AE | fnlP du < € for all
n > 1 so thath with Fatou 5.14 we obtain [y, 4 |f["dp < lim>i1nf Jx\a. [fal” dpw < e. As Minkowski
n>

1 1 1
6.4.2 gives (fX\AE If = fal? du)p < (fX\Ae | fnl? d,u) P4+ (fX\Ae IfIP d,u)p < 27, According to 2. resp.
Egorov 4.15 for every § > 0 there is a By € A as well as an ng > 1 with u(Bs) < 0 such that

1

|f (x) — fn (2)|P < € for every z € A\ Bs and hence (fAe\Ba If = fal? d,u)g < ev for every n > ng. On
the set Bs we follow the reasoning for X \ Ac from above to find [p_|f[” du < lim>ilnf Jp; | fnl dp < €

1 1 1
with Fatou and finally <f35 lf — ful? d,u)p < (f35 |fnl? du)p + (f35 Vil du)p < 2¢¥. Combining our
results over X \ A, A\ Bs and Bs we obtain ([y [f — ful? du)% < 5¢b for n > nyg.
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7 Product spaces

7.1 The initial o-algebra

The initial o-algebra o (f;:i€1l) =0 (UiEI fi_l (Az)) on a set X referring to the functions f; :
X — (Y;; A;) with ¢ € I is the smallest o-algebra on X such that all f; are measurable. This concept
is closely related to that of the initial topology, cf. [13].

7.2 The trace of a measure space

The trace co-algebra Ap = o (i) on a subset B C X of a measure space (X;A;p) ist the initial
o-algebra with reference to the canonical injection i : B — X. On account of i 71 [A] = AN B the
measurable sets in B simply are the intersections of the measurable sets in A in X with B. The
trace of the measure p is its restriction u|p.

7.3 The product-o-algebra

The product-c-algebra A; = Q,c; Ai = o (m; : i € I) on the product X; = [[;c; X; of the measur-
able spaces (X;;A;);c; is the initial o-Algebra with reference to the projections m; : X; — X;. A
mapping f : Y — X/ is measurable iff the inverse images f~! [ﬂ'i_ ! [A,]} = (m o f)'[A;] of measur-
able sets in X; are measurable in (Y;.A). Hence f is measurable iff every component m;of : (Y;A) —
(X;; A;) is measurable. Due to 4.4 the product o-algebra induced by the families & C P (X;) with

i€ Tis Qier o (&) =0 (Uierm (0 (€))) = 0 (Uies o (1 (€)) = o (Uies mi ' (€1)).

7.4 Measurable rectangles and cylinder sets

1. The family S; = {ﬂjeJ 7rj_1 [Aj] =Tljes Ai x Tliens Xi : Aj € Aj, G €T CIA Jﬁnite} of mea-
surable rectangles is closed under intersections and a basis for the product-c-algebra
.A[ =0 (S[)

2. For J C K C I the projections 7y : (X ;. A;) — (Xk; Ax) are measurable and for J N K = ()
we have Aj g = A5y ® Ak.

3. The algebra Z; = {77}1 [Aj] = Ay X [Liens Xi: Aje Aj,JCIN Jﬁnite} of cylinder sets
also is a m-basis for the product-o-algebra: A; = o (Z7). The cylinder sets Z; = o (Sy)
themselves are o-algebrae with Z; C Zg for J C K.

4. The family Ay = {ﬂjl [Aj] = Ay xTliepg Xi: Ay € Ay, J C I A Jcountable} of countable
cylinder sets is a o-algebra and identical with the product-c-algebra: A; = A;. Every
measurable set A of a product-o-algebra may depend from a countable set of coordinates in

contrast to the product topology whose open sets are defined by finitely many coordinates
(cf. [13, p. 4.2]).

Proof:

1. &1 is closed under intersection since for finite J, K C I and A; € A; with j € J resp.
By € Ay with k € K we have (Njesm; ' [A4]) 0 (Miere 7 [Bi]) = (Mjense ;' [45]) 0
(Miearse m 1A B) 0 (Niereys 7! [Brl) € Sr with AN By € A for I € JN K. Due to
{71;1 [Ai]: A€ A; i e I} C S; we have Ay = O’({ﬂ'i_l [Ai] - A; € Ajyi € I}) C 0 (Sr) and on

account of Sy C Ay the converse follows: o (Sy) C Aj.
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2. The projections are measurable since with (¢ x (ﬂf) [Ax] € Sk for Ay € Ay and k € K we

have (k) (s () (40]) = Micre (k) (7)™ 140]) = e () [44] € Ay

and hence with 1. follows the assertion. The measurability of WjUK resp. W}](UK entails Ay g DO

A;® Ak and from 1. resp. Sjux C Aj® Ak follows the converse Ay x = 0 (Sjur) C Aj@Axk.

3. Z; is an algebra since obviously §, X € Az and for 7' [A)], 75 [Ax] € Z; with A; €
-1 -1

Aj, Bk € Ak and finite J, K C I owing to 2. we have (WfUK) [Aj], (W‘[](UK) [Bk| € Ajuk-

Hence the intersection (W}l [AJ])0<7r[_(1 [BK]> =tk <((W§UK)1 [AJ]> N (7T‘I](UK)71 [BK]>
€ Z1 and likewise the union are contained in Zj. Concerning the complements we consult e.g.
[Vorwerg2022a to obtain X;\ ;' [4)] = (ﬂjl [XJ]) \ (7‘(;1 [AJ]) =7, X\ Aj] € Z; since
Xj\ Ase Ay. On the one hand we have o (Z7) C Aj since according to 2. we have Z;5 C Aj.
On the other hand 1. yields Ay = 0 (S;) C o (Z;) since Sy C Z;. Again on account of 2. the

families Z; = 7rj1 (Ay) are o-algebrae whereas the linear order by inclusion on the family of
—1

cylinder sets follows from (WJK ) (Ay) C Ak by application of 7TI_(1. Note: The properties of

a o-algebra as well as the linear ordering by inclusion obviously extend to arbitrary index sets,
notable countable ones, as shown below:

4. The family Az is again an algebra since the reasoning from 3. can be transferred to countable
-1
index sets. It is a o-algebra since U,y ;" [A,] = 7" <Un6N ((ﬂfn) [AJn]>> € Az with

-1
(ﬂjn) [A;,] € Ay and countable J = U,y Jn. In particular we have Az C o (Z21) = Aj.
Conversely from Az D Z; and 3. follows the inclusion Az D o (Z;) = A;.

7.5 The product of Borel s-algebrae and the Borel o-algebra of a product

The product B; := Q;c; 0 (O;) of the Borel o-algebrae B; of the topological spaces (X;; O;);c;
is the smallest o-Algebra on X = [[;c; X; or initial o-algebra such that all projections m; :
(X;Br) — (X;B;) are measurable. The 7; are continuous with reference to the product topol-
ogy O = Q,crO; (cf. [13, p. 4.2]) and hence due to 4.4 measurable with regard to the Borel
o-algebra B = 0 (®;c; 0i), i.e. Br = Q;cr0(0;) C 0(Q,c; Oi) = B. For countable I and sec-
ond countable O; the converse inclusion is also true since with countable bases &; of O; the basis
E= {71; ! (Ey): Bie&iel } of the topology is again countable and hence also generates the Borel
o-algebra B =0 (0 (£)) = o (€) due to 1.2 such that from €& C By follows B = o (£) C By. Especially
on polish spaces the two o-algebrae coincide: B = B;. For Hausdorff components according to [13,
p. 7.10] the separation axiom Ts extends to the product space and owing to Tychonoff’s theorem
(cf. [13, p. 9.9]) any product of compact sets is again compact and hence Borel measurable due
to 1.2.

7.6 Finite products of o-algebrae

If every basis &; for 1 < j < m includes a countable cover (Ejn)neN C &; with U,,en Ejn = X the
m m m

product @ o (&) is generated by the intersections 7Tj_1 [E;] =11 &; for all possible Ej € &;:
4 L L

Jj=1 J= J=
m m m m
Q o(&)=0o (Il & |. Due to 7.4.1 on the one hand we have o | [] & | CQ o (&;) and on the
Jj=1 Jj=1 j=1 j=1

Jj=

other hand 7; ' [E] = Upen (jf_n[l 77171 [Ejn) Nt [EJ) €o ({j{i 7'(';1 [Ej] : Ej € é}}) =0 (ﬁl &-)

whence @ o (&) C o <H Sj> on account of 4.1.
j=1 j=1
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7.7 Finite products of Borel o-algebrae

Analogously to the one dimensional case dealt with in 1.4
and according to 7.5 the n-dimensional intervals I := To
n - ——

{H lai;bi] + a; < b; € R} C R™ are Gs and hence B™-measurable. i
i=1
n n n
Also on account of <H Ii> N (H Ji) =11 (I;nJ;) with inter- |
i=1 i=1 ‘

| |
=1 Iy VI Xl
vals I;; J; C R they are closed under intersection. Their finite 2! ] :

unions form the algebra F" of the n-dimensional figures: For

P n qg n
F=UII Ir;;G=U Il Ji; € F" we obviously have FUG € F";
k=1i=1 1=1i=1

P q n P q n
FNnG :kullu1 1:[1 (Ik,i N Jm) c F™ and F\G :kUUU1 1:11 (Ikﬂ' \ Jm‘) € I o _____ |

n n Jl
F". On account of [] Jas;bi[ = Uren 11 }ai; b; — H both the intervals and the figures generate the
i=1 =1

Borel o-algebra: B" ::é Bi=c(I")=0(F") =0 ({ ﬁ lai;o0[ : a; € R}) due to 1.1.2.
i=1

=1
8 Product measure

8.1 Measurable cuts

For two measure spaces (X;; A;; p;) with @ € {1;2}, every A C A1 ® Ay and 21 € X3, 29 € X5 the
cuts A, = {z2 € Xy : (x1;22) € A} resp. A,, are measurable with respect to Ag resp. A;.

Proof: Due to (X \Q),, = X2\ Qu, and (Upen@n),, = Unen (@n),, the family of all sets @ C
X1 x Xy with measurable cuts );, € Ay is a o-algebra containing all measurable rectangles

Ay x Ay with A; € A; resp. Ay € Aj since (A X Ag)x1 = {’%2’ 2;21 . Hence according to 7.4.3 it

includes the o-algebra A; ® A generated by these sets.

8.2 Measurable measures of cuts

For two o-finite measure spaces (X;;A;; p;) with @ € {1;2} and every A € A; ® Ay the mappings
s14 + X2 — [0;00] with s14 (x2) = p1 (Ag,) resp. s2a @ X1 — [0;00] with soa (z1) = p2 (Az,) are
measurable.

Proof: Preliminarily so as to have access to complements we confine ourselves to s1p4 (72) =
p1la, (Agz,) with the restriction pi|a, on one of the ui-finite sets A, from the w.l.o.g. increasing
cover J,eny A1n = X1. The family D of subsets D C X; x X3 with a measurable si,p is a Dynkin
system since the constant function si,y = 0 is measurable, for every measurable si,4 the com-

plement, function si,(x,xxa (#2) = pla, (X1 x X2)\A),,) = mila, (X1 % Xa),, \ Ay) =
pila, ((X1 X XQ)M) — m1la, (Azy) = pila, (X1) — Sina (z2) is measurable and so is the summa-
tion function s, 5, = 3N S1ap, With (s1nD,,),ey for pairwise disjoint sets (Dp),,cnyowing
to 4.9. Furthermore si,(4,xa,) (T2) = p1la, ((A1 X Ag)m) = pila, (A1) - x4, (z2) is measurable
for every measurable rectangle A; x Ay with A; € Ay resp. As € Ay;. Hence the system
A1 x Ao of measurable rectangles is included in D and since it is closed under intersection

we can apply the Dynkin J-m-theorem 1.6 resp. 7.4.3 to obtain o (A; x A3) = A; ® Ay C D.
According to the continuity from below 2.2.2 and 4.9 the measurability of the s1,4 extends to

supsina (¥2) = supp|a, (Az,) = supps (An N Agzy) = i1 (Upen An N Azy) = p1 (Agy) = 514 (22). The
neN neN neN
proof for s94 is of course analogous.
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8.3 The product measure

On the product (X; x X2;4; ® As) of two o-finite measure spaces (X;;.A;; p;) with ¢ € {1;2}
the expression (1 @ p2) (A) == [ 1 (Asz,) dpe = [ 2 (Ag,) dpy for A € Aj ® Ay defines a o-finite
measure uniquely determined by its multiplicity (u; ® po) (A1 x A2) = 1 (A1) - p2 (Ag) for every
A; x Ay € Ay x As.

Proof: On account of s ((A1 X Ag)xz) = p1 (A1) - x4, (z2) and vice versa the two integrals co-
incide and the set function p; ® pe is well defined and obviously uniquely determined by its
multiplicity on the family 4; x As of all cylinder sets. Due to 8.2 both integrals are well de-
fined on A4; ® Ay = o (A; X A2). The first integral is o-additive on A; ® As since for ev-
ery sequence (Ay),cny C A1 x Ay of pairwise disjoint measurable sets the o-additivity of p; and

monotone convergence 5.13 applied to ug yield (u1 ® u2) (OneNAn) = [ ((OneNAn)m) dug =

S (Snentn (An)y,) diz = Sen f 1 (As) dsz = ens (11 © 12) (An) in the case of the latter se-
ries converging to a finite limit. In the case of a diverging series >, cn [ p1 (Az,) dpug = oo there

N N
is an N € N with f(Z 11 (An)q;2> dus =Y. [ (Az,)dus > C for every C > 0 and hence
n=0 n=0

o

(1 @ p2) (UneNAn> = > nen (W1 ® p2) (Ay) = 0o. The same argument of course appplies to the sec-
ond integral such that both are measures on A; ® As coinciding on the m-basis A; x Ay and hence
on all of A; ® Az due to 3.4. pu1 ® pg is o-finite since for a cover (Ain), oy C A;i of p-sets Az, with
i € {1;2} the sequence (A1p X Azp),cny C A1 ® Az is a cover of X1 x Xy from py ® po-finite sets
Aln X Agn.

8.4 Cuts of null sets

Almost all cuts Z,, of a p; ® pg-null set 7 € A; ® A are po-null sets: (u1 @ p2) (Z) = 0 =
p2 (Zz,) = 0 for every z1 € X \ Z1 with p; (Z1) = 0 and analogously for Z,,.

Proof: By the approximation property 3.6 for every ¢ > 0 there exists a sequence (A,),cy C
A x Ay of cylinder sets with Z C U,enyAn and Y, oy (11 ® p2) (An) < —57. Hence Z,, C

> ;on
UneN An,xl and for T, = {wl € X ZneN M2 (An,an) > %} we have %Ml (Tn) < fEnGN 2 (An,;tl) dﬂl

5.12 8.3 ‘
= ZneNfM2 (An,rl)dﬂl = D neN (11 ® p2) (An) < n-on whence 1 (UnEN T,) < 2 oneN M1 (Th) <

e and finally g1 (p2 (Zz,) > 0) < g1 (2 (Upen An,z) > 0) < € which proves the assertion for Z;
{331 S Xl L2 (UnEN An,xl) > 0}

8.5 Fubini’s theorem

For two o-finite measure spaces (X;;A;;p;) with ¢ € {1;2} every A; ® Az-measurable function
f: X1x Xy — Y into a separable Banach space (Y| |) is u1 ® ua- integrable iff either f,, : Xo - Y
with fz, (z2) = f (x1;22) is pg integrable for pi-a.e. x1 € X and [ ([ fz,dpe) dpy < oo or vice versa
and in that case we have [ fd (pu1 ® p2) = [ ([ fo,dpe) dur = [ ([ frpdpn) dps.

Proof:

Step I: The function f,, : Xo — Y with f,, (z2) = f (z1;22) is Ag-measurable since due to 8.1 for
every Borel measurable set B C Y we have f, ! [B] = {(21;&) : f (z1;&) € B} = (f! [B]),, € Aq.
For step functions ¢ :i QiXFy ;% Fa :zn: QiXFy,; " XF; €S (F1 X F2;Y) with a; € Y and w.l.o.g.
pairwise disjoint cylirl;iler sets F; le?;i € JFi1 x Fp for the algebrae F; of uj-finite sets such
that A; = o (F;) with j € {1;2} the step function ¢,, :i QiXFy (1) - XF, € S(F2;Y) are
obviously As-measurable. On account of 8.3 the integration grmula holds for these step functions

since [ d (p1 ® p2) = ; i -y (Fug) - po (Fag) = [ ([ ardp) dpa. Assuming f € L (X x Xp;Y)
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by 7.7 resp. 5.23 there is a sequence (n),cny C S (F1 X F2;Y) with T}Lrgof lon — fld (1 @ p2) =0
and in particular im [ ([ ¢ne dpz) dpn = lim [ ond (i ® p2) = [ fd(m ® po).

Step II: By 5.11 and w.l.o.g. transferring to a subsequence there is a @ ® po-null set Z € A; ® As
with lim o, (x1;22) = f(z1;22) for every (z1;22) € (X7 x X2) \ Z. Hence due to 8.4 we have
n—oo

lim ¢y, 4, (x2) = fo, (x2) for every xo € X9\ Z;, with ps(Zz,) = 0 and 27 € X; \ Z; for a p-

n—oo

null set Z1. The sequence (®,,),cny C S (X138 (F2;Y)) with @, (21) = gy is L' (111)-Cauchy since
[ — Pilly = [ [Pn — Pimldpn = [ ([ [ner — Pmai | dp2) dpn = [ |on — m|d (11 @ p2). By 5.11
and w.l.o.g. retreating to a subsequence there is a a ® € (S (X1;S (F2;Y));|ll;) = L' (X1; 8 (F;Y))
and a pi-null set Wy such that nh_)ngo | Py, (1) — P (21)||; = 0 for every 1 € X1\ (Z1UW;). In
particular [[one, [y = [|Pn (21)ll; < [[®n (21) = @ (21)ll; + [ @ (z1)]l; < 2][® (z1)]]; for n large enough

whence ® (z1) € L' (X9;Y) by 5.18. A third instance of 5.11 verifies that us-a.e. and for z; €
X1\ (Z1 UW;) we have @ (1) = fo,, i€ nlggo |y (z1) — @ (21)]]; = nhﬁnéof |onagr — faildpe =0 and

hence lim [ Go,r,dsz = i [ fo,dps>

Step III: Due to 4.9 the function 1 + [ fi;dus is Aj-measurable. The step functions (V,), .y C
S(X1;Y) with Uy, (z1) = [ onadpe :i aixm, (@1) - p2 (Fo,;) are again L' (u1)-Cauchy since
[ ol = J [l dps = ([ 1, — | da)dis = [ I~ 0ol d s © o). Sice by
step II we have nlLH;OWn (r1) = T}Lrgof@n,xldug = [ fo,dus for every z1 € X1\ (Z1 UW7) by 5.11 we
conclude nh_)rglof |[ Onzidpe — [ fzdpe| dpn = Jim |y, — [ fzidpzll; = 0. In particular by step I we
have shown that [ ([ fo,dp2) dur = Hm [ ([ @ne dpg) dps = lim [ ond (p1 @ pg) = [ fd (11 ® pa).

Step IV: By 5.16 we may assume [f|, € Lt <u2;R6r) for every 7 € X3\ Vq with p1 (V4) = 0
resp. [ (f | flz, d,ug) dpy < oo and by steps I - III it suffices to show that |f| € L! (m ®,u2;]R(J{).

Since |f| : X1 x Xo — R{ is measurable 5.6 provides an w.l.o.g. increasing sequence (¢p),cy C
S (X1 x X9;R) converging outside of a 1 ® pe-null set Z to f. As above resp. according to 8.4 we
have 7}1_)1130@”@1 (z2) = |fl,, (2) for every zo € Xo\ Z, with p2(Z;,) = 0 and 21 € X; \ Z; for
a p1-null set Z;. Monotone convergence 5.13 then yields nli_}nolofgonmdug = [|fl,, duz for every
1 € X1\ (Z1UVy). By definition 5.1 every step function ¢, € L' (X; x X3;R) is integrable so
that steps I - I1I yield [@nd (1 ® p2) = [ ([ ¢nzidpz) dpr. Since the sequence ([ ¢n 2 dpz), oy is
increasing we may invoke monotone convergence a second time to obtain_ lim_ J ([ onz dpe) dpg =
1l (f | flay dug) dpy. A third instance of the monotone convergence theorem applied to (¢n),, ey C
L' (X1 x Xo;R) delivers Jim [ ond (p1 @ p2) = [|f]d(pu1 ® pz) and hence the assertion.

8.6 Finite products of measure spaces

On the finite product ([I;c; Xi; ®;csAi) of the o-finite measure spaces (Xj;.As; ;) with a finite
index set J = {1,...,n} the product measure @,c;; is uniquely determined by the multi-
plicity condition u ([[;c; Ai) = Ilies 1 (4;) and is constructed inductively according to 8.3 by

means of @<j<; pj = <®1Sj<i ,uj) ® pi. The resulting product of measure spaces is denoted as
Rics (Xis Ais i) = (Tics Xi; Qicy Ais @iy 1vi). For a Borel measurable function f : [[;c; X; = Y
with finite integrals [ ( (f ij(Q)mwj(mduj(l)) ) dpijxy for every 1 < k < n and some permutation
j:J — J we have [ fdu = [ ( (f f:vj@)...xj(n)dﬂj(l)) ) diijn) for every permutation. Hence
the convergence for one particular order of integration grants the integrability of all
permutations.
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8.7 Completion of \"

The product \" = @;<;<, A of the complete Lebesgue measures A on the product B" = @ <;<, B
of the Lebesgue o-algebrae B on R is not complete any more since for any A-null set A € B we have
A2 (A x R) = 0 and for any non Lebesgue measurable B ¢ B (cf. 3.11) evidently A x B C A x R holds
but A x B ¢ B2 The completion of the product according to 3.9 will be included without change
of notation in the extension obtained by means of the Riesz representation theorem 10.13 to the
Lebesgue measure \" on the Lebesgue o-algebra B".

8.8 Translation invariance of \"

The Lebesgue-Borel measure A" on the Borel o-algebra B on R” is uniquely determined by its
translation invariance on the m-basis of the n-dimensional intervals Z” : For every translation
n

Te : R" — R™ with T¢(x) = x + ¢ for a ¢ € R" and every interval [a;b[:=]] Ja;;b;] € Z" with
ai < b; € R due to 4.3 and 8.3 we have T. (\") (Ja;b]) = A" (T ! (Ja; b])) :l:)\ln (Jla—c;b—c]) =
A" (Ja; b)) :ﬁ (bi — a;), i.e. the o-finite measures T (A") and A" coincide on the w-basis Z" and
hence on o (%:"1) = B" due to 3.4.

8.9 The transformation formula

The image of the Lebesgue-Borel measure A" under a homomorphism 7' € GL (n;R) is To A" =
% such that \" (T [A]) = |det T'| - \™ (A) for every Borel-measurable A € B™.

Proof: According to the Gauss algorithm every automorphism resp. every invertible matrix
is the product of elementary transformations resp. elementary matrices of the two following

types:

1 k l ) 1 k n
1 1 1 1
1 1 k Eka: « k
Ey =
1 l 1 n
1
" 100
FEyy = 0 2 0
1 0 0 1
Ey=| 011
00 1 A"
T
A3 : L
— L o
T -7 2
R PR 1 By (Hs)
P w;
o Es.3 (H3)
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Multiplication with FEj; results in an addition of the I-th row to the k-th row, i.e. a shearing
so that the image of the unit cube @ := [0; 1] generated by the basis vectors e, ..., e, with the

measure \" (Q) = (1-0)" = 11is Ey[Q] = {Zlgign riei: 0<x; <lLii#kANx <z <1+ 1}.
This parallelepiped can be split into two disjoint halves L = {x € E,; [Q] : ; <z < 1} and R =
{x € E[Q] : 1 <z <+ 1} such that E [Q] = LUR but also Q = (R — e;) UL and due to the
translation invariance of A" we obtain A" (Ey; [Q]) = A\ (K) + A" (L) = \"(K) + A" (L —e) =
A" (Q) =1-A"(Q) = [det Ejy| - A" (Q).

Multiplication with FEy, results in a multiplication of the k th row with the factor o € R resulting in
the dilation Fj, [Q] = {Zlgign riei:0<z; <Lii#£kAN0 <z < a} with measure \" (Ey, (H)) =
(1=0)""" (@ =0) = a = |det Eya| - A" (Q).

The assertion then follows from the multiplicity of the determinant: |det (A - B)| = |det (A)] -
|det (B)|:

8.10 Special cases of the transformation formula

1. A dilation along the axes by T (e;) = r;-e; forr; e Rand 0 <i <n

n K
results in A" (T (4)) = ’H ri - A" (A)’ - A" (A) and particularly a
=1

rotation

simple scaling of the set ZZ by the scaling factor r € R yields the o
volume A" (rA) = |r"| - \" (A). &

2. A rotation by an orthogonal matrix T € O (n;R) leaves the
volume unacffected: A" (T'[A]) = |det T| - A" (A) = A" (A).

translation

o

3. In the three dimensions of R? the homomorphism 7 may be o
represented by a matrix with n linearly independent column vec- S
n

m—F

tors x; =Y. xper € R™ for 1 < ¢ < n generating a paral-
k=1

lelepiped T [Q] = {Zlgign tix; 0 <m; < 1} which is the image
of the unit cube @ = {Zlgkgn trer 1 0 <tp < 1}. Its volume is
N(T[Q)) = |det T| - A (Q) = det ((wki)y<picn) - 1

5. With the integral transformation formula 5.8 we obtain the linear form of the change-
of-variables theorem [9, th. 13.7] since [ f - \deiiﬂd)‘n = Jppa fA(T o A") = [, (foT)d\"
implies [r(4 fdA" = [4 (foT) - |detT]| - dA"

8.11 Cavalieri’s principle

For a compact K C R™ and any cut K; = {x € R"!: (z;t) € K} with t € R we have \" (K) =
Je AV (K) dt.

Proof: Due to Fubini’s theorem 8.5 we have \" (K) = [pn XK (®) dx = [ ([gn-1 XK (2;t) dz) dt =
J (o1 Xr, () da) dt = [ ' (Ky) dt.
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8.12 The cone

The cone Cy (B) = {((1 =N & Ah) e R": €€ B;0 <\ <1} with
compact base B C R" !and height h > 0 has the volume
A" (Ch (B) = 2. A1 (B).
Proof: According to Cavalieri’s principle8.11 and by the condi-

1-HB for0<t<h
tion Ah =t we obtain the cuts C}, (B), = (1-3) rr=ts

0 else

with A"~ 1 (Cy, (B),) = (1— %)7171 - A" 1(B) due to 8.9 whence
X" (Cr (B)) = fy X" (Cr (B), ) dt = A1 (B) - fgt = (1= £)" " di =
boan=1(B).

8.13 The unit simplex

The unit simplex S} = { SAie > A= 1} C R"™ has the volume
i=1 i=1

A" (ST) = 71

Proof: By induction over n we start with A! (S7) = A1 ([0;1]) =1

and proceed from n—1 to n by 8.12 with A" (S) = L. \n~1 (S{Lil) =

1, 1 1

n  (n—1)! nl”

8.14 The unit sphere
7rn/2

r(2+1)

Proof: As above we procced by induction over n starting with

M (BY) = A ([-1;1]) = 2 and proceed from n — 1 to n by Cav-

alieri’s principle 8.11 with A" (B}) = [p A"~ ((B{L—l)t) dt =
n— n— n— n— n—1)/2

Je i ((Bi) ) dt = A= (B7Y) - gy (=) P ar =

An—l (B?*l) - ¢p. By substitution and integration by parts

we can simplify ¢, = [, (1 —t2)(n71)/2 dt = 2f07T/2 sin"(a)da =

2(n—1) f()Tr/2 cos?(a)-sin(»2?)(a)da . By expanding this expression to

(1—mn) 5/2 (sin?(a) + cos?(a)) ~sin(”*2)(04)da+nfgr/2 sin”(a)da = 0
we can use Pythagoras to obtain

—1 rm/2
ch=2- n - /0 sin" 2 (a)da

The unit sphere B} has the volume 7,, = \" (B}) =

for n even

for n odd

n—1 n— 3.1 =«
_ 9. o n—2 " '4°32° 3 for n even
"—71-”73-...-%% for n odd

n n—

I mll-\

i LN

GIRANNN
Saya =

|

—

H n

o

Hence we have ¢, - ¢p—1 = 27” so that with A (B?) = A\ (B{) - ¢ = 7 follows

2 2r 27 2m o m_ _m _,

n ny __ o \n—2 n—2\ __ n n—-2 " 4 " n/2 n/2-1
’\(Bl)_n A (Bl )_ 2n 2 2m 9 _ m _mw
n n—-2 """ 3 " n/2 n/2-1 °

g% for n even
T 71' 1
w%f for n odd



A comparison with the Gamma function (cf. [9, p. 2.1]) with the functional equatlon Fz+1)=
z-I'(x) forO<x<ooandinitialvaluesf<%) :ﬁ:>F(§> —§-f:>F<§> 5T =
resp. I'(1)=1=T(2)=1=T1(3) =1-2= ... yields the desired formula.

8.15 Probability measures on function spaces

On the product (X7;A;) of probability spaces (X;;A;; i);c; with arbitrary index set I exists
a probability measure y; uniquely determined by its multiplicity pr|z, = py == Qi for
all finite J C I, i.e. on cylinder sets 7' (A) € Z; with A € Aj = ®,;c; Ai = 7y (Ar) = 7 (Z))
(cf. 7.4.3) it coincides with the corresponding finite product measure p; = @,c; i on the finite
product-c-algebrae A;. The elements z; € X; with x; : I — X; are the sample paths or
realizations of the stochastic process (X;; Ay; uug)

Proof: The function uy : St — [0;1] given by ur (7‘(;1 (ILcs AZ)) = [Liespi (Ai) for A; € A; and
finite J C I is well defined and in particular independent of the representation of the measurable
rectangle S = [[;c; S = (%) ' (Mjes 45) = (k) (Teex Be) € Sy with A; € A;, j € J and
By, € A, k € K for finite J, K, L C I with JU K C L. By the equality of the two representations
we have S; = A;=Bjforje JNK, Z;=A; =X, for je J\ K, S; =B; = X for j € K\ J and
finally S; = X for [ € L'\ (J U K). Hence the multiplicity condition with p; (X;) =1 forall i € I
yields pr, (5) = py (HjeJ Aj) = Iljernr 1 (45) = [Liesnk 1 (Bj) = pk (Ilkex Br)- According to
8.6 for every finite J C I there is a uniquely determined product measure ;1 ; = @ p; on the
finite product-o-algebra A; with pr ([[;c; Ai) := [Lies pi (Ai) for A; € A;j. Hence the extension
pur : 21 — [0;1] given by pr (Z) == py (Ay) for Z =n;' (Ay) and A; € A; with finite J C I on the
algebra Z; is well defined and in particular independent of the representation of the cylinder set
Z = 7T;1 (Ay) = wf}l (Bg) with Ay € Aj and Bi € Ak for finite J, K C I. We now prove that puy is
()-~continuous on the algebra of cylinder sets.

To this end for a given path z; € X; and a given K-cylinder set Z € Zi with finite J C K C I
we examine the Z-extensions Z%/ = {& e Xr: (.’EJ;T('K\J (51)) € Z} = 7TI_{1\J (Az,) € ZK for A =
T (Z) € Ak = Ay® Ak s and the cuts A, of A € Ag being A\ j-measurable due to 8.1. Hence he
family Z%7 consists of all measurable extensions £; € X of the given path x; with an arbitrary
course during J (!) and passing through Z during K \ J. (cf. the set of all paths passing a given

tree in [13, p. 15.5]). Owing to 8.3 we have uj (Z) = K <7TI\K (Z)) ke (T (2)) = 1+ pg (A) =
S g (Aey) dpg = [ pr (Z77) dpuy.

Now let (Zn)n21 C Z; be a decreasing sequence of cylinder sets Z,, = 7r;"1 (A,) with A, € Ay,
for finite Jp41 D Jp and Z,41 C Z, as well as py (Z,) > a > 0 for n > 1 such that il;fi,u[ (Zp) > a.

In order to show the (-continuity we have to prove that (,5; Z, # 0, i.e. we must find a path
r € (\,>1 Zn- We start on the interval J; with a section z;, and proceed by induction to extend it

to (le;xJQ\Jl;...):
Due to 8.2 the mapping = j, — pur (Zﬁh) = W;nl\h ((An)le) is measurable and hence the set Q;{l =

(le € Xyt pr (Z:ih) > %) € Ay, of all paths x;, € X;, which can be extended with a probability
of at least § on Z, is AJl -measurable. According to the preceding paragraph we obtain the estimate

a<pr(Z ) < Jon 1 < ) dppy + [\ o7 1 ( ) dpg, < p, (QJ1)+ and hence p., (Q‘]l) >3
for all n > 1. Since pj, is continuous from above and Qn b1 C QJ1 for all n > 1 there is an

Ty € Np>1 Ql £0, ie pus (Zn ) > 5 foralln > 1.

We now extend the path z; inductively with A taking the place of Z,: Assuming there is an
xy, € X, with py (Z,ILJ’“> > % for all n > 1 we have

J, 2y, \TJ 1 \TJ «
Qu' = (xJk+1\Jk S XJk+1\Jk © B ((Z k) o k> = 2k+1) € AJHI
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whence % < ur (Zﬁ']’“)

T T g \z s T Ty \z
< /Q‘Ik+1 s ((Zan) k+1 k) dpg,,, + /X \Qk wr ((Zan) k+1 k) dit,.,,
n I n

< g, ( i}cﬂ) + ;ﬁ

such that pg,_, (Q#“) > 21511 for all n > 1. Consequently there must exist an extension x5, \j, €

T, T,
MNn>1 ;{k“ # 0, ie. ur <<Z:§J’“) oY Ik) > sipr for all n > 1. If we add the new section to z;, we

obtain zj, ,, = ($Jk;ajjk+1\Jk) € Xy,,, with 75 = (Zz"k)xjk*l\wk, particularly wj:“ (Thy1) =
xp and g (ZﬁJ’““) > iy for all n > 1. Thus we have found a path 2’ = (ach;:EJ2\J1;...) €
U, o o (ﬂn21 Zn) C XUn>1 g, and by an arbitrary extension on the remaining time [ \Up>1 Jn We
get the desired z € 51 Zn # () with T o, (x) = 2.

Hence puy is #-continuous and since due to 8.6 it is finitely additive as well as bounded according
to 2.2.4 its o-additivity follows. Due to the extension theorem 3.5 the pre-measure p; on the

algebra Zj of the cylinder sets can be extended in a unique way to a measure py on the o-algebra
o (Zr) = As. This completes the proof.

9 Measures with densities

9.1 Complex measure and total variation

A complex measure is a complex and o-additive set function i : A — C on a measurable space
(X;A). Contrary to the positive measure p : A :— [0;00] defined in 3.1 the complex measure
is finite. According to the theorem of Lévy und Steinitz ([10, th. 8.18]) the o-additivity

I (OneNAn) = > ,en 4 (Ap) < oo resp. the interchangeability of the union imply the absolute
convergence of the series.

So its total variation |u| : A :— R with |u| (A) := sup {ZneN I (An)| 2 (Ap)peny CA: UnenAn = A}
is well defined as well as o-additive: On the one hand for every A,, € A and € > 0 there is a partition
(Amn)nen € A with [u] (Am) —€- 2771 < 3 oy [ (Amn)| < [p| (Am) such that 32, ey |1 (Am) —€ <

S mmens 11 (Amn)| < Spens 1] (Am) and hence S e 1] (Am) < [l (UnenAm ). On the other hand

for every partition (By), .y C A with OnENBn = UmenAm the intersections (B, N A;,), <y partition
A, while the intersections (B, N A;,),,cy partition B, such that due to the o-additivity of p holds
Yonen 1 (Bo)l < 3 nen |1 (Am N By)| < 3 hen 1] (Am). This estimate extends to the suprema such

that |ul (OmeNAm) < Y men ] (Ar). Hence |p| is a measure.

9.2 The minimal range of a set of complex numbers

n
For any n complex z1, ..., 2, there is a subset S C {1;...;n} with [} ,cq 2k > % 21 |2i]-
1=

Proof: For z; = |]|-¢/ and —m < ¥ < 7let S(J) := {1 <k <n: cos(ap — ) > 0}. Then for every
such ¥ we have |y ,cq 2k = ‘Zkes e zk‘ > Re (Zkes e zk) = > pes |2k| - cos (a — V) zgnjl
|zi| - cos™ (ap — ) and the maximal value of the sum on the right hand side attained for say 9 = ¥y is
not less than the average 5- ™ (é:l |zi| - cos™ (ag — 19)) dy =1 é:l |z;| which proves the lemma for
S =5 (¥).
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9.3 The total variation of complex measures

The total variation |u| of a complex measure p is finite.

Proof: Assuming |p|(X) = oo there must be a partition (A4;);cy € A of X and an n € N with
n

1 ; |t (Ai)| > | (X)] + 1. Due to 9.2 there is a subset S C {1;...;n} such that for By := ,cg 4

on the one hand | (B1)] = [Xpeg i (Ai)] > | (X)|+1 > 1 and on the other hand | (X \ By)| =
| (X) —pu(B1)| > |u(B1)] — | (X)|] > 1. According to the hypothesis we have either |u| (B1) = oo
or |u| (X \ B1) = oo and assuming this being the case for X \ B; we can repeat the argument from
above to split off a subset By C X \ By with |u| (X \ (B1 U B3)) = oo and |u (B2)| > 1. Hence by
induction we obtain a sequence (B,), oy C A of paiwise disjoint sets B, with | (By)| > 1Vn € N and
consequently ‘M (OnENBﬂN = > ,en i (Brn)| = oo contrary tor the finite character of p according to
definition 9.1.

9.4 The Banach space of complex measures

The set M (A, C) of complex measures on a measurable space (X;.A) with the operations (A + p) (4) :=

A(A) 4+ (A) resp. (¢-A)(A)i=c-A(A) for Aec A, ce C, \,u € M and the norm ||u| := |u| (X) is
a Banach space.
Proof: The vector space axioms are clearly satisfied. The positive definiteness |u|| =0= =0

follows from the monotonicity A C B = |u|(A) < |u|(B) of the total variation. With regard
to the completeness for every Cauchy sequence (uy),cy € M (A,C) and every measurable set

A € A we have |pn (A) = pm (A)] = (st — ptm) (A)] < |pm = pm| (A) < |t — pn| (X) = |1t = pim |
such that the corresponding Cauchy sequence (i, (A)),cn C C converges to a complex number
i (A) hence defining a complex set function p : A — C. For a sequence of disjoint measurable
sets (Ag)pey C A and every k € N there is an ny, € N with |, (Ag) — p(Ag)| < €27F for ev-

ery m > nj such that for every N > max {n; : k <m} and f: un (Ax) = un <G Ak) we have
k=0 k=0

S u (Ag) — p (kgo Ak)’ = ké] p(Ag) — é:o un (Ag) + pn <k§0 Ak> — (k@o Ak>’ < et 4

m m
‘MN ( U Ak) — ( U Ak)‘ < €27™*2 for a suitably large N. Since ¢ and m are arbitrary we
k=0

[e.°] oo
have shown the o-additivity > u(Ag) = p ( U Ak), i.e. 4 € M. Assuming there is an € > 0 with
k=0 k=0

|l — pnl| = sup {ZkeN |1t — pn) (Ag)| 2 (Ag) ey C A OkeNAk = X} < € for every n € N we find an

Ky

B, =U Ay € A with [(1t — pn) (Bn)| > § whence |(1 — pin) (B)| > § for B = U,y Bn and every
k=0

n € N contrary to (u, (B)) converging to u (B). Hence 1}1—{20 | — pnl| =0

9.5 Continuous and singular measures

A complex or positive measure i is A-absolutely continuous with respect to the positive measure
A on the same measurable space (X,.A) with the notation y < X iff A(A) =0 = pu(A) =0VA € A.
The measure p is concentrated on the set A € Aiff A\(B) = p(BNA)VB € Aresp. p(B) =0«
AN B = (. The measures  and A are mutually singular with the notation x L X iff y and \ are
concentrated on two disjoint sets. These relations have the following properties:

1. If p is concentrated on A the so is |u| since for every partition (Ep,),,cxy of the set E € A with
ENA=0 we have u(E,,) =0¥m € N.

2. L A= |pu| LI\ due to 1.

3. <X\ = |p|<Asince from A (A) = 0 for every partition (Ay,),,cy of A follows p1 (Ap) = A (An) =
0Vm € N.
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4. p L XA p< A= pu=0is obvious.

5. 1 LAA e L X= pu1 4+ puo L X since if p1, po and A are concentrated on A, Ao resp. B with
A1 N B = AN B = () the measure p; + us is concentrated on Ay U Ay with (A4; U Ag) N B = ().

6. 1 << AA o < A= u1 + po < A is obvious.

7. p1 L XA pe <A = p1 L po since if py is concentrated on A we have p; (A) # 0 and hence
pa (A) = A (A) =0, i.e. ua is concentrated on X \ A.

9.6 ¢-d-definition of absolute contiuity

A complex measure p is absolutely continuous with respect to the positive measure A iff for
every € > 0 exists a 0 > 0 such that for every A € A holds: A (4) <d = |u|(4) <e.

Proof:

=: Assuming an ¢ > 0 and a sequence (Ay), .y C A with A(4,) < 27" but |u(A,)| > € then
(Bm)men C A with B, = U, >, An is a decreasing sequence of measurable sets with A (By,) < 27™ 1
and A (N,,eny Bm) = 0 on account of the continuity from above 2.2.3. But the measure |y| is also
continuous from above such that |u|(",,cny Bm) = %gnoo|,u| (Bm) > nlllg\I || (Ap,) > € contrary to the

hypothesis |u| < A resp. 9.5.3.
< A(A)=0=|p|(A) <eVe> 0= |u(A)] <|u|(A) =0.

9.7 The Jordan decomposition of signed measures

The real and complex parts of complex measures are finite and are called signed measures to
distinguish them from the positive measures. The Jordan decomposition ;= pu* — p~ resp.
lu| = put + p~ of a signed measure p splits it into its positive and negative variations u™ =
2 (lul + p) resp. p= = % (|u| — p) both being finite and positive. On account of the o-additivity
the total variation of a positive signed measure coincides with the measure itself: ‘ pt| = pt
bzw. |u=|=p".

9.8 The theorem of Lebesgue Radon-Nikodym
For a positive, o-finite measure A : A — [0; 00| and a complex measure x : A — C on a common
measurable space (X;.A) exist:

1. a uniquely determined Lebesgue decomposition of u = pu, + ps with respect to A into two
complex measures p, and pg such that p, < A and pg L A

2. a uniquely determined Radon-Nikodym density or derivative ddi)f € L' (\) with pg (A) =
A dj)f d\ for every A € A.

Proof: The Lebesgue decomposition is uniquely determined since for every other decomposition

, , , 9.4.6 , 945 / 9.4.4 /
i, and p we have p, — p, < > A bzw. pg —p, L X and hence p, — 1y = ps — pg = 0. The

uniqueness of the Radon-Nikodym density follows from 5.6.3 resp. 9.6.

We start the construction of the decomposition with w =} -y W : X —]0;1] for a
countable cover (A,), .y C A of X with A(A4,) < ooVn € N such that the measure v with v (A) :=
J4wdA is finite and due to w > 0 possesses the same null sets as A. Then ¢ = |u| + v is again a

positive and finite measure with [ fdy = [ fd|u|+ [ fw d) for every step function f and due to 5.4
for positive measurable f. Applying 9.5.1, the Schwarz inequality 6.4.1 and the finite character

1 1
of i for every f € L?(p) we obtain |[ fdlu|| < [|fldu < [|flde < ([If[de)® - (¢ (X))? < oo
In particular for every null sequence (f,) C L? (¢) with (|| fully), — 0 we have (|[ fnd|ul]), — 0,

n
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i.e. the linear functional I, : L? (p) — [0;00[ with I,,f = [ fd|u| is continuous at the origin.
According to [13, p. 20.11] it is also bounded resp. uniformly continuous and hence a member
of the dual space (L?(p))". Due to [7, p 308 Th 12.5] I . Possesses a @-a.e. uniquely determined
representant g € L? (o) with respect to the inner product [ fd|u| = I,.f = (f,g) = [ fgdp resp.
J(1—g)fd|p| = | fgwdX for every positive measurable f. We keep this result in mind as equation (X).
Choosing f = x4 for every A € A with ¢(A) > 0 we obtain 0 < [, gdp = || (A) < ¢ (A) and hence -
a.e. 0 < g < 1. The Lebesgue decomposition of the total variation |u| = u,+ s can now be given
by pa = |pl{g<1y and ps = |plgg—1}: Substituting f = xy4—1; in equation (X) yields 0 = f{gzl}wd)\
such that on account of w(x) > 0 follows A ({g = 1}) = 0 and hence pus L A\. The Radon-Nikodym

[e.°]
density is d/\“ = w nz:: g" such that ‘%\“(x) = wl(f)é(gg) in the case of g(z) < 1 and d$\“ () = oo

m m+1

else: Substituting f = xa- Y. ¢" in equation (X) we obtain [, (1 —¢™!) du| = [, w- Z g dA
n=0 =1

and taking recourse to monotone convergence 5.13 for m — oo leads to g, (4) = [, df; dX which

also yields 1, < A. The boundedness of |u| transfers to p, such that dj‘/\“ € L' (\). The Lebesgue

decomposition for the complex measure p = Rep +ilmp = (Rep)™ — (Rep) ™ +1 ((Im,u)Jr — (Im,u)_)
is accomplished by applying the above construction four times to the positive resp. negative variation
of the rea resp. imaginary part of u.

9.9 Polar representation of complex measures

For every complex measure p exists a measurable complex function -2 i ‘ : X — C with ’ du “ =1 and
dp = d| mi Frdlul.

Proof According to the Lebesgue-Radon—leodym theorem9.8 and on account of p < |u| there
is a dlul € L' with du = d\u\ d|p| which only has to be adapted to the absolute value ‘d| | ’ =1: For a

partition (Ay,),cy of the set A = {‘d\#\‘ < r} holds |p| (A) < Y en i (An)] = X en ’fAn de” <
YonenT - pl (An) =1 |u| (A), i.e. for r < 1 we have |u|(4) =0 resp u a.e. ’%‘ > 1. On the other

hand for every A € A with |u|(A) > 0 holds ‘|M|(A fA i d]u]‘ I#I A) < 1 so that we can apply the

dp
dlpl

p-a.e. and by redefining % := 1 on the p-null set {% %+ 1} we obtain the desired absolute value for

mean value theorem 5.20 with S = B;(0) to obtain u-a.e. ‘ ‘ < 1. Hence the assertion holds

every ¢ € X.

9.10 The density of the total variation

For a positive measure A and h € L' ()\) with du = d/\ £ d\ we have d|u| = ‘ ‘ dA.

Proof: Owing to 9.9 there is a d| | with ‘d‘ “ 1 so that du = d‘ | £ d|p| and hence d| | fodlpl = fi,ll; dA

resp. d|u| = %Z—’; d\. From |p| > 0 and X\ > 0 follows M-a.e. dcfij' ill’/( > 0 and hence dcf’;' 2’; =

9.11 Decomposition of complex measures

Every complex measure p can be decomposed into four positive and finite measures according to
= Rep™ —Rep™ + i (Imp™ — Imp ™).

Proof: Owing to 9.9 and the additivity of the integral for every measurable A we have p(A) =

[xa®eh)Tdlu| — [xa(Reh)” du| + i(fXA (Imh) " d|u| — [ xa (Tmh)~ d]u]). Each of the four
summands is a positive and finite measure with the o-additivity resulting from the monotone con-

vergence 5.13 in the form of 4 (OneNAn) = [ Cnenxa) 9dlp| = X nen [ xa9d|p] = > en 1 (Ay) for
every positive and real measurable g.
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9.12 The Hahn decomposition for signed measures

The Jordan decomposition of a signed measure y = u™ — u~ extends to the measure space
(X; A; p): There is a Hahn decomposition of X into two disjoint subsets MT U M~ = X with
MTNM-=0and p" (A) =p(ANM") resp. u~ (A) = p(ANM™) for every A € A.

Proof: Due to 9.10 there is a measurable % : X — {-1;1} with du = % d|p| such that M+ :=

{dd|5| = } and M~ := {% = —1} are measurable . On account of %( + dlul) = yu+ follows

it (A) = 3 (1l (A) + p(A) = [ 3 (1+ 4t dlul = g (AN M*) vesp. p= (A) = p(ANM).

9.13 The dual space of L ()\)

For every o-finite and positive measure XA and 1 < p < oo the bounded linear functional M :

LP (\) — C can be expressed uniquely as an integral M f = [ f d\ for f € LP (\) with the Radon-

Nikodym density of the measure p defined by u(A) = Mxa Wlth respect to A. Furthermore we

have g—‘; € L1(\) for %%—% = 1 and the norm |M|* = sup{‘M (|ff“>‘ s fel? ()\)} of the linear
p

functional satisfies | M|* = HZ—‘/\L , i.e. the dual space (L? (\))* is isometric and hence isomorphic
q

to L (\).

Proof: The M-a.e. uniqueness of the representant ?Tl,\L = g follows from the comparison of two
possible candidates g and ¢' with fi = X{g<g} T€SD. f2 = X{g>¢} Dy means of [ fig'd\ = [ figd\
and [ fog' d\ = [ fogd\ from 5.6.3.

Before we can use 9.8 we have to show that p is a complex measure and absolutely continuous with
respect to A. Since we need the continuity from above 2.2.3 in this first part of the proof we have
to restrict our reasoning to the case A (X) < co. In a second part we will adapt the case A (X) = oo
to the first part making use of the o-finiteness of A:

For a sequence (A),cy C A of pairwise disjoint measurable sets with B, = OO<k<nAk and B =

UkeNAk the continuity from above 2.2.3 of the measure A yields hm lxB — xB, H = lim HXB\Bn
n—

= nh_}m AN(B\ B ))P = 0 whence from the continuity of the functional M follows Jim g (Br) =
p (B). Hence p is o-additive and thus a complex measure. For a A-null set E we have ||X ell,=0
and since M0 = 0 the continuity of M implies u (E) = 0, i.e. u < A. Hence 9.8 provides & Ke L]L (\)
with My = [xa2 5 dX for all A € A. The linearity of M guarantees My = f«pd d\ for step
functions ¢ € S (X;C). According to 6.11 the step functions S (X;C) are dense in L () for every
1<p<ooand A (X) < oo. For now we apply only the case p = oo, i.e. we extend the proposition to
f € L*(A): On the left hand side a A-a.e. bounded f € L* () is a limit of a uniformly convergent
sequence (¢n),cy C S(X) converging also in the p-th mean on account of [|f, < [ fll - (A (X))%
whence follows the convergence of (M yy,),,cy- On the right hand side the uniform convergence directly
entails the convergence of the integral on L> (\) due to ‘f fj d)\‘ < flls - llgll;- In order to extend
the validity of the proposition to f € LP (\) we show that g := g—’; € L9(\): Let E,, = {|g| > n} for

n € Nand f = % XE, € L® () for n € N such that |f|P-xg = |g|“ Y- xg = |g|?- xg = fg. Hence

1 1—-1
we have [, [gl1dX = [ fgd\ = A(f) < A" [I£], = [AI" - (fu, lgl7dA)” & (fz, lgl7dr) 7 <
A" < [g, 197 dX < [|A[" such that with monotone convergence 5.13 we obtain [|g||, < [|A[|" < oo

and in particular g = @ € L7()\). The Holder inequality 6.4.1 combined with H H < 00 asserts

the continuity of the mapping f — [ fd“ d\ on LP (\) and since it c01nc1des on the dense subset
E(X) C LP (\) with the continuous mapping M the assertion follows for \(X) < co. Another look at

Holder yields | M||* < H H and hence the second assertion ||M||* = H H
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In the case of A (X) = oo as in the proof of 9.8 we define w = 3, oy W : X —]0;1] for
a countable cover (A,), .y C A of X with A(4,) < coVn € N such that the measure v with
v(A) := [, wd\ is finite and on account of w > 0 has the same null sets as A\. Then the bijection

wp + LP(N) — LP(v) with w, (f) = W [ is a linear isometry and M o w,' : L (v) — C

" (”) wp(f) € 17 (V)} _

sup {’M <M>| ferL? (A } = ||M||*. According to the first part of the proof there is
|f[PdX) P

an wy (%ﬁ) € L9 (v) with (Mowp_l) (wp(f) = Jwp(f) - w (Z—)\) wdA for all wy, (f) € LP (v) resp.
Mf={[fgd\forall feLP()\).

|

is a bounded linear functional with HM owy 1H* = sup{

9.14 Thecase p=q=2
The special case of the Hilbert space with p = ¢ = 2 is the central argument in the proof of
the Lebesgue-Radon-Nikodym theorem 9.8 where [7, p 308 Th 12.5] is used to find a uniquely

determined representant g € L% () with Mf = (f,g) = [ fgdp for the bounded functional M €
(L2 ()" with M f = [ fd|)\|. Alas the isometry of the two spaces is not an issue in this proof.

9.15 Scheffé’s theorem

For bounded positive measures j, resp. p on a common measurable space (X;.A) with u, (X) =
|

p(X) < ooforn > 1and A-a.e. converging densities Jim dj)\" = 3’; we have lim_ | (A) — pn (A)| =
0 for every measurable A € A.
Proof: By the hypothesis we have Jgrgofgndu = 0 for g, = g—‘; — dg—;. Furthermore we have the

integrable majorant d’)f > g5 > 0 for the positive part whence nh_)n(go Jgrdu = 0 by the domi-

nated convergence theorem 5.15 and consequently lim [ g, dp= lim [ (gn — g;7) du = 0. Hence
Jim [ (A) = pn (A)] = lim_ [ [gn|dp = lim ([ g;dp— fgndu) hm fg dp — lim [ g, dp = 0.

10 Measures on locally compact spaces

In this section X will always be a locally compact space furnished with the Borel o-algebra
B (X) = o (O) induced by its topology O.

10.1 Linear functionals on locally compact spaces

1. The dual space (C.(X,C))* of the complex linear functionals A : C.(X,C) — C on the
Banach space C.(X,C) of complex continuous functions f : X — C with compact

support under the supremum norm |||| is furnished with the dual norm | ||* defined by
A" = sup{’A (an )’ L[ €C.(X,0)} = sup{|Af]: f € Ce(X, [0;1])} according to 9.13 and
considering f € C.(X,C) = ”JL”| € C.(X,[0;1]). According to [10, th. 1.10] every complex

functional A is bounded and in particular uniformly continuous with regard to this norm
whence due to [10, th. 1.10] the vector space (C. (X,C))* is a Banach space.

2. The C-linearity of a complex functional A implies A (Ref + ilmf) = ARef+iAlmf = ReARef —
ImAImf + iReAlmf 4 i{ImARef such that it suffices to examine complex linear functionals
A : C.(X,R) — C with real valued arguments as e.g. in the case of Af = [ fd(Reu) +
i [ fd(Imp) = [ fdp with a complex measure y = Rep + iImp according to 9.11. A complex
linear functional A : C.(X,C) — C is positive resp. A € (C.(X,C))} iff for positive f
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the value Af also is positive, i.e. positive real part ReA € (C.(X,R))} and vanishing
imaginary part ImA = 0, the directly available example being the integral Af = [ fd\ with a
positive measure A € M (B(X);R").

3. Due to their positive character the two classes (C.(X,C))} and M (B(X);R") are not
vector spaces any more but since we still have have al' + SA € (C. (X, C))" for every ;A €
(Ce (X,C))" and a; 8 > 0 they are convex cones. The Riesz representation theorem 10.13
resp. 10.14 states that in fact every positive resp. complex functional can be represented as
an integral with regard to a measure with corresponding properties:

10.2 Measures on locally compact spaces

A positive Borel measure p is outer regular iff 1 (A) = inf {x(0): A C O open} and inner
regular iff ;1 (A) = sup {u (K) : compact K C A} respectively for every measurable A € B(X). It
is regular iff both conditions hold for every measurable set A and o-regular if the latter condition
holds for measurable sets which are either open or o-finite. A set is o-finite iff it is a countable
union of sets with finite measure. Hence every inner regular measure is o-regular and on a o-finite
space X every o-regular measure is already regular. A complex Borel measure is regular iff its
variation || is regular.

Examples:

1. On a Hausdorff space X the Dirac measure ¢, (A) = x4 (z) for any point z € X and a
Borel set A € B(X) is regular.

{() for A countable

2. The measure p(A) := defined in 2.3.2 on the o-algebra B(X) = o (0) =

oo else
O =P (X) of a discrete space X is a locally finite and outer regular Borel measure. It is
inner regular iff X is countable.

3. The Lebesgue measure \" := @;.;~,, A on the Borel o-algebra B" of R" is a o-finite Borel
measure owing to 7.7 resp. the Heine-Borel theorem [13, p. 9.10]. Its regularity is a con-
sequence of the locally compact character of R” and follows from the Riesz representation
theorem 10.13 applied to the positive functional A with Af = [ fdA\" for f € C. (R"™,R).

10.3 Separation properties on locally compact spaces

For real f € C.(X,R), open V C X and compact K C X
we write K < f iff xkx < f < land f < V iff 0 < AR
f < xv. In these terms the separation property [13, th.
10.5] for locally compact spaces states that for every com-
pact K and open V DO K there is an f € C.(X,R) with
K < f < Viresp. p(K) < [fdu < p(V). Since in XK
a locally compact space the compact neighbourhoods form a
neighbourhood basis we can strengthen this proposition to

xv =sup{f e€C.(X,R): f <V}

10.4 The || [/ ,-closure of C.(X,C)

For every positive o-regular Borel measure A and 1 < p < oo we have C. (X,C) = LP (\) with
regard to | [[,,-

Proof: According to 6.11.1 it suffices to find for every A € B(X) with A(4) < oo a function
g € Cc (X, R) such that [[xa —gll, = [lixa —igl, < e. Since A is o-regular and A (A) < oo there is
a compact K and an open V with K C A C V and A(K) < A(V) 4+ € as well as a g € C. (X,R)
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with K < g < V such that A(K) < [ gdA<A (V) whence [[xa —gll, < lIxa —xxll, + lIxx —9ll, <
61/}7 + 61/p.

10.5 The |||, closure of C. (X,C)

The closure Cy (X, C) = C. (X,C) C Cp (X, C) with regard to the supremum norm || || is the vector
space of the continuous functions vanishing at infinity. These functions can be characterized by
the following three equivalent conditions for every bounded continuous f € Cy (X, C):

1. feCy(X,0C).
2. f€C(X,C) and the sets {|f| > €} are compact for every ¢ > 0.

3. The extension f : X — C on the Alexandrov-compactification X = X U {oo} defined by
flx = f and f (00) = 0 is uniformly continuous.

Proof:

1. = 2.: For the given € > 0 exists a g € C. (X, C) with [|f — g|| < § whence the closed set {|f| > €}
C {lg| > §} C suppyg is compact owing to [13, th. 9.4].

2. = 3.. f is continuous in z = oo since according to [13, th. 10.2] the open sets {’7’ < e} =
X \ {|f| > €} are contained in the neighbouhood basis of oco.

3. = 1.: For every € > 0 exists a compact K C X with |f (z)| = ’?(:p) —f(oo)’ < ¢ for every
z € X \ K and due to 10.3 there is a g € C. (X,C) with K < g < X. Then we have f - g € C. (X,C)
with |f(x)-g(z) — f(z)|=|f(z)]- (1 —g(z)) <eforallz € X, ie. ||f-g— f|]| <e which proves the

assertion.

10.6 Lusin’s Theorem

For every positive o-regular Borel measure A and f: X — C with A (f # 0) < oo for every € > 0
exists a g € C. (X, C) such that A (f # g) < e and ||g|| < ||f]|-

Proof: Due to ,>;{|f| >n} = 0 and the continuity of A\ from above there is an n, € N
with A (A1) < § for Ay = {|f| > n} and hence f € L*(X) with X = Alx\4,- According to 10.4
there is a sequence (fy),cny C Ce(X \ A1;C) converging in mean to f and according to 5.11 we
have a subsequence uniformly converging on X \ (A; U Az) with A (A2) < { to f and consequently
feC(X\ (4 UAy);C). By the o-regularity we find a compact K C {f # 0} \ (41 U Az) with
A(Az) < §for A3 ={f #0}\ (KWUA;UAy) and f € C(K,C). Since in a locally compact space the
compact neighbourhoods form a neighbourhood basis we find an open set V C K with compact
closure V which due to the outer regularity of A we can choose such that w.l.o.g. \(A4) < 5
for Ay = V' \ K. The compact set V is also normal such that we can apply Tietze’s extension

theorem [13, p. 8.5] to find Reg* resp. Img* € C (V, R) coinciding with Ref resp. Imf on K and
vanishing on the closed boundary V' \ V. Extending g* = Reg* + ilmg* to X by assigning the value 0
outside V' we obtain a g € C. (X, C) coinciding with f on X \ A, C KUX \ (AU Ay U{f #0}UV)
with Ac = A1 U Aa U A3 U Ag and A (Ae) < e. In order to scale g according to ||g|| < || f|| we define a
continuous h : C — C by h(z) = zif |z| < ||f[| and h (2) = || f||- 5 otherwise such that ||k o g|| <[ f]|

10.7 The Vitali-Carathéodory theorem
For every Lebesgue integrable f € L! (X;R)with positive o-regular Borel measure A and € > 0

there are bounded and upper resp. lower semicontinuous (cf. [13, p. 3.3]) functions u;v : X — R
such that u < f <wand [(v—wu)d\ <e.
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Proof: We start with f > 0 which due to 5.4 has an approximating sequence (), .y C S (X; Rg)

of step functions such that for every k > 1 there is an ny > 1 with |p,, (z) — f ()] < % for every

x € Zr C X with p(Zg) < % such that the sequence sup (apnk X2, — %) C S(X;]Rar) is
k<m meN

increasing and p-a.e. converges to f. Hence we have measurable sets (Ai);eny C B(X) and positive
c; > 0 such that f = 37,5 cixa,and 3051 ¢ - A(4;) = [ fd\ < oo. Due to the regularity of A there

N

are compact K; and open V; with K; C A; C V; and A(V; \ K;) < ——=71. Then u =3} ¢;ixk, with
: i=1

>oisn CitA(4;) < § is upper semicontinuous, v = ;- ¢;xv; is lower semicontinuous , u < f <wv

N

and [(v—u)dA= 3 i  A(Vi\ Ki) + Loy cid (Vi) < s 6 AVi\ Ki) + Xisn cid (Ai) < 5+ 5.
i=1 = = =

In the general case we apply the first step to the positive and negative parts of f = f* — f~ to find

corresponding u™ < fT < v resp. u~ < f~ < v~ such that u = uT —v~ < f is upper semicontinuous,
v=v" —u~ > f is lower semicontinuous and [ (v—u)d\ = [ (vF —ut)d\— [(v" —u")d\ <e.

10.8 Positive functionals are bounded on compact sets

Every positive A : C. (X,C) — C is bounded on Cx (X, C) for every compact K.

Proof: Due to the separation property [13, p. 10.5] of locally compact spaces already cited in 10.1
there is a continuous g : X — [0;1] with g~! ({1}) = K and compact support. Then for f € C (X, C)

we have [Ref||-g+Ref > 0 whence A ([Ref| - 9)£A (Ref) = [Ref|-AgA (Ref) > 0, ie. A (f5f) <

A (%) < Ag and since the same is true for Imf we obtain ‘A (ﬁ)’ = ‘A Gl{;elf> +iA (ﬁ)‘ <
V2 Ag < .

10.9 Decomposition of complex and bounded real functionals

1. Every bounded real functional A € (C.(X,R))" has a decomposition A = AT — A~ with
positive real and bounded A™; A~ € (C. (X,R))".

2. Every complex functional A € (C.(X,R))* allows the decomposition into four positive real
and bounded functionals ReA™; ReA™;ImAT; ImA~ € (C. (X,R))* such that Af = ReA™f —
ReA™ f + i (ImA™ f + ImA~ f).

Note: Recall that according to the definition in 10.1 a positive complex linear functional A :
C.(X,C) — C has a positive real part ReA € (C.(X,R))} and a vanishing imaginary part
ImA = 0 whence the decompostion from 2. extends to positive functionals A : C. (X,C) — C as in
the following theorem:

Proof:

1. For positive f € C.(X,R) define ATf := sup{Ag:g € C.(X,R);0<g < f} such that 0 <
ATF < |[AI"||f]l, i.e. ATis positive and bounded. For positive ¢ € R we have g <
cf & g=cg : g < f for any positive g;¢' € C.(X,R) such that A" (cf) = c¢ATf thus es-
tablishing conformity with scalar muplitplication. With regard to additivity we take any
positive fi; f2;91592;9 € Ce(X,R) with g1 < f1, g2 < fa resp. g < f1 + f2 in order to
note that ATf; + At fo = supAtg; + supAtge = sup (ATgr + Atge) = supA™ (g1 +g2) <
supATg = AT (f1 + f2) and conversely inf (g; f1) < f1 resp. g —inf (g; f1) < fo hence Atg <
AT fi+AT foie. AT (f1 + f2) =supAtg < AT fi+AT fo thus demonstrating additivity. We ex-
tend AT to real f € C. (X,R) with decomposition f = f*— f~with positive f*; f~ € C. (X,R)
by means of ATf := AT fT — A" f~ being independent of the choice of the decomposition and
hence well defined as well as linear on account of the linearity of the components. The same
is true for A~ := A — ATwhich completes the proof.

2. directly follows from 1.
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10.10 The outer measure of a positive functional

For every positive functional A : C. (X, C) — C the set function p : P (X) — [0; 00| defined by u (V')
=sup{Ag:g <V} foropenV C X and pu(A) =inf {u (V) : A C V open} for arbitrary A C X is an
outer measure according to 10.1 with the additional regularity property u(K) < Ag < u (V)
for any compact K, open V and g € C. (X,R) with K < g < V.
Proof: Obviously we have (@) = 0 and p(A) < pu(B) if A C B. The subadditivity requires
more attention. We start with p(UUV) < pu(U) 4+ u (V) for open U and V: Let f < U UV and
¢ = {sup(g;h) : g <U;h <V} and &y = {inf (f,f) (fe @}. Then f = sup®@; < sup® = xyuv
such that on account of Dini’s theorem [13, p. 9.12] and the continuity of A we have
Af = Asup Py

=sup APy

= sup {A (inf (f;sup (g;h))) : g < U; R < V}}

<sup{A (inf (f;9) +inf (f;h)): g <U;h <V}

<sup{A(g+h):g=<U;h <V} <puU)+pV).
Since this estimate holds for every f < UUV we obtain the subadditivity for open sets. In order to show

the o-subadditivity 3.2.3 we take a sequence (A;), .y of arbitrary subsets with A = J,,cy An, open
sets V,, with A, C V;, and p (A4,) < p(Vy)+€27" such that A C V = ey Va- Since any g < V has a

compact support there is an n € N with g < Uy<,, V and hence Ag < u (ngn Vn) < Dk<n #(Vn) due

to the subadditivity inductively extended to finite unions. Again we use the validity of this estimate
for every g < V to infer p(A) < p (V) <3 ,en it (An) + € thus proving the main assertion.

Concerning the additional regularity property we only have to

show the left inequality: For any e > 0 we have K C {g >1—€} 4R XK

and hence a f € C.(X) with on the one hand K < f < {g > 1 —¢} 7 e f

such that (1 —¢) f < g,ie (1 —¢€)Af < Ag and on the other hand ‘ -~1=== Co) Xe>i-q
Af>p({g>1—¢€})—e> pu(K)—ewhence (u(K)—¢€)(1—¢€) <Ag ::/ ! :/g
which proves the assertion. ! : - X

10.11 o-Additivity of the outer measure on sets of finite measure

The outer measure p determined by A according to the preceding lemma 10.10 is o-
additive and hence a pre-measure on the algebra A(X) of all sets A C X with pu(A) =
sup {p (K) : A D K compact} < co. Furthermore 4 (X) contains all open sets.

Proof: For brevity in this proof we omit the argument and write A for A (X).

Step I. Every compact set K has a finite measure and hence belongs to A: There is an open
V C K with compact closure V such that the separation property of locally compact spaces ensures
the existence of f,g € C.(X) with K < f <V resp. V<g<X henceg—f>0=A(g—f)>0=
Af < Ag < oo due to the positiv and linear character of A. Furthermore we can choose f such that
p(V) < Af +ewhence p(K) < pu(V)<Af+e<Ag+e < .

Step II. A contains every open set V: In the case of (V) = 0 the definition of x4 immediately yields
p(K) =inf{u(V): K C Vopen} = 0 for every compact K C V. Hence we can assume p (V) > 0
and for every e > 0 the existence of an f < V with (V) —e < Af < p (V) and compact support
K = {f > 0}. For every open W D K we have f < W and hence Af < p(K) and consequently
p(V)—e<Af <pu(K) < p(V) < ooon account of K C V and 10.10.

Step III. y is finitely additive for compact sets: For disjoint and compact sets K, L and € > 0
according to the separation property [13, p. 10.5] of locally compact spaces choose disjoint and
open U D K,V D Land anopen W D KUL with u(W) < p(KUL)+easwellas f <UNW
resp. ¢ < VNW with Af > u(UNW) —eresp. Ag>pu(VNW)—e. We then have pu (K)+ (L) <
pWnNU)+u(WNV)<Af+Ag+2e=A(f+9g)+2e < u(W)+2e < pu(KUL)+ 3e. Since the
reverse inequality follows from the montonicity of  we have proved the asssertion.
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Step IV. p is o-additive on A: For a sequence (4,),cy C A with A = {J,cy An there are compact
n n n
K, C A, with u (A4,) < p(Kp)+e27" whence > p(Ag) <Y p(Kg)+e=p ( U Kk) +e < p(A)+e.
k=1 k=1 k=1

Since this estimate remains valid for n — oo and € — 0 we obtain >, oy ¢ (An) < p(A) and with the
reverse inequality following from property 3.2.3 of the outer measure we have proved the assertion.
Furthermore we note that for every sequence (Ay), cy C A the union A = (J,,cy An also belongs to
A if it has finite measure, i.e. for finite u the algebra A is a o-algebra. This will be used of in the
subsequent lemma to construct the actual o-algebra M carrying the measure p determined by A.

Step V. A is an algebra: Clearly ) € A. For A,B € A we

can find compact K, L and open U,V such that K C A C V

resp. LC BCVand pu(K) < pu(A) <puU) < p(K)+ e resp.

p(L) < p(B) <u(V)< p(L)+ e By the finite additivity of p

follows p(U\ K),pu(V\ L) < e and with (UUV)\ (KUL) C

(U\NK)U(V\L) weget u(AUB) < u(K U L)+ 2¢ and hence

AU B € A. Regarding the intersection we note that K \ V C K L
A\ B C V' \ L and the two outer sets are open with (V \ L)\ U
(K\V) c (U\NK)U(V\L) so that A\ B € A and finally
ANB=B\(B\A)c A

10.12 o-Additivity of the outer measure on L (X)

The outer measure y determined by A according to lemma 10.10 is o-additive and hence a measure
on the Lebesgue o-algebra £ (X) = N Lx(X) with Lg(X) ={ACX:ANKe A(X)}

K compact

including the Borel o-algebra B (X) as well as the algebra A (X) of sets of finite measure introduced
in the preceding lemma 10.11. A (X) consists precisely of all sets of finite measure in £(X). In
particular p is complete, outer regular and o-regular on £ (X).

Proof: Again we abbreviate A = A (X) etc. Obviously we have A C L. According to the step IV of
the proof of the preceding lemma the families Lx are o-algebrae and so is £. Every Lx contains all
closed sets (cf. [13, p. 9.4] and hence B(X) C L. Every p-null set A C X with u(A) = 0 is either
empty or contains a point x € A C X and hence a compact set {x} C A which must have the measure
p({x}) = 0 due to the monotonicity of u. Hence A € £ and in particular p is complete.

For A € £ with p(A) < oo there is an open V' O A with u (V) < oo. Furthermore according
to step II in the proof of 10.11 we can find a compact K C V such that u (V) < p(K) + e.
Since AN K € A there is a compact K4 C AN K such that p(ANK) < p(Ka) + e With
AC(ANK)UV\K weobtain p(A) < u(ANK)+p(V\ K) < u(Ka)+2e and since € was arbitrary
we have p1(A) = sup {p (K) : A O K compact} whence follows A € A. Finally the o-additivity of
p extends from A to L since for a disjoint sequence (Ay),cny C £ with p(A4,) < oo for alln € N
we have (A,),cy C A such that the preceding lemma applies. In the case of u(A,) = oo for an
n € N the og-additivity follows from the monotonicity of . Due to its definition in 10.10 p is outer
regular on £. According to 10.11 it is inner regular for all sets open or with finite measure.
For € > 0 and a o-finite set A = (J,, ey An With 1 (A4,) < oo and w.lo.g A, C Apqq for n € N we
find compact K, C A, with p(K,) > u(A,) — § for n € N. In the case of p(A) < oo there is an
m € N with p (Ap) > p(A) — § and hence p (Ky,) > 1 (A) — €. In the case of p(A) < oo for every
N € N there is an m € N with ;1 (A;,) > N + § and hence p (K;;,) > N. Hence we have shown that
p(A) =sup{p(K): K compact with K C A}.
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10.13 The Riesz representation theorem for positive functionals

The normed, complete and closed convex cone (C.(X,C))} of the positive functionals on

C. (X, C) with the norm [||*defined by ||A]|" = sup {’A (W)’ :fele (X, Rﬂ} is positively iso-
metric and isomorphic to the normed, complete andmconvex cone Mo (L (X);RT) of the
complete, outer and o-regular positive Borel measures on a o-algebra £ (X) including the Borel
o-algebra B (X) C £ (X) under the norm |||| with ||p|| = (X)) by p ~ Aiff Af = [ fdu for every f €

C. (X,0).
Notes:

1. Corresponding to the restriction of the algebraic closure to positive scalars in a convex cone
as given in 10.1 we define a positive vector isomorphism between convex cones C* and M
as a bijection p: C* — M with poaysr = app + Bur for every I'y A € C* and o 3 > 0.

2. The norm [||| on My (£(X);RT) induces a subclass of the weak topology which will be
examined in 11.8.

3. Apart from above used outer or principal measure defined in 10.10 by p (V) =sup{Ag: g < V'}
for open V C X and p(A) = inf {u (V) : A C Vopen} for arbitrary A C X there are other
representation measures, among them the inner or essential measure defined in 11.1 by i (K)
= inf{Ag: K < g} for compact K C X resp. f1(A) = sup{i(K): compact K C A} for ar-
bitrary A C X. The inner measure is not necessarily complete but obviously finite on
compact sets and inner regular, i.e. a Radon measure according to the definition in 10.1.
Furthermore it is uniquely defined by these properties whence we have a second variation of
the Riesz representation theorem: The convex cone (C. (X, C))} of the positive function-
als on C. (X, C) is positively isometric and isomorphic to the convex cone M$, (B (X);R")
of the Radon measures on B (X) with u ~ A iff Af = [ fdu for every f € C.(X,C). According
to 11.1 the outer and the inner measure coincide on o-compact spaces.

Proof:

Step I. Uniqueness: Assuming that there are two o-regular and complete positive Borel measures
p1 and po such that [ fdu; = [ fdug for all f € C.(X,C) for every e> 0, compact K C X open
V O K with pua (V) < pa(K)+e€and f € C. (X,R) with K < f < V,ie. xg < f < xy follows
p1 (K) < [ fdur = [ fdps < pe (V) < pa (K) + €. and vice versa. Hence the two measures coincide
on the compact sets and due to their o-regularity this identity extends first to the open sets and
by the uniqueness theorem 3.4 to all measurable sets.

Step II. Existence: Since the f € C. (X, C) are continuous and in particular Borel measurable
we can restrict the measure p determined by A according to lemma 10.10 on the o-algebra £ (X) from
10.12 to the Borel o-algebra B (X) C £(X). On account of ReAf = ARef resp. ImAf = Almf for
positive functionals it suffices to show the equation for real f. Since f € C.(X) & —f € C.(X) we
only have to show Af < [ fdu for every f € C.(X,R). Since the step functions defining the integral
are not continuous we have to take recourse to a corresponding partition of unity consisting of
continuous functions of compact support being amenable to A and providing a result which can be
compared to the integral. Furthermore the general case only provides for pointwise convergence
so that we need the compactness of the support K = {f # 0} in order to find elementary functions

uniformly converging to f: For e > 0let Ay = {ke < f < (k+1)e} with —n < k <n = [@}
such that (Ak)|k|§n is a partition of the compact support K = G A and e = i kexa, € S(X)

k=—n k=—n
according to 5.2 and 5.4 such that e < f < e+ e whence [edu< [ fdu < [edu+€-pu(K) . Due to
10.10 for every |k| < n there is an open Vi, with Ay C Vi, C {f <e+e€} and pu (Vi) < pu(Ag) + R
On account of [13, 8.9, 9.5 and 10.5] we can find a partition of unity (hx) <, C Ce (X,R) subordinate
to (Vk)\k|<n with fhy < Vi and fhy < (k+ 1) ehy as well as K < i hy such that p (K) < i Ahy,.
- k=—n k=—n

Thus we have
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=" (ke+e+ | F)Abp = IIF D Ahy,

k=—n k=—n
<3 (ke et 17D (V) = Il ()
k=—n
< 32 et et 1D (400 + iy ) = 1108
< [ edu e (1) 111 () + 2 -+ 1) 20 1) e = 17 0)
=/edu+eu(K)+2(n’;‘1)€2+25

< /fdu—l—eu(K) + 6e.
Step III. The map p — A is isometric: In the case of 1 (X) < oo on the one hand we have ||A|*

= sup{ ‘Sfugm‘ : fe CC(X,R)} =sup{|[ fdu|: f€Cc(X,RT) ,supf=1} < p(X) = ||pf|. On the
other hand according to Lusin’s theorem 10.6 for every € > 0 there exists a g € C. (X, C) such that
(g # 1) < e and |lgll < 1. This implies A" > |[y gdial [ (X \ {g # 1}) — i (g £ D] = s (X) - 2¢
whence ||A]|"* > ||u]|. Hence in the finite case we conclude that ||A|* = ||u|| and the estimates also
show that [|A[]" < oo iff 4 (X) < .

Step IV. The convex cone (C.(X,C))} is normed, complete and closed: For every A €
(Cc (X,C))"\ (Cc (X,C))7 thereisan f € C. (X, [0;1]) and an € > 0 such that Af < —e. Due to [10, th.
1.10] the bounded functlonal A is uniformly continuous such that there is a § > 0 with A [Bs (f)] C

B (Af) € R. Then for every I' € By (A) = {I‘ € (C.(X,C)*:|T||" = sup g <e- ]f\} we
lgll<1

have T’ (Hfll) < € 1e. By (A) € (Ce(X,C))"\ (Ce (X, C));. Hence (Cc(X,C))} is a closed sub-

set of the vector space (C.(X,C))" and since according to [10, th. 7.1] the set (C.(X,C))% is a

Banach space the completeness follows from [13, th. 14.2.2]. The corresponding properties of

Mo (£ (X);RT) are a consequence of the isometry between the two spaces.

10.14 The Riesz representation theorem for complex functionals

The Banach space (C, (X,C))* with the norm ||||*defined by ||A||" = sup {‘A (IIfH )‘ : feC (X, R*)}

is isometric and isomorphic to the Banach space M (B (X);C) of complex regular Borel
measures on B(X) under the norm ||| with ||u| = |p|(X) defined in 9.1 with p ~ A iff Af =
J fdp = | ffdlul for every f € Cc (X, C) (cf. 9.8).

Note: According to [10, th. 7.1] the completeness of the dual space (C.(X,C))" follows from
the completeness of C while the corresponding property of the space Mg (B (X);C) is a consequence
of the isometry with (C. (X,C))". The topology on M, (£ (X);R") induced a norm |||| will be

examined in 11.8.

Proof: According to [13, th. 20.6.6] and 9.4 the closed vector subspace My (L (X) ; C) of the Banach
space M (L (X);C) is again a Banach space.

The map p — A is well defined and C-linear: The complete and regular complex measure
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= Rep™ — Rep™ + i (Imp™ — Imp ™) with

p () = [xamen®dl| ~ [ xaReh~dlul + i [ttt ] ~ [ xatmh~dlu))

represented by four complete and regular positive measures according to 9.11 is mapped to the
complex functional A with

Af:/fd,u:/fReiﬁd\,u\ —/fRehd|u|—|—i(/flmh+d|u|—/flmhd|u|>

constructed of four positive bounded functionals matching the four summands in the decomposi-
tion of A in 10.9.2. Since the range of p resp. A has been extended to C the map is now completely
C-linear.

The map p — A is surjective: For every complex functional A = ReA™ — ReA™ + ¢ (ImA™ + ImA ™)
each positive bounded functional of the decomposition according to 10.9.2 is represented by an
integral, e.g. ReA" f = [ fd (Reu™) for every f € C. (X, C) resp. a complete and o-regular positive
Borel measure Reu™ etc. due to the preceding version 10.13 of the Riesz representation theorem
such that g = Rept —Rep™ +4 (Imp™ — Imp ™) is the uniquely determined complete and o-regular
complex Borel measure with Af = [ fdu for every f € C. (X, C). For any complete and o-regular
positive Borel measure A determined by a positive bounded functional I', every compact K and

11.1
£ €C.(X,[0:1)) with K < f according to 10.13 we have A (K) < [ fdA = Tf < |0 - [I£) = IT|I*
and on account of the regularity condition follows ||A|| = p (X) = sup {\ (K) : K compact} < ||T||".

Hence every component of u is finite and since this condition transfers to p itself it is also regular.
The map p — A is injective: Assuming A =0, i.e. Af = [ fhd|u| =0 for every f € C.(X,C). Since
according to 10.4 the space C. (X, C) is dense in L' (|u|) this implies [ xahd|u| = [, hd|p| = 0 for
every measurable A and hence |u|-a.e. h = 0. But on the other hand we have |h| = 1 which only
leaves |u| (X) = 0, i.e. u = 0. Thus the kernel of the isomorphism g — A contains only the trivial
element 0 which implies the assertion.

Lo rec.xm) -

sup {|[ fhd|p||: f € Cc (X,RT) ,sup f =1} < |u|(X) = ||u]. On the other hand according to Lusin’s
theorem 10.6 for every € > 0 there exists a g € C. (X, C) such that |u| (H # g) < eand ||g|| <1. This

implies || > [ ghdlul > |ul (X \{% # g}) = [l (h # g) > Il (X) = 2¢ whence [ A" > ||u]

The map p — A is isometric: On the one hand we have ||A]|* = sup

11 Vague convergence on locally compact spaces

11.1 The inner measure of a positive functional
On a locally compact space X for every positive functional A : C. (X,C) — C the inner measure
f: P (X) — [0;00] defined by

1. (K) = inf{Ag: K < g} for compact K C X resp. fi(A) = sup{ft(K): compact K C A}
for arbitrary A C X

coincides with the outer measure p defined in 10.10 by

2. 4(0) =sup{Ag:g <O} for open O C X resp. u(A) =inf {x(0): A C O open} for arbitrary
ACX

on Borel sets of finite outer measure : i (4) = p(A) VA € B(X) with p(A) < co.

In particular the inner and the outer measure coincide on the Borel o-algebra B (X) of every
locally and o-compact space X.
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Proof: Due to 10.3 for every compact K and open O with K C O there
is g € C. (X,R) with K < g < O.

Step I: 41 (O) = p(O) for every open O C X since obviously /i (O) Q
= sup {inf {Ag: K < g} : compact K C O} <sup{Ag:g <0} = pn(0).

Conversely the assumption i (O)< p (O) implies the existence of a ¢ < O

such that for every compact K C O there is an K < f with Af < Ag.

Since one of these f must coincide with g we have a contradiction whence

follows the equality.

Step II: /i (K) = p(K) for every compact K C X since obviously /i (K)
=inf{Ag: K < g} <inf{sup{Ag: g <O} : K C Oopen} = pu(K). Con-
versely the assumption i (K)< p (K) implies the existence of a K < ¢ such
that for every open O O K there is an f < O with Ag < Af. Since one
of these f must coincide with g we have a contradiction whence follows the equality.

Step III: /i (A) = u(A) for arbitrary A € B(X) since the assumption i (4) > p(A) implied the
existence of compact K and open O with K C A C O and fi (K)> p(O) whence from step II
followed p (K) = 4 (K)> p(O) in contradiction to the monotonicity of p. Conversely for every
€ > 0 there is an open U D A with p(U\ A) = u(U) — pn(A) < § and due to step I resp. step
IT there is a compact L C U with p(U\ L) = p(U) — (L) = 4 (U) — i (L) < §. Hence we have
p(Q) <efor@=(U\A)UU\L)=U\(AN L) and according to the definition of the outer measure
an open G D @ with 4 (G) < e. Then K = L\ G C A is compact with A\ K C G such that
1 (4) — u(K) = p(A\ K) < 1(G) < ¢ whence i (A) < u (K) +€ = fu (K) +¢ < i (A) +e.

11.2 Radon measures

On a locally and o-compact space X every Radon measure u € M$, (B (X);R") defined as an
inner regular positive Borel measure p on B (X) with u (K) < oo for every compact K C X is
o-finite and regular.

Note: According to 10.2 on a locally and o-compact space X the Radon measures M$, (B (X);R™T)
coincide with the normed, complete and convex cone of the positive regular measures Mg (B (X)
under the norm ||| with ||u]| = © (X). The corresponding norm topology will be examined in 11.8.

Proof: Since X is o-compact and u (K) < oo for every compact K C X the measure p is o-finite.
The regularity is a direct consequence of the preceding theorem 11.1 and the Riesz representation
theorem for positive functionals 10.13.

11.3 The Lebesgue measure

Since R" is o-compact we can apply the preceding theorem to the Lebesgue-Borel measure A" and
obtain its o-finite, regular and complete extension, the Lebesgue measure A" on the extended
o-algebra £ (R™) of the Lebesgue measurable sets. A set A is Lebesgue measurable iff there
are an Fy-set F' and a Gs-set G such that FF C A C G and A" (G \ F') = 0. This follows from 10.11
resp. 10.12 and the o-compactness of R™ together with the observation that for any o-compact set
A with A = {J,,en K, for a sequence of compact K, and any other given compact K the intersection
ANK € A(X) since \" (AN K) =sup{\" (K, N K)} < co. Consequently every Lebesgue set is
the union of a Borel measurable Gs-set and a A"-null set. Thus every Lebesgue measurable
function f coincides A"-a.e. with a Borel measurable function fy and identical integral [, fd = [, fod
for every Lebesgue measurable A. The translation invariance 8.8 as well as the transformation
formula 8.9 extend from B (X) to £ (X)due to the regularity of A\".

o6

RT)



11.4 The vague topology

For a topological space X the vague topology is the initial topology on the family of positive
Borel measures M (B (X);R") with regard to the maps {u+— [ fdu: f € C. (X;R)}, i.e. it is the
weakest or smallest topology on M (B (X);R™) such that these maps are continuous.

In the case of a locally compact space X according to the Riesz representation theorem for pos-
itive functionals 10.13 these maps are isometric isomorphisms on My (£ (X);R") with regard
to the much stronger and larger topology of uniform convergence induced by the supremum
norm.

The vague topology on the convex cone of the Radon measures M, (B(X);R") on a locally
compact space X is generated by the subbasis

§ = {Vie () :v e MG (B(X):RY) [ € C.(XR) e > 0}

formed by the neighbourhoods

Vie = {u;vEMﬁo (B(X);R+) : ‘/fdu/fdv

< e} .
On a locally compact space X a sequence (tn),>; C M (B(X);RT) C Myo (£(X);RY) of

Radon measures vaguely converges to a p € M, (B(X);R") iff one of the following two equiv-
alent conditions holds:

1. nli_}rroloffdun = [ fdu for every f € C.(X;R).

2. limsupu, (K) < pu(K) for every compact K C X and liminfu, (G) > u(G) for every open
n—r00 n—oo

GCX.
Examples:
3. Since X is a HausdorfF space and [13, th. 9.4] for every convergent sequence (77),~; C X

with le x, = ¢ € X the sequence (d,),~; vaguely converges to 6. Obviously we have
n (e.) el
Jim 6, (A) =1%#0=06,(A) for every open A C X with = € §A.

4. For every sequence (7,),>; C X without accumulation points (cf. [13, th. 2.7]) in X every
compact K contains only finitely many z; (cf. [13, th. 9.2.3]) such that the sequence (0, ),,>
vaguely converges to the null measure 0.

Proof:

1. = 2.: According to 10.1 for every compact K there is an f € C. (X,R) with K < f whence follows
lim supp, (K) < li_>m [ fdu, = [ fdu . Due to 11.1.1 and the Riesz representation theorem 10.13
n oo

n—oo

we have p (K) =inf {[ fdu: K < f} and consequently lim supp, (K) < p(K). According to 10.1 for
n—o0
every open V D K there is an f € C.(X,R) with f < V whence follows [ fdu = ILm [ fdp, <
n—oo

hnniio%f“” (V). Due to 11.1.2 and 10.13 we have pu (V) = sup{/ fdu : f < V open} and consequently
p (V) < liminfp, (V).

2. = 1. :By the decomposition f = f* — f~ with f*;f~ € C. (X;R") wlo.g. we assume f €
C. (X;RT). For every m > 1 we consider the compact sets Ky = {f >0} = suppf, K; =
{fz %||f||} and A; = K,;_1 \ K; resp. the open sets Gy = {f >0} = Ky, G; = {f > %HfH}
and B; = G;—1 \ G; for 1 < i < m + 1. Note that K41 = Gy = Gpe1 = 0. On account

m+1 i1 m+1 m i1 m .
of &SI Ixa < f <SG flxa resp X SITIxm < f <SS Il for every
1= 1= 1=

=1

m+1 | m+1 .
Radon measure v € M§ (B(X);R") follows Y. ZL|fllv(4) < [ fdv <3 L||f]lv(4;) resp.
i=1 i=1
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S ELfllv(Bi) < [ fdv <3 L |fllv(By). For 1 <i<m+1wehave v (A;) = v (Ki_1) — v ()
=1 =1

resp. v(B;) = v(Gi—1) — v(G;) whence 1 ﬂ'zjol v(K;) — tv(Ky) = L n'il v(K;) < [fdv <
LS v rep. & 2 0(G) - hv(Go) = & £ (G < [fdr < & £ v(G. Forv =
the right resp. left hand sides yield [ fdu, < % ngol v (K;) resp. % gl v(G;) < [ fduy, for every
n > 1 whence % gjl v(G;) < l%rr_l}ioréfffdun < hgl—?o%pffdun< % T:g:: v(K;). For v = p the left

m+1 m
resp. right hand sides yield % > v(K;) < ffd,u+%y(Kg) resp. [ fdu — %I/(Go) < % > v (Gh).
i=0 i=1

By combining these four estimates we obtain [ fdu — %V (Gp) < lirginfffdun < limsup [ fdu, <
n—00 n—00

[ fdu+ %1/ (Kp) for every m > 1 whence follows the assertion.

11.5 Vague convergence on continuous functions vanishing at infinity

On a locally compact space X for every sequence (pin),,~; C Mg (B(X);RT) of Radon measures

vaguely converging to a p € M$, (B (X);R") with sup ||un|| < oo we have lim [ fdu, = [ fdu for

every continuous f € Cy (X;R) vanishing at infinity.

Proof: Due to 11.4.2 we have ||u|| < a = sup |ua|| < oo which implies u € M, (B(X);R").
n>1

According to 10.5 every f € Co (X;R) and € > 0 exists a g € C, (X;R) with ||f — g|| < e which implies
|[ fdun — [ gdpn| < a-e and also |[ fdu — [gdp| < a-e. Owing to 11.4.1 exists an N € Nwith
|[ gdp — [ gdpn| < « - € for all n > N.By the triangle equation we obtain |[ fdu, — [ fdu| <
|[ fdun — [ gdpn| + | gdpn — [ gdp| + | [ gdu — [ fdp| < 3ae whence follows the assertion.

11.6 Vague approximation of the Dirac measure

For every 1, € L' with [, (x)dx = 1 like e.g. the characteristic function of the unit cube
Yn = X[0;1] and Pk (X) = k" (kx) we have klim [ f-nkdX = f(0) for every f € C.(R";R), i.e. the
—00

sequence (Ynx © A),~, vaguely converges to the Dirac measure do.

Note: Similar to the approximate identities 1, € L with [, (x) dx = 1 and ¥,,.1; (x) = k", (kx)
such that klim |f = f*¥nkll, = 0 for every f € L' defined in [9, th. 7.13] used in the Fourier
— 00

inversion formula [9, th. 7.14].

Proof: For every f € C.(R™;R) and & > 1 holds ‘f (%x) -w(x)‘ < |Ifll - K (x) such that by a
change of variable [9, th. 3.7] y = kx with ‘det (%)’ = k" resp. dominated convergence 5.15
vields lim [ f-thnd\ = lim [ f (x)- k"4 (kx) dx = lim [ f (£hx) -t (k) d (k) = lim [ f (fy)-
Ya(y)dy = J lim f (1y) - ¥a (v)dy = [ £(0) - v (y) dy = 1 (0).

11.7 Vague limits of discrete Radon measures

k
On a locally compact space X the linear combinations § =3 «;0x, of Dirac measures dx, on
i=1
x; € X with o; > 0 for 1 < i < k and some k > 1 are called discrete Radon measures. Then with
regard to vague convergence

1. the family of all discrete Radon measures is dense in M$, (B (X);R")
2. the family of all discrete probability measures is dense in M, (B (X);[0;1])
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Proof:

1. According to [13, th. 10.3 and 13.5] the locally compact space X is uniformizable whence
due to to Heine’s theorem [13, th. 12.9] every f € C.(X;R) is uniformly continuous
on its compact support K = suppf. Thus for every ¢ > 0 exists a finite cover of rela-
tively compact neighbourhoods B (z;) with x; € K for 1 < i < k and K C U;<j<i B (zi).
Hence the disjoint sets A; = K N B (z;) \ Uj<;<; B (7;) still cover K and are relatively com-
pact. Then for every u € M§(B(X);R") and any collection (Yi)1<jep C K with y; € A;
for 1 < j < k the discrete Radon measure § = 3y ,<; 1t (Aj) - &y, satisfies |[ fdu — [ fdo| =
’Zgjgk (fAj fdp — M(Aj) : f(?/j))‘ = ’Zgjgk fAj (f=rf (yj))du‘ < Z1§jgk fAj If — f(yj)| dp
< €X<j<k #(Aj) = €+ p(K) < e which proves the assertion.

2. Follows from 1. with d9 = p (X \ K) - 0y, + 31<j< f(A)) - 6y; for some yo € X \ K since
Zlgjng(Aj) =p(K) <1

11.8 The weak topology

On a topological space X the weak topology is defined as the initial topology on the family of
positive Borel measures M (B (X);R") with regard to the maps {p— [ fdu: f € Cy (X;R)}.

On a locally compact space X the weak topology on the convex cone of bounded Radon
measures MY, (B(X);R") C Mo (£ (X);R") is generated by the subbasis
8= {Wpe () :v e My (B(X):R) ] € (X:R):e > 0}

of the neighbourhoods

Wie= {M;VGMEO (B(X);R+) : ’/fdu—/fdv

2

Due to C. (X;R) C Cp (X;R) resp. 1 € Cp(X;R) the weak topology is both stronger than the
vague topology defined in 11.4 and the topology of the norm || || given by ||u|| = p(X) = [1du
in the Riesz representation theorem 10.13.2 on the subset of the bounded Radon measures
M (B(X);RY) € Mo (B(X);RY). The following theorem in essential states that on the convex
cone of the bounded Radon measures the union of these two topologies generates the
weak topology.

On a locally compact space X a sequence (in),>; C M’ (B(X);R*) of bounded Radon mea-
sures weakly converges to a u € MY, (B(X);R*) iff one of the following equivalent conditions is
satisfied:

1. nli_{lgoffdun = [ fdu for every f € Cp (X;R)

2. nli_}n@loffdpn = [ fdu for every f € C.(X;R) and Jim lienll = || pll-
Proof:

1. = 2.: Due to C. (X;R) C Cp (X;R) the first part is obvious and the second part follows from 11.1.2
since [lull = p(X) = sup {J fdu - f < X} = sup{[ fdu: [ € Co(X;R)}.

2. = 1.: According to 11.1.2 for every € > 0 there is an g € C.(X;[0;1]) with pu(X) — [gdu =
[ (1—g)du < e. Hence for every f € Cy (X;R) holds | £ (1— g)dul < [If] - [ (1 - g)du < ] -
The hypothesis implies nhﬁngo J gdu, = [ gdp and nlg& J 1du, = [ 1du such that there isn an m > 1
with [ (1 —g)du < e for every n > m. For these n and every f € Cp, (X;R) follows |[ f - (1 — g) duy]|
< |Ifll - J (1 —g)dun < ||f]| - € such that by the triangle equation we obtain || fdu, — [ fdu| <

20 fll - €+ |[ gdun — [ gdp| whence follows the assertion.
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11.9 The Portmanteau theorem for locally compact spaces

On a locally compact space X a sequence (P,),~; C Mo (X;[0;1]) of inner regular probability
measures weakly converges to an inner regular probability measure P € M,y (X;[0;1]) iff one of
the following equivalent conditions is satisfied:

1. nlgngoffdP = [ fdP for every f € Cp (X;R).
2. nli_}rrgoffdP = [ fdP for every f € C.(X;R).
3. limsupP, (K) < P (K) for every closed K C X.

n—0o0

4. linnl)ioréan (O) > P (O) for every open O C X.

9. nli_{rgoffdP = [ fdP for every Borel measurable, bounded and p-a.e. continuous f: X —
R.

Note: Condition 5. implies the condition lim P, (A) = P (A) for every P-continuous A C X with
n—oo

P (0A) = 0 corresponding to 12.6.5 in the Portmanteau theorem for metric spaces.
Proof:

1. = 2.: obvious since C. (X;R) C Cp (X;R)

2. = 3.: follows from 11.4.2

3. = 4.: obvious since p (0) = pu(X) —p(X\0)=1—-p(X\O0)

4. = 5.: Due to the hypothesis there is a set Xg C X
with f € Cp(Xo;R) and u (X \ Xo) = 0. Since p is in-
ner regular for every € > 0 exists a compact K C Xj
with (X \ K) < e. Then for every z € K there is an 68~
open neighbourhood U, with |f (y1) — f (y2)| < € for all
y1;y2 € U, and a compact x € V, C U,. According
to 10.3 for the finite cover (V4;);<;«,, of K C Uj<icpn Va,
exist f; € Cp (Xo;R) with Vy, < f; < X \ Uycicp Usi- By °
gi(z) = ;- fi+aresp. hy (x) = Bi-f;+B with o = inf f [XT;
b = sup f[X]; o = inf f[Uy]; Bi = supf[Us] we ob-
tain gz';hi c Cb(Xo;R) with «o < g; < o < f < Bz <

h; < [ and finally ¢ = llélil%lngi resp. h = 112&)(71 h;

with o < gi(y) < g(y) < f(y) < hi(y) < h(y) <8 Xo Xo Xo
for every y € V,,. In particular we have h — g < ¢

such that [(h—g)dp = [ (h—g)dp + [x\x (h—g)dp X

Sep(K)+(B-a)p(X\K) <e (u(X)+5—a)
Also on the one hand we have [ gdy = lim S gdpy, < lirginfffd,un <limsup [ fdpuy, < lim J hdpy, =
n—o0 n—o0 N—00 n—00
| hdp while on the other hand holds [ gdu < [ gdu < [ hdp such that {liniioréfffdun;fgdu;lim Supffdun} C
n n—00
[[ gdu; [ gdu+€- (u(X)+ S — a)] whence follows the assertion.

5. = 1.: obvious.

11.10 Vaguely compact sets

On a locally compact space X every family H C M, (X;R") of Radon measures is relatively

compact with regard to the vague topology iff it is vaguely bounded with sup |[ fdu| < co for
pneH
every f € C.(X;R).

Note: According to [13, def. 9.1] a set A is relatively compact iff its closure A is compact.
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Proof:

= Due to the Heine-Borel theorem [13, th. 9.10] for every f € C. (X;R) the image { [ fdu : n € H}
C R of a relatively compact H C M$, (X;R") under the continuous map p — [ fdu is again
relatively compact and in particular bounded which implies the assertion.

<=

Step I. The set M (X;R") is homeomorphic to ® [M§ (X;RT)] C J: According to Ty-
chonov’s theorem [13, th. 9.9] the product J = [Isec, x;r)Jf C RC(XR) of the compact in-

tervals Jp = [—ay;af] for af = sup |[ fdu| is again compact. By Riesz’ representation theo-
neH

rem for positive functionals 10.13 the map ® : H — J = [Ifcc.(xir) Jf C RC(X5R) defined by
D (u)=([ fd”>feCC(X;R) is injective and due to the continuity of ist components ® : u — [ fdp and
[13, th. 4.2] it is also continuous. Its is also open since for every u € M$, (X;R"); f € C. (X;R);

§ >0and 0 < n < § there is a v, = ff?;:nu € M$ (X;RY) with [ fdv, = [ fdu + n such

that every neighbourhood B;s (1) = {v € M$ (X;R"Y) : |[ fdu — [ fdv] < §} has an open image
O [Bs (1)) = 7rJT1 [Bs ([ fdp)] € J with the component Bs ([ fdu) C Jp = 7y [Pe] in the product

topology of J C RC(XiR),

Step II. ® {H} C J: For every u € H with regard to the vague topology holds |[ fdu| < ay since

for every f € C. (X;R) and € > 0 there is a v € M$, (X;RT) with |[ fdp — [ fdv| < € whence follows
\[ fdu| < |[ [ fdv|+|[ fdu — [ fdv| < af + € such that |[ fdu| < of. Hence for every f € C.(X;R)

we have (77 o ®) {F] C Jy whence follows the proposition.

Step IIL. ® [M$, (X;RT)] is closed in RE(X®): For every element I € ® [M¢, (X;RT)] C RC(XR)
being regarded as a map I : C.(X;R) — R defined by If = 7 (I), every f;g9 € C.(X;R) and
every € > 0 the set 7rj71 [Be ()] Nyt [Be (1)) N ﬂ]?ig [B. (I)] is a neighbourhood of I € RC(X®) Tt
therefore contains an I’ C ® [M$, (X;R™)] whence |I(f+g)—If—Ig| <|[I(f+g)—1'(f+9g)|+
|\I'f —If] 4+ |I'g—Ig| < 3e¢ and consequently I (f+g) = If + Ig . Similarly for a € R there is
an I' € 77;1 [Be (1)] N 77;} [Be (1)) N @ [M$ (X;RT)] whence |I(af) —alf] < |I(af)—1I (af)| +
|[I' (af) — ol fl|+|al'f —alf| < e+2-|a|-e. Hence we have proved that I € (C. (X;R))" is a linear
functional. A third application of this argument delivers If > 0 for every f > 0 whence follows
IC B MG (X;RY))

Step IV. Due to steps I and II the homeomorphic image ® [F} is closed in ® [M$, (X;RT)]. By
step IIT ¢ {F} is a closed subset of the compact set J C RC(XR) and hence compact.

11.11 Vague compactness of open balls

For every ¢ > 0 the open ball B, (0) = {1z € Mo (X;R") : |u(X)| <€} of bounded Radon mea-
sures is vaguely compact.

Proof: Owing to |[ fdu| < [|f|du < e-|f] for every f € C.(X;R) and pu € B (0) the set B (0) is
vaguely bounded whence by the preceding theorem 11.10 follows its vague relative compactness.
According to the Riesz representation theorem for positive functionals 10.13 we have B, (0)
= {p €M (X5R") : [ fdu < eVf € Cc(X;[0;1])} = Nyeco(x;0:1]) My:e With vaguely closed My,
= {p e My (X;RT) : [ fdu < €} whence B, (0) is vaguely closed and hence compact.

11.12 Separability of C. (X;R)

A locally compact space X is second countable iff C. (X; R) is separable with regard to uniform
convergence.
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Proof:

=: For the countable basis G of the topology on X and every n > 1 the products Uy x ... x U, C X™
with U; € Gand I} x...x I, CR"with I; € R = {]a;b)] CR:a < b€ Q} for 1 <i < n are compatible
iff there is at least one compatibility function f € C. (X;R) with f [U;] C I; and suppf C Ui<;<, Uj-
For every compatible product U; x ... x U, x I1 X ... x I,, we choose one possible compatible function
such that the resulting set F of these functions is countable. For every g € C. (X;R) with compact
K = suppg ; = € K and € > 0 exists an open neighbourhood = € U, € G with ¢ [U,] C B¢ (g9 (z))
and a finite subcover (Uy,),<;-,, with K C U;<;<, Us,. Also there are I; = ]a;; b;| € R with length
bi —a; < 3e with ¢g(Uy,) C I for 1 <i<n. Hence g is a compatible function and there exists an
f € F for the same compatible product Uy, X ... x Ug, X I1 X ... X I, with | f (z) — g ()] < A (I;) < 3e
for every « € U;<;<, Uj and f(z) = g (x) =0 for x € X \ Uy<;<,, U;j. Hence F is dense in C. (X;R).

«: For a countable dense subset F C C.(X;R) the countable family G = {{f > %} 1 fe ]-"} is
a basis for the topology on X since according to 10.3 for every open U and every x € U exists a
g € Cc(X;R) with {z} < g < U and due to the hypothesis an f € F with ||f — g|| < 3 such that

xE{f>%}C{g>0}CsupngU.

11.13 Embedding of X into M, (X;R")

Every locally compact space X by ¢ : X — M (X;RT) with p(z) = §, is homeomorphic to the
family of all Dirac measures ¢ [X]| = {§, : 2 € X} C M (X;RT).

Proof: ¢ obviously is injective and also continuous since due to [ fdd, = f (z) for every subbasis
set Vie(0z) = {0y €[ X]:|f(x)—fy)|<e} € SNe[X] withz € X; f € C.(X;R) and € > 0
according to 11.4 the inverse image ¢! [Vy.c (6;)] = f~1[Be (f (x))] is open in X. Furthermore ¢ is
open since owing to 10.3 for every z € X and every open neighbourhood = € U exists a f € C. (X;R)
with {x} < f < U such that Vi, /5 (6:) = {5y cp[X]: fly) > %} C{oy,ep[X]:yeU} =pl[U].

11.14 Metrizability and completeness of M, (X;R™)

A locally compact space X is polish iff the convex cone of the Radon measures M, (X;R")
is polish with regard to the vague topology.

Note:

Due to [13, th. 15.2] a locally compact space X is polish iff it is second countable and according
to Urysohns metrization theorem [13, th. 11.14.3] it is o-compact such that in this case every
Radon measure is complete and regular: M) (B(X);R") = My (B(X);R").

Proof:
=

Step I. Definition of the metric: According to 11.12 exists a countable dense set D C C. (X;R).
Owing to [13, th. 10.6] the space X is o-compact so that we have an increasing sequence (Ly),, oy of
compact L, with J, ey Ln = X and 10.3 yields another countable set £ C C. (X;[0;1]) containing
for each L, exactly one e, with L, < e, < B1 (L) = {r € X :d(x;L,) < 1}. The set of products
D-&={d-e,:deDse, € £} is still countable. The map p : M (X;RT) x MG (X;RT) — [0;1]
defined by p(u;v) = 3,127 - min{1;|[ d,dp — [ dndv|} with d,, € DUE UD - £ obviously is
symmetric and satisfies the triangle inequality. Concerning the positive definiteness for every
f € C.(X;R) and € > 0 there is a k > 1 with suppf C Ly whence f = e, - f and a d € D
with ||f — d|| < e. Hence we have |[ fdu— [d-epdp| < [|f —d-egx|du < € [ exdu and analogously
|[ fdv — [ d-exdv| < € [erdv. The hypothesis p (u;v) = 0 implies [d - exdp — [ d - exdv for every
n > 1 whence follows |[ fdu — [ fdv| < 2e [erdu. This estimate holds for every ¢ > 0 and every
f € C.(X;R) whence the Riesz representation theorem for positive functionals 10.13 implies

w=r.
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Step II. The metric determines the vague topology: According to the definition of the vague
topology in 11.4 for every € > 0 exists an m > —{n—e such that > ., 27" < § and consequently
Mi<n<m Vape2 (1) = {v € M§ (X;RT) : | [ dndp — [ dpdv| < §¥n < m} C B, (). Conversely for ev-
ery f € C. (X; R) e M, (X R*) and € > 0 exists a k > 1 with suppf C L, and a d € D such that

I|f—d| <6—m<1whence |f —d-er] <d-ep. Asabove we obtain |[ fdu — [d-erdu| <

§ [exdu but also |[ fdv — [d-exdv| < & [erdv for every other v € M$, (X;RT). For m > 1 large
enough so that {d - eg;ex} C {di;...;dm}, v € By (p) with n =& -27™ and every j < m follows 277 -
min {1; | [ djdu — [djdv|} < p(u;v) <n < §-277 and consequently | [ d;jdu — [ djdv| < § which implies
|[d-exdu— [d-erdv| < . The triangle equation yields |[ fdu — [ fdv| < 6 (1 + [erdp + [ erdv)
and since the choice of m > 1 also implies | [ exdu — [erdv| < d resp. [exdv < 0 + [ erdu we finally
obtain |[ fdu — [ fdv| < 2 +5(1+2 [epdu) < §(2+2 [erdu) = € . Hence we have shown that
By (1) C Ve ().

Step III. The metric space (M (X;R");p) is complete: For every f € C.(X;R) and every
0 < < 1exitsak > 1 with suppf C Ly and a d € D such that ||f —d|| < §. As above we
choose an m > 1 such that {d-eg;er} C {di;...;dn}, v € By (p) and define n = 6 - 27™. Then
for a p-Cauchy sequence (up),~; C M% (X;RT) exists an N > 1 such that p (u,; us) < n for every
r;s > N. Following step II again we conclude | [ d;du, — [ djdus| < § for every r;s > N and j < m
whence | [ d - epdu, — [d - exdus| < 5. As above we arrive at | [ fdu, — [ fdus| < 82+ (1+ 2 [ exdpu).
The estimate | [ exdu, — [ exdus| < 0 for every r;s > N implies the existence of an M < oo such
that [erdu, < M for n > 1 whence |[ fdu, — [ fdus| < 6% 4+ 6 (14 2M). Since M depends only
on the choice of f and (pin),>; for every € > 0 we find a § = 5755 < 1 such that [[ fdu, — [ fdus|
< € for every r;s > N. Hence (up),~; C M$ (X;RT) is a Cauchy sequence with regard to the
vague topology whence the Riesz representation theorem for positive functionals 10.13 resp. the
completeness of M, (X;RT) = My (X;RT) (see Note) imply the vague convergence of (ji,),,>4
to a uniquely determined limit u € M,y (X;R™"). B
Step IV. The metric space (M, (X;R");p) is second countable: According to 11.7.1 for every
f€C.(X;R), p € M§ (X;RY) and € > 0 esists a discrete Radon measure § = Y1, @0y,
with x; € X and o; > 0 for 1 < ¢ < k such that |[ fdu — [ fdd| = ‘ffd,u— Z1§i§kaif($i)’ < 3.
For 1 < i < k we choose ; € Q with |a; — ;] < m According to [13, th. 2.8] the second

countable set X is separable with a countable dense subset ¥ C X such that we can find y; € YV
with | f (zi) — f (i)| < 35 Hence we obtain a new discrete Radon measure v = 3>, <<, fidy, with

[ san= [ gas| <| [ gdu [ gan)| | [ ras - [ i

< g | Y aif (i) = Bif (i) + Bif () = Bif (wi)
1<i<k

< §+ Sl =Bl I+ D 1Bl 1 (1) = f ()]
1<i<k 1<i<k

<f.8.°¢

-3 3 3

=€

Hence the countable set D = {ZKKk Bidy, : BieQiy eY; 1< i< ki k> 1} of discrete Radon

measures with rational coefficients on points of the dense countable subset Y C X is dense

in M, (X;R") with regard to the vague topology whence again due to [13, th. 2.8] follows that
% (X;R") is second countable.

<: Directly follows from the preceding theorem 11.13.

11.15 Convergence of sequences in vaguely bounded sets

Every vaguely bounded sequence (un)n21 C M% (X;RT) of Radon measures on a polish space
X has a vaguely convergent subsequence.
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Proof: Follows directly from 11.10, 11.14 and the Bolzano-Weierstrass theorem [13, th. 10.12].

11.16 Metrizability and completeness of C (R"; X)

For every polish space X the vector space of the continuous paths C (R™; X) is polish with regard
to the compact open topology.

Note: Every metric p : X x X — RT can be shrinked to the range [0;1] by transition e.g. to
p' =min{l;p} or p”’ = ﬁpp.

Proof: The function d : C (R™; X) x C (R*; X) — [0;1] defined by d (f;9) = > ,,>1 27 "d, (f; g) with
dn (fi9) = sup{p(f(z);g(z)): = € [0;n]}and the metric p : X x X — [0;1] obviously is again a
metric with 27"dy (f19) < d(f;9) < Yicicn 27'dn (f19) + Xinn 27" < dn (f59) +27". Hence the
metric d induces the compact open topology of the space C (R*; X) which is complete according
to [13, p. 18.7.3]. Analogously to the proof of 11.12 we show that C (R™; X) has a countable basis:
According to [13, th. 2.8] the second countable set X is separable with a countable dense
subset Y C X so that G = {B, (y) : r € Q; y € Y} is a countable basis of the open sets in X. For
every n > 1 the products Gy X ... x G, C X" with G; € Gand I X ... x I, C R" with I, € R =
{la;fl CRT:0<a<beQ} for 1 <4i < n are compatible iff there is at least one compatibility
function f € C (R™; X) with f[;] C G;. For every compatible product G1 X ... X G, X I x ... X I, we
choose one possible compatible function such that the resulting set F of these functions is countable.
Forevery g € C (R*; X); N > 1,0 < e € Qand x € [0; N] exists an open neighbourhood z € U, € R
with g[U;] C Bc(g(x)) and a finite subcover (U,,);;«,, With [0;N] C Uj<j<p Uz;- Then for
1 <i < n we have G; = By (y;) € G with some y; € Y N B, (¢ (;)) such that for every = € Uy, follows
p(g(x);yi) < p(g(x);9 (@) + plg(wi);yi) < 2¢ whence g[Uy,] C G;. Hence g is a compatible
function and there exists an f € F for the same compatible product G1 X ... Xx G, X I X ... X I
with f[Us,] C G; for 1 <1i <mn whence p(f (x);g(z)) < 4e for every x € [0; N]. Hence F is dense in

i

Cc (X;R).

12 Probability measures on metric spaces

In this chapter without further notice P € M (X;[0;1]) will always be a probability measures on
the Borel-o-algebra B (X) of a metric space (X;d).

12.1 Discontinuities of functions between metric spaces

Theset Dy ={x € X: Je¢>0:Vd>03y;2€ Bs(x): D(f(y);f(2)) > €} of discontinuities of the
(not necessarily measurable) function f: (X;d) — (Y; D) lies in B (X).

Notes:

1. In [12, th. 3.1] it is shown that for every monotone f : |a;b[ — R the set D; of discon-
tinuities is countable and all discontinuities ¢ € Dy are simple, i.e. —oco < sup f(z) =

a<zr<c

. o l . l _ .

Jm (o= ) < Jimf (e 7) = inf f () < oo

2. In [9, th. 1.2] it is proved that for every real f : R — R the set of jump and vertex points
with existing but differing Dini derivatives {D+f =DVf= Djr'f #D_f=D_f= D’f}
is countable.

Proof: The sets Aes ={x € X : Jy;2 € Bs(x): D(f(y); f(2)) > €} are open because z € B; (y) N

Bs (y) whence Dy = |J () Aes € B(X).
ecQtseQt
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12.2 Regularity on metric spaces

Every probability measure P € M (X;[0;1]) on a metric space (X;d) is weakly regular, i.e.
for every measurable set A € B (X) there is a closed K and an open O such that K C A C O and
P(O\K)<e.

Proof: The family A of alls sets A € B (X) satisfying the hypothesis is a o-algebra since for every
sequence (An)n21 C A and € > 0 due to the hypothesis we have closed K, with open O, such that
K, C A, COpand P (O, \ Ky) < 557 and owing to the continuity from below 2.2.2 there is an

merithP<UKn\ U Kn> < & whence ) K, € UA, C UOnandP<UOn\ U Kn>
n=1 n=1

n>1 n=1 n>1 n>1 n>1

<P ( UOn\ U Kn> 4P ( U Ko\ U Kn> <P < U (On\Kn)> + £ < €. The closedness under
n>1 n>1 n>1 n=1 n>1

complementation is obvious. Due to the continuity from above A includes every closed set A
with a suitable §-neighbourhood A% = {z € X : d(2; A) < 0} hence every open set whence follows
0 (0) =B(X) C A and the theorem is proved.

12.3 Regularity on Polish spaces

Every probability measure P € M (X;[0;1]) on a polish space (X;d) is regular, i.e. for every
measurable set A € B(X) there is a compact K and an open O such that K ¢ A C O and
P(O\K) <e.

Proof: Since (2 is separable there is a countable and dense subset (w;),, and for every k > 1
a sequence (Bki)k'i>1 of open balls B;,, = B 1 (wg;) covering Q. Owing to the continuity from

below 2 there is an n; > 1 such that P (Uignk Bki) > 1 — 55. Since 2 is complete the closure

K = Ng>1Ui<n, Br; due to [13, p. 10.12] is compact: For any sequence (xj)Bl C K and every
k > 1 exists an open ball By, containing infinitely many elements of () i>1 such that the resulting
subsequence is Cauchy and due to the completeness converges to an x € K. Since P (K) > 1 —¢
and every intersection between a compact and a closed set is compact again we have shown that every

closed set A for every ¢ > 0 contains a compact set K C A with P(A\ K) <e.

Since every closed set A = (1,1 O1/y, is the intersection of open Oy, = {w €N:d(w;A) < %} and
P is continuous from above we have shown that P is regular on all closed sets A C €: For any
€ > 0 there are compact K resp. open O with K € A C O and P(O\ K) < e. Since B(fQ) is
generated by the closed sets it remains to prove that the family R C P () of all sets which satisfy
the regularity property is a o-algebra. To this end for e > 0 and any given sequence (A4,),~; C R
we choose compact K, and open O, with K, C A, C O, and P(O,, \ K;,) < 5:%r. Then we find an
ne > 1 such that with P (Un21 K, \ K) < §for K = ﬁj K, whence K C U,>1 4n C O =U,;>1 On

n=1
with P (O \ K) < e. Hence R is closed under countable unions. Since it is obviously closed under

intersection and complementation the proof is complete.

12.4 Characterization by bounded continuous functions

Two probability measures P,Q : B(X) — [0;1] on a metric space (X;d) coincide iff [ fdP =

[ fd@ for every bounded and uniformly continuous f: X — R.

Proof: For every closed A C X the functions f,, : X — [0;1] with f, (2) = (1 —n-d(z;A))" are

bounded and uniformly continuous since |f (z) — f (y)| < n-d(z;y). Since we have pointwise

everywhere y4 = li_>m fn the dominated convergence theorem 5.15 yields P (A) = [xadP =
n—oo

fT}LrgofndP = nh_)rr;offndP = nli_}rroloffndQ = le_)H;OfndQ = @ (A). Since the closed sets are a 7

-basis for B (X) the assertion follows from the uniqueness theorem 3.4.

65



12.5 Tightness on complete and separable metric spaces

Every probability measure P € M (X;[0;1]) on a complete and separable metric space (X;d)
is tight, i.e. for every ¢ > 0 exists a compact K C X with P(K) > 1 —e.

Proof: According to the separable character for every n > 1 there is a sequence (x),~; C X

Nik
with U By, (#) = X and in particular an ng > 1 such that P ( Lj By, (Ik)> > 1— 57. The
k>1 k=1

n
set B= (1 U Bim (zx) is precompact resp. totally bounded whence due to the complete
n>1 k=1

character and [13, th. 17.2] it has a compact closure K = B with P (K) > 1 —e.

12.6 The Portmanteau theorem for metric spaces
A sequence (F,),>; C M (X;[0;1]) of probability measures weakly converges to a probability
measure P € M (X;[0;1]) iff one of the following equivalent conditions is satisfied:
1. ILm [ fdP, = | fdP for every bounded, continuous f: X — R.
n o0

2. nh_{lgo [ fdP, = [ fdP for every bounded, uniformly continuous f: X — R.
3. limsupP, (K) < P (K) for every closed K C X.

n—0o0

4. 1irgiann (O) > P(O) for every open O C X.
n oo
5. le P, (A) = P (A) for every P-continuous A C X with P (0A) = 0.
n—oo
In a separable metric space (X;d) we have the additional equivalent property:

6. There is a convergence-determining m-system .4 such that for every x € X and € > 0 the
subfamily A, = {A cAd:zcACc AcC B, (x)} contains a P-null set A € 0A,, C A with
P(A) =0 and nh_)ngoPn (A) = P (A) for every A € A. Due to 2.2 the former condition is satisfied
if 6. A, contains uncountably many disjoint sets.

Note: The Helly-Bray theorem [12, th. 3.8] is a corollary to the Portmanteau theorem for the
case X = R with an application to distribution functions.

Proof:
1. = 2.: trivial
2\ F
2. = 3.: The separation function K < f < K€ defined in the proof of 12.4 by f (x) = (1 — @)
is uniformly continuous with limsupP, (K) < limsup [ fdP, = [ fdP < P (K¢) for every € > 0.
n—oo n—oo

3. = 4. ligiann (0) = lirginf(l —P(X\0))=1-limsupP, (X\O0)>1—-P(X\0)=P(O).
n—oo n—oo n—oo

3.&4. = 5.: According to the hypothesis P (A) < hnrg iOI.}an (A) < hnrg iOI.}an (A) < limsupP, (4) <

n—00 -
limsup P, (Z) <P (Z) and in the case of P (ﬂ) - P (A) = P (0A) =0 all terms coincide.
n—oo

5. = 1.: By the decomposition f = f™— f~ resp. the bounded character of f and the linearity of the
integral it suffices to examine the case f : X — [0;1]. The continuity of f implies 6 {f >t} C {f =t}
for every ¢ > 0. According to 2.1 we have P (f =t) > 0 for at most countably many ¢ whence the
sets {f >t} are A-almost everywhere P-continuous. By [12, th. 1.5] and the dominated con-

. L5 .. 515 1. 5.
vergence theorem 5.15 we conclude nh_}rgoffdPn = 7}1_>Igoan (f>t)dt "= fnh_{rgoPn (f>t)dt =
JP(f>t)dt= [ fdP.
5. = 6.: According to 12.2 every open set is P-continuous. Since the topology O is a m-system
and every 60,.. contains uncountably many disjoint sets we chan choose A = O.
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6. = 4.: Since § (AU B) C JAU B the class Ap of all P-continuous sets inA is a m-system. Since

each 0.4, contains a P-null set A, € Ap with x € A, C A, C B (z) and X is separable for every

open O C X exists a sequence (A, ),~; C Ap with |J Az, = O. Hence for every n > 0 there is an
= i>1

T
U Awi) > P (O) —n. The hypothesis implies that
=1

1=

r € N such that P(

g (U ) = Ji 3P = i, 3 Pu(A004) i 3R (40 01) -

t55=1 i35;k=1
:i P(Ay,)— Z P (AN A )+ Z P (AN A, N A, —
i=1 ij=1 isjik=1

"YU

whence follows P (0) — 5 < P (U Axi) = lim P, (U Am) <liminfP, ().
i=1 n—00 i=1 n—00

12.7 Weak convergence on product spaces

A sequence (P, ® Qn),>; C M (X x Y;[0;1]) on the product of separable metric spaces (X;d) and
(Y; e) weakly converges toa PRQ € M (X x Y;|0;1]) iff Jim (P, ®Qn)(AxB)=(P®Q)(AxB)
for every P-continuous A C X and Q)-continuous B C Y.

Proof: The family A= {AxBeB(XxY)=B(X)®B(Y): P(6A)=Q (dB) =0} (cf. [13, th.
4.2 and 7.7) is a m-system since (A x B)N(C' x D) = (ANC)x(BND)andd (ANC) C §AUIC. Tt is
P ®@Q-continuous since § (A x B) C ((0A) x Y)U(X x (6B)). If we choose the metric A : X xY —
R* defined by A ((z;y); (u;v)) = max {d (z;u) ;e (y;v)} (cf. [13, th. 1.8.3]) the balls Ba~, ((z;y)) =
Bicc () X Be<e (y) have boundaries of the form § (Ba<e ((z;9))) C 6 (Ba<e () XY UX X0 (Be<e (v))-
Hence they all are P ® Q-null sets and lie in §.4, C A so that we can apply 12.6.6 and the
theorem is proved.

T5y);€

12.8 The mapping theorem

For every B(X) - B(Y) measurable, P-a.e. continuous f : (X;d) — (Y;D) and a sequence

(Pn)p>1 € M(X;[0;1]) weakly converging to P € M (X; [0; 1]) the images (f o Py),~; C M (Y7;[0;1])

weakly converge to fo P € M (Y;[0;1)).

Proof: For every closed K € B(Y) and z € f~1 [K]\ Dy with the set Dy € B(X) of the disconti-

nuities of f according to 12.1 there is a sequence (z,),,~; C X with li_)rn xn =x and (f (zp)),>; C K
> R0 >

whence follows f(z) € K since f is continuous in z and K is closed. Therefore f~![K]\ Dy C
f7'[K] and from the hypothesis P (Ds) = 0 follows limsup (f o P,) (K) = limsupP, (f~' [K]) =
n—oo n—oo

limsupP, (FTIK]) < P (F7K]) = P (FIK]\ Dy) < P (F L [K]) = (f o P) (K) which by3 proves
the theorem.

12.9 The diagonal principle
For every real double sequence (z;;); ;»; C R with bounded rows (z;;);., there is a sequence
(ik)p>; such that in each row i > 1 the limit klim xij, € R exists.

- —00
Proof: According to the Heine-Borel theorem [13, p. 9.10] we can find a subsequence (j1,5),~; C N
such that JEEozlm,n € R exists. Given a subsequence (jk,n),~; such that nliﬁngoxk,jm € R exists we
change into the next row and by the same argument from the preceding subsequence choose a further
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subsequence (jr+1,n) C (Jkn)p>y such that Jim x5, € R exists. Since the subsequences

n>1
(Ukvn)nzl)kx form a decreasing family of sets with nhi%oxmm € R for every row k£ > 1 the

diagonal sequence (j,) p>1 With ji = ji i is increasing and klim z; 5, € R for every row ¢ > 1.
= — 00

12.10 Tight families of measures and distribution functions

Weak limits P = liﬁ\m P, of probability measures P,, on measurable spaces (2;.4) may exist in the
n—oo

form of finite measures p € My (A;RT) but in order to guarantee the condition u () = 1 resp.
Jim F (m) =1 and Jim F° (—=m) = 0 in terms of the distribution function F : R — [0;1] defined
by F (z) = P(]—o0;x]) in the case of Q = R we have to avoid the “loss of mass” as in the two
following examples:

1. The sequence (X,),~; with X,, = n resp. Px, = 0, and F;, = X[nsoo] has li_>m F,, = 0 since the
= ’ n—oo
mass “escapes to infinity”

2. The sequence (Y),>; with P (|Y,| <n) = 5= such that F, (t) = ( i) X[-n;n] again has

n

hHm F,, = 0 since in this case the uniformly over the interval [—n;n] distributed part of the mass
n oo

“evaporates”
Thus we define that the family IT of probability measures on the Borel o-algebra B (X) of a metric
space (X;d) is tight iff for every e > 0 exists a compact K. C X such that P (K,) > 1 — € for every
p € II. In the case of X = R this definition extends to the corresponding family ® = {Fp : P € II} of
distribution functions which is tight iff for every € > 0 exist real numbers a. < b, € R such that
P ([a;b]) > P(]a;b]) = Fp(b) — Fp(a) > P([a+ €b]) > 1 — € for every P € Il

12.11 Prohorov’s theorem

Every family IT of probability measures on the Borel o-algebra B (X) of a separable and complete
metric space (X;d) is tight iff it is sequentially compact with regard to weak convergence.

Notes:

1. The set P of all probability measures on a separable and complete metric space (X; B (X))
according to [2, th. 6.8] by the Skorohod metric 7 becomes itself a separable and complete
metric space with pointwise m-convergence being equivalent to weak convergence. Hence
due to [13, th. 10.12] the spaces X resp. P are second countable whence the properties of
being compact, countably compact and sequentially compact are equivalent.

2. Helly’s selection theorem [12, th. 3.9] is a corollary to Prohorov’s theorem for the case
X =R and applied to distribution functions.

Proof:

=: Since X is second countable there is an increasing sequence of open sets G,, with U,,~; G, = X.
Then for every ¢ > 0 there is an n > 1 such that P (G,) > 1 — ¢ for every P € II since otherwise we
had a sequence (P,),~, C Il with P, (Gy,) < 1—e€ and by the hypothesis a subsequence (P, ), with
a weak limit P = l1m Pnk € II whence 12.6.4 implied P (Gy,) < likrggngnk (Gn) < likrggngnk (Gp,) <

1 — € and by 2.2. 2 followed P(X) = nh_}rgoP (Gp) < 1 — €. With this result we can proceed as in the

proof of 12.5: According to the separable character for every n > 1 there is a sequence (zj),~; C X

with U By, (vx) = X and an ng > 1 such that P < Lj By, (:Ek)> > 1 — o7 for all P € II. The
k>1

set B = U By (zx) is precompact resp. totally bounded whence due to the complete
n>1 k=1

character and [13, th. 17.2] it has a compact closure K = B with P (K) > 1 —¢ for all P € II.
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«: According to the hypothesis for any given sequence (P,),~; C II there is an increasing sequence
K = (Ku),>,0f compact sets such that P, (K,) > 1— % for all n;u > 1. Since K = U, Ky is

separable there exists a countable family B = By, = (Bl /n (xk))k o such that for every open

in>
O C X and x € ON K there is an By, € B with x € By, C Ek;n C O. Let H be the countable
class containing () and every finite union of sets Ek;n N K, with By, € B and K, € K. According
to the diagonal principle 12.9 there is a subsequence (P,,),~; such that for every H € H exists the
limit o (H) = Z,lim Py, (H). Tt is monotone with o (H;) < a(Hs) if H; C H,, subadditive with

—00

a(Hy U Hs) < a(Hy) + o (Hg) with equality if Hy N Ho = () and obviously « () = 0. The set function
B : O — [0;1] defined by 5 (O) = supa(H) for every open O € O is still monotone and satisfies
HCO

S (D) = 0. In the following six steps we show that v : P (X) — [0;1] defined by v (4) = jnfoﬁ (O) for
C
every A C X is an outer measure:

Step I: For every closed K C ON H with O € O and H € H exists a Hy € H with K C Hy C O:
Due to Heine-Borel [13, th. 9.10] the set K C H is compact whence there is an v > 1 with K C K,
and a finite subcover (By,),.,«, C B with B;, C OV1 <i < k and K C U;<;<j Bz, such that we
can choose Hy = Uy<;<f, Bz; N K.

Step II: § is subadditive on the open sets with 8 (01 U O2) < 5 (01) +

B (02) for every O1;09 € O: For every H € H and open Oqp; Oy with 1

H C O U0y define K1 = {zx€ H:d(x; X\ 01) >d(x; X\ Oz)} and w
Ky={zxeH:d(z;X\02) >d(z; X\ O1)}. Since X \ Oz is closed for d‘.b
every x € K1 N X \ O; follows the contradiction d(z; X\ 01) = 0 < N
d(z; X \ O2) so that we infer K; C Ojand analogously Ko C Oy. Since

K1 Cc H € H by step I exist Hy; Hy € ‘H with K1 C Hi C Oj resp.

Ky C Hy C Oy. By the monotonicity resp. subadditivity of « follows a (H) <
a(Hy) + a(Hz) < B(01) + B(02). Since we can find an increasing sequence (Hj)
szl H; = O1 U O3 the assertion follows.

04(H1UH2) <

j>1 C H with

Step III: 3 is o-subadditive on the open sets with /3 (Un21 On) < Y n>1 B (Oy) for every sequence
(On)p>1 C O: For every H € H with H C |J,,>1 Oy its compact character implies the existence of an
m > 1 with H C Uj<,<,, On and by step II we have o (H) < j3 (Ulgngm On) < X i<n<m B(On) <
> n>18(0y). Since this estimate holds for every H C U,>; On we can infer its validity for the
supremum of all such H whence follows the proposition.

Step I'V: v is an outer measure: Since v is obviously monotone with «y (§)) = 0 we only have to prove
the o-subadditivity: For every € > 0 and a sequence (4,),~; of arbitrary subsets A,, C X there

are open O, D A, with 3(0,) <7 (Ay)+ 5% and by step III follows v (Un21 An) <g (Unzl An) <
Yon>1 B (An) <3251 7 (An) + € whence v (Un21 An) < >n>17 (Ay) since € was arbitrary.

Step V: For every closed K C X and open O C X holds §(0) >
vy (ONK)+7(0O\ K): For every € > 0 there is an H; € ‘H with H; C O\ K
and a(Hy) > B(O\ K) —e. Now choose an Hy € ‘H with Hy C O\ H; o

and o (Hy) > B(O\ Hy) —e. Since HyN H; = () and Hy U H; C O by
the additivity of « follows (0) > a(HoUHy) = a(Hy) + o (Hy) > (@
B(O\NHi)+B(O\K)—2¢>7(0\K)+7(0\K) -2

Step VI: Every closed set K is v-measurable: For every arbitrary

A C X and open O D A step V and the montonicity of v imply
B(O)>~v(ONK)+~v(O\K) >~v(ANK) +~v(A\ K). Taking the infimum over all such A we
obtain vy (A) > v (AN K)+~ (A \ K) and the subadditivity of y yields the desired equality according
to the definition 3.2.4.

According to Carathéodory’s theorem 3.3 the restriction P = ~|4 of the outer measure ~ to
the o-algebra A of all y-measurable sets is a measure and since every closed set is y-measurable
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we have B(X) C A and in particular X € A. For every open set O € O C B(X) C A follows
P(O) =~(0) = p(0). Owing to their compact character all K, lie in H such that 1 > P(X) =

B (X) > supa (K,) > supl—% = 1 whence P is a probability measure. For every H € H with H C O
u>1 u>1

follows o (H) = lim Py, (H) < liminfP,,, (O) and in particular P (O) = v (0) = a(O) < liminfP,, (O)
1— 00 71— 00 1— 00
which by the Portmanteau theorem 12.6.4 completes the proof.
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P-continuous, 60, 66, 67
0-00,7

absolute convergence, 42
absolute homogeneity, 29
absolute value, 14, 24
accumulation points, 57
addition, 13

additivity, 19
Alexandrov-compactification, 49
algebra, 6, 33, 35, 41, 51
almost everywhere, 12
approximate identities, 58
approximating sequence, 19, 50
approximation property, 10, 36
arithmetic mean, 28
automorphism, 38
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Banach algebra, 14

Banach space, 13, 23, 30, 43, 47
base, 40

basis, 12

basis of a g-algebra, 6, 33
Bochner integral, 19, 24, 25
Bochner space, 19

Borel measurable, 6

Borel measurable function, 12, 13, 56
Borel sets, 12

Borel o-algebra, 6, 52, 68
Borel-Cantelli lemma, 15
Borel-measurable, 28

bounded, 29, 49

bounded functional, 47

bounded linear functional, 45, 46
bounded measures, 59

canonical injection, 33

Cantor set, 11

Carathéodory’s theorem, 9, 69
Cauchy sequence, 16, 19, 30
Cavalieri’s principle, 39, 40
change of variable, 58
change-of-variables theorem, 39
characteristic functions, 18
closed set, 6

compact, 6, 34, 68

compact convergence, 15
compact support, 47
compatibility function, 62, 64
compatible, 62, 64

complete measure, 12, 52
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Completeness, 16, 30
completeness, 27, 31, 54
complex conjugate, 14
complex measure, 42
component, 33
components, 20
composition, 13
concentrated measure, 43
cone, 40

continuity form above, 20

continuity from above, 8, 11, 15-17, 46, 65
continuity from below, 8, 11, 17, 25, 35, 65

continuity of the integral, 24
continuous, 28, 34, 45

continuous from above, 15, 65
continuous function, 13
continuous paths, 64

contiuity of the integral, 28
convergence in p-th mean, 31
convergence in mean, 19, 23
convergence in measure, 15
convergence in the p-th mean, 29, 32
convergence p-a.e., 32
convergence p-almost everywhere, 14
convergence-determining class, 66
convex, 28

convex cone, 53, 56

convex cones, 48

countable at infinity, 6

countably compact, 68

cut, 35, 41

cylinder set, 33, 36, 41

cylinder sets, 14, 36

cadlag, 10

Darboux sum, 27

0-system, 7

dense, 11, 18

diagonal principle, 69
dilation, 13, 39

Dini derivatives, 64

Dini’s theorem, 51

Dirac measure, 8, 10, 48, 58
Dirac measures, 58
discontinuities, 64

discrete Radon measure, 63
discrete Radon measures, 58
discrete space, 6
distribution function, 66, 68
distribution functions, 10, 68



domain, 7 image of a o-algebra, 13

dominated convergence, 27, 28, 47, 65 imaginary part, 14

dominated convergence theorem, 58, 66 improper Riemann integral, 24, 27
dual norm, 47 independent sets, 15

dual space, 4547 induction, 9, 37, 40

Dynkin §-w-theorem, 7 Initial o-algebra, 33

Dynkin §-w-theorem, 35 initial o-algebra, 33, 34

Dynkin system, 7, 9, 35 initial topology, 33, 57, 59

inner measure, 53, 55
Egorov’s convergence theorem, 17, 32 inner product, 30, 45

elementary matrix, 38 inner regular, 48, 53, 60
elementary transformation, 38 integrable, 27, 29
(-continuity, 8, 41
e-neighbourhood, 65
equivalence classes, 23
equivalence relation, 12, 18, 29
essential measure, 53
exponential function, 16
extension, 41

extension theorem, 42

integrable functions, 19

integral transformation formula, 39
invariant, 13

inverse image of a g-algebra, 13
invertible matrix, 38

isometric, 53, 54

isometry, 47

isomorphism, 53

Fatou’s lemma, 24, 27, 30, 32

Jensen’s inequality, 28
Fatou’s lemma;:, 23

Jordan decomposition, 44, 46

ﬁeld, 14 jump, 64

figure, 11

figures, 6, 25 Lebesgue integrable, 19, 49

finite dimensional, 31 Lebesgue integral, 25

finite measure, 15 Lebesgue measurable, 56

finitely additive, 7 Lebesgue measurable function, 56
first category, 11 Lebesgue measure, 12, 15, 38, 48, 56
first countable, 14 Lebesgue Radon-Nikodym theorem, 44
Fourier inversion formula, 58 Lebesgue sets, 12

Fubini’s theorem, 36, 39 Lebesgue o-algebra, 38, 52
functional equation, 41 Lebesgue space, 19

Lebesgue’s convergence theorem, 15
Lebesgue’s dominated convergence theorem, 23
Lebesgue’s dominated convergence theorem:, 31
Lebesgue-Borel measure, 10, 12
Lebesgue-integrable, 24
Lebesgue-Radon-Nikodym theorem, 47
Lebesgue-Stieltjes measure, 10

left limits, 10

left-open interval, 6, 10, 11

Levi’s monotone convergence theorem, 23
linear functional, 45, 47

linearity, 29

local convergence in measure, 15

locally compact, 6

lower semicontinuous, 49

Lusin’s Theorem, 49

Lusin’s theorem, 54, 55

Lévy und Steinitz, theorem of, 42

Gamma function, 41

Gauss algorithm, 38

geometric mean, 28

global convergence in measure, 15
good set principle, 7

Hahn decomposition, 46

Hahn’s extension theorem, 10, 11
Hausdorff, 34

Hausdorff space, 6

height, 40

Heine’s theorem, 59

Heine-Borel theorem, 48, 61, 67, 69
Helly’s selection theorem, 68
Helly-Bray theorem, 66

Hilbert space, 30, 47
homomorphism, 38

Holder inequality, 28, 29, 46

image of a measure, 13 Fo-set, 6
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Ggs-set, 35

Ggs-set, 6

maximum, 13

mean value theorem, 45

mean value theorem for integration, 25, 27
measurable function, 12
measurable rectangle, 33, 35, 41
measurable set, 9

measurable space, 6, 12

measure, 9

measure space, 9

metric, 13

metric space, 13, 65, 68

minimum, 13

Minkowski inequality, 28
Minkowski’s inequality, 32
monotone, 69

Monotone class theorem, 7
Monotone convergence, 37
monotone convergence, 24, 31, 32, 36, 45
monotone convergence theorem, 46
monotone function, 64
monotonicity, 19, 43

monotonicity of a pre-measure, 7
monotonicity of the integral, 20, 23
p-absolutely continuous measure, 43
mulitplicity of the determinant, 39
multiple, 13, 14

multiplication, 14

multiplicity, 37, 41

multiplicity of a measure, 36
mutually singular measures, 43

n-dimensional figure, 35
n-dimensional interval, 35, 38
negative part, 13, 20
neighbourhoods, 57, 59

Non measurable sets, 12
norm, 13, 29, 30, 43, 46, 59
nowhere dense, 11

null set, 11, 12

open, 12

open map, 62

open set, 6, 13

orthogonal matrix, 39

outer measure, 9, 51, 53, 55, 69
outer measure, 10

outer regular, 48

parallelepiped, 39
partition, 29
partition of unity, 53
path, 41
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paths, 41

permutation, 37

7 -basis, 65

m-basis, 38

m-basis, 9

m-system, 7, 66

pointwise convergence, 15

polar representation of complex measures, 45
polish space, 34, 62, 64, 65
Portmanteau theorem, 60, 66, 70
Portmanteau theorem for metric spaces, 60
positive definiteness, 23, 43, 62
positive functional, 47, 50

positive measure, 42

positive part, 13, 20

positive und negative variations, 44
positive vector isomorphism, 53
powers, 14

pre-measure, 8, 42, 51
precompact, 66, 68

principal measure, 53

probability measure, 15, 41, 64, 65
probability measures, 9
probability space, 9, 41
probability theory, 12

product measure, 36

product space, 13

product topology, 14, 33, 34
product-o-algebra, 33

projection, 13, 33, 34

projections, 20

pseudonorm, 22

Pythagoras, 40

quotient space, 18, 23, 29

Radon measure, 53, 56

Radon measures, 57, 58, 62
Radon-Nikodym density, 44, 46
Radon-Nikodym derivative, 44
range, 7

rational numbers, 11

ray, 6

real numbers, 8, 27

real part, 14

realization, 41

reciprocal, 14

regular, 48, 56, 65

relatively compact, 60
restriction, 20

restriction of a measure, 33
Riemann integrable, 27
Riemann integral, 27

Riesz convergence theorem, 16



Riesz representation theorem, 38, 48, 53, 54, 57,
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Riesz representation theorem for positive func-

tionals, 57, 61, 62
right continuous, 10
right-open intervals, 7
rotation, 39

sample path, 41

scaling, 39

Scheffé’s theorem, 47

Schwarz inequality, 44

second countable, 6, 34, 61, 62, 68
semicontinuous, 13

seminorm, 19, 29

separable, 14, 18, 19, 24-27, 61, 63-65

separation axiom, 34
separation property, 51
sequentially compact, 68
shearing, 39

o-additive, 8, 51, 52
o-additivity, 42

o-algebra, 6

o-compact, 56, 62
o-finite, 18, 38, 48, 56
o-finite, 9

o-finite measure, 46
o-regular, 48

signed measure, 44

simple discontinuity, 64
simplex, 40

Skorohod metric, 68

step function, 18, 19, 36, 44, 46, 53
step functions, 31, 46
stochastic convergence, 15
stochastic process, 41
subadditive, 69
subadditivity, 7, 16, 51
subbasis, 57, 59

support, 18

supports, 19

supremum norm, 19, 29, 47
supremum property, 8, 11

three dimensions, 39
Tight families, 68

tight measure, 66
topogical basis, 6
topological space, 6, 13
total variation, 42
totally bounded, 66, 68
trace algebra, 25

trace o-algebra, 6, 33
trace topology, 6
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transformation formula, 38, 56
translation, 13

translation invariance, 56
translation invariant, 38

tree, 41

triangle inequality, 19, 62
triangle inequation, 29
Tychonoff’s theorem, 34
Tychonov’s theorem, 61

uniform convergence, 17, 28
uniformizable, 59

uniformly continuous, 45, 59, 65
uniformly continuous faunctional, 47
uniqueness theorem, 9, 53, 65

unit cube, 39

unit sphere, 40

upper semicontinuous, 49

vague convergergence, 57

vague topology, 57, 59, 60
vaguely bounded, 60

vanishing at infinity, 49, 58
variation of a measure, 48
vector space, 29

vertex, 64

Vitali, 12

Vitali’s convergence theorem, 32
Vitali-Carathéodory theorem, 49
volume, 40

weak convergence, 59, 60, 66
Weak limits, 68

weak topology, 53, 59

weakl convergence, 67
weakly regular measure, 65
well ordering, 20

Zorn’s lemma, 6, 29
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