Measure Theory

Arne Vorwerg

November 22, 2023

Preface

This text is essentially a working reference and follows the classical expositions of Bauer [1], Forster [3], Hewitt/Stromberg [4], Lang [5] and Rudin [7] to develop the foundations of the analysis of functions needed for the research on partial differential equations in probability and physics.The necessary results from set theory and topology can be found in [11] and [13]; the corresponding references are given in the text. For reasons of brevity motivations and proofs for simple definitions and propositions are omitted.

The exposition starts with measure theory which is the field of mathematics dedicated to the study of the content or weight of a set expressed by its measure. If the set is defined by a function on a certain domain its measure can be written as an integral. In this case the function turns out to be the derivative of the measure, i.e. it is itself a measure for the rate of change of the given measure depending on the change of the domain. Thus measure theory provides one of the basic methods for the study of functions in analysis. Since the measure of a set can be interpreted as the probability for the realization of the events represented by its elements measure theory has proved to be a very useful foundation of probability theory and statistics.
The first section introduces measurable sets, measures and measurable functions in a pronounced analogy to the open sets, metrics and continuous functions in topology. The concept of integration provides the basis for the extension of measures on product spaces. For the sake of clarity the integral is introduced in the generalized Bochner variant for functions with values in Banach spaces and later specialized to the usual Lebesgue integral so as to profit from the full range of possibilities of differentiation. The Lebesgue integral and the associated product measures on countable products of measure spaces prove to be a very useful concept for the description of sequences of independent random variables and their mean rep. expected values leading to the strong law of large numbers. In analysis they constitute the foundation for the integral transformations needed for the solution of partial differential equations, e.g. convolutions, distributions and fourier transforms. These integral transformations also provide an easy approach to the central limit theorem of probability theory. Mean values resp. integrals of functions on subsets are themselves measures and the Lebesgue-Radon-Nikodym theorem states that in fact every positive σ-finite measure can be represented as an integral over a suitable second measure. This result provides the foundation for two central theorems in functional resp. real analysis: Positive resp. bounded measures on locally compact vector spaces prove to be eqiuvalent to the corresponding functionals. Hence the set of all such measures on such a space is the dual space of a locally compact vector space. This is the content of the Riesz representation theorem.

Contents

1 Measurable sets 6
$1.1 \quad \sigma$-algebrae 6
1.2 Borel σ-algebrae 6
1.3 The trace of a σ-algebra 6
1.4 Intervals and figures 6
1.5 Dynkin systems 7
1.6 The Dynkin δ - π-theorem 7
1.7 The monotone class theorem 7
2 Pre-measures 7
2.1 Pre-measures 7
2.2 Characterization of pre-measures 8
2.3 Examples 8
3 Measures 9
3.1 Measures 9
3.2 Outer measures 9
3.3 Carathéodory's theorem 9
3.4 The uniqueness theorem 9
3.5 Hahn's extension theorem 10
3.6 The approximation property 10
3.7 Distribution functions and Lebesgue-Stieltjes measures 10
3.8 Continuous Lebesgue-Stieltjes measures 11
3.9 Complete measures 12
3.10 Almost everywhere existing properties 12
3.11 Vitali's theorem on non-measurable sets 12
4 Measurable functions 12
4.1 Measurable functions 12
4.2 Real valued Borel measurable functions 13
4.3 The image of a measure space 13
4.4 The inverse image of a measurable space 13
4.5 Continuous functions 13
4.6 Compositions 13
4.7 Measurable functions into product spaces 14
4.8 Vector spaces of measurable functions 14
4.9 Pointwise limits of measurable functions 14
4.10 Convergence in measure and μ-almost everywhere 14
4.11 Lebesgue's convergence theorem 15
4.12 The Borel-Cantelli lemma 15
4.13 Completeness and μ-a.e. convergent subsequence for convergence in measure 16
4.14 Completeness of μ-a.e. convergence 17
4.15 Egorov's convergence theorem 17
4.16 Examples 17
5 Integration 18
5.1 Step functions 18
5.2 Limits of step functions 18
5.3 The integral for step functions 19
5.4 Convergence of step functions 19
5.5 The Bochner integral 19
5.6μ-a.e. properties of integrable functions 20
5.7 Special cases 20
5.8 The integral transformation formula 21
5.9 The seminorm for Lebesgue integrable functions 22
5.10 Completeness of \mathcal{L}^{1} 22
5.11 Convergence in mean and μ-a.e 22
5.12 The norm for Lebesgue integrable functions 23
5.13 Levi's monotone convergence theorem 23
5.14 Fatou's lemma 23
5.15 Lebesgue's dominated convergence theorem 23
5.16 The absolute value of integrable functions 24
5.17 Dominated convergence for series 24
5.18 Sequences with bounded norms 24
5.19 Products of Lebesgue integrable and bounded functions 25
5.20 The mean value theorem for integration 25
$5.21 L^{1}$-limits of sets of finite measure 25
5.22 Coverings of L^{1}-limits of sets of finite measure 26
$5.23 L^{1}$-limits of step functions 26
5.24 Uniqueness of integrable functions 26
5.25 Characterization of integrable functions 27
5.26 Comparison with the Riemann integral 27
6 Lebesgue spaces 28
6.1 Convex functions 28
6.2 Jensen's inequality 28
6.3 Applications 28
6.4 Hölder and Minkowski inequalities 28
$6.5 \quad L^{p}$-spaces 29
6.6 Relations between L^{p}-spaces 29
6.7 Completeness 30
6.8 Special cases 30
6.9 Convergence in the p-th mean, in measure and μ-a.e 31
6.10 Lebesgue's dominated convergence theorem for L^{p}-spaces 31
6.11 L^{p} - and uniform limits of step functions 31
6.12 Continuity of the integral measure 32
6.13 Vitali's convergence theorem 32
7 Product spaces 33
7.1 The initial σ-algebra 33
7.2 The trace of a measure space 33
7.3 The product- σ-algebra 33
7.4 Measurable rectangles and cylinder sets 33
7.5 The product of Borel σ-algebrae and the Borel σ-algebra of a product 34
7.6 Finite products of σ-algebrae 34
7.7 Finite products of Borel σ-algebrae 35
8 Product measure 35
8.1 Measurable cuts 35
8.2 Measurable measures of cuts 35
8.3 The product measure 36
8.4 Cuts of null sets 36
8.5 Fubini's theorem 36
8.6 Finite products of measure spaces 37
8.7 Completion of λ^{n} 38
8.8 Translation invariance of λ^{n} 38
8.9 The transformation formula 38
8.10 Special cases of the transformation formula 39
8.11 Cavalieri's principle 39
8.12 The cone 40
8.13 The unit simplex 40
8.14 The unit sphere 40
8.15 Probability measures on function spaces 41
9 Measures with densities 42
9.1 Complex measure and total variation 42
9.2 The minimal range of a set of complex numbers 42
9.3 The total variation of complex measures 43
9.4 The Banach space of complex measures 43
9.5 Continuous and singular measures 43
$9.6 \epsilon-\delta$-definition of absolute contiuity 44
9.7 The Jordan decomposition of signed measures 44
9.8 The theorem of Lebesgue Radon-Nikodym 44
9.9 Polar representation of complex measures 45
9.10 The density of the total variation 45
9.11 Decomposition of complex measures 45
9.12 The Hahn decomposition for signed measures 46
9.13 The dual space of $L^{p}(\lambda)$ 46
9.14 The case $p=q=2$ 47
9.15 Scheffé's theorem 47
10 Measures on locally compact spaces 47
10.1 Linear functionals on locally compact spaces 47
10.2 Measures on locally compact spaces 48
10.3 Separation properties on locally compact spaces 48
10.4 The $\left\|\|_{p}\right.$-closure of $\mathcal{C}_{c}(X, \mathbb{C})$ 48
10.5 The $\left\|\|_{\infty}\right.$ closure of $\mathcal{C}_{c}(X, \mathbb{C})$ 49
10.6 Lusin's Theorem 49
10.7 The Vitali-Carathéodory theorem 49
10.8 Positive functionals are bounded on compact sets 50
10.9 Decomposition of complex and bounded real functionals 50
10.10The outer measure of a positive functional 51
10.11σ-Additivity of the outer measure on sets of finite measure 51
10.12σ-Additivity of the outer measure on $\mathcal{L}(X)$ 52
10.13The Riesz representation theorem for positive functionals 53
10.14The Riesz representation theorem for complex functionals 54
11 Vague convergence on locally compact spaces 55
11.1 The inner measure of a positive functional 55
11.2 Radon measures 56
11.3 The Lebesgue measure 56
11.4 The vague topology 57
11.5 Vague convergence on continuous functions vanishing at infinity 58
11.6 Vague approximation of the Dirac measure 58
11.7 Vague limits of discrete Radon measures 58
11.8 The weak topology 59
11.9 The Portmanteau theorem for locally compact spaces 60
11.10Vaguely compact sets 60
11.11Vague compactness of open balls 61
11.12Separability of $\mathcal{C}_{c}(X ; \mathbb{R})$ 61
11.13Embedding of X into $\mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right)$ 62
11.14Metrizability and completeness of $\mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right)$ 62
11.15Convergence of sequences in vaguely bounded sets 63
11.16Metrizability and completeness of $\mathcal{C}\left(\mathbb{R}^{+} ; X\right)$ 64
12 Probability measures on metric spaces 64
12.1 Discontinuities of functions between metric spaces 64
12.2 Regularity on metric spaces 65
12.3 Regularity on Polish spaces 65
12.4 Characterization by bounded continuous functions 65
12.5 Tightness on complete and separable metric spaces 66
12.6 The Portmanteau theorem for metric spaces 66
12.7 Weak convergence on product spaces 67
12.8 The mapping theorem 67
12.9 The diagonal principle 67
12.10Tight families of measures and distribution functions 68
12.11Prohorov's theorem 68
References 75

1 Measurable sets

1.1σ-algebrae

A family $\mathcal{A} \subset \mathcal{P}(X)$ is an algebra iff

1. $\emptyset \in \mathcal{A}$.
2. $A, B \in \mathcal{A} \Rightarrow A \cap B ; A \cup B ; A \backslash B \in \mathcal{A}$

In the case of
3. $X \in \mathcal{A}$
4. $\left(A_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{A} \wedge\left(n \neq m \Rightarrow A_{n} \cap A_{m}=\emptyset\right) \Leftrightarrow \bigcup_{n \in \mathbb{N}} A_{n} \in \mathcal{A}$
we have a σ-algebra. The pair $(X ; \mathcal{A})$ then is a measurable space. Every σ-algebra is closed under arbitrary countable unions and intersections since for $\left(A_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{A}$ we obtain paiwise disjoint $A_{n}^{\prime}:=A_{n} \backslash \bigcup_{1 \leq k<n} A_{k}=\bigcap_{1 \leq k<n}\left(A_{n} \backslash A_{k}\right) \in \mathcal{D}$ whence $\bigcup_{n \in \mathbb{N}} A_{n}=\bigcup_{n \in \mathbb{N}}^{\circ} A_{n}^{\prime} \in \mathcal{D}$ and $\bigcap_{n \in \mathbb{N}} A_{n}=X \backslash \bigcup_{n \in \mathbb{N}}\left(X \backslash A_{n}\right)$.

1.2 Borel σ-algebrae

For an arbitrary $\mathcal{M} \subset \mathcal{P}(X)$ the intersection $\sigma(\mathcal{M})$ of all σ-algebrae containing \mathcal{M} is again a σ-algebra. It is the σ-algebra induced by \mathcal{M} and \mathcal{M} is its basis. On a topological space $(X ; \mathcal{O})$ we have the Borel σ-algebra $\mathcal{B}(X)=\sigma(\mathcal{O})$ induced by the topology \mathcal{O}. Owing to 1.1 it contains the open sets and their countable intersections, i.e. the G_{δ}-sets as well as the closed sets and their countable unions, i.e. the F_{σ}-sets. The Borel σ-algebra of a second countable topological space $\mathcal{O}(\mathcal{E})$ induced by a countable topogical basis \mathcal{E} is induced by \mathcal{E} itself, i.e. $\mathcal{B}(X)=\sigma(\mathcal{O}(\mathcal{E}))=\sigma(\mathcal{E})$. In a Hausdorff space all compact sets are closed and hence Borel measurable, i.e. measurable with respect to $\mathcal{B}(X)$. For a locally compact X which is countable at infinity the Borel σ-algebra $\mathcal{B}(X)=\sigma(\mathcal{K})$ is induced by the family \mathcal{K} of all compact sets since due to [13, p. 10.6] every closed set is the countable intersection of compact sets. In a discrete space X with $\mathcal{B}(X)=\sigma(\mathcal{O})=\mathcal{O}=\mathcal{P}(X)$ a set is compact iff it is finite and $\sigma(\mathcal{K})$ is the σ-algebra of all sets $A \subset X$ with countable A or $X \backslash A$. Using Zorn's lemma ([11, p. 14.2.4]) we can infer that $\sigma(\mathcal{K})=\mathcal{B}(X)$ iff X itself is countable.

1.3 The trace of a σ-algebra

The trace σ-algebra $\mathcal{A} \cap B:=\{A \cap B: A \in \mathcal{A}\}$ on a subset $B \subset X$ of a measurable space $(X ; \mathcal{A})$ simply consists of the inter sections of measurable A in X with B. On account of $\left(O_{1} \cap O_{2}\right) \cap B$ $=\left(O_{1} \cap B\right) \cap\left(O_{2} \cap B\right),\left(O_{1} \cup O_{2}\right) \cap B=\left(O_{1} \cap B\right) \cup\left(O_{2} \cap B\right),\left(O_{1} \backslash O_{2}\right) \cap B=\left(O_{1} \cap B\right) \backslash\left(O_{2} \cap B\right)$ and $\left(\bigcup_{n \in \mathbb{N}} O_{n}\right)=\bigcup_{n \in \mathbb{N}}\left(O_{n} \cap B\right)$ the trace $\sigma(\mathcal{O}) \cap B$ of the Borel σ-algebra $\mathcal{B}(X)=\sigma(\mathcal{O})$ on a topological space $(X ; \mathcal{O})$ is identical with the σ-algebra $\sigma(\mathcal{O} \cap B)$ of the trace $\mathcal{O} \cap B$ of the topology \mathcal{O} on B.

1.4 Intervals and figures

The finite unions of pairwise disjoint left-open intervals $\mathcal{I}=\{] a ; b]: a \leq b \in \mathbb{R}\}$ form the algebra $\mathcal{F}=\left\{\bigcup_{0 \leq k \leq m} I_{k}: I_{k} \in \mathcal{I} ; 0 \leq k \neq l \leq m \Rightarrow I_{k} \cap I_{l}=\emptyset ; m \in \mathbb{N}\right\}$ of the one-dimensional figures since $\emptyset=] a ; a] \in \mathcal{I}$ and for $I, J \in \mathcal{I}$ we have $I \cap J \in \mathcal{I}, I \backslash_{0} J \in \mathcal{I}$ as well as $I \cup J \in \mathcal{I}$ in the case of $I \cap J \neq \emptyset$ resp. $I \cup J \in \mathcal{F}$ for $I \cap J=\emptyset$. Hence for $F=\bigcup_{0 \leq k \leq m}^{\circ} I_{k} \in \mathcal{F}$ and $G=\bigcup_{0 \leq l \leq n}^{\circ} J_{l} \in \mathcal{F}$ we have $F \cap G=\bigcup_{0 \leq k \leq m}^{\circ} \cup_{0 \leq k \leq m} I_{k} \cap J_{l} \in \mathcal{F}, F \backslash G=F \backslash(F \cap G) \in \mathcal{F}$ and $F \cup G \in \mathcal{F}$. The left-open intervals $] a ; b]$ are G_{δ}-sets hence they are Borel-measurable and because of $\left.] a ; b\left[=\bigcup_{k \in \mathbb{N}}\right] a ; b-\frac{1}{n}\right]$ they induce the Borel σ-algebra on \mathbb{R} as well as the algebra of figures: $\mathcal{B}=\sigma(\mathcal{F})=\sigma(\mathcal{I})$. Alternative basis families are the closed rays $\left.\left.]-\infty ; b]=\bigcup_{n \in \mathbb{N}}\right] a ; b-\frac{1}{n}\right]$ since $\left.\left.\left.\left.\left.] a ; b\right]=\right]-\infty ; b\right] \backslash\right]-\infty ; a\right]$ as
well as the open rays $]-\infty ; b[], a ; \infty[,[a ; \infty[$ and by analogous arguments the right-open intervals $[a ; b[$ for $a \leq b \in \mathbb{R}$.

1.5 Dynkin systems

A family $\mathcal{D} \subset \mathcal{P}(X)$ is a Dynkin system or δ-system iff

1. $\emptyset \in \mathcal{D}$.
2. $A \in \mathcal{D} \Leftrightarrow X \backslash A \in \mathcal{D}$
3. $\left(A_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{D} \wedge\left(n \neq m \Rightarrow A_{n} \cap A_{m}=\emptyset\right) \Leftrightarrow \bigcup_{n \in \mathbb{N}} A_{n} \in \mathcal{D}$

1.6 The Dynkin δ - π-theorem

The Dynkin system $\delta(\mathcal{E})$ generated by a π-basis $\mathcal{E} \subset \mathcal{P}(X)$ being closed under intersections coincides with the corresponding σ-algebra $\sigma(\mathcal{E})$.
Proof: For every $B \subset A$ we have $A \backslash B=X \backslash((X \backslash A) \cup \circ B)$ whence $(X \backslash A) \cap D=D \backslash(A \cap D) \in \mathcal{D}$ for every $D \in \delta(\mathcal{E})$ and $A \subset X$. Hence the family $\mathcal{D}_{D}:=\{A \subset X: A \cap D \in \delta(\mathcal{E})\}$ is itself a Dynkin system including \mathcal{E} and consequently $\delta(\mathcal{E})$. Hence $\delta(\mathcal{E})$ is closed under intersection. On account of $A \cup B=X \backslash((X \backslash A) \cap(X \backslash B)), A \backslash B=A \cap(X \backslash B)$ resp. 1.5.3 it is a σ-algebra, i.e. $\sigma(\mathcal{E}) \subset \delta(\mathcal{E})$ and since every σ-algebra is a Dynkin system we have $\sigma(\mathcal{E})=\delta(\mathcal{E})$.

1.7 The monotone class theorem

A class $\mathcal{M} \subset \mathcal{P}(X)$ is monotone iff it is closed under the formation of monotone unions and intersections, i.e. for every increasing sequence $\left(A_{n}\right)_{n \geq 1}$ we have $\bigcup_{n \geq 1} A_{n} \in \mathcal{M}$ and for every decreasing sequence $\left(A_{n}\right)_{n \geq 1}$ we have $\bigcap_{n \geq 1} A_{n} \in \mathcal{M}$. Every monotone class \mathcal{M} including an algebra $\mathcal{A} \subset \mathcal{M}$ also includes the σ-algebra $\sigma(\mathcal{A}) \subset \mathcal{M}$ generated by \mathcal{A}.

Proof: We apply the "good set principle" three times in a row: Since every monotone algebra is a σ-algebra it suffices to show that the monotone class $m(\mathcal{A})$ generated by \mathcal{A}, i.e. the intersection of all monotone classes including \mathcal{A}, is an algebra: The class $\mathcal{F}=\{A \subset X: X \backslash A \in m(\mathcal{A})\}$ is monotone and includes \mathcal{A} whence follows $m(\mathcal{A}) \subset \mathcal{F}$, i.e. $m(\mathcal{A})$ is closed under complementation. The class $\mathcal{G}=\{A \subset X: A \cup B \in m(\mathcal{A}) \forall B \in \mathcal{A}\}$ is monotone and includes \mathcal{A}, hence $m(\mathcal{A})$. The class $\mathcal{H}=\{A \subset X: A \cup B \in m(\mathcal{A}) \forall B \in m(\mathcal{A})\}$ is monotone and includes \mathcal{A} since $m(\mathcal{A}) \subset \mathcal{G}$. Hence $m(\mathcal{A}) \subset \mathcal{H}$, i.e. $m(\mathcal{A})$ is closed under formation of unions. Due to $A \cap B=X \backslash((X \backslash A) \cup(X \backslash B))$ we obtain the intersections which completes the proof.

2 Pre-measures

2.1 Pre-measures

The inclusion of big sets like $X=\mathbb{C}$ into the domain of a measure makes it necessary to include the corresponding value ∞ into its range. Since we expect integrals of vanishing functions on sets of infinite measure to have the value zero we define $\infty \cdot 0:=0 \cdot \infty:=0$. The corresponding extended ranges are denoted as $\mathbb{R} \cup\{\infty\}=\overline{\mathbb{R}}$ resp. $\mathbb{C} \cup\{\infty\}=\overline{\mathbb{C}}$ resp. $[0 ; \infty[\cup\{\infty\}=[0 ; \infty]$. A set function $\mu: \mathcal{A} \rightarrow[0 ; \infty]$ on an algreba $\mathcal{A} \subset P(X)$ is finitely additive iff $\mu(A \cup B)=\mu(A)+\mu(B)$ for disjoint $A, B \in \mathcal{A}$. In the general case with $A \cap B \in A$ follows the subadditivity $\mu(A \cup B) \leq \mu(A)+\mu(B)$. If there is an $A \in \mathcal{A}$ with $\mu(A)<\infty$ we have $\mu(\emptyset)=\mu(A \cup \emptyset)-\mu(A)=0$. Also μ is monotone: For $A \subset B$ and $\mu(A)<\infty$ on account of $A \backslash B \in \mathcal{A}$ and $B=A \cup B \backslash A$ we have $\mu(B \backslash A)=\mu(B)-\mu(A)$ and particularly $\mu(A)<\mu(B)$. Note that $\mu(B)=\infty \Rightarrow \mu(B \backslash A)=\infty$ if $\mu(A)<\infty$. In the case
of σ-additivity with $\mu\left(\stackrel{\cup}{\cup}_{n \in \mathbb{N}} A_{n}\right)=\sum_{n \in \mathbb{N}} \mu\left(A_{n}\right)$ for pairwise $\operatorname{disjoint}\left(A_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{A}$ it is a premeasure. The supremum property (cf. [13, p. 14.12]) of the real numbers permits the extension of the subadditivity to countable unions: $\mu\left(\bigcup_{n \in \mathbb{N}} A_{n}\right) \leq \sum_{n \in \mathbb{N}} \mu\left(A_{n}\right)$.

2.2 Characterization of pre-measures

A finite and finitely additive set function $\mu: \mathcal{A} \rightarrow[0 ; \infty[$ on an algebra $\mathcal{A} \subset \mathcal{P}(X)$ is a premeasure if one of the following equivalent conditions holds.

1. σ-additivity: For a sequence $\left(A_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{A}$ of pairwise disjoint measurable sets with $\bigcup_{n \in \mathbb{N}}^{\circ} A_{n} \in$ \mathcal{A} we have $\mu\left(\cup_{n \in \mathbb{N}}^{\circ} A_{n}\right)=\sum_{n \in \mathbb{N}} \mu\left(A_{n}\right)$.
2. Continuity from below: For an increasing sequence of measurable sets $A_{0} \subset A_{1} \subset \ldots$ with $\bigcup_{n \in \mathbb{N}} A_{n} \in \mathcal{A}$ we have $\lim _{n \in \mathbb{N}} \mu\left(A_{n}\right)=\mu\left(\cup_{n \in \mathbb{N}} A_{n}\right)$.
3. Continuity from above: For a decreasing sequence of measurable sets $A_{0} \supset A_{1} \supset \ldots$ with $\bigcap_{n \in \mathbb{N}} A_{n} \in \mathcal{A}$ we have $\lim _{n \in \mathbb{N}} \mu\left(A_{n}\right)=\mu\left(\bigcap_{n \in \mathbb{N}} A_{n}\right)$.
4. \emptyset-Continuity: For a decreasing sequence of measurable sets $A_{0} \supset A_{1} \supset \ldots$ with $\bigcap_{n \in \mathbb{N}} A_{n}=\emptyset$ we have $\lim _{n \in \mathbb{N}} \mu\left(A_{n}\right)=0$.
Note: Owing to the σ-additivity every set A with finite pre-measure $\mu(A)<\infty$ has at most countably many disjoint subsets $A_{i} \subset A, i \in I$ of non-zero pre-measure $\mu\left(A_{i}\right)>0 \forall i \in I$ since every subfamily $I_{n}=\left\{i \in I: \mu\left(A_{i}\right) \geq \frac{\mu(A)}{n}\right\}$ must be finite and $I=\bigcup_{n \geq 1} I_{n}$.
Proof:
5. $\Rightarrow 2$: : With $A_{n}^{\prime}:=A_{n} \backslash A_{n-1}$ we obtain a pairwise disjoint family $\left(A_{n}^{\prime}\right)_{n \in \mathbb{N}} \subset \mathcal{A}$ with $\mu\left(A_{n}\right)=$ $\mu\left(\bigcup_{1 \leq k \leq n} A_{k}^{\prime}\right)=\sum_{1 \leq k \leq n} \mu\left(A_{k}^{\prime}\right)$ such that $\lim _{n \in \mathbb{N}} \mu\left(A_{n}\right)=\sum_{n \in \mathbb{N}} \mu\left(A_{n}^{\prime}\right)=\mu\left(\bigcup_{n \in \mathbb{N}} A_{n}^{\prime}\right)=$ $\mu\left(\bigcup_{n \in \mathbb{N}} A_{n}\right)$.
$2 . \Rightarrow 3$. : We apply 2 . to the increasing sequence $\emptyset=A_{0}^{\prime} \subset A_{1}^{\prime} \subset \ldots$ of the complements $A_{n}^{\prime}:=A_{0} \backslash$ $A_{n} \in \mathcal{A}$ such that $\lim _{n \in \mathbb{N}} \mu\left(A_{n}\right)=\lim _{n \in \mathbb{N}} \mu\left(A_{0} \backslash A_{n}^{\prime}\right)=\lim _{n \in \mathbb{N}}\left(\mu\left(A_{0}\right)-\mu\left(A_{n}^{\prime}\right)\right)=\mu\left(A_{0}\right)-\lim _{n \in \mathbb{N}} \mu\left(A_{n}^{\prime}\right)$ $=\mu\left(A_{0}\right)-\mu\left(\bigcup_{n \in \mathbb{N}} A_{n}^{\prime}\right)=\mu\left(A_{0} \backslash \bigcup_{n \in \mathbb{N}} A_{n}^{\prime}\right)=\mu\left(\bigcap_{n \in \mathbb{N}} A_{0} \backslash A_{n}^{\prime}\right)=\mu\left(\bigcap_{n \in \mathbb{N}} A_{n}\right)$.
$3 . \Rightarrow 4$: Obvious.
6. \Rightarrow 1.: With $A_{k}^{\prime}:=\bigcup_{n>k}^{\circ} A_{n}$ we obtain a decreasing sequence $\left(A_{k}^{\prime}\right)_{k \in \mathbb{N}}$ with $\bigcap_{k \in \mathbb{N}} A_{k}^{\prime}=\emptyset$ and $\mu\left(A_{k}^{\prime}\right)<\infty$ such that due to 4 . we have $0=\lim _{k \in \mathbb{N}} \mu\left(A_{k}^{\prime}\right)=\mu\left(\cup_{n \in \mathbb{N}} A_{n}\right)-\lim _{k \in \mathbb{N}} \mu\left(\cup_{n \leq k}^{\circ} A_{n}\right)=$ $\mu\left(\cup^{\circ}{ }_{n \in \mathbb{N}} A_{n}\right)-\sum_{n \in \mathbb{N}} \mu\left(A_{n}\right)$.

2.3 Examples

1. The Dirac measure $\delta_{x}(A):=\left\{\begin{array}{l}1, x \in A \\ 0, x \notin A\end{array}\right.$ for $A \subset X$ and $x \in X$ is a pre-measure on every ring on a set X.
2. The measure $\mu(A):=\left\{\begin{array}{ll}0 & \text { for countable } A \\ \infty & \text { else }\end{array}\right.$ on the algebra $\mathcal{P}(X)$ of a discrete space X according to 1.2 .

3 Measures

3.1 Measures

A pre-measure μ on a σ-algebra \mathcal{A} is a measure and $(X ; \mathcal{A} ; \mu)$ is a measure space. Probability measures have the range $[0 ; 1]$ and in that case $(X ; \mathcal{A} ; \mu)$ is a probability space.

3.2 Outer measures

A set function $\tilde{\mu}: P(X) \rightarrow[0 ; \infty]$ is an outer measure iff for all $A, B, A_{n} \in \mathcal{A}, n \in \mathbb{N}$ the following properties hold:

1. Homogeneity: $\tilde{\mu}(\emptyset)=0$
2. Monotonicity: $A \subset B \Rightarrow \tilde{\mu}(A) \leq \tilde{\mu}(B)$
3. Sub-additivity: $\tilde{\mu}\left(\cup_{n \in \mathbb{N}} A_{n}\right) \leq \sum_{n \in \mathbb{N}} \tilde{\mu}\left(A_{n}\right)$

A set $A \subset X$ is $\tilde{\mu}$-measurable iff for every $Q \subset X$ we have
4. $\tilde{\mu}(Q)=\tilde{\mu}(Q \cap A)+\tilde{\mu}(Q \backslash A)$.

3.3 Carathéodory's theorem

For an outer measure $\tilde{\mu}$ on a set X the system \mathcal{A} of all $\tilde{\mu}$-measurable sets $A \subset X$ is a σ-algebra and the restriction $\left.\tilde{\mu}\right|_{\mathcal{A}}$ is a measure.

Proof: Obviously we have $\emptyset, X \in \mathcal{A}$ and on account of 3.2 .4 every $A \in \mathcal{A}$ has a measurable complement $X \backslash A \in \mathcal{A}$. For $A, B \in \mathcal{A}$ the union $A \cup B \in \mathcal{A}$ is measurable too since by applying 3.2.4 successively we obtain first an equation (I): $\tilde{\mu}(Q)=\tilde{\mu}(Q \cap A)+\tilde{\mu}(Q \backslash A)=\tilde{\mu}(Q \cap A \cap B)+$ $\tilde{\mu}(Q \cap A \backslash B)+\tilde{\mu}(Q \backslash A \cap B)+\tilde{\mu}(Q \backslash A \backslash B)$ and if we substitute Q with $Q \cap(A \cup B)$ in (I) we arrive at another equatiuon (II): $\tilde{\mu}(Q \cap(A \cup B))=\tilde{\mu}(Q \cap A \cap B)+\tilde{\mu}(Q \cap A \backslash B)+\tilde{\mu}(Q \backslash A \cap B)$. We can substitute the first three terms in (I) by (II) and hence obtain the measurability of the union: $\tilde{\mu}(Q)=\tilde{\mu}(Q \cap(A \cup B))+\tilde{\mu}(Q \backslash(A \cup B))$. Thuas and because of $A \cap B=X \backslash((X \backslash A) \cup(X \backslash B))$ and $A \backslash B=A \cap(X \backslash B)$ the family \mathcal{A} is an algebra.
For a sequence $\left(A_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{A}$ of pairwise disjoint measurable sets $A:=\bigcup_{n \in \mathbb{N}} A_{n}$ equation (II) yields $\tilde{\mu}\left(Q \cap\left(A_{0} \cup A_{1}\right)\right)=\tilde{\mu}\left(Q \cap A_{0}\right)+\tilde{\mu}\left(Q \cap A_{1}\right)$ resp. by induction $\tilde{\mu}\left(Q \cap \bigcup_{k=0}^{n} A_{k}\right)=\sum_{k=0}^{n} \tilde{\mu}\left(Q \cap A_{k}\right)$. On account of $\bigcup_{k=0}^{n} A_{k} \in \mathcal{A}$ and 3.2.2 we conclude that (III): $\tilde{\mu}(Q)=\tilde{\mu}\left(Q \cap \bigcup_{k=0}^{n} A_{k}\right)+\tilde{\mu}\left(Q \backslash \bigcup_{k=0}^{n} A_{k}\right)$ $\geq \sum_{k=0}^{n} \tilde{\mu}\left(Q \cap A_{k}\right)+\tilde{\mu}(Q \backslash A)$. Since this estimate holds for all $n \in \mathbb{N}$ it extends to $n \rightarrow \infty$ such that by 3.2.3 we arrive at the measurability criterion 3.2 .4 for A. Due to 1.5 .3 the family \mathcal{A} is a Dynkin system which is closed under intersection and in accordance with 1.6 it is a $\boldsymbol{\sigma}$-algebra. If in (III) we substitute $Q=A$ and observe 3.2 .3 we obtain the $\boldsymbol{\sigma}$-additivity of $\tilde{\mu}$ on \mathcal{A}, i.e. $\left.\tilde{\mu}\right|_{\mathcal{A}}$ is a measure.

3.4 The uniqueness theorem

Two measures μ_{1} and μ_{2} on a σ-Algebra $\sigma(\mathcal{E})$ induced by a π-basis $\mathcal{E} \subset \mathcal{P}(X)$ are identical iff they coincide on \mathcal{E} and are σ-finite on \mathcal{E}, i.e. $\exists\left(E_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{E}$ with $\bigcup_{n \in \mathbb{N}} E_{n}=X$ and $\mu_{1}\left(E_{n}\right)=\mu_{2}\left(E_{n}\right)<\infty$ for all $n \in \mathbb{N}$.

Proof: For $E \in \mathcal{E}$ with $\mu_{1}(E)=\mu_{2}(E)<\infty$ the family $\mathcal{D}_{E}:=\left\{D \in \sigma(\mathcal{E}): \mu_{1}(E \cap D)=\mu_{2}(E \cap D)\right\}$ is a Dynkin system since $\emptyset \in \mathcal{D}_{E}$ and for every $D \in \mathcal{D}_{E}$ on account of $\mu_{1}(E \cap X \backslash D)=\mu_{1}(E)$ $\mu_{1}(E \cap D)=\mu_{2}(E)-\mu_{2}(E \cap D)=\mu_{2}(E \cap X \backslash D)$ we also have $X \backslash D \in \mathcal{D}_{E}$. Criterion 1.5.3 follows from the σ-additivity of μ_{1} and μ_{2}. Since \mathcal{E} is closed under intersection we have $\mathcal{E} \subset \mathcal{D}_{E}$
and since \mathcal{D}_{E} is a Dynkin system 1.6 entails $\sigma(\mathcal{E})=\delta(\mathcal{E}) \subset \mathcal{D}_{E} \subset \sigma(\mathcal{E})$, i.e. $\mathcal{D}_{E}=\sigma(\mathcal{E})$ resp. $\mu_{1}(E \cap A)=\mu_{2}(E \cap A)$ for all $E \in \mathcal{E}$ and $A \in \sigma(\mathcal{E})$.

As in the proof of 2.2 .2 we define a sequence of pairwise disjoint sets $E_{n}^{\prime}:=E_{n} \backslash \bigcup_{1 \leq k<n} E_{k} \in \sigma(\mathcal{E})$ with $\cup_{n \in \mathbb{N}}^{\circ} E_{n}^{\prime}=X$ such that for $A \in \sigma(\mathcal{E})$ we have $E_{n}^{\prime} \cap A \in \sigma(\mathcal{E})$, hence $\mu_{1}\left(E_{n} \cap E_{n}^{\prime} \cap A\right)=$ $\mu_{2}\left(E_{n} \cap E_{n}^{\prime} \cap A\right)$ and the σ-additivity of μ_{1} resp. μ_{2} yields $\mu_{1}(A)=\mu_{2}(A)$.

3.5 Hahn's extension theorem

Every σ-finite pre-measure μ on an algebra \mathcal{A} can be extended in a unique way to a measure μ on $\sigma(\mathcal{A})$.

Proof: For every set $Q \subset X$ let $\mathcal{U}(Q) \neq \emptyset$ be the family of sequences $\left(A_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{A}$ with $Q \subset \bigcup_{n \in \mathbb{N}} A_{n}$. Then $\tilde{\mu}(Q):=\inf \left\{\sum_{n \in \mathbb{N}} \mu\left(A_{n}\right):\left(A_{n}\right)_{n \in \mathbb{N}} \in \mathcal{U}(Q)\right\}$ in case of $\mathcal{U}(Q) \neq \emptyset$ and $\tilde{\mu}(Q):=\infty$ else is an outer measure since obviously we have $\tilde{\mu}(\emptyset)=0$ and for $P \subset Q$ follows $\mathcal{U}(P) \supset \mathcal{U}(Q)$ and hence $\tilde{\mu}(P) \leq \tilde{\mu}(Q)$, particularly $\tilde{\mu}(Q) \geq 0 \forall Q \subset X$. For every sequence $\left(Q_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{P}(X), \epsilon>0$ and $n \in \mathbb{N}$ there is a sequence $\left(A_{n m}\right)_{m \in \mathbb{N}} \subset \mathcal{U}\left(Q_{n}\right) \neq \emptyset$ with $\sum_{m \in \mathbb{N}} \mu\left(A_{n m}\right)<\tilde{\mu}\left(Q_{n}\right)+\epsilon \cdot 2^{-n-1}$ and since $\left(A_{n m}\right)_{n, m \in \mathbb{N}} \subset \mathcal{U}\left(\bigcup_{n \in \mathbb{N}} Q_{n}\right)$ it follows that $\tilde{\mu}\left(\bigcup_{n \in \mathbb{N}} Q_{n}\right) \leq \sum_{n, m \in \mathbb{N}} \mu\left(A_{n m}\right)<\sum_{n \in \mathbb{N}} \tilde{\mu}\left(Q_{m}\right)+\epsilon$. Since $\epsilon>0$ is arbitrary condition 3.2 .3 is satisfied.

The algebra \mathcal{A} is $\tilde{\mu}$-measurable since for every $A \in \mathcal{A}$ and $Q \subset X$ with $\left(A_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{U}(Q)$ we have $\left(A_{n} \cap A\right)_{n \in \mathbb{N}} \subset \mathcal{U}(Q \cap A)$ resp. $\left(A_{n} \backslash A\right)_{n \in \mathbb{N}} \subset \mathcal{U}(Q \backslash A)$ and since $\mu\left(A_{n}\right)=\mu\left(A_{n} \cap A\right)+\mu\left(A_{n} \backslash A\right)$ we obtain $\tilde{\mu}(Q) \geq \tilde{\mu}(Q \cap A)+\tilde{\mu}(Q \backslash A)$ and hence equality on account of 3.2.3. The assertion then follows from 3.3 and 3.4.

3.6 The approximation property

Every set $Q \in \sigma(\mathcal{A})$ with finite measure $\mu(Q)<\infty$ on a σ-algebra $\sigma(\mathcal{A})$ induced by an algebra \mathcal{A} can be approximated in measure by a sequence $\left(C_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{A}$ such that $\lim _{n \rightarrow \infty} \mu\left(Q \Delta C_{n}\right)=0$ and particularly $\lim _{n \rightarrow \infty} \mu\left(C_{n}\right)=\mu(Q)$.
Proof: As in the proof for 3.5 and since $\mu(Q)<\infty$ for every $\epsilon>0$ we can find a sequence of w.l.o.g. (cf. proof of 2.2.2) pairwise disjoint sets $\left(A_{k}\right)_{k \in \mathbb{N}} \subset \mathcal{A}$ with $Q \subset \bigcup_{k \in \mathbb{N}}^{\circ} A_{k}$ and $\mu\left(\cup_{k \in \mathbb{N}}^{\circ} A_{k}\right)-\mu(Q)=$ $\sum_{k \in \mathbb{N}} \mu\left(A_{k}\right)-\mu(Q)<\frac{\epsilon}{2}$. The unions $C_{n}:=\bigcup_{0 \leq k \leq n}^{\circ} A_{k}$ already constitute the desired sequence since owing to $\mu\left(\cup^{\circ}{ }_{k \in \mathbb{N}} A_{k}\right)<\infty$ we can apply 2.2 .2 such that there is an $n_{0} \in \mathbb{N}$ with $\mu\left(\cup_{n \in \mathbb{N}} A_{n}\right)-\mu\left(C_{n_{0}}\right)$ $<\frac{\epsilon}{2}$ and hence $\mu\left(Q \Delta C_{n_{0}}\right)=\mu\left(Q \backslash C_{n_{0}}\right)+\mu\left(C_{n_{0}} \backslash Q\right) \leq \mu\left(\stackrel{\cup}{\cup}_{n \in \mathbb{N}} A_{n} \backslash C_{n_{0}}\right)+\mu\left(\dot{\cup}_{n \in \mathbb{N}} A_{n} \backslash Q\right)<\frac{\epsilon}{2}+\frac{\epsilon}{2}$ $=\epsilon$. The second assertion follows from $\mu\left(C_{n}\right)=\mu(Q)+\mu\left(C_{n} \backslash C\right)$ and $\mu\left(C_{n} \backslash C\right) \leq \mu\left(Q \Delta C_{n}\right)$.

3.7 Distribution functions and Lebesgue-Stieltjes measures

The real vector space of nondecreasing and right continuous distribution functions $f: \mathbb{R} \rightarrow \mathbb{R}$ with existing left limits (càdlàg $=$ continue \grave{a} droite et limite à gauche) and $f(0)=0$ by $\left.\left.\mu_{f}(] a ; b\right]\right)=f(b)-f(a)$ for every left-open interval $] a ; b] \in \mathcal{I}$ resp. $f_{\mu}(x)=\left\{\begin{array}{ll}\mu(] 0 ; x]) & : x \geq 0 \\ \mu(]-x ; 0]) & : x<0\end{array}\right.$ for $x \in \mathbb{R}$ is isomorphic to the real vector space $\mathcal{M}\left(\mathcal{B}(\mathbb{R}) ; \mathbb{R}^{+}\right)$of positive measures on the Borel σ-algebra on the real numbers.

right continuous left limits

Notes:

1. These measures are sometimes called Lebesgue-Stieltjes measures and in the case of the identity $f(x)=x$ we have the Lebesgue-Borel measure $\lambda=\mu_{\mathrm{id}}$. Another example is the Dirac measure $\delta_{x}=\mu_{\chi_{[x ; \infty]}}$ from 2.3.1 generated by $\chi_{[x ; \infty[}$.
2. According to [12, th. 3.1] every distribution function has at most a countable number of simple discontinuities.

Proof: The linearity of the map $f \rightarrow \mu_{f}$ is obvious. For a given distribution function f the set function μ_{f} defined as above is obviously finite and finitely additive on the π-system of the left-open intervals $\mathcal{I}=\{] a ; b]: a \leq b \in \mathbb{R}\}$. Hence its extension by $\mu_{f}(F)=\sum_{k=1}^{m} \mu_{f}\left(I_{k}\right)=\sum_{k=1}^{m} \sum_{l=1}^{n}$ $\mu_{f}\left(I_{k} \cap J_{l}\right)=\sum_{l=1}^{n} \mu_{f}\left(J_{l}\right)$ for any $F=\cup_{0 \leq k \leq m} I_{k}=\cup_{0 \leq l \leq n} J_{l} \in \mathcal{F}$ to the algebra \mathcal{F} of the onedimensional figures from 1.4 is well defined and independent of the representation of F.
For every decreasing sequence of figures $F_{0} \supset F_{1} \supset \ldots$ with $\left.\left.F_{n}=\bigcup_{0 \leq k_{n} \leq l_{n}}\right] a_{k_{n}} ; b_{k_{n}}\right] \in \mathcal{F}$ and $\bigcap_{n \in \mathbb{N}} F_{n}=\emptyset$ the decreasing character implies that $\forall m \geq 0 \forall n>m \forall 0 \leq k_{n} \leq l_{n} \exists 0 \leq k_{m} \leq$ l_{m} with $\left.\left.\left.] a_{k_{n}} ; b_{k_{n}}\right] \subset\right] a_{k_{m}} ; b_{k_{m}}\right]$, i.e. from every $m \geq 0$ onwards we are left with at most $l_{m}+1$ decreasing sequences (]$\left.\left.a_{k_{n}} ; b_{k_{n}}\right]\right)_{n \geq m}$ of intervals. Furthermore the condition $\bigcap_{n \in \mathbb{N}} F_{n}=\emptyset$ implies that each of these decreasing sequences must terminate in an empty set after finitely many steps: $\left.\left.\forall(] a_{k_{n}} ; b_{k_{n}}\right]\right)_{n \geq m} \exists N \in \mathbb{N}$ with $a_{k_{N}}=b_{k_{N}}$ since otherwise due to the supremum property [13, th. 14.12] of the real numbers we had limits $a=\sup _{n \rightarrow \infty} a_{k_{n}} \leq \inf _{n \rightarrow \infty} b_{k_{n}}=b$ and consequently $\emptyset \neq[a ; b] \subset$ $\left.\left.\bigcap_{n \in \mathbb{N}}\right] a_{k_{n}} ; b_{k_{n}}\right]$. Hence $\lim _{n \rightarrow \infty} \mu_{f}\left(F_{n}\right)=0$ whence by $2.2 .4 \mu_{f}$ is a pre-measure on \mathcal{F}. By $\left.\left.\mu_{f}(]-n ; n\right]\right)$ $=f(n)-f(-n)$ it is σ-finite such that according to Hahn's extension theorem 3.5 there is a uniquely determined extension to a measure μ_{f} on $\sigma(\mathcal{F})=\mathcal{B}(\mathbb{R})$ according to 1.4.
Conversely for a given measure $\mu \in \mathcal{M}\left(\mathcal{B}(\mathbb{R}) ; \mathbb{R}^{+}\right)$the obviously nondecreasing distribution function f_{μ} as defined above must be the right continuous for $x \geq 0$ since the continuity from above 2.2.3 of μ implies $\left.\left.\left.\left.\left.\left.\lim _{n \rightarrow \infty} f_{\mu}\left(x+\frac{1}{n}\right)=\lim _{n \rightarrow \infty} \mu(] 0 ; x+\frac{1}{n}\right]\right)=\mu\left(\bigcap_{n \geq 1}\right] 0 ; x+\frac{1}{n}\right]\right)=\mu(] 0 ; x\right]\right)=$ $f(x)$ and also for $x<0$ since owing to the continuity from below 2.2 .4 we have $\lim _{n \rightarrow \infty} f_{\mu}\left(x+\frac{1}{n}\right)$ $\left.\left.\left.\left.\left.\left.=-\lim _{n \rightarrow \infty} \mu(] x+\frac{1}{n} ; 0\right]\right)=-\mu\left(\bigcup_{n \geq 1}\right] x+\frac{1}{n} ; 0\right]\right)=-\mu(] x ; 0\right]\right)=f(x)$. For every $x \geq 0$ must exist a left limit since the continuity from below implies $\left.\left.\lim _{n \rightarrow \infty} f_{\mu}\left(x-\frac{1}{n}\right)=\lim _{n \rightarrow \infty} \mu(\rceil 0 ; x-\frac{1}{n}\right]\right)=$ $\left.\left.\mu\left(\bigcup_{n \geq 1}\right] 0 ; x-\frac{1}{n}\right]\right)=\mu(] 0 ; x[) \in \mathbb{R}$ and likewise for $x<0$ since by the continuity from above we have $\left.\left.\left.\left.\lim _{n \rightarrow \infty} f_{\mu}\left(x-\frac{1}{n}\right)=-\lim _{n \rightarrow \infty} \mu(] x-\frac{1}{n} ; 0\right]\right)=-\mu\left(\bigcap_{n \geq 1}\right] x-\frac{1}{n} ; 0\right]\right)=-\mu(x ; 0) \in \mathbb{R}$.

3.8 Continuous Lebesgue-Stieltjes measures

Continuous distribution functions $f \in C(\mathbb{R} ; \mathbb{R})$ imply $\left.\left.\mu_{f}(\{x\})=\mu_{f}\left(\bigcap_{n \geq 1}\right] x-\frac{1}{n} ; x+\frac{1}{n}\right]\right)=$ $\left.\left.\lim _{n \rightarrow \infty} \mu(] x-\frac{1}{n} ; x+\frac{1}{n}\right]\right)=\lim _{n \rightarrow \infty} f\left(x+\frac{1}{n}\right)-f\left(x+\frac{1}{n}\right)=0$ whence $\left.\left.\mu_{f}(] a ; b\right]\right)=\mu_{f}([a ; b])=\mu_{f}([a ; b[)$ $=\mu_{f}(] a ; b[)=f(b)-f(a)$ for $a \leq b \in \mathbb{R}$. Thus every countable union of single points is a $\mu_{f}-$ null set, in particular the rational numbers: $\mu_{f}(\mathbb{Q})=0$. The Cantor set $T:=g\left[\{0 ; 2\}^{\mathbb{N}}\right]$ with $g(x)=\sum_{n \geq 1} \frac{x_{n}}{3^{n}}$ for any sequence $x=\left(x_{n}\right)_{n \geq 1}$ with $x_{n} \in\{0 ; 2\}$ (cf. [13, p. 2.10] is a λ-null set since $T=\bigcap_{n \in \mathbb{N}} T_{n}$ with $T_{0}=[0 ; 1]$ and T_{n+1} is a union of 2^{n+1} disjoint and closed intervals with length resp. measure $\frac{1}{3^{n+1}}$ obtained by removing the middle third from the 2^{n} closed intervals T_{n} with length $\frac{1}{3^{n}}$ such that $\lambda\left(T_{n}\right)=\frac{2^{n}}{3^{n}}$ and $\lambda(T)=\lim _{n \in \mathbb{N}} \lambda\left(T_{n}\right)=0$ due to the continuity from above (2.2.3). The $\mathrm{G}_{\boldsymbol{\delta}}$-set $U=\bigcap_{n \geq 1} U_{n}$ with dense open sets $U_{n}=\bigcup_{i \geq 1} B_{n^{-1.2-i-1}}\left(q_{i}\right)$ based on the enumeration $\mathbb{Q}=\left(q_{i}\right)_{i \geq 1}$ includes \mathbb{Q} and hence is dense in \mathbb{R}. Again due to 2.2.3 and since $\lambda\left(U_{n}\right) \leq \frac{1}{n}$ it also is a λ-null set: $\lambda(U)=0$. The complements $\mathbb{R} \backslash U_{n}$ are closed and nowhere dense in \mathbb{R} but with measure $\lambda\left(\mathbb{R} \backslash U_{n}\right)=\infty$ and $\mathbb{R} \backslash U$ is an example for a set of first category with measure $\lambda(\mathbb{R} \backslash U)=\infty$. (cf. [13, th. 16.1])

3.9 Complete measures

A measure μ is complete iff every subset of a μ-null set is measurable.

1. A σ-algebra \mathcal{A} can be completed to a σ-Algebra $\mathcal{A}_{0}=\{A \cup M: A \in \mathcal{A} \wedge M \subset N \in \mathcal{A}: \mu(N)=0\}$ by simply adding the requested subset of null sets to the given measurable sets: For $A, B \in \mathcal{A}$ resp. $M_{A} \subset N_{A}, M_{B} \subset N_{B}$ and $\mu\left(N_{A}\right)=\mu\left(N_{B}\right)=0$ we have $\left(A \cup M_{A}\right) \backslash\left(B \cup M_{B}\right)=$ $A \backslash\left(B \cup M_{B}\right) \cup M_{A} \backslash\left(B \cup M_{B}\right)=(A \backslash B) \cap\left(A \backslash N_{B}\right) \cup\left(N_{B} \backslash M_{B}\right) \cup M_{A} \backslash\left(B \cup M_{B}\right) \in \mathcal{A}_{0}$ since $(A \backslash B) \cap\left(A \backslash N_{B}\right) \in \mathcal{A}$ and $\left(N_{B} \backslash M_{B}\right) \cup M_{A} \backslash\left(B \cup M_{B}\right) \subset N_{A} \cup N_{B}$ with $\mu\left(N_{A} \cup N_{B}\right)=0$. The σ-additivity is obvious.
2. A set E is \mathcal{A}_{0}-measurable iff there are $A, B \in \mathcal{A}$ with $A \subset E \subset B$ and $\mu(B \backslash A)=0$: One the one hand for any $E=A \cup M$ with $M \subset N \in \mathcal{A}$ and $\mu(N)=0$ the measurable sets A and $B:=A \cup N$ satisfy the criterion. On the other hand for any E and measurable A, B according to the criterion we have $E=A \cup(B \backslash A \cap E)$ with $B \backslash A \cap E \subset B \backslash A$ and hence $E \in \mathcal{A}_{0}$.
3. The corresponding extension $\mu_{0} \supset \mu$ with $\mu_{0}(A \cup N):=\mu(A)$ for $A \in \mathcal{A}$ and $N \subset M: \mu(M)=0$ obviously is a complete measure. Thus the Lebesgue-Borel measure λ on the σ-algebra \mathcal{B} of the Borel sets is extended to the Lebesgue measure λ_{0} on the completed σ-algebra \mathcal{B}_{0} of the Lebesgue sets. In the following section the index is usually omitted such that the complete Lebesgue space is still denoted as $(X ; \mathcal{B} ; \lambda)$.

3.10 Almost everywhere existing properties

In probability theory the completion is seldom used since it is not generated by the open sets any more and hence restricts the choice of possible measures resp. distributions without granting any gain in information. In analysis it is widely adopted though not always necessarily so since a σ-algebra is a family e.g. larger by far than the topology on \mathbb{R} such that it is not a trivial exercise to find non measurable sets at all. In any case we speak of a property $E(x)$ being satisfied μ-almost everywhere (μ-a.e.) iff it is satsfied everywhere with the exception of μ-null sets, i.e. iff $\mu(\neg E)=0$.

3.11 Vitali's theorem on non-measurable sets

There is a set $K \subset \mathbb{R}$ which is not Lebesgue measurable.
Proof: The equivalence relation defined by $x R Y \Leftrightarrow x-y \in \mathbb{Q}$ generates a disjoint cover of \mathbb{R} by equivalence classes with the class $\overline{0}=\mathbb{Q}$ and all other classes represented by irrational numbers. Since \mathbb{Q} is dense in \mathbb{R} every class has representants $x \in[0 ; 1]$ and the axiom of choice [11, p. 14.2.1] permits us to choose exactly one of those for every equivalence class and thus define a set $K \subset[0 ; 1]$ such that we obtain a disjoint and countable cover $\mathbb{R}=\grave{\bigcup}_{q \in \mathbb{Q}}(q+K)$ which due to the σ-additivity and the translation invariance must satisfy $\infty=\lambda(\mathbb{R})=\sum_{q \in \mathbb{Q}} \lambda(K)$ and hence $\lambda(K)>0$. On the other hand we have $\cup_{q \in \mathbb{Q} n[0 ; 1]}(q+K) \subset[0 ; 2]$ and due to the monotonicity of the measure $\sum_{q \in \mathbb{Q}} \lambda(K) \leq \lambda([0 ; 2])=2$ hence $\lambda(K)=0$. From this contradiction we must infer that K is not measurable.

4 Measurable functions

4.1 Measurable functions

A mapping $f:(X ; \mathcal{A}) \rightarrow(Y ; \mathcal{B})$ between measurable spaces is measurable iff every inverse image $f^{-1}(B)$ of a measurable set $B \in \mathcal{B}$ is again measurable in $(X ; \mathcal{A})$, i.e. $f^{-1}(B) \in \mathcal{A}$. Since all necessary set operations transfer to inverse images (cf. [11, p. 9.2]) it is sufficient that the inverse images of basis sets are measurable in X (cf. [13, p. 3.1]). In analysis the usual basis is the topology \mathcal{O} on Y and the function is Borel measurable iff it is measurable with reference to $\mathcal{B}=\sigma(\mathcal{O})$. Hence a
function $f:(X ; \mathcal{A}) \rightarrow(Y ; d)$ into a metric space is Borel measurable iff $f^{-1}\left[\mathcal{B}_{\epsilon}(y)\right] \in \mathcal{A}$ for every $\epsilon>0$ and $y \in Y$.

4.2 Real valued Borel measurable functions

According to 2.1 a function $f: X \rightarrow \mathbb{R}$ is measurable iff the sets $\{f \geq a\}:=f^{-1}[[a ; \infty[]$ or the analogously defined $\{f>a\},\{f \leq a\}$ resp. $\{f<a\}$ are measurable in X. In particular for a Borel measurable $f: X \rightarrow \mathbb{R}$ the positive part $f^{+}:=\max \{f ; 0\}$, the negative part $f^{-}:=\min \{f ; 0\}$ are Borel measurable. Since \mathbb{Q} is countable and dense in \mathbb{R} the sets $\{f>g\}=\bigcup_{a \in \mathbb{Q}}(\{f>a\} \cap\{a>g\})$ and $\{f \geq g\}=X \backslash\{f<g\}$ are measurable. Hence the maximum max $\{f ; g\}$ and the minimum $\min \{f ; g\}$ are Borel measurable for any for measurable $f, g: X \rightarrow \mathbb{R}$. In the expression for the measure μ of the set of all $x \in X$ for which $A(f(x))$ is true we will often omit not only the argument but also the curly brackets: $\mu(A(f))=\mu(\{A(f)\})=\mu(\{x \in X: A(f(x))\})$ as e.g. in $\mu(|f|<\epsilon)=$ $\mu(\{|f|<\epsilon\})$.

4.3 The image of a measure space

The image $f(\mathcal{A}):=\left\{B \subset Y: f^{-1}[B] \in \mathcal{A}\right\}$ of a σ-algebra \mathcal{A} on X under $f: X \rightarrow Y$ is a σ-algebra on Y and the largest σ-algebra such that f is measurable. The image of the measure $f \circ \mu: f(\mathcal{A}) \rightarrow[0 ; \infty]$ with $(f \circ \mu)(B):=\mu\left(f^{-1}[B]\right)$ resp. $(f \circ \mu)(f[B]):=\mu(B)$ is a measure on $f(\mathcal{A})$ and transitive with regard to composition: $g \circ f \circ \mu: g \circ f(\mathcal{A}) \rightarrow[0 ; \infty]$ obviously is again a measure. E.g. the Lebesgue measure λ is invariant under the translation $T_{c}(x)=x+c$ with $\left(T_{c} \circ f\right)([a ; b[)=$ $\lambda\left(T_{c}^{-1}[[a ; b]]\right)=\lambda([a-c ; b-c[)=\lambda([a ; b[)$ but not under dilation $g(x)=m x$ since $(g \circ \lambda)([a ; b[)=$ $\lambda\left(g^{-1}\left[[a ; b[])=\lambda\left(\left[\frac{a}{m} ; \frac{b}{m}[)=\frac{1}{m} \lambda([a ; b[)\right.\right.\right.\right.$.

4.4 The inverse image of a measurable space

The inverse image $\sigma\left(f^{-1}(\mathcal{E})\right)=f^{-1}(\sigma(\mathcal{E}))$ of the σ-algebra $\sigma(\mathcal{E})$ on Y induced by $\mathcal{E} \subset \mathcal{P}(Y)$ under $f: X \rightarrow Y$ is the smallest σ-algebra such that f is measurable. The inclusion \subset holds since $f^{-1}(\sigma(\mathcal{E}))$ is a σ-algebra containing $f^{-1}(\mathcal{E})$. The inclusion \supset follows from 4.3 since $f\left(\sigma\left(f^{-1}(\mathcal{E})\right)\right)$ is a σ-algebra on Y including \mathcal{E} and hence $\sigma(\mathcal{E})$.

4.5 Continuous functions

On account of 4.4 a function $f:(X ; \mathcal{A}) \rightarrow\left(Y ; \sigma\left(\mathcal{O}_{Y}\right)\right)$ into a topological space $\left(Y ; \mathcal{O}_{Y}\right)$ is Borel measurable iff the inverse image of every open set in measurable in $(X ; \mathcal{A}): f^{-1}\left(\mathcal{O}_{Y}\right) \subset \mathcal{A} \Rightarrow$ $f^{-1}\left(\sigma\left(\mathcal{O}_{Y}\right)\right)=\sigma\left(f^{-1}\left(\mathcal{O}_{Y}\right)\right) \subset \mathcal{A}$. In the case of $\mathcal{A}=\sigma\left(\mathcal{O}_{X}\right)$ also being induced by a topology \mathcal{O}_{X} on X every continuous function is Borel measurable. A real function $f: X \rightarrow \mathbb{R}$ on a topological space $(X ; \mathcal{O})$ is lower resp. upper semicontinuous iff $f^{-1}[] a ; \infty[] \in \mathcal{O}$ resp. $f^{-1}[]-\infty ; b[] \in \mathcal{O}$ for $\forall a, b \in \mathbb{R}$. (cf. [13, p. 3.3]) According to 1.4 resp. 4.1 these functions are again Borel measurable.

4.6 Compositions

The composition $h=g \circ f: X \rightarrow Z$ is measurable iff $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are measurable. Due to [13, 3.1, 4.2.3 and 10.7]

- the projections $\pi_{j}: \prod_{i \in I} X_{i} \rightarrow X_{j}$ on a product space $\prod_{i \in I} X_{i}$,
- the metric $d: X^{2} \rightarrow[0 ; \infty[$ on a metric space $(X ; d)$,
- the norm $\|: X \rightarrow[0 ; \infty[$, the multiple $\alpha \cdot: X \rightarrow X$ for fixed $\alpha \in \mathbb{C}$ and the addition $+: X^{2} \rightarrow X$ on a Banach space $(X ; \|)$ (cf. [13, p. 21.9]),
- the multiplication $\cdot X^{2} \rightarrow X$ on a Banach algebra ($X ; \|$) (cf. [13, p. 18.9]) and
- the multiple $x \mapsto \alpha \cdot x$ resp. the powers $x \mapsto x^{\alpha}$ for $\alpha \in \mathbb{C}$ as well as in particular the reciprocal $x \mapsto \frac{1}{x}$ on a field like \mathbb{R} or \mathbb{C}
are continuous and hence Borel measurable. Hence for Borel measurable $f, g: X \rightarrow \mathbb{C}$ the real part $\operatorname{Re} f$, imaginary part $\operatorname{Im} f$ and absolute value $|f|$ are Borel measurable mappings $X \rightarrow \mathbb{R}$; likewise the complex conjugate \bar{f} as well as $\alpha \cdot f, f^{\alpha}, \frac{1}{f}, f+g$ and $f \cdot g$ are Borel measurable mappings $X \rightarrow \mathbb{C}$.

4.7 Measurable functions into product spaces

A Borel measurable function $f:(X ; \mathcal{A}) \rightarrow\left(\prod_{i \in I} Y_{i} ; \sigma\left(\otimes_{i \in I} \mathcal{O}_{i}\right)\right)$ has Borel measurable components $f_{i}:=\pi_{i} \circ f$. Since the cylinder sets $\bigcap_{i \in J} \pi_{i}^{-1}\left[O_{i}\right]$ with O_{i} open in Y_{i} and finite $J \subset I$ form a basis for the product topology $\bigotimes_{i \in I} \mathcal{O}_{i}$ (cf. [13, p. 4.2]) the converse is true if this basis is countable (i.e. the product topology is first countable, cf. [13, p. 2.6]) such that the inverse image of every open set in $\prod_{i \in I} Y_{i}$ is the countable union of inverse images of cylinder sets and hence contained in the σ-algebra \mathcal{A} on X. This condition is satisfied for every finite product $\prod_{i=1}^{n} Y_{i}$ of first countable components Y_{i} and in particular \mathbb{C}^{n}. Note that the countability condition is not needed for the corresponding statement on continuous functions since a topology \mathcal{O} on X includes arbitrary unions of cylinder sets. Hence $f: X \rightarrow \mathbb{C}^{n}$ is Borel measurable iff every component f_{i} is Borel measurable.

4.8 Vector spaces of measurable functions

The product Y^{2} of two Banach spaces $(Y ; \|)$ is first countable if Y itself is the finite product of first countable spaces, e.g. \mathbb{C}^{n} or separable, e.g. the space $C_{c}^{\infty}(\mathbb{C})$ of infinitely derivable functions $f: \mathbb{C} \rightarrow \mathbb{C}$ with compact support. In these cases the ordered pair $(f, g): X \rightarrow Y^{2}$ is Borel measurable if each $f, g: X \rightarrow Y$ is Borel measurable and so is their sum $f+g$ such that the Borel measurable functions $f: X \rightarrow Y$ into finite dimensional or separable Banach spaces Y themselves form a vector space.

4.9 Pointwise limits of measurable functions

The pointwise limit $f=\lim _{n \rightarrow \infty} f_{n}$ of a sequence $\left(f_{n}\right)_{n \geq 1}$ of Borel measurable functions $f_{n}: X \rightarrow Y$ from a measurable space $(X ; \mathcal{A})$ into a metric space (Y, d) is again Borel measurable.
Proof: For any open $U \subset Y$ and $f(x) \in U$ there is an $m \in \mathbb{N}$ with $f_{k}(x) \in U$ for all $k \geq m$ and hence $f^{-1}[U] \subset \bigcup_{m=1}^{\infty} \bigcap_{k=m}^{\infty} f_{k}^{-1}[U] \subset \bigcap_{m=1}^{\infty} \bigcup_{k=m}^{\infty} f_{k}^{-1}[U]$. On the other hand every closed $A \subset Y$ containing infinitely many $f_{k}(x)$ must contain the limit $f(x)$, i.e. $\bigcap_{m=1}^{\infty} \bigcup_{k=m}^{\infty} f_{k}^{-1}[A] \subset f^{-1}[A]$. For the open sets $V_{n}=\left\{x \in U: d(x ; X \backslash U)<\frac{1}{n}\right\}$ we have $U=\bigcup_{n=1}^{\infty} V_{n}=\bigcup_{n=1}^{\infty} \overline{V_{n}}$ and hence $\bigcup_{n=1}^{\infty} \bigcap_{m=1}^{\infty} \bigcup_{k=m}^{\infty} f_{k}^{-1}\left[\overline{V_{n}}\right] \subset \bigcup_{n=1}^{\infty}$ $f^{-1}\left[\overline{V_{n}}\right]=f^{-1}[U]=\bigcup_{n=1}^{\infty} f^{-1}\left[V_{n}\right] \subset \bigcup_{n=1}^{\infty} \bigcap_{m=1}^{\infty} \bigcup_{k=m}^{\infty} f_{k}^{-1}\left[V_{n}\right]$ whence follows equality since $V_{n} \subset \overline{V_{n}}$.

4.10 Convergence in measure and μ-almost everywhere

A sequence $\left(f_{n}\right)_{n \geq 1}$ of Borel measurable functions $f_{n}: X \rightarrow Y$ from a measure space ($X ; \mathcal{A} ; \mu$) into a Banach space $(Y, \|)$ converges to a Borel measurable $f: X \rightarrow Y$:

1. μ-almost everywhere (μ-a.e.) iff one of the following equivalent conditions is satisfied:
a) $\mu\left(X \backslash\left\{\lim _{n \rightarrow \infty}\left|f_{n}-f\right|=0\right\}\right)=0$
b) $\lim _{k \rightarrow \infty} \mu\left(\sup _{n \geq k}\left|f_{n}-f\right| \geq \epsilon\right)=\lim _{k \rightarrow \infty} \mu\left(\bigcup_{n \geq k}\left\{\left|f_{n}-f\right| \geq \epsilon\right\}\right)=0$ for every $\epsilon>0$ $\stackrel{*}{\Rightarrow} \mu\left(\bigcap_{k \geq 1} \bigcup_{n \geq k}\left\{\left|f_{n}-f\right| \geq \epsilon\right\}\right)=0$ for every $\epsilon>0$
c) $\lim _{k \rightarrow \infty} \mu\left(\sup _{n \geq k}\left|f_{n}-f\right| \geq \frac{1}{k}\right)=\lim _{k \rightarrow \infty} \mu\left(\cup_{n \geq k}\left\{\left|f_{n}-f\right| \geq \frac{1}{k}\right\}\right)=0$ $\stackrel{*}{\Rightarrow} \mu\left(\bigcap_{k \geq 1} \cup_{n \geq k}\left\{\left|f_{n}-f\right| \geq \frac{1}{k}\right\}\right)=0$.
2. in measure μ iff for every $A \in \mathcal{A}$ with $\mu(A)<\infty$ one of the following equivalent conditions is satisfied
a) $\left.\lim _{n \rightarrow \infty} \mu\right|_{A}\left(\left|f_{n}-f\right| \geq \epsilon\right)=0$ for every $\epsilon>0 \Leftrightarrow$
b) For every $k \in \mathbb{N}$ there is an $n_{k} \in \mathbb{N}$ such that $\left.\mu\right|_{A}\left(\left|f_{n_{k}}-f\right| \geq 2^{-k}\right)<2^{-k}$.

Notes:

1. The preceding definition is also known as local convergence in measure as opposed to the stronger global convergence in measure without the restriction to sets with finite measure $\mu(A)<\infty$. For an apriori finite measure with $\mu(X)<\infty$ the two definitions obviously coincide. In the case of a probability measure the convergence in measure is called stochastic convergence.
2. The inclusions $\stackrel{*}{\Rightarrow}$ become equivalences if we can presume the continuity from above 2.2.3, i.e. $\mu(X)<\infty$ or at least the existence of a $k \in \mathbb{N}$ such that $\mu\left(\cup_{n \geq k}\left\{\left|f_{n}-f\right| \geq \frac{1}{k}\right\}\right)<$ ∞. Many of the subsequent convergence theorems also depend heavily on 2.2 .3 and hence are restricted to finite measure spaces resp. to local convergence in measure. In partucular for the Lebesgue measure λ they do not extend to global convergence.
3. Both convergence criterions imply that the limit function f as well as finally (i.e. all except for a finite number) all f_{n} are μ-a.e. finite.

4.11 Lebesgue's convergence theorem

A sequence $\left(f_{n}\right)_{n \geq 1}$ of Borel measurable functions $f_{n}: X \rightarrow Y$ from a measure space $(X ; \mathcal{A} ; \mu)$ into a Banach space $(Y, \|)$ converging μ-a.e. to a Borel measurable function $f: X \rightarrow Y$ also converges in measure to f.
Proof: For every $A \in \mathcal{A}$ with $\mu(A)<\infty$ and $\epsilon>0$ we have $\inf _{k \geq 1} \sup _{n \geq k} \mu \mid A\left(\left\{\left|f_{n}-f\right| \geq \epsilon\right\}\right) \stackrel{2.2 .2}{=}$ $\left.\left.\inf _{k \geq 1} \mu\right|_{A}\left(\cup_{n \geq k}\left\{\left|f_{n}-f\right| \geq \epsilon\right\}\right) \stackrel{2.2 .3}{=} \mu\right|_{A}\left(\bigcap_{k \geq 1} \cup_{n \geq k}\left\{\left|f_{n}-f\right| \geq \epsilon\right\}\right)=0$.
Example: The Lebesgue measure λ is not continuous from above, e.g. $\lambda\left(\bigcap_{n \in \mathbb{N}} \mathbb{R} \backslash B_{n}(0)\right)=$ $\lambda(\emptyset)=0$ but $\inf _{n \in \mathbb{N}} \lambda\left(\mathbb{R} \backslash B_{n}(0)\right)=\infty$ since $\lambda\left(\mathbb{R} \backslash B_{n}(0)\right)=\infty$ for every $n \in \mathbb{N}$. Hence in the case of $f_{n}(x)=\frac{x^{2}}{n}$ we observe pointwise convergence and particularly λ-a.e. convergence as well as compact convergence to $f(x)=0$ hence local convergence in measure but not global convergence in measure since $\lambda(|x| \geq \epsilon)=\lambda\left(\left|f_{n}-f\right| \geq \sqrt{n \epsilon}\right)=\infty$ for every $n \in \mathbb{N}$ and $\epsilon>0$.

4.12 The Borel-Cantelli Iemma

For every sequence $\left(A_{n}\right)_{n \geq 1}$ of measurable sets $A_{n} \in \mathcal{A}$ on a measure space $(X ; \mathcal{A} ; \mu)$ we have $\sum_{n \geq 1} \mu\left(A_{n}\right)<\infty \Rightarrow \mu\left(\bigcap_{k \geq 1} \bigcup_{n \geq k} A_{n}\right)=0$ and in the case of a probability measure and pairwise independent A_{n}, i.e. $\mu\left(A_{k} \cap A_{l}\right)=\mu\left(A_{k}\right) \cdot \mu\left(A_{l}\right)$ for $k \neq l$ the converse is also true: $\sum_{n \geq 1} \mu\left(A_{n}\right)=$ $\infty \Rightarrow \mu\left(X \backslash \bigcap_{k \geq 1} \bigcup_{n \geq k} A_{n}\right)=0$.

Proof: In the first case for every $\epsilon>0$ there is a $k_{\epsilon} \geq 1$ with $\sum_{n \geq k_{\epsilon}} \mu\left(A_{n}\right)<\epsilon$ such that $\mu\left(\cap_{k \geq 1} \bigcup_{n \geq k} A_{n}\right) \leq \mu\left(\bigcup_{n \geq k_{\epsilon}} A_{n}\right) \leq \sum_{n \geq k_{\epsilon}} \mu\left(A_{n}\right)<\epsilon$ and hence the assertion. In the second case with $\mu(X)=1$ and the continuity of the exponential function we have $\mu\left(\cap_{k \geq 1} \cup_{n \geq k} A_{n}\right)=$ $1-\mu\left(\cup_{k \geq 1} \cap_{n \geq k} X \backslash A_{n}\right)^{2.2 .2}=1-\sup _{k \geq 1} \mu\left(\bigcap_{n \geq k} X \backslash A_{i}\right) \stackrel{2.2 .3}{=} 1-\sup _{k \geq 1} \inf _{n \geq k} \mu\left(\bigcap_{i=k}^{n} X \backslash A_{i}\right)=1-\sup _{k \geq 1} \inf _{n \geq k} \prod_{i=k}^{n}$ $\left(1-\mu\left(A_{i}\right)\right) \geq 1-\sup _{k \geq 1} \inf _{n \geq k} \prod_{i=k}^{n} \exp \left(-\mu\left(A_{i}\right)\right)=1-\sup _{k \geq 1} \inf _{n \geq k} \exp \left(-\sum_{n \geq i \geq k} \mu\left(A_{i}\right)\right)=1$.

4.13 Completeness and μ-a.e. convergent subsequence for convergence in measure

For a sequence $\left(f_{n}\right)_{n \geq 1}$ of Borel measurable functions $f_{n}: X \rightarrow Y$ from a measure space $(X ; \mathcal{A} ; \mu)$ into a Banach space $(Y, \|)$ the following statements are equivalent::

1. $\left(f_{n}\right)_{n \geq 1}$ is a Cauchy sequence in measure, i.e. $\left.\limsup _{k \geq 1_{n \geq k}}\right|_{A}\left(\left|f_{n}-f_{k}\right|>\epsilon\right)=0$ for every $A \in \mathcal{A}$ with $\mu(A)<\infty$ and $\epsilon>0$.
2. $\left(f_{n}\right)_{n \geq 1}$ converges in measure to a Borel measurable function $f: X \rightarrow Y$.
3. Riesz convergence theorem: Every subsequence of $\left(f_{n}\right)_{n \geq 1}$ has another subsequence converging μ-a.e. to the same Borel measurable function $f: X \rightarrow Y$
Proof: Let $A \in \mathcal{A}$ with $\mu(A)<\infty$.
$1 . \Rightarrow 2$. : Due to the hypothesis for every $k \geq 1$ there is an $n_{k} \geq 1$ with $\left.\mu\right|_{A}\left(\left|f_{n}-f_{n_{k}}\right|>2^{-k}\right)<2^{-k}$ for all $n \geq n_{k}$. Hence we have a partial sequence $\left(f_{n_{k}}\right)_{k \geq 1}$ with w.l.o.g. $n_{k+1}>n_{k}$ and $B_{k}=$ $\left\{\left|f_{n_{k+1}}-f_{n_{k}}\right|>2^{-k}\right\}$ such that $\left.\sum_{k \geq 1} \mu\right|_{A}\left(B_{k}\right)<\infty$. According to 4.12 we obtain $\left.\mu\right|_{A}\left(\bigcap_{m \geq 1} \cup_{k \geq m}\left(B_{k}\right)\right)$ $=\mu(X \backslash B)=0$ for $B=\bigcup_{m \geq 1} \bigcap_{k \geq m}\left(X \backslash B_{k}\right)$. Hence for every $x \in B$ there is an $m \geq 1$ such that $\sup _{k \geq m}\left|f_{n_{k}}(x)-f_{n_{m}}(x)\right| \leq \sum_{k \geq m}\left|f_{n_{k+1}}(x)-f_{n_{k}}(x)\right| \leq \sum_{k \geq m} 2^{-k}=2^{-m+1}$. Thus we have a μ-a.e. Cauchy sequence $\left(f_{n_{k}}\right)_{k \geq 1}$ which due to the completeness of Y and according to 4.7 converges μ-a.e. to a measurable $f: B \rightarrow Y$. Due to $\mu(A)<\infty$ we can apply 4.11 to find for every $\epsilon>0$ an $m_{\epsilon} \geq 1$ such that $\left.\mu\right|_{A}\left(\left|f_{n_{m}}-f\right|>\frac{\epsilon}{2}\right)<\frac{\epsilon}{2}$ for every $m \geq m_{\epsilon}$. Hence for every $n \geq n_{m}$ with $m \geq$ $\max \left(m_{\epsilon} ; k\right)$ and $2^{-k}<\frac{\epsilon}{2}$ we obtain $\left.\mu\right|_{A}\left(\left|f_{n}-f\right|>\epsilon\right) \leq\left.\mu\right|_{A}\left(\left\{\left|f_{n}-f_{n_{m}}\right|>\frac{\epsilon}{2}\right\} \cup\left\{\left|f_{n_{m}}-f\right|>\frac{\epsilon}{2}\right\}\right) \leq$ $\mu_{A}\left(\left|f_{m}-f_{n_{m}}\right|>\frac{\epsilon}{2}\right)+\left.\mu\right|_{A}\left(\left|f_{n_{m}}-f\right|>\frac{\epsilon}{2}\right)<\epsilon$. This converse-triangle-inequality argument will be repeatedly used in the subsequent proofs.
4. $\Rightarrow 3$.: Due to 4.10 .2 b) for every $k \geq 1$ there is an $n_{k} \geq 1$ such that $\mu\left(B_{k}\right)<2^{-k}$ for $B_{k}=$ $\left\{\left|f_{n_{k}}-f\right| \geq \frac{1}{k}\right\}$ whence $\left.\mu\right|_{A}\left(\bigcup_{k \geq m} B_{k}\right) \leq 2^{-m+1}$ due to the subadditivity 2.2 .1 and $\left.\mu\right|_{A}\left(\bigcap_{m \geq 1} \bigcup_{k \geq m} B_{k}\right)=$ 0 due to the continuity from above 2.2 .3 . Both properties require $\mu(A)<\infty$. The assertion then follows from 4.10.1 c).
5. \Rightarrow 1. : Suppose there is an $\epsilon>0$ such that $\forall n_{k} \geq 1 \exists n_{k+1} \geq n_{k}$ with $\left.\mu\right|_{A}\left(\left|f_{n_{k+1}}-f_{n_{k}}\right|>\epsilon\right)$ $>\epsilon$. As above we get $\left.\mu\right|_{A}\left(f_{n_{k}}-f>\frac{\epsilon}{2}\right)+\left.\mu\right|_{A}\left(\left|f_{n_{k+1}}-f\right|>\frac{\epsilon}{2}\right) \geq\left.\mu\right|_{A}\left(\left|f_{n_{k}}-f_{n_{k+1}}\right|>\epsilon\right)>\epsilon$, i.e. either $\left.\mu\right|_{A}\left(\left|f_{n_{k}}-f\right|>\frac{\epsilon}{2}\right) \geq \frac{\epsilon}{2}$ or $\left.\mu\right|_{A}\left(\left|f_{n_{k+1}}-f\right|>\frac{\epsilon}{2}\right) \geq \frac{\epsilon}{2}$. For each $k \in \mathbb{N}$ we choose the $f_{n_{k}}$ with respectively larger probability $\mu(\ldots)$ of deviation and thus obtain a subsequence $\left(f_{n_{k}}^{\prime}\right)_{k \geq 1}$ with $\mu_{A}\left(\left|f_{n_{k}}^{\prime}-f\right|>\frac{\epsilon}{2}\right) \geq \frac{\epsilon}{2}$ for all $k \geq 1$ such that no part of this subsequence can possibly converge in measure to f and according to 4.11 with $\mu(A)<\infty$ this behaviour transfers to μ-a.e. convergence.

4.14 Completeness of μ-a.e. convergence

A sequence $\left(f_{n}\right)_{n \geq 1}$ of Borel measurable functions $f_{n}: X \rightarrow Y$ from a measure space $(X ; \mathcal{A} ; \mu)$ into a Banach space $(Y, \|)$ converges μ-a.e. to a Borel measurable $f: X \rightarrow Y$ iff $\left.\lim _{k \rightarrow \infty} \mu\right|_{A}\left(\sup _{n \geq k}\left|f_{k}-f_{n}\right|>\epsilon\right)=$ 0 for every $\epsilon>0$.
Proof:
\Rightarrow : Applying the converse-triangle-inequality argument to suprema we obtain

$$
\left.\mu\right|_{A}\left(\sup _{n \geq k}\left|f_{k}-f_{n}\right|>\epsilon\right) \leq\left.\mu\right|_{A}\left(\left|f_{k}-f\right|>\frac{\epsilon}{2}\right)+\left.\mu\right|_{A}\left(\sup _{n \geq k}\left|f-f_{n}\right|>\frac{\epsilon}{2}\right)
$$

The assertion follows from the convergence in measure due to 4.11 presuming $\mu(A)<\infty$ resp. the μ-a.e. convergence due to 4.10 .1 b).
\Leftarrow : Due to the continuity from below 2.2 .2 we obtain

$$
\left.\sup _{n \geq k} \mu\right|_{A}\left(\left|f_{k}-f_{n}\right|>\epsilon\right) \leq\left.\mu\right|_{A}\left(\bigcup_{n \geq k}\left|f_{k}-f_{n}\right|>\epsilon\right)=\left.\mu\right|_{A}\left(\sup _{n \geq k}\left|f_{k}-f_{n}\right|>\epsilon\right),
$$

i.e. $\left(f_{n}\right)_{n \geq 1}$ converges in measure to f. Using again the converse-triangle-inequality we get

$$
\left.\mu\right|_{A}\left(\sup _{n \geq k}\left|f-f_{n}\right|>\epsilon\right) \leq\left.\mu\right|_{A}\left(\left|f-f_{k}\right|>\frac{\epsilon}{2}\right)+\left.\mu\right|_{A}\left(\sup _{n \geq k}\left|f_{k}-f_{n}\right|>\frac{\epsilon}{2}\right)
$$

and hence the μ-a.e. convergence to f due to 4.10 .1 b).

4.15 Egorov's convergence theorem

For every sequence $\left(f_{n}\right)_{n \geq 1}$ of Borel measurable functions $f_{n}: X \rightarrow Y$ from a finite measure space $(X ; \mathcal{A} ; \mu)$ into a Banach space $(Y, \|)$ converging μ-a.e. to a Borel measurable $f: X \rightarrow Y$ and every $\epsilon>0$ there is a set $A_{\epsilon} \in \mathcal{A}$ with $\mu\left(A_{\epsilon}\right)<\epsilon$ such that $\left(f_{n}\right)_{n \geq 1}$ uniformly converges to f on $X \backslash A_{\epsilon}$.
Proof: Follows directly from 4.10 .1 b$)$ since for $\epsilon>0$ there is a $k_{\epsilon} \geq 1$ such that we have $\mu\left(A_{\epsilon}\right)<\epsilon$ for $A_{\epsilon}:=\bigcup_{n \geq k_{\epsilon}}\left\{\left|f_{n}(x)-f(x)\right| \geq \frac{1}{n}\right\}$ and $\left(f_{n}\right)_{n \geq 1}$ obviously converges uniformly to f on $X \backslash A_{\epsilon}$.

4.16 Examples

1. The function sequence $\left(f_{n}\right)_{n \geq 1}$ with $f_{n}=\chi_{\left[\frac{j}{2^{k}} ; \frac{j+1}{2^{k}}\right]}$ for $n=2^{k}+j, 0 \leq j<2^{k}$ and $k \geq 1$ on $\left([0 ; 1] ; \mathcal{B}_{[0 ; 1]} ; \lambda_{[0 ; 1]}\right)$ converges globally in measure λ to $f=0$ but the point sequences $\left(f_{n}(x)\right)_{n \geq 1}$ converge for no $x \in[0 ; 1]$ hence $\left(f_{n}\right)_{n \geq 1}$ converges not λ-a.e.
2. The function sequence $\left(f_{n}\right)_{n \geq 1}$ with $f_{n}=\chi_{[n ; n+1]}$ for $n \geq 1$ on $(\mathbb{R} ; \mathcal{B} ; \lambda)$ converges for every $x \in \mathbb{R}$ hence λ-a.e. to $f=\overline{0}$ and hence locally in measure but not globally so since for $\epsilon<1$ there is no $k \geq 1$ such that $\lambda\left(\bigcup_{n \geq k}\left\{\left|f_{n}-f\right| \geq \epsilon\right\}\right)<\infty$: The continuity from above 2.2.3 resp. theorem 4.12 do not apply.

5 Integration

Throughout this section and if not specified otherwise any function from X to Y is Borel measurable from a measure space $(X ; \mathcal{A} ; \mu)$ with positive measure $\mu: A \rightarrow[0 ; \infty]$ into a Banach space $(Y, \|)$ over a field K.

5.1 Step functions

The characteristic functions $\chi_{A}: X \rightarrow\{0 ; 1\}$ for a measurable support $A \in \mathcal{A}$ with $\chi_{A}(x)=$ $\left\{\begin{array}{l}1, x \in A \\ 0, x \notin A\end{array}\right.$ are the most simple measurable functions on a measurable space $(X ; \mathcal{A})$. They are identical with the Dirac measure δ_{x} from 2.3.1 albeit with interchanged roles for x and A. The family $\mathcal{S}(X ; Y)$ denotes the step functions of the form $\sum_{i=0}^{m} y_{i} \chi_{A_{i}}$ with $m \in \mathbb{N}$ such that $\bigcup_{i=0}^{m} A_{i}=X$ with values $y_{i} \in Y$ and $\mu\left(A_{i}\right)<\infty$ for $1 \leq i \leq m$ but vanishing outside of these sets, i.e. $\alpha_{0}=0$. The step functions form a vector space of Borel measurable functions and according to 4.9 their closure $\overline{\mathcal{S}(X ; Y)}$ with regard to pointwise convergence includes Borel measurable maps with separable range and vanishing outside of a countable union of sets with finite measure. Countable unions of sets with finite measure are called σ-finite with the most prominent example represented by \mathbb{C}^{n} which is also separable. The following theorem shows that under these two conditions $\overline{\mathcal{S}(X ; Y)}$ already contains all Borel measurable functions modulo null sets, i.e. $\mathcal{S}(X ; Y)$ is dense in the quotient space of the Borel measurable functions with regard to the equivalence relation $f \sim g \Leftrightarrow f=g \mu$-a.e.

5.2 Limits of step functions

For every Borel measurable function $f: X \rightarrow Y$ from a σ-finite measure space $(X ; \mathcal{A} ; \mu)$ into a separable Banach space $(Y, \|)$ there is a sequence $\left(\varphi_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{S}(X ; Y)$ of step functions converging μ-a.e. to f. Also for every set A of finite measure $\mu(A)<\infty$ and $\epsilon>0$ there is a set $Z_{\epsilon} \subset X$ with measure $\mu\left(Z_{\epsilon}\right)<\epsilon$ such that $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ converges uniformly on $A \backslash Z_{\epsilon}$.
Note: With 4.9 we obtain a necessary and sufficient condition for measurability: A function f : $X \rightarrow Y$ from a σ-finite measure space $(X ; \mathcal{A} ; \mu)$ into a separable Banach space $(Y, \|)$ is Borel measurable iff there is a sequence $\left(\varphi_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{S}(X ; Y)$ of step functions converging μ-a.e. to f.
Proof: The image $f[A]$ of a set with finite measure $\mu(A)<\infty$ includes a dense subset $\left(y_{l}\right)_{l \geq 1}$ such that for every $n \geq 1$ we have $f[A] \subset \bigcup_{l=1}^{\infty} B_{1 / n}\left(y_{l}\right)$ resp. $A \subset \bigcup_{l=1}^{\infty} C_{l, n}$ with $C_{l, n}=f^{-1}\left[B_{1 / n}\left(y_{l}\right)\right]$ and consequently there is an $L_{n} \in \mathbb{N}$ with $\mu\left(A \backslash \bigcup_{l=1}^{L_{n}} C_{l, n}\right)<2^{-n}$.
Then the step functions $\varphi_{n}=\sum_{l=1}^{L_{n}} y_{l} \chi_{D_{l}}$ with $D_{l}=C_{l, n} \backslash \bigcup_{i=1}^{l-1} C_{i, n}$ converge to f

- uniformly on every $A \cap \bigcup_{l=1}^{L_{n}} C_{l, n}$ with $\mu\left(Z_{n}\right)<2^{-n}$ for $Z_{n}=A \backslash \bigcup_{l=1}^{L_{n}} C_{l, n}$ and $n \geq 1$
- pointwise on $A \cap \bigcup_{n=1}^{\infty} \bigcup_{l=1}^{L_{n}} C_{l, n}$ with $\mu(Z)=0$ for $Z=A \backslash \bigcup_{n=1}^{\infty} \bigcup_{l=1}^{L_{n}} C_{l, n}$.

For $X=\bigcup_{k=1}^{\infty} A_{k}$ with w.l.o.g. pairwise disjoint A_{k} and $\mu\left(A_{k}\right)<\infty$ for every $k \geq 1$ there is a sequence $\left(\varphi_{k ; j}\right)_{j \geq 1}$ of step functions converging to f

- uniformly on $A_{k} \backslash Z_{k, n}$ with $\mu\left(Z_{k, n}\right) \leq 2^{-n}$.
- pointwise on $A_{k} \backslash Z_{k}$ with $\mu\left(Z_{k}\right)=0$.

Then for every set $A \subset \bigcup_{k=1}^{m} A_{k}$ with $m \geq 1$ the step functions $\psi_{n}(x)= \begin{cases}\varphi_{k ; n}(x) & \text { if } x \in A_{k} ; 1 \leq k \leq n \\ 0 & \text { if } x \in X \backslash \bigcup_{k=1}^{n} A_{k}\end{cases}$ converges to f

- uniformly on $A \backslash \bigcup_{k=1}^{\infty} Z_{k, n+m}$ with $\mu\left(\bigcup_{k=1}^{\infty} Z_{k, n+m}\right)<2^{-m}$ and
- pointwise on $X \backslash \bigcup_{k=1}^{\infty} Z_{k}$ with $\mu\left(\bigcup_{k=1}^{\infty} Z_{k}\right)=0$.

5.3 The integral for step functions

For any step function $\varphi=\sum_{0 \leq i \leq m} y_{i} \chi_{A_{i}}$ with $y_{i} \in Y$ and $A_{i} \in \mathcal{A}$ the integral is defined by $\int \varphi d \mu:=\sum_{0 \leq i \leq m} y_{i} \mu\left(A_{i}\right)$. Uniqueness and linearity $\int(\alpha \varphi+\beta \psi) d \mu=\alpha \int \varphi d \mu+\beta \int \psi d \mu$ for $\alpha, \beta \in K$ are obvious if we consider representations with common and pairwise disjoint supports $A_{i} \cap B_{j}$ for two elementary functions f und g as in 5.1 and observe the additivity 2.2 .1 of the measure. Also we define integrals on measurable subsets as $\int_{A} \varphi d \mu:=\left.\int \varphi\right|_{A} d \mu$. On account of $\left.\varphi\right|_{A \cup B}=\left.\varphi\right|_{A}+\left.\varphi\right|_{B}$ we have $\int_{A \cup B B} \varphi d \mu=\int_{A} \varphi d \mu+\int_{B} \varphi d \mu$. For positive integrands φ with $\varphi[X] \subset\left[0 ; \infty\left[\right.\right.$ we have monotonicity in the form $\varphi<\psi \Rightarrow \int \varphi d \mu<\int \psi d \mu$. In general Banach spaces we still have $\left|\int_{A} \varphi d \mu\right| \leq \int_{A}|\varphi| d \mu \leq\|\varphi\|_{\infty} \mu(A)$ with the supremum norm $\|\varphi\|_{\infty}=\sup _{x \in X}|\varphi(x)|$. The expression $\|\varphi\|_{1}:=\int|\varphi| d \mu$ defines the \mathcal{L}^{1} - seminorm (c.f. [13, p. 1.3]) on $\mathcal{S}(X ; Y)$ with obvious linearity $\|\alpha \varphi+\beta \psi\|_{1}=|\alpha| \cdot\|\varphi\|_{1}+|\beta| \cdot\|\psi\|_{1}$ and the triangle inequality $\|\varphi+\psi\|_{1} \leq\|\varphi\|_{1}+\|\psi\|_{1}$. The latter follows from an application of the triangle inequality $\left|y_{\varphi}+y_{\psi}\right|_{K} \leq\left|x_{\varphi}\right|_{K}+\left|y_{\psi}\right|_{K}$ on the field K to representations with common as well as pairwise disjoint supports $A_{i} \cap B_{j}$ and invoking the monotonicity of the integral for the positive integrand $|\varphi|$. A sequence $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ of step functions converges in mean or with respect to \mathcal{L}^{1} to a step function φ iff $\lim _{n \rightarrow \infty}\left\|\varphi_{n}-\varphi\right\|_{1}=0$.

5.4 Convergence of step functions

For any \mathcal{L}^{1} - Cauchy sequence $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ of step functions $\varphi_{n}: X \rightarrow Y$ there exists a subsequence $\left(\varphi_{n_{k}}\right)_{k \in \mathbb{N}}$ and for every $\epsilon>0$ a set $Z_{\epsilon} \subset X$ with measure $\mu\left(Z_{\epsilon}\right)<\epsilon$ such that $\left(\varphi_{n_{k}}\right)_{k \in \mathbb{N}}$ converges absolutely and uniformly on $X \backslash Z_{\epsilon}$ as well as μ-a.e. on X.
Proof: For every $k \geq 1$ there is an $n_{k} \geq n_{k-1} \in \mathbb{N}$ such that $\left\|\varphi_{n}-\varphi_{n_{k}}\right\|_{1} \leq \frac{1}{2^{2 k}}$ for every $n \geq n_{k}$. Then for $Y_{k}=\left\{\left|\psi_{k+1}-\psi_{k}\right| \geq \frac{1}{2^{k}}\right\}$ with $\psi_{k}:=\varphi_{n_{k}}$ we have $\frac{1}{2^{k}} \mu\left(Y_{k}\right)=\int_{Y_{n}} \frac{1}{2^{k}} d \mu \leq \int_{X}\left|\psi_{k+1}-\psi_{k}\right| d \mu \leq \frac{1}{2^{2 k}}$ whence $\mu\left(Y_{k}\right) \leq \frac{1}{2^{k}}$. Hence $\mu\left(Z_{m}\right) \leq \frac{1}{2^{m-1}}$ for $Z_{m}=\bigcup_{k=m}^{\infty} Y_{k}$ and $\left|\psi_{k+1}(x)-\psi_{k}(x)\right|<\frac{1}{2^{k}}$ for every $x \in X \backslash Z_{m}$ resp. $k \geq m$ such that $\sum_{k=m}^{\infty}\left(\psi_{k+1}-\psi_{k}\right)$ converges absolutely and uniformly on $X \backslash Z_{m}$. Hence $\left(\varphi_{n_{k}}\right)_{k \geq m}$ converges absolutely and uniformly on $X \backslash Z_{m}$ resp. pointwise on $X \backslash \bigcap_{m=1}^{\infty} Z_{m}$. Due to the continuity from above 2.2 .3 we have $\mu\left(\bigcap_{m=1}^{\infty} Z_{m}\right)=0$.

5.5 The Bochner integral

The Bochner integral $\int f d \mu:=\lim _{n \rightarrow \infty} \int \varphi_{n} d \mu<\infty$ is well defined and finite for every function $f: X \rightarrow Y$ with an approximating sequence $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$, i.e. an \mathcal{L}^{1}-Cauchy sequence of step functions converging μ-a.e. to f. The vector space $\mathcal{B}(X ; Y)$ of these integrable functions is the Bochner space whereas $\mathcal{L}^{1}(X ; Y)=\left\{f: X \rightarrow Y:\|f\|_{1}<\infty\right\} \subset \mathcal{B}(X ; Y)$ of Lebesgue integrable functions is called the Lebesgue space. Hence the integral is a linear functional $I: \mathcal{B} \rightarrow K$. According to 4.9 every integrable $f: X \rightarrow Y$ from a σ-finite measure space $(X ; \mathcal{A} ; \mu)$ into a separable Banach space $(Y, \|)$ is measurable.

In order to prove that the definition is independent of the approximating sequence we show: For two \mathcal{L}^{1} - Cauchy sequences $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ and $\left(\psi_{n}\right)_{n \in \mathbb{N}}$ of step functions converging μ-a.e. to the same function $f: X \rightarrow Y$ we have $\lim _{n \rightarrow \infty} \int \varphi_{n} d \mu=\lim _{n \rightarrow \infty} \int \psi_{n} d \mu<\infty$ as well as $\lim _{n \rightarrow \infty}\left\|\varphi_{n}-\psi_{n}\right\|_{1}=0$.
Proof: The existence of the limits is a consequence of the completeness of Y since $\left|\int\left(\varphi_{n}-\varphi_{m}\right) d \mu\right| \leq$ $\left\|\varphi_{n}-\varphi_{m}\right\|_{1}$ such that $\left(\int \varphi_{n} d \mu\right)_{n \in \mathbb{N}}$ and likewise $\left(\int \psi_{n} d \mu\right)_{n \in \mathbb{N}}$ are again Cauchy sequences in Y. The differences $\gamma_{n}=\varphi_{n}-\psi_{n}$ also are \mathcal{L}^{1}-Cauchy and converge μ-a.e. to 0 such that for every $\epsilon>0$ there is an $N \in \mathbb{N}$ with $\left\|\gamma_{m}-\gamma_{n}\right\|_{1}<\epsilon$ for all $m, n \geq N$. According to definition 5.1 there is a set A with $\mu(A)<\infty$ and $X \backslash A \subset\left\{\gamma_{N}=0\right\}$ such that $\int_{X \backslash A}\left|\gamma_{n}\right| d \mu=\int_{X \backslash A}\left|\gamma_{n}-\gamma_{N}\right| d \mu \leq\left\|\gamma_{n}-\gamma_{N}\right\|_{1}<\epsilon$. By the preceding lemma 5.4 there exists a subset $Z \subset A$ with $\mu(Z)<\frac{\epsilon}{1+\left\|f_{N}\right\|_{\infty}}$ and a subsequence converging to 0 uniformly on $A \backslash Z$ such that there is an $M \geq N$ with $\int_{A \backslash Z}\left|\gamma_{n}\right| d \mu<\epsilon$ for all $n \geq M$. Finally for $n \geq N$ we have $\int_{Z}\left|\gamma_{n}\right| d \mu \leq \int_{Z}\left|\gamma_{n}-\gamma_{N}\right| d \mu+\int_{Z}\left|\gamma_{N}\right| d \mu \leq\left\|\gamma_{n}-\gamma_{N}\right\|_{1}+\left\|f_{N}\right\|_{\infty} \cdot \mu(Z)<2 \epsilon$. In sum we arrive at $\int_{X \backslash A}\left|\gamma_{n}\right| d \mu+\int_{A \backslash Z}\left|\gamma_{n}\right| d \mu+\int_{Z}\left|\gamma_{n}\right| d \mu<4 \epsilon$ which proves the assertion.

5.6μ-a.e. properties of integrable functions

1. Due to 5.1 integrable functions with approximating sequence $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ vanish outside of the σ-finite set $\bigcup_{n \in \mathbb{N}}\left\{\varphi_{n} \neq 0\right\}$.
2. According to 5.4 the integrable functions are μ-a.e. finite and bounded outside of a set of finite measure: Since the φ_{n} converge uniformly outside of a set Z_{ϵ} with $\mu\left(Z_{\epsilon}\right)<\epsilon$ for any $c \geq 0$ there is an $n \in \mathbb{N}$ such that $\{|f| \geq c\} \backslash Z_{e} \subset\left\{\left|\varphi_{n}\right| \geq \frac{c}{2}\right\}$ and hence $\mu(|f| \geq c)<\mu\left(\left|\varphi_{n}\right| \geq \frac{c}{2}\right)<\infty$.
3. In the case of positive integrands we have $\int f d \mu=0 \Rightarrow f=0 \mu$-a.e. since for $A_{n}=\{f>0\}$ the estimate $\frac{1}{n} \mu\left(A_{n}\right) \leq \int_{A_{n}} f d \mu \leq \int f d \mu=0$ yields $\mu(f>0)=\mu\left(\cup_{n \in \mathbb{N}} A_{n}\right)=0$ on account of the continuity form above 2.2 .3 . In particular for positive integrable $f, g \in \mathcal{L}^{1}(X ; \mathbb{R})$ with $f \leq g$ we have $\int f d \mu=\int g d \mu \Rightarrow f=g \mu$-a.e.

5.7 Special cases

For every integrable f with approximating sequence $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ the restriction $\left.f\right|_{A}$ on any measurable subset is again integrable with the approximating sequence $\left(\left.\varphi_{n}\right|_{A}\right)_{n \in \mathbb{N}}$. Hence we can define the integral on measurable subsets $\int_{A} f d \mu:=\left.\int f\right|_{A} d \mu$ with additivity extending to domains by $\int_{A \cup{ }^{\circ} B} f d \mu=\left.\int f\right|_{A \cup{ }^{\circ} B} d \mu=\int\left(\left.f\right|_{A}+\left.f\right|_{B}\right) d \mu=\int_{A} f d \mu+\int_{B} f d \mu$. Likewise the components of functions in finite dimensional Banach spaces can be integrated separately since for every continuous $g: Y \rightarrow Z$ into another Banach space Z we have an approximating sequence $\left(g \circ \varphi_{n}\right)_{n \in \mathbb{N}}$ for $g \circ f$ with $\lim _{n \rightarrow \infty}\left(g \circ \varphi_{n}\right)=g \circ \lim _{n \rightarrow \infty} \varphi_{n}$ and in the case of continuous and linear g we even have $\int g \circ f d \mu=$ $g \circ \int f d \mu$. For $Y=Y_{1} \times Y_{2}$ and the continuous as well as linear projections $g=\pi_{1}: Y \rightarrow Y_{1}$ resp. $g=\pi_{2}: Y \rightarrow Y_{2}$ we obtain $\int\left(f_{1}, f_{2}\right) d \mu=\left(\int f_{1} d \mu, \int f_{2} d \mu\right)$. In particular f is integrable iff each of its components is integrable or in the case of $Y=\mathbb{C}$ iff $\operatorname{Re} f$ and $\operatorname{Im} f$ are integrable with $\int(\operatorname{Re} f+i \operatorname{Im} f) d \mu=\int \operatorname{Re} f d \mu+i \int \operatorname{Im} f d \mu$. For $Z=\mathbb{R}$ and the continuous but not linear Banach norm $g=\|$ we see that for every $f \in \mathcal{B}(X ; Y)$ its Banach norm $|f| \in \mathcal{L}^{1}(X ; \mathbb{R})$ is also integrable with approximating sequence $\left(\left|\varphi_{n}\right|\right)_{n \in \mathbb{N}}$. Note that in particular $\left(\left|\varphi_{n}\right|\right)_{n \in \mathbb{N}}$ is \mathcal{L}_{1}-Cauchy since $\left\|\left|\varphi_{n}\right|-\left|\varphi_{m}\right|\right\|_{1} \leq\left\|\varphi_{n}-\varphi_{m}\right\|_{1}$. The converse statement $|f| \in \mathcal{L}^{1}(X ; \mathbb{R}) \Rightarrow f \in \mathcal{L}^{1}(X ; Y)$ is only true for σ-finite $(X ; \mathcal{A} ; \mu)$ and separable $(Y, \|)$. (cf. 5.16). The well ordering of the real numbers provides the space $\mathcal{L}^{1}(X ; \mathbb{R})$ with additional properties: For $f, g \in \mathcal{L}^{1}(X ; \mathbb{R})$ we have $\sup \{f ; g\}=\frac{1}{2}(f+g+|f-g|) \in \mathcal{L}^{1}(X ; \mathbb{R})$ and $\inf \{f ; g\}=\frac{1}{2}(f+g-|f-g|) \in \mathcal{L}^{1}(X ; \mathbb{R}) . \quad f=$ $f^{+}-f^{-} \in \mathcal{L}^{1}(X ; \mathbb{R})$ iff its positive part $f^{+}=\sup \{f ; 0\} \in \mathcal{L}^{1}(X ; \mathbb{R})$ and its negative part $f^{-}=\inf \{f ; 0\} \in \mathcal{L}^{1}(X ; \mathbb{R})$. Also for real valued functions the integral is monotone, i.e. $f \leq g \Rightarrow$ $\int f d \mu \leq \int g d \mu$ which for positive integrands $f \geq 0$ extends to the domain in the form $A \subset B \Rightarrow$ $\int_{A} f d \mu \leq \int_{B} f d \mu$.

5.8 The integral transformation formula

For every Borel measurable $T: X \rightarrow Y$ from a measure space $(X ; \mathcal{A} ; \mu)$ into a into a separable Banach space ($Y, \|_{Y}$) and every Borel measurable $f: Y \rightarrow Z$ into a further separable Banach space $\left(Z, \|_{Z}\right)$ the composition $f \circ T: X \rightarrow Z$ is μ-integrable iff f is $(T \circ \mu)$-integrable and in that case we have $\int f d(T \circ \mu)=\int(f \circ T) d \mu$.
Proof: For an approximating sequence $\left(\varphi_{n}\right)_{n \in \mathbb{N}} \in \mathcal{S}(Y ; Z)$ of f with $\varphi_{n}=\sum_{i=1}^{k_{n}} z_{n ; i} \chi_{B_{n ; i}}$ we have
$(T \circ \mu)$-a.e. $\lim _{n \rightarrow \infty} \varphi_{n}=f$
$\Leftrightarrow \mu\left(T^{-1}\left(\lim _{n \rightarrow \infty} \varphi_{n} \neq f\right)\right)=0$
$\Leftrightarrow \mu\left(T^{-1}\left(\lim _{n \rightarrow \infty}\left|\sum_{i=1}^{k_{n}} z_{n ; i} \chi_{B_{n ; i}}-f\right|>\epsilon\right)\right)=0 \forall \epsilon>0$
$\stackrel{4.10 .1 . c)}{\Leftrightarrow} \mu\left(T^{-1}\left(\bigcap_{k=1}^{\infty} \bigcup_{n=k i=1}^{\infty} \bigcup_{i}^{k_{n}}\left\{y \in B_{n ; i}:\left|z_{n ; i}-f(y)\right| \geq \epsilon\right\}\right)\right)=0 \forall \epsilon>0$
$\Leftrightarrow \mu\left(\bigcap_{k=1}^{\infty} \bigcup_{n=k i=1}^{\infty} \bigcup_{n}^{k_{n}}\left\{x \in T^{-1}\left[B_{n ; i}\right]:\left|z_{n ; i}-f(T(x))\right| \geq \epsilon\right\}\right)=0 \forall \epsilon>0$
$\Leftrightarrow \mu\left(\bigcap_{k=1 n=k}^{\infty} \bigcup_{n}^{\infty}\left|\sum_{i=1}^{k_{n}} z_{n ; i} \chi_{T^{-1}\left[B_{n ; i}\right]}-f \circ T\right|>\epsilon\right)=0 \forall \epsilon>0$
$\Leftrightarrow \mu\left(\lim _{n \rightarrow \infty} \varphi_{n} \circ T \neq f \circ T\right)=0$
$\Leftrightarrow \mu$-a.e. $\lim _{n \rightarrow \infty} \varphi_{n} \circ T=f \circ T$
and also

$$
\begin{aligned}
0 & =\lim _{n \rightarrow \infty} \sup _{m \geq n} \int\left|\varphi_{n}-\varphi_{m}\right| d(T \circ \mu) \\
& =\lim _{n \rightarrow \infty} \sup _{m \geq n} \int\left|\sum_{i=1}^{k_{n}} z_{n ; i} \chi_{B_{n ; i}}-\sum_{j=1}^{k_{m}} z_{m ; j} \chi_{B_{m ; j}}\right| d(T \circ \mu) \\
& =\lim _{n \rightarrow \infty} \sup _{m \geq n} \sum_{i=1}^{k_{n}} \sum_{j=1}^{k_{m}}\left|z_{n ; i}-z_{m ; j}\right| \mu\left(T^{-1}\left[B_{n ; i} \cap B_{m ; j}\right]\right) \\
& =\lim _{n \rightarrow \infty} \sup _{m \geq n} \sum_{i=1}^{k_{n}} \sum_{j=1}^{k_{m}}\left|z_{n ; i}-z_{m ; j}\right| \mu\left(T^{-1}\left[B_{n ; i}\right] \cap T^{-1}\left[B_{m ; j}\right]\right) \\
& =\lim _{n \rightarrow \infty} \sup _{m \geq n} \int\left|\sum_{i=1}^{k_{n}} z_{n ; i} \chi_{T^{-1}\left[B_{n ; i}\right]}-\sum_{j=1}^{k_{m}} z_{m ; j} \chi_{T^{-1}\left[B_{m ; j}\right]}\right| d \mu \\
& =\lim _{n \rightarrow \infty} \sup _{m \geq n} \int\left|\varphi_{n} \circ T-\varphi_{m} \circ T\right| d \mu
\end{aligned}
$$

whence $\left(\varphi_{n} \circ T\right)$ is an approximating sequence of $f \circ T$. Hence

$$
\begin{aligned}
\int f d(T \circ \mu) & =\lim _{n \rightarrow \infty} \int \varphi_{n} d(T \circ \mu) \\
& =\lim _{n \rightarrow \infty} \int \sum_{i=1}^{k_{n}} z_{n ; i} \chi_{B_{n ; i}} d(T \circ \mu) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{k_{n}} z_{n ; i} \mu\left(T^{-1}\left[B_{n ; i}\right]\right) \\
& =\lim _{n \rightarrow \infty} \int \sum_{i=1}^{k_{n}} z_{n ; i} \chi_{T^{-1}\left[B_{n ; i}\right]} d \mu \\
& =\lim _{n \rightarrow \infty} \int\left(\varphi_{n} \circ T\right) d \mu \\
& =\int(f \circ T) d \mu
\end{aligned}
$$

5.9 The seminorm for Lebesgue integrable functions

According to 5.7 for every $f \in \mathcal{L}^{1}(X ; Y)$ the integral $\|f\|_{1}:=\int|f| d \mu=\lim _{n \rightarrow \infty}\left\|\varphi_{n}\right\|_{1}$ is well defined and a pseudonorm on $\mathcal{L}^{1}(X ; Y)$: For $f, g \in \mathcal{L}^{1}(X ; Y)$ with approximating sequences $\left(\varphi_{n}\right)_{n \in \mathbb{N}},\left(\psi_{n}\right)_{n \in \mathbb{N}} \in$ $\mathcal{S}(X ; Y)$ we have $|f+g| \in \mathcal{L}^{1}(X ; Y)$ with approximating sequence $\left(\left|\varphi_{n}+\psi_{n}\right|\right)_{n \in \mathbb{N}}$ and by continuity of the addition we obtain $\|f+g\|_{1}=\lim _{n \rightarrow \infty}\left\|\varphi_{n}+\psi_{n}\right\|_{1} \leq \lim _{n \rightarrow \infty}\left(\left\|\varphi_{n}\right\|_{1}+\left\|\psi_{n}\right\|_{1}\right)=\lim _{n \rightarrow \infty}\left\|\varphi_{n}\right\|_{1}+$ $\lim _{n \rightarrow \infty}\left\|\psi_{n}\right\|_{1}=\|f\|_{1}+\|g\|_{1}$, i.e. the triangle inequality. Likewise the continuity of the absolute value extends the continuity of the integral from $\mathcal{S}(X ; Y)$ to $\mathcal{L}^{1}(X ; Y):\left|\int f d \mu\right|=\left|\lim _{n \rightarrow \infty} \int \varphi_{n} d \mu\right|=$ $\lim _{n \rightarrow \infty}\left|\int \varphi_{n} d \mu\right| \leq \lim _{n \rightarrow \infty} \int\left|\varphi_{n}\right| d \mu=\int|f| d \mu=\|f\|_{1}$.

5.10 Completeness of \mathcal{L}^{1}

The space $\left(\mathcal{L}^{1}(X ; Y) ;\| \|_{1}\right)$ of Lebesgue integrable functions is complete.
Proof: For an \mathcal{L}^{1}-Cauchy sequence $\left(f_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{L}^{1}(X ; Y)$ there is a $\varphi_{n} \in \mathcal{S}(X ; Y)$ with $\left\|f_{n}-\varphi_{n}\right\|_{1}<$ $\frac{1}{n}$. Hence for every $\epsilon>0$ there is an $N \in \mathbb{N}$ such that for every $n, m \geq N$ we have $\left\|f_{n}-f_{m}\right\|_{1}<\frac{\epsilon}{3}$ and consequently $\left\|\varphi_{n}-\varphi_{m}\right\|_{1} \leq\left\|\varphi_{n}-f_{n}\right\|_{1}+\left\|f_{n}-f_{m}\right\|_{1}+\left\|f_{m}-\varphi_{m}\right\|_{1} \leq \frac{1}{n}+\frac{\epsilon}{3}+\frac{1}{m} \leq \epsilon$ for $n, m \geq$ $\max \left\{N ; \frac{3}{\epsilon}\right\}$, i.e. $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ is \mathcal{L}^{1}-Cauchy. Due to the 5.4 a subsequence $\left(\varphi_{n_{k}}\right)_{k \in \mathbb{N}}$ converges μ-a.e. to an $f \in \mathcal{L}^{1}(X ; Y)$, whence 5.5 yields $\int f d \mu=\lim _{k \rightarrow \infty} \int \varphi_{n_{k}} d \mu$ and furthermore $\|f\|_{1}=\lim _{l \rightarrow \infty}\left\|\varphi_{n_{2}}\right\|_{1}$ and particularly $\left\|f-\varphi_{n_{k}}\right\|_{1}=\lim _{l \rightarrow \infty}\left\|\varphi_{n_{l}}-\varphi_{n_{k}}\right\|_{1}$ for every $k \in \mathbb{N}$ with 5.7. Since $\left(\varphi_{k}\right)_{k \in \mathbb{N}}$ is \mathcal{L}^{1}-Cauchy for every $\epsilon>0$ there is an $k \in \mathbb{N}$ with $n_{k} \geq \frac{3}{\epsilon}$ such that on the one hand $\left\|\varphi_{n_{l}}-\varphi_{n_{k}}\right\|_{1}<\frac{\epsilon}{3}$ and on the other hand $\left|\left\|f-\varphi_{n_{k}}\right\|_{1}-\left\|\varphi_{n_{l}}-\varphi_{n_{k}}\right\|_{1}\right|<\frac{\epsilon}{3}$ for every $l \geq k$ whence $\left\|f-f_{n_{k}}\right\|_{1} \leq\left\|f-\varphi_{n_{k}}\right\|_{1}+$ $\left\|\varphi_{n_{k}}-f_{n_{k}}\right\|_{1} \leq\left\|\varphi_{n_{l}}-\varphi_{n_{k}}\right\|_{1}+\frac{\epsilon}{3}+\frac{1}{n_{k}} \leq \epsilon$. Hence $\left(\varphi_{n_{k}}\right)_{k \in \mathbb{N}}$ is \mathcal{L}^{1}-convergent to f and due to its \mathcal{L}^{1}-Cauchy property the convergence extends to the complete sequence $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$.

5.11 Convergence in mean and μ-a.e

For any \mathcal{L}^{1}-Cauchy sequence $\left(f_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{L}^{1}(X ; Y)$ of Lebesgue integrable functions $f_{n}: X \rightarrow Y$ there exists a subsequence $\left(f_{n_{k}}\right)_{k \in \mathbb{N}}$ and for every $\epsilon>0$ a set $Z_{\epsilon} \subset X$ with measure $\mu\left(Z_{\epsilon}\right)<\epsilon$ such that $\left(f_{n_{k}}\right)_{k \in \mathbb{N}}$ converges absolutely and uniformly on $X \backslash Z_{\epsilon}$ as well as μ-a.e. and in mean on X to an integrable $f \in \mathcal{L}^{1}(X ; Y)$.
Proof: According to the preceding theorem $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges in mean to an $f \in \mathcal{L}^{1}(X ; Y)$ such that for every $k \geq 1$ there is an $n_{k} \geq n_{k-1} \in \mathbb{N}$ with $\left\|f-f_{n_{k}}\right\|_{1} \leq \frac{1}{2^{2 k}}$. Then for $Y_{k}=\left\{\left|f-f_{n_{k}}\right| \geq \frac{1}{2^{k}}\right\}$ we have $\frac{1}{2^{k}} \mu\left(Y_{k}\right)=\int_{Y_{n}} \frac{1}{2^{k}} d \mu \leq \int_{X}\left|f-f_{n_{k}}\right| d \mu \leq \frac{1}{2^{2 k}}$ whence $\mu\left(Y_{k}\right) \leq \frac{1}{2^{k}}$. Hence $\mu\left(Z_{m}\right) \leq \frac{1}{2^{m-1}}$ for
$Z_{m}=\bigcup_{k=m}^{\infty} Y_{k}$ and $\left|f(x)-f_{n_{k}}(x)\right|<\frac{1}{2^{k}}$ for every $x \in X \backslash Z_{m}$ resp. $k \geq m$, i.e. $\left(f_{n_{k}}\right)_{k \geq m}$ converges to f absolutely and uniformly on $X \backslash Z_{m}$ as well as pointwise on $X \backslash \bigcap_{m=1}^{\infty} Z_{m}$ with $\mu\left(\bigcap_{m=1}^{\infty} Z_{m}\right)=0$.

5.12 The norm for Lebesgue integrable functions

Lebesgue integrable functions with common approximatig sequences are μ-a.e. equal and partition $\mathcal{L}^{1}(X ; Y)$ into equivalence classes (c.f. 5.1). The corresponding quotient space is equally called a Lebesgue space and denoted as $L^{1}(X ; Y)$. On this quotient space $\|f\|_{1}$ is positive definite and hence a norm, since for $\|f\|_{1}=0$ the null sequence $(0)_{n \in \mathbb{N}}$ converges in mean to f and due to the preceding paragraph it also converges μ-a.e. to f whence μ-a.e. $f=0$. Note that $\left(L^{1}(X ; Y) ;\| \|_{1}\right)$ is a Banach space, but there is no topology on $\mathcal{L}^{1}(X ; Y)$ corresponding to μ-a.e. convergence. (cf. [6])

5.13 Levi's monotone convergence theorem

For every monotone sequence $\left(f_{n}\right)_{n \in \mathbb{N}} \in L^{1}(X ; \mathbb{R})$ of real valued $f_{n}: X \rightarrow \mathbb{R}$ we have $\int \lim _{n \in \mathbb{N}} f_{n} d \mu=$ $\lim _{n \in \mathbb{N}} \int f_{n} d \mu$. In the case of $\lim _{n \in \mathbb{N}}\left|\int f_{n} d \mu\right|<\infty$ the sequence converges both in mean and μ-a.e. to $f=\lim _{n \in \mathbb{N}} f_{n} \in L^{1}(X ; \mathbb{R})$.
Proof: Due to the monotonicity of the integral 5.7 in the case of an increasing sequence we have $\sup _{n \in \mathbb{N}} \int f_{n} d \mu \leq \int \sup _{n \in \mathbb{N}} f_{n} d \mu$ which proves the assertion in the case of $\sup _{n \in \mathbb{N}} \int f_{n} d \mu=\infty$. For $\sup _{n \in \mathbb{N}} \int f_{n} d \mu<\infty$ and $n \geq m$ we have $\left\|f_{n}-f_{m}\right\|_{1}=\int\left(f_{n}-f_{m}\right) d \mu=\int f_{n} d \mu-\int f_{m} d \mu$ whence follows that $\left(f_{n}\right)_{n \in \mathbb{N}}$ is $L^{1}-$ Cauchy. According to 5.11 a subsequence converges μ-a.e. and in mean to an $f=\lim _{n \in \mathbb{N}} f_{n} \in L^{1}(X ; \mathbb{R})$ and due to the increasing character this must be true for the complete sequence. Finally for every $\epsilon>0$ there is an $n \in \mathbb{N}$ with $\int\left(f-f_{n}\right) d \mu<\epsilon$ and hence $\int f d \mu=\int\left(f-f_{n}\right) d \mu+\int f_{n} d \mu=\epsilon+\int f_{n} d \mu$ which proves $\int \sup _{n \in \mathbb{N}} f_{n} d \mu=\sup _{n \in \mathbb{N}} \int f_{n} d \mu$. In the case of a decreasing sequence apply the proof to $\left(-f_{n}\right)_{n \in \mathbb{N}}$.

5.14 Fatou's lemma

For every sequence $\left(f_{n}\right)_{n \in \mathbb{N}} \in L^{1}\left(X ; \mathbb{R}_{0}^{+}\right)$of positive Borel measurable functions with $\lim _{k \rightarrow \infty} \inf _{k \leq n} \int f_{n} d \mu<$ ∞ we have $f=\lim _{k \rightarrow \infty} \inf _{k \leq n} f_{n} \in L^{1}\left(X ; \mathbb{R}_{0}^{+}\right)$with $\int \lim _{k \rightarrow \infty} \inf _{k \leq n} f_{n} d \mu \leq \lim _{k \rightarrow \infty} \inf _{k \leq n} \int f_{n} d \mu$.
Proof: For every $k \in \mathbb{N}$ the decreasing sequence $\left(\inf _{k \leq n \leq m} f_{n}\right)_{m \in \mathbb{N}}$ converges μ-a.e. to $\inf _{k \leq n} f_{n}$ such that due to the preceding theorem we have $\int \inf _{k \leq n} f_{n} d \mu=\lim _{m \rightarrow \infty} \int \inf _{k \leq n \leq m} f_{n} d \mu \leq \lim _{m \rightarrow \infty} \inf _{k \leq n \leq m} \int f_{n} d \mu=$ $\inf _{k \leq n} \int f_{n} d \mu \leq \lim _{k \rightarrow \infty} \inf _{k \leq n} \int f_{n} d \mu$. Now we apply the monotone convergence theorem a second time to the increasing sequence $\left(\inf _{k \leq n} f_{n}\right)_{k \in \mathbb{N}}$ and obtain $\int \lim _{k \rightarrow \infty} \inf _{k \leq n} f_{n} d \mu=\lim _{k \rightarrow \infty} \int \inf _{k \leq n} f_{n} d \mu \leq \lim _{k \rightarrow \infty} \inf _{k \leq n} \int f_{n} d \mu$.

5.15 Lebesgue's dominated convergence theorem

A sequence $\left(f_{n}\right)_{n \in \mathbb{N}} \subset L^{1}(X ; Y)$ converging μ-a. e. to some f converges in mean to f with $f \in L^{1}(X ; Y)$ iff there is an Lebesgue integrable majorant $g \in L^{1}\left(X ; \mathbb{R}_{0}^{+}\right)$such that for every $n \in \mathbb{N}$ and μ-a.e. we have $\left|f_{n}\right| \leq g$.

Proof: For every $K \in \mathbb{N}$ the increasing sequence $\left(\sup _{k \leq m ; n \leq l}\left|f_{n}-f_{m}\right|\right)_{l>k}$ is μ-a.e. bounded by $\left|f_{n}-f_{m}\right| \leq 2 g$ and hence has bounded integrals $\int\left(\sup _{k \leq m ; n \leq l}\left|f_{n}-f_{m}\right|\right) d \mu \leq 2 \int g d \mu$. According to the monotone convergence theorem 5.13 we conclude $\int\left(\sup _{k \leq m ; n}\left|f_{n}-f_{m}\right|\right) d \mu \leq 2 \int g d \mu$ for every $k \in \mathbb{N}$. Hence we can apply the monotone convergence theorem a second time to the decreasing sequence $\left(\sup _{k \leq m ; n}\left|f_{n}-f_{m}\right|\right)_{k \geq 1}$ converging μ-a.e. to 0 to obtain $\lim _{k \rightarrow \infty} \int\left(\sup _{k \leq m ; n}\left|f_{n}-f_{m}\right|\right) d \mu=0$. Hence $\left(f_{n}\right)_{n \in \mathbb{N}}$ is L^{1}-Cauchy and due to the completeness 5.10 of $L^{1}(X ; Y)$ it converges in mean to an $f^{\#} \in L^{1}(X ; Y)$ coninciding μ-a.e. with f according to 5.11.

5.16 The absolute value of integrable functions

A Borel measurable function $f: X \rightarrow Y$ from a σ-finite measure space $(X ; \mathcal{A} ; \mu)$ into a separable Banach space $(Y, \|)$ is integrable with $\int f d \mu \leq \int|f| d \mu \leq \int g d \mu$ if there is a $g \in L^{1}(X ; \mathbb{R})$ with μ-a.e. $|f| \leq g$. In particular f is integrable if its absolute value $|f|$ is integrable. The inequality is a trivial consequence of the continuity of the integral according to 5.9. The converse is true for the subset of the Lebesgue-integrable functions but neither for the Bochner integral nor for the improper Riemann integral which is not included in the Lebesgue integral (cf. 5.26). E.g. $f(x)=\frac{\sin (x)}{x}$ is integrable with Bochner and Riemann but not with Lebesgue.
Proof: According to 5.2 there is a sequence $\left(\varphi_{n}\right)_{n \in \mathbb{N}} \subset S(X ; Y)$ of step functions converging μ-a.e. to f. Due to 5.5 the function g is Borel measurable. Hence the sets $\left\{\left|\varphi_{n}\right| \leq 2 g\right\}$ are measurable and by $\psi_{n}(x)=\left\{\begin{array}{ll}\varphi_{n}(x) & \text { if }\left|\varphi_{n}(x)\right| \leq 2 g(x) \\ 0 & \text { if }\left|\varphi_{n}(x)\right|>2 g(x)\end{array}\right.$ we have a sequence of integrable step functions bounded by g and converging μ-a.e. to f. Due to 5.15 the convergence is also in mean and f is integrable.

5.17 Dominated convergence for series

For a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ of functions $f_{n}: X \rightarrow Y$ from a σ-finite measure space $(X ; \mathcal{A} ; \mu)$ into a separable Banach space $(Y, \|)$ with $\sum_{n \in \mathbb{N}} \int\left|f_{n}\right| d \mu<\infty$ the series $\sum_{n \in \mathbb{N}} f_{n}:=f$ converges μ-a.e. as well as in mean: $\sum_{n \in \mathbb{N}} \int f_{n} d \mu=\int f d \mu$.
Proof: Since $\left|\int f d \mu\right| \stackrel{5.8}{\leq} \int\left|\sum_{n \in \mathbb{N}} f_{n}\right| d \mu \stackrel{5.15}{\leq} \int \sum_{n \in \mathbb{N}}\left|f_{n}\right| d \mu \stackrel{5.12}{=} \sum_{n \in \mathbb{N}} \int\left|f_{n}\right| d \mu<\infty$ the limit $f \in L^{1}(X ; Y)$ is Lebesgue integrable and also μ-a.e. finite resp. convergent due to monotone convergence 5.13. The convergence in mean follows by 5.15 with the majorant $g:=\sum_{n \in \mathbb{N}}\left|f_{n}\right|$.

5.18 Sequences with bounded norms

For the μ-a. e. limit $f: X \rightarrow Y$ of a sequence $\left(f_{n}\right)_{n \in \mathbb{N}} \subset L^{1}(X ; Y)$ of Lebesgue integrable functions from a σ-finite measure space $(X ; \mathcal{A} ; \mu)$ into a separable Banach space $(Y, \|)$ with bounded norms $\left\|f_{n}\right\|_{1} \leq C$ for some $C \geq 0$ and every $n \in \mathbb{N}$ we have $\|f\|_{1} \leq C$ and in particular $f \in L^{1}(X ; Y)$.
Proof: The f_{n} are measurable due to 5.5 and so is f according to 4.9. Because of $\lim _{n \rightarrow \infty}\left|f_{n}\right|=|f|$ we can apply first Fatou's lemma 5.14 to obtain $\|f\|_{1} \leq C$ and then 5.16 to infer $f \in L^{1}(X ; Y)$.

Note: Due to the missing bound for the absolute values $\left|f_{n}\right|$ we can not assert convergence in mean. E.g. for the sequence $\left(\varphi_{n}\right)_{n \geq 1}$ with $\varphi_{n}=n \cdot \chi_{\left[0 ; \frac{1}{n}\right]}$ we have $\lim _{n \rightarrow \infty}\left|\varphi_{n}\right|=0$ but $\lim _{n \rightarrow \infty}\left\|\varphi_{n}\right\|_{1}=1$.

5.19 Products of Lebesgue integrable and bounded functions

For σ-finite measure space $(X ; \mathcal{A} ; \mu)$ and a separable Banach space $(Y, \|)$ the product $f g$ of an (Lebesgue) integrable $f: X \rightarrow Y$ and a bounded measurable $g: X \rightarrow K$ into the normed, complete and separable field K is (Lebesgue) integrable.

Proof: Due to 5.2, 5.5 and 5.10 there are sequences $\left(\varphi_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{S}(X ; Y)$ and $\left(\psi_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{S}(X ; K)$ of step functions with $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ converging both in mean and μ-a.e. to f and $\left(\psi_{n}\right)_{n \in \mathbb{N}}$ converging μ-a.e. to g. Then $\left(\varphi_{n} \cdot \psi_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{S}(X ; Y)$ is a L^{1}-Cauchy sequence converging μ-a.e. and according to 5.4 also in mean to $f g$ which is hence integrable with $|f g| \leq|f| \cdot\|g\|_{\infty}<\infty$. In the case of $f \in L^{1}(X ; Y)$ we have $|f| \in L^{1}(X ; Y)$ whence $|f| \cdot\|g\|_{\infty} \in L^{1}(X ; Y)$ and hence $|f g| \in L^{1}(X ; Y)$ due to 5.16.

5.20 The mean value theorem for integration

For every integrable $f \in \mathcal{B}(X ; Y)$ from a σ-finite measure space $(X ; \mathcal{A} ; \mu)$ into a separable Banach space $(Y, \|)$ with the mean value $\frac{1}{\mu(A)} \int_{A} f d \mu \in S$ for some closed subset $S \subset Y$ and every $A \in \mathcal{A}$ with $0<\mu(A)<\infty$ we have $\mu(f \notin S)=0$.
Proof: In the case of $\mu(X)<\infty$ for any closed disk $\bar{B}_{r}(z) \subset Y \backslash S$ with $\mu(A)>0$ for $A=f^{-1}\left[\bar{B}_{r}(z)\right]$ we have $\left|\frac{1}{\mu(A)} \int_{A} f d \mu-z\right|=$ $\left|\frac{1}{\mu(A)} \int_{A}(f-z) d \mu\right| \leq \frac{1}{\mu(A)} \int_{A}|f-z| d \mu \leq r$ contrary to $\frac{1}{\mu(A)} \int_{A} f d \mu \in$ S. Therefore we must assume $\mu\left(f \in \bar{B}_{r}(z)\right)=0$ and since $Y \backslash S$ is a countable union of such disks the assertion follows from the σ additivity of μ. Hence if we assume the hypothesis for every $A \cap X_{n}$ with $A \in \mathcal{A}, \mu\left(X_{n}\right)<\infty$ and $X=\bigcup_{n \in \mathbb{N}} X_{n}$ we obtain $f(x) \in S$ for
 every $x \in X_{n} \backslash Z_{n}$ with $\mu\left(Z_{n}\right)=0$ and hence for $X \backslash \bigcup_{n \in \mathbb{N}} Z_{n}$ with $\mu\left(\bigcup_{n \in \mathbb{N}} Z_{n}\right)=0$.
The following theorem asserts that step functions on arbitrary measurable sets can be approximated by step functions on an algebra of sets with finite measures, e.g. the algebra \mathcal{F} of figures in \mathbb{R}^{n}. This step is necessary to identify the Lebesgue integral as special case of the Bochner integral. The theorem will be prepared by two lemmata:

$5.21 L^{1}$-limits of sets of finite measure

For every algebra $\mathcal{F} \subset \mathcal{A}$ of sets of finite measure in a measure space ($X ; \mathcal{A} ; \mu$) and every $F \in \mathcal{F}$ we consider the vector space $\mathcal{S}\left(\mathcal{F}_{F} ; \mathbb{R}\right)$ of step functions on the trace algebra \mathcal{F}_{F} of the form $\sum_{i=0}^{m} y_{i} \chi_{F_{i}}$ with $m \in \mathbb{N}$ on sets $F_{0}=X \backslash F$ resp. $F_{i} \in \mathcal{F}_{F}$ with $\bigcup_{i=1}^{m} F_{i}=F$ and with values $y_{0}=0$ resp. $y_{i} \in \mathbb{R}$ for $1 \leq i \leq m$. Then for every $F \in \mathcal{F}$ the family $\mathcal{N}_{F}=\left\{A \in \mathcal{A}_{F}: \chi_{A} \in \overline{\left(\mathcal{S}\left(\mathcal{F}_{F} ; \mathbb{R}\right) ;\| \|_{1}\right)}\right\} \subset \mathcal{A}_{F}$ is a σ-algebra on the set F.
Proof: Note that every $A \in \mathcal{N}_{F}$ must be of finite measure but not necessarily be an element of the algebra \mathcal{F}_{F}. Since for $\varphi, \psi \in \mathcal{S}\left(\mathcal{F}_{F} ; \mathbb{R}\right)$ we obviously have $\sup \{\varphi ; \psi\}, \inf \{\varphi ; \psi\} \in \mathcal{S}\left(\mathcal{F}_{F} ; \mathbb{R}\right)$ the closure $\overline{\left(\mathcal{S}\left(\mathcal{F}_{F} ; \mathbb{R}\right) ;\| \| \|_{1}\right)}$ is again a vector space closed with respect to sup and inf. \mathcal{N}_{F} is an algebra since obviously $\emptyset \in \mathcal{N}_{F}$ and for every $A, B \in \mathcal{N}_{F}$ the characteristic functions $\chi_{A \cup B}=\sup \left\{\chi_{A} ; \chi_{B}\right\}$, $\chi_{A \cap B}=\inf \left\{\chi_{A} ; \chi_{B}\right\}$ as well as $\chi_{A \backslash B}=\chi_{A}-\chi_{B}$ are all in $\overline{\left(\mathcal{S}\left(\mathcal{F}_{F} ; \mathbb{R}\right) ;\| \|_{1}\right)}$ and consequently their supports $A \cup B, A \cap B$ resp. $A \backslash B$ are in \mathcal{N}_{F}. It is a σ-algebra since $F \in \mathcal{N}_{F}$ and for every paiwise disjoint sequence $\left(A_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{N}_{F}$ with union $A=\bigcup_{n \in \mathbb{N}} A_{n}$ and every $\epsilon>0$ due to the continuity from below 2.2 .2 we have an $N \in \mathbb{N}$ with $\mu\left(\cup_{k>N} A_{k}\right)<\epsilon$ and approximating step functions $\left(\varphi_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{S}\left(\mathcal{F}_{F} ; \mathbb{R}\right)$ such that $\left\|\chi_{A_{n}}-\varphi_{n}\right\|_{1}<\frac{\epsilon}{2^{n}}$ for $n \in \mathbb{N}$ whence

$$
\begin{aligned}
\left\|\chi_{A}-\sum_{k=0}^{n} \varphi_{n}\right\|_{1} & \leq\left\|\chi_{A}-\chi_{\bigcup_{0 \leq k \leq n}} A_{k}\right\|_{1}+\left\|\chi_{\bigcup_{0 \leq k \leq n} A_{k}}-\sum_{k=0}^{n} \varphi_{n}\right\|_{1} \\
& =\left\|\chi_{\bigcup_{k>N}} A_{k}\right\|_{1}+\left\|\sum_{k=0}^{n} \chi_{A_{k}}-\sum_{k=0}^{n} \varphi_{n}\right\|_{1} \\
& \leq \mu\left(\bigcup_{k>N} A_{k}\right)+\sum_{k=0}^{n}\left\|\chi_{A_{n}}-\varphi_{n}\right\|_{1} \\
& <2 \epsilon .
\end{aligned}
$$

5.22 Coverings of L^{1}-limits of sets of finite measure

For an algebra $\mathcal{F} \subset \mathcal{A}$ of sets with finite measure in a measure space $(X ; \mathcal{A} ; \mu)$ and $F_{n \in \mathbb{N}} \in \mathcal{F}$ with $X=\bigcup_{n \in \mathbb{N}} F_{n}$ with σ-algebrae $\mathcal{N}_{n} \subset \mathcal{A}_{F_{n}}$ according to 5.21 the family $\mathcal{N}=\left\{A \subset X: A \cap F_{n} \in \mathcal{N}_{n} \forall n \in \mathbb{N}\right\}$ is a σ-algebra on X.
Proof: For every $A \in \mathcal{N}$ we have $X \backslash A \cap F_{n} \in \mathcal{N}_{n}$ whence $X \backslash A \in \mathcal{N}$. For every $A, B \in \mathcal{N}$ we have $(A \cap B) \cap F_{n}=\left(A \cap F_{n}\right) \cap\left(B \cap F_{n}\right) \in \mathcal{N}_{n}$ whence $A \cap B \in \mathcal{N}$. Finally for $\left(A_{m}\right)_{m \in \mathbb{N}} \subset \mathcal{N}$ the equality $\left(\cup_{m \in \mathbb{N}} A_{m}\right) \cap F_{n}=\cup_{m \in \mathbb{N}}\left(A_{m} \cap F_{n}\right)$ shows that $\bigcup_{m \in \mathbb{N}} A_{m} \in \mathcal{N}$.

5.23 L^{1}-limits of step functions

For every algebra $\mathcal{F} \subset \mathcal{A}$ of sets with finite measure generating $\mathcal{A}=\sigma(\mathcal{F})$ on a σ-finite measure space $(X ; A ; \mu)$ we have $\overline{\left(\mathcal{S}(\mathcal{F} ; Y) ;\| \| \|_{1}\right)}=\mathcal{B}(X ; Y)$.
Proof:
According to the hypothesis there is a sequence $\left(F_{n}\right)_{n \geq 1} \subset \mathcal{F}$ of w.l.o.g. pairwise disjoint sets with finite measure $\mu\left(F_{n}\right)<\infty$ and $\bigcup_{n \geq 1}^{\circ} F_{n}=X$. By lemma $5.21 \mathcal{N}_{F_{n}} \subset \mathcal{A}_{F}$ is a σ-algebra and by lemma 5.22 the family \mathcal{N} is a σ-algebra containing \mathcal{F} and hence $\mathcal{A}=\sigma(\mathcal{F})$ such that for every measurable set $A \in \mathcal{A}$ with finite measure $\mu(A)<\infty$ we have $A \cap F_{n} \in \mathcal{N}_{F_{n}}$, i.e. for every $\epsilon>0$ there is a $\varphi_{n} \in \mathcal{S}\left(\mathcal{F}_{F_{n}} ; \mathbb{R}\right)$ with $\left\|\chi_{A \cap F_{n}}-\varphi_{n}\right\|_{1}<\frac{\epsilon}{2^{n}}$. Due to the continuity from above 2.2.3 there is an $N \in \mathbb{N}$ such that $\left\|\chi_{A}-\sum_{n=1}^{N} \chi_{A \cap F_{n}}\right\|_{1}=\mu\left(A-\bigcup_{n=1}^{N}\left(A \cap F_{n}\right)\right)<\epsilon$ whence $\left\|\chi_{A}-\sum_{n=1}^{N} \varphi_{n}\right\|_{1} \leq$ $\left\|\chi_{A}-\sum_{n=1}^{N} \chi_{A \cap F_{n}}\right\|_{1}+\left\|\sum_{n=1}^{N} \chi_{A \cap F_{n}}-\sum_{n=1}^{N} \varphi_{n}\right\|_{1}<2 \epsilon$. Thus for every step map $\psi=\sum_{i=0}^{m} y_{i} \chi_{A_{i}} \in \mathcal{S}(\mathcal{A} ; Y)$ with $m \in \mathbb{N}$ such that $\bigcup_{i=0}^{m} A_{i}=X$ with values $y_{i} \in Y$ and $\mu\left(A_{i}\right)<\infty$ for $1 \leq i \leq m$ and $\alpha_{0}=0$ there are step maps $\varphi_{i}=\sum_{n=1}^{N} \varphi_{i, n} \in \mathcal{S}(\mathcal{F} ; \mathbb{R})$ with $\left\|\chi_{A_{i}}-\varphi_{i}\right\|_{1}<\frac{\epsilon}{m \cdot\left|y_{i}\right|}$ such that $\left\|\sum_{i=0}^{m} y_{i} \chi_{A_{i}}-\sum_{i=0}^{m} y_{i} \varphi_{i}\right\|_{1}=$ $\|\psi-\varphi\|_{1}<\epsilon$ with $\varphi=\sum_{i=0}^{m} y_{i} \varphi_{i} \in \mathcal{S}(\mathcal{F} ; Y)$. The assertion now follows from the definition 5.5 of integrable functions since $\overline{\left(\mathcal{S}(\mathcal{A} ; Y) ;\| \|_{1}\right)}=\mathcal{B}(X ; Y)$.

5.24 Uniqueness of integrable functions

For every algebra $\mathcal{F} \subset \mathcal{A}$ of sets with finite measure generating $\mathcal{A}=\sigma(\mathcal{F})$ on a σ-finite measure space $(X ; A ; \mu)$ and every integrable $f \in \mathcal{B}(X ; Y)$ into a separable Banach space $(Y, \|)$ the following propositions hold:

1. If $\int_{F} f d \mu=0$ for every $F \in \mathcal{F}$ then $f=0 \mu$-a.e.
2. If $\int f \varphi d \mu=0$ for every $\varphi \in \mathcal{S}(\mathcal{F} ; \mathbb{R})$ then $f=0 \mu$-a.e.
3. If $\int_{F} f d \mu \leq c \cdot \mu(F)$ for some $c \geq 0$ and every $F \in \mathcal{F}$ with $\mu(F)>0$ then $|f| \leq c \mu$-a.e.

Proof: According to 5.5 and 5.23 f or every measurable set $A \in \mathcal{A}$ with finite measure $\mu(A)<\infty$ there exists a sequence $\left(\varphi_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{S}(\mathcal{F} ; Y)$ converging in mean as well as μ-a.e. to χ_{A}. Taking $\sup \left\{\varphi_{n} ; 0\right\}$ resp. $\inf \left\{\varphi_{n} ; 1\right\}$ we can w.l.o.g. assume $0 \leq \varphi_{n} \leq 1$. Then we have $\left|\varphi_{n} f\right| \leq|f|$ for every $n \in \mathbb{N}$ and $\left(\varphi_{n} f\right)_{n \in \mathbb{N}}$ converges μ-a.e. to $\chi_{A} f$. By dominated convergence 5.15 and since $\int \varphi_{n} f d \mu=0$ we conclude $\int \chi_{A} f d \mu=0$. Now every measurable set is a countable union of w.l.o.g. pairwise disjoint sets of finite measure such that a second instance of dominated convergence yields $\int \chi_{A} f d \mu=0$ for every measurable $A \in \mathcal{A}$. Proposition 1. now follows from the mean value theorem for integrals 5.20 applied to $S=\{0\}$. Proposition 2. is obtained from 1 . by taking $\varphi=\chi_{F}$. Finally we derive Proposition 3. from 5.20 applied to $S_{n}=\bar{B}_{c+1 / n}(0)$ for $n \geq 1$ and considering $\{|f| \leq c\}=\bigcap_{n \in \mathbb{N}}\left\{f \in S_{n}\right\}$.

5.25 Characterization of integrable functions

A function $f: X \rightarrow Y$ from a σ-finite measure space $(X ; A ; \mu$) into a separable Banach space $(Y, \|)$ is integrable iff there is an increasing sequence $\left(A_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{A}$ with $\bigcup_{n \in \mathbb{N}} A_{n}=X$ and $\lim _{n \rightarrow \infty} \int_{A_{n}} f d \mu \in Y$ exists. In that case we have $\int f d \mu=\lim _{n \rightarrow \infty} \int_{A_{n}} f d \mu$.
Proof: \Rightarrow : Take $A_{n}=X$ for $n \in \mathbb{N}$. \Leftarrow : Due to the hypothesis for every $m \geq 1$ there is an $n(m) \in \mathbb{N}$ such that $\left|S-\int_{A_{n(m)}} f d \mu\right|<\frac{1}{2 m}$ with $S=\lim _{n \rightarrow \infty} \int_{A_{n}} f d \mu$. Also due to 5.4 there is a $\varphi_{n(m)} \in S(X ; Y)$ with $\int\left|f \cdot \chi_{A_{n(m)}}-\varphi_{n(m)}\right| d \mu<\frac{1}{2 m}$ and $\left|f(x)-\varphi_{n(m)}(x)\right|<\frac{1}{m}$ for every $x \in A_{n(m)} \backslash Z_{n(m)}$ with $\mu\left(Z_{n(m)}\right)<\frac{1}{m}$. Hence we have $\left|S-\int \varphi_{n(m)} d \mu\right| \leq\left|S-\int_{A_{n(m)}} f d \mu\right|+$ $\left|\int_{A_{n(m)}} f d \mu-\int \varphi_{n(m)} d \mu\right| \leq \frac{1}{2 m}+\int\left|f \cdot \chi_{A_{n(m)}}-\varphi_{n(m)}\right| d \mu<\frac{1}{m}$. Furthermore $\lim _{m \rightarrow \infty}\left(\varphi_{n(m)}(x)\right)=$ $f(x)$ for every $x \in \bigcup_{m \geq 1}\left(A_{n(m)} \backslash Z_{n(m)}\right)=\bigcup_{m \geq 1} A_{n(m)} \backslash \bigcap_{m \geq 1} Z_{n(m)}=X \backslash \bigcap_{m \geq 1} Z_{n(m)}$ with $\mu\left(\bigcap_{m \geq 1} Z_{n(m)}\right)=0$. Hence $\left(\varphi_{n(m)}\right)_{m \geq 1} \subset \mathcal{S}(X ; Y)$ is an approximating sequence for f and we have $S=\lim _{n \rightarrow \infty} \int_{A_{n}} f d \mu=\lim _{m \rightarrow \infty} \int \varphi_{n(m)} d \mu=\int f d \mu$.

5.26 Comparison with the Riemann integral

1. Every Riemann integrable function $f:[a ; b] \rightarrow \mathbb{R}$ is integrable and the two integrals are equal: $\int_{a}^{b} f(x) d x=\int_{[a ; b]} f d \lambda$.
2. $f: \mathbb{R} \rightarrow \mathbb{R}$ is integrable on \mathbb{R} iff the improper Riemann integral exists and in this case the two integrals again coincide: $\lim _{n \in \mathbb{N}} \int_{-n}^{n} f(x) d x=\int_{\mathbb{R}} f d \lambda$.

Proofs:

1. For every partition $z_{n}:=\left(a=a_{0} \leq a_{1} \leq \ldots \leq a_{n}=b\right)$ of the interval [$\left.a ; b\right]$ we can compare the lower Darboux sum $L_{z_{n}}:=\sum_{i=0}^{n} \bar{\gamma}_{i}\left(a_{i}-a_{i-1}\right) \leq \int_{[a ; b]} l_{z_{n}} d \lambda$ with $\bar{\gamma}_{i}:=\inf f\left[\left[a_{i-1} ; a_{i}\right]\right]$ resp. the upper Darboux sum $U_{z_{n}}:=\sum_{i=0}^{n} \bar{\Gamma}_{i}\left(a_{i}-a_{i-1}\right) \geq \int_{[a ; b]} u_{z_{n}} d \lambda$ with $\bar{\Gamma}_{i}:=\sup f\left[\left[a_{i-1} ; a_{i}\right]\right]$ to the integrals of the corresponding step functions $l_{z_{n}}:=\sum_{i=0}^{n} \gamma_{i} \chi_{\left[a_{i-1} ; a_{i}[\right.}$ with $\gamma_{i}:=\inf f\left[\left[a_{i-1} ; a_{i}[] \geq\right.\right.$ $\bar{\gamma}_{i}$ resp. $u_{z_{n}}:=\sum_{i=0}^{n} \Gamma_{i} \chi_{\left[a_{i-1} ; a_{i}\right]}$ with $\Gamma_{i}:=\sup f\left[\left[a_{i-1} ; a_{i}[] \leq \bar{\Gamma}_{i}\right.\right.$. According to the hypothesis there are sequences $\left(z_{n}\right)_{n \in \mathbb{N}}$ of partitions such that z_{n+1} is a refinement of z_{n} such that due to the monotonicity of the integral 5.7 we obtain $\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} L_{z_{n}} \leq \lim _{n \rightarrow \infty} \int_{[a ; b]} l_{z_{n}} d \lambda \leq$ $\lim _{n \rightarrow \infty} \int_{[a ; b]} u_{z_{n}} d \lambda \leq \lim _{n \rightarrow \infty} U_{z_{n}}=\int_{a}^{b} f(x) d x$ whence $\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \int_{[a ; b]} l_{z_{n}} d \lambda=\lim _{n \rightarrow \infty} \int_{[a ; b]} u_{z_{n}} d \lambda$. Since $\left(u_{z_{n}}\right)_{n \in \mathbb{N}}$ decreases, $\left(l_{z_{n}}\right)_{n \in \mathbb{N}}$ increases, $\left(u_{z_{n}}-l_{z_{n}}\right)_{n \in \mathbb{N}}$ is a decreasing sequence bounded below by 0 such that due to the completeness of the real numbers there must be a limit $\lim _{n \in \mathbb{N}}\left(u_{z_{n}}-l_{z_{n}}\right) \geq 0$. According to 4.9 this limit function is measurable and from 5.14 follows
$0 \leq \int \lim _{n \in \mathbb{N}}\left(u_{z_{n}}-l_{z_{n}}\right) \leq \liminf _{n \in \mathbb{N}}\left(U_{z_{n}}-L_{z_{n}}\right)=0$ whence λ-a.e. $\lim _{n \in \mathbb{N}}\left(u_{z_{n}}-l_{z_{n}}\right)=0$ due to 5.6.3. Since λ-a.e. $l_{z_{n}} \leq f \leq u_{z_{n}}$ we infer that λ-a.e. $\lim _{n \in \mathbb{N}} l_{z_{n}}=f$. By dominated convergence 5.15 with majorant $u_{z_{0}}$ we obtain $\int_{a}^{b} f(x) d x=\lim _{n \in \mathbb{N}} \int_{[a ; b]} l_{z_{n}} d \lambda=\int_{[a ; b]}\left(\lim _{n \in \mathbb{N}} l_{z_{n}}\right) d \lambda=\int_{[a ; b]} f d \lambda$.
2. Follows directly from the preceding theorem 5.25.

Note: In essential, 5.13, 5.14 and 5.15 assert the continuity of the Bochner and Lebesgue integrals regarding pointwise esp. μ-a.e. convergence whereas the Riemann integral is only continuous with reference to uniform convergence (cf.[8, Th 7.16]).

The classical definition of the Lebesgue integral is restricted to positive functions such that the Lebesgue integral of real functions requires separate computing of positive and negative parts entailing the failure of this method in the case of certain integrands with alternating signs like e.g. $\int \frac{\sin (x)}{x} d x=\lim _{n \rightarrow \infty} \int_{-n}^{n} \frac{\sin (x)}{x} d x=\pi$. (cf. [9, p. 3.7.1]). Theorem 5.25 does not work with the Lebesgue integral.

6 Lebesgue spaces

6.1 Convex functions

A real function $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex on the open interval $] a ; b\left[\right.$ iff $f(s) \leq f(r)+(s-r) \cdot \frac{f(t)-f(r)}{t-r}=$ $f(t)-(t-s) \cdot \frac{f(t)-f(r)}{t-r}$ resp. $\frac{f(t)-f(s)}{t-s} \geq \frac{f(t)-f(r)}{t-r} \geq \frac{f(s)-f(r)}{s-r}$ for every $a<r<s<t<b$. Every convex function is continuous and in particular Borel-measurable since for $s \in] a ; b[$ and w.l.o.g. $\min \{1 ; b-s\}>\epsilon>0$ we have $|f(r)-f(s)|<|r-s| \cdot \frac{|f(s+\epsilon)-f(s)|}{\epsilon}<\epsilon$ for every $|r-s|<\delta:=$ $\frac{\epsilon^{2}}{\max \{1 ;|f(s+\epsilon)-f(s)|\}}$.

6.2 Jensen's inequality

For every integrable $g: A \rightarrow] a ; b[\subset \mathbb{R}$ with $A \subset X$ and $\mu(A)<\infty$ on a measure space $(X ; \mathcal{A}, \mu)$ and every convex $f:] a ; b\left[\rightarrow \mathbb{R}\right.$ we have $f\left(\frac{1}{\mu(A)} \int_{A} g d \mu\right) \leq \frac{1}{\mu(A)} \int_{A}(f \circ g) d \mu$.
Proof: For $s:=\frac{1}{\mu(A)} \int_{A} g d \mu$ we have $a<s<b$ and due to 6.1 also $\beta:=\sup _{a<r<s} \frac{f(s)-f(r)}{s-r} \leq \frac{f(t)-f(s)}{t-s}$ for all $s<t<b$, hence $f(s)+\beta(t-s) \leq f(t)$ resp. $f(s)+\beta(g(x)-s) \leq f(g(x))$. All summands of this inequality are integrable over A such that on account of the monotonicity of the integral we can infer $\mu(A) \cdot f(s) \leq \int_{A}(f \circ g) d \mu$ and hence the assertion.

6.3 Applications

Choosing $A=\left\{p_{1} ; \ldots ; p_{n}\right\} \subset\left[0 ; \infty\left[\right.\right.$ and $\mu\left(\left\{p_{i}\right\}\right)=\alpha_{i}$ with $\mu(A)=\sum_{i=1}^{n} \alpha_{i}=1$ as well as $g\left(p_{i}\right)=\ln \left(x_{i}\right)$ and $f(x)=\exp (x)$ Jensen's inequality yields the following very useful special cases:

1. $x_{1}^{\alpha_{1}} \cdot \ldots \cdot x_{n}^{\alpha_{n}} \leq \alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}$
2. $\left(x_{1} \cdot \ldots \cdot x_{n}\right)^{\frac{1}{n}} \leq \frac{1}{n}\left(x_{1}+\ldots+x_{n}\right)$ (geometric and arithmetic mean for $\alpha_{i}:=\frac{1}{n}$)
3. $F \cdot G \leq \frac{1}{p} F^{p}+\frac{1}{q} G^{q}$ for $\frac{1}{p}+\frac{1}{q}=1$ with equality iff $F^{p}=G^{q}$ for $\alpha_{1}=\frac{1}{p} ; \alpha_{2}=\frac{1}{q} ; x_{1}=F^{p} ; x_{2}=G^{q}$.

6.4 Hölder and Minkowski inequalities

For any positive Borel measurable $f, g: X \rightarrow Y$ from a measure space $(X ; \mathcal{A}, \mu)$ into a Banach space $(Y ;| |)$ and $\frac{1}{p}+\frac{1}{q}=1$ resp. $p+q=p \cdot q$ with $\|f\|_{p}:=\left(\int|f|^{p} d \mu\right)^{\frac{1}{p}}$ we have

1. $\|f g\| \leq\|f\|_{p} \cdot\|g\|_{q}$ (Hölder resp. Schwarz for $p=q=2$) with equality iff μ-a.e. $\frac{f(x)}{\|f\|_{p}}=\frac{g(x)}{\|g\|_{q}}$.
2. $\|f+g\| \leq\|f\|_{p}+\|g\|_{p}$ (Minkowski) with equality iff μ-a.e. $\frac{f(x)}{\|f\|_{p}}=\frac{g(x)}{\|g\|_{p}}=\frac{f(x)+g(x)}{\|f+g\|_{p}}$.

Proof: The integrand is measurable on account of 4.6. For one of the integrals disappearing 5.12 tells us that the integrands $f \cdot g, f+g, f$ and g will disappear μ-a.e. too such that we have equality in this case. Therefore we can assume all integrals >0 in the following proof.

1. With $F:=\frac{|f|}{\|f\|_{p}}$ resp. $G:=\frac{|g|}{\|g\|_{q}}$ in 6.3 .3 an integration yields $\int(F \cdot G) d \mu \leq \frac{1}{p}+\frac{1}{q}=1$ and hence the assertion. In particular $f \cdot g$ is integrable if f^{p} and g^{q} are integrable.
2. Applying 1. twice to $(f+g)^{p}=f \cdot(f+g)^{p-1}+g \cdot(f+g)^{p-1}$ and observing $q(p-1)=p$ we obtain $\|f+g\|_{p}^{p} \leq\|f\|_{p} \cdot\left\|(f+g)^{p-1}\right\|_{q}+\|g\|_{p} \cdot\left\|(f+g)^{p-1}\right\|_{q}=\left(\|f\|_{p}+\|g\|_{p}\right) \cdot\|f+g\|_{p}^{\frac{q}{p}}$. Substituting $p-\frac{p}{q}=1$ yields the assertion. The convexity of t^{p} provides the inequality $\left(\frac{f+g}{2}\right)^{p} \leq \frac{f^{p}+g^{p}}{2}$, i.e. the integrability of f^{p} and g^{p} entails the integrability of $(f+g)^{p}$.

6.5 $\quad L^{p}$-spaces

For $1 \leq p<\infty$ and any $f: X \rightarrow Y$ from a measure space $(X ; \mathcal{A} ; \mu)$ into a Banach space $(Y ;| |)$ the expressions $\|f\|_{p}:=\left(\int|f|^{p} d \mu\right)^{\frac{1}{p}}$ resp. $\|f\|_{\infty}:=\inf \{0<\alpha<\infty: \mu(|f|>\alpha)=0\}$ define a seminorm (cf. [13, p. 21.1]) on the vector space $\mathcal{L}^{p}(\mu):=\left\{f: X \rightarrow Y:\|f\|_{p}:<\infty\right\}$. The absolute homogeneity follows from the linearity 5.5 whereas the triangle inequation is provided by the Hölder inequality 6.4.2. $\mathcal{L}^{1}(\mu)$ contains the Lebesgue integrable functions and $\mathcal{L}^{\infty}(\mu)$ is the set of all μ-a.e. bounded and measurable functions furnished with the supremum norm $\left\|\|_{\infty}\right.$. Analogously to 5.1 resp. 5.12 the contraction to the quotient space $L^{p}(\mu):=\mathcal{L}^{p} / \sim$ defined by the equivalence relation $f \sim g \Leftrightarrow \mu(f \neq g)=0$ makes $\left\|\|_{p}\right.$ a norm. Convergence with respect to $\| \|_{p}$ is called in the p-th mean. On account of 5.6 all $f \in \mathcal{L}^{p}$ are μ-a.e. finite for $1 \leq p \leq \infty$.

6.6 Relations between L^{p}-spaces

For $1 \leq p, q \leq \infty$ we have

1. For μ bounded above, i.e. $\mu(A)<\alpha \forall A \in \mathcal{A}$ we have $p<q \Rightarrow L^{p} \supset L^{q}$.
2. For μ bounded below, i.e. $\mu(A)>\alpha \forall A \in \mathcal{A}$ we have $p<q \Rightarrow L^{p} \subset L^{q}$.

Note : The Lebesgue measure $\mu=\lambda^{n}$ satisfies none of the above requested conditions such that $L^{p}\left(\lambda^{n}\right)$ cannot be linearly ordered by inclusion. E.g. owing to 5.26 .2 on the one hand for $g_{n}(x):=$ $\min \left\{1 ;|x|^{-n}\right\}$ we have $g_{n} \in L^{p} \Leftrightarrow n>\frac{1}{p}$ but in the other hand fro $h_{n}(x):=\max \left\{1 ;|x|^{-n}\right\}$ the relation $g_{n} \in L^{p} \Leftrightarrow n<\frac{1}{p}$ holds.

Proof:

1. With $p=\frac{r}{s} \geq 1, f=h^{s}$ and $g=1$ Hölder 6.4 .1 yields $\int|h|^{s} d \mu \leq\left(\int|h|^{r} d \mu\right)^{\frac{s}{r}} \cdot\left(\int 1 d \mu\right)^{\frac{s-s}{r}}$ resp. $\|h\|_{s}=\left(\int|h|^{s} d \mu\right)^{\frac{1}{s}} \leq\left(\int|h|^{r} d \mu\right)^{\frac{1}{r}} \cdot(\mu(X))^{\frac{1}{s}-\frac{1}{r}}=\|h\|_{r} \cdot(\mu(X))^{\frac{1}{s}-\frac{1}{r}}$ and hence the assertion.
2. On account of Zorn's lemma ([13, p. 14.2.4]) the set $\{|f| \geq 1\}$ possesses a maximal cover of measurable sets referring to inclusion resp. refinement and since \mathcal{A} is closed under intersection this mus be a partition. Due to $\int|f|^{p} d \mu<\infty$ we have $\mu(f \geq 1)<\infty$ and since μ is bounded below this maximal partition consists of $n:=\frac{\mu(f \geq 1)}{\alpha}+1$ sets $\left(A_{i}\right)_{1 \leq i \leq n}$ with $\mu\left(A_{i}\right)>\alpha$. Owing to 5.3 for every $\epsilon>0$ there is an elementary function $e=\sum_{i=1}^{n} \alpha_{i} \chi_{A_{i}} \leq f$ with $\int_{\{|f| \geq 1\}} e d \mu=\sum_{i=1}^{n} \alpha_{i} \mu\left(A_{i}\right) \geq \int_{\{|f| \geq 1\}}|f|^{p} d \mu-\epsilon \cdot \alpha$. Hence on the one hand for every $x \in A_{i}$ with $1 \leq i \leq n$ we have $|f|^{p}(x) \geq \alpha_{i} \Leftrightarrow|f|^{q}(x) \geq \alpha_{i}^{\frac{q}{p}}$ and on the other hand for every
$1 \leq i \leq n$ there is an $x_{i} \in A_{i}$ with $\alpha_{i} \geq\left|f^{p}\left(x_{i}\right)\right|-\epsilon \Leftrightarrow \alpha_{i}^{\frac{q}{p}} \geq\left(\left|f^{p}\left(x_{i}\right)\right|-\epsilon\right)^{\frac{q}{p}} \geq\left|f^{q}(x x i)\right|-\epsilon$. $\frac{q}{p} \cdot\left(\left|f^{p}\left(x_{i}\right)\right|-\epsilon\right)^{\frac{q}{p}-1} \geq\left|f^{q}\left(x_{i}\right)\right|-\epsilon \cdot \frac{q}{p} \cdot\left|f^{q-p}\left(x_{i}\right)\right|$ since the tangent $t(x+\epsilon)=x^{\frac{q}{p}}+\epsilon \cdot \frac{q}{p} \cdot x^{\frac{q}{p}-1}$ on the convex function $g(x)=x^{\frac{q}{p}}$ always runs below the curve, i.e. $g(x+\epsilon)=(x+\epsilon)^{\frac{q}{p}}$. Thus follows $\int_{\{|f| \geq 1\}}|f|^{q} d \mu<\sum_{i=1}^{n}\left(\left.\alpha_{i}^{\frac{q}{p}}+\epsilon \cdot \frac{q}{p} \cdot \right\rvert\, f^{q-p}\left(x_{i}\right)\right) \chi_{A_{i}}<\infty$ and also on the whole set $\int|f|^{q} d \mu=\int_{\{|f|<1\}}|f|^{q} d \mu+\int_{\{|f| \geq 1\}}|f|^{q} d \mu \leq \int_{\{|f|<1\}}|f|^{p} d \mu+\int_{\{|f| \geq 1\}}|f|^{q} d \mu<\infty$.

6.7 Completeness

Every L^{p}-Cauchy sequence $\left(f_{n}\right)_{n \in \mathbb{N}} \subset L^{p}(\mu)$ with $1 \leq p \leq \infty$ converges in the p-th mean to a $f \in L^{p}(\mu)$. Hence $L^{p}(\mu)$ is a Banach space.
Proof: For a Cauchy sequence $\left(f_{n}\right)_{n \in \mathbb{N}} \subset L^{p}(\mu)$ with $p<\infty$ exists a partial sequence $\left(f_{n_{i}}\right)_{i \in \mathbb{N}}$ with $\left\|f_{n_{i+1}}-f_{n_{i}}\right\|_{p}<\frac{1}{2^{i+1}}$ which entails $\left\|\sum_{i=0}^{k}\left|f_{n_{i+1}}-f_{n_{i}}\right|\right\|_{p} \leq 1$ due to 6.4 .2 , hence $\left\|\sum_{i=0}^{\infty}\left|f_{n_{i+1}}-f_{n_{i}}\right|\right\|_{p} \leq 1$ owing to 5.13 and finally μ-a.e. $g:=\sum_{i=0}^{\infty}\left|f_{n_{i+1}}-f_{n_{i}}\right|<\infty$ according to 5.6.2. Since Y is complete the sequence $\left(f_{n_{i}}\right)_{i \in \mathbb{N}}=\sum_{k=1}^{i}\left(f_{n_{k}}-f_{n_{k+1}}\right) \mu$-a.e. converges to an $f=\lim _{i \rightarrow \infty} f_{n_{i}}=\sum_{i=0}^{\infty}\left(f_{n_{i+1}}-f_{n_{i}}\right)$ with $|f|<g$. On account of the completeness of μ (cf. 3.10) we can define $f(x)=0$ on the remaining null set $\{|f|=\infty\}$. According to the hypothesis for every $\epsilon>0$ there is a $j \in \mathbb{N}$ with $\left\|f_{m}-f_{n_{j}}\right\|_{p}<\epsilon$ for all $m \geq n_{j}$ whence Fatou's lemma 5.14 yields $\left(\liminf _{m \geq n_{j}}\left|f_{m}-f_{n_{j}}\right|\right)^{p}=\liminf _{m \geq n_{j}}\left|f_{m}-f_{n_{j}}\right|^{p} \in L_{1}(X ; \mathbb{R})$ with $\int\left(\liminf _{m \geq n_{j}}\left|f_{m}-f_{n_{j}}\right|^{p}\right) d \mu \leq \liminf _{m \geq n_{j}} \int\left|f_{m}-f_{n_{j}}\right|^{p} d \mu<\epsilon^{p}$ Since μ-a.e. $f=\lim _{i \rightarrow \infty} f_{n_{i}}$ we have μ-a.e $\liminf _{m \geq n_{j}}\left|f_{m}-f_{n_{j}}\right|=\left|f-f_{n_{j}}\right|$ so that $\left\|f-f_{n_{j}}\right\|_{p}=\left\|\liminf _{m \geq n_{j}}\left|f_{m}-f_{n_{j}}\right|\right\|_{p}<\epsilon$, i.e. the subsequence $\left(f_{n_{i}}\right)_{i \in \mathbb{N}}$ and hence the entire Cauchy sequence $\left(f_{n}\right)_{n \in \mathbb{N}}(c f .[13$, p. 14.1.2]) converges in the p-th mean to f. On account of $\|f\|_{p} \leq\left\|f-f_{n}\right\|_{p}+\left\|f_{n}\right\|_{p}<\infty$ we have $f \subset L^{p}(\mu)$.
For $p=\infty$ let $A:=\bigcup_{m, n \in \mathbb{N}}\left(\left\{\left|f_{m}-f_{n}\right|>\left\|f_{m}-f_{n}\right\|_{\infty}\right\} \cup\left\{\left|f_{m}\right|>\left\|f_{m}\right\|_{\infty}\right\}\right)$. Then we have $\mu(A)=0$ and $\left(f_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence on $X \backslash A$ referring to the supremum norm. Due to the completeness of Y it converges uniformly and in particular with reference to $\left\|\|_{\infty}\right.$ to a bounded function $|f|<\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{\infty}$. Again we define $f(x)=0$ for $x \in A$ and finally obtain $f \subset L^{\infty}(\mu)$.

6.8 Special cases

1. The sequence $\left(f_{n}\right)_{n \in \mathbb{N}} \subset L^{p}(\lambda)$ with $f_{n}:=\chi_{A_{n}}$ for $A_{n}:=\left[\frac{n}{2^{k}} ; \frac{n+1}{2^{k}}\right]$ with $k(n)=\min \left\{k: n<2^{k}\right\}$ shows that in general the μ-a.e. convergence cannot be extended to the entire sequence:: $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{p}=\lim _{n \rightarrow \infty}\left(\lambda\left(\left[\frac{n}{2^{k}} ; \frac{n+1}{2^{k}}\right]\right)\right)^{\frac{1}{p}}=\lim _{n \rightarrow \infty} 2^{-\frac{k(n)}{p}}=\lim _{n \rightarrow \infty} \frac{1}{n^{1 / p}}=0$ but for every $x \in\left[\frac{1}{2} ; 1\right]$ and $k \geq 1$ there is an $n \in \mathbb{N}$ with $x \in\left[\frac{n}{2^{k}} ; \frac{n+1}{2^{k}}\right]$ such that $\left(f_{n}\right)_{n \in \mathbb{N}}$ does not converge for any $x \in\left[\frac{1}{2} ; 1\right]$ whereas the partial sequence $\left(f_{2^{k}}\right)_{k \in \mathbb{N}}$ converges for every $x \neq \frac{1}{2} .$.
2. $L^{2}(\mu)$ is a Hilbert space with the inner product $\langle f, g\rangle:=\int f \bar{g} d \mu$ and the norm $\|f\|:=$ $\langle f, g\rangle^{\frac{1}{2}}:=\left(\int f \bar{f} d \mu\right)^{\frac{1}{2}}=\left(\int|f|^{2} d \mu\right)^{\frac{1}{2}}$.

6.9 Convergence in the p-th mean, in measure and μ-a.e

Every sequence $\left(f_{n}\right)_{n \in \mathbb{N}} \subset L^{p}(\mu)$ with $1 \leq p<\infty$ converging in the p-th mean to an $f \in L^{p}(\mu)$ converges in measure to f. Also there exists a subsequence $\left(f_{n_{k}}\right)_{k \in \mathbb{N}}$ converging μ-a.e. to f and for every $\epsilon>0$ there is a set $Z_{\epsilon} \subset X$ with measure $\mu\left(Z_{\epsilon}\right)<\epsilon$ such that $\left(f_{n_{k}}\right)_{k \in \mathbb{N}}$ converges absolutely and uniformly on $X \backslash Z_{\epsilon}$.

Proof: The convergence in measure follows at once from $\epsilon \cdot \mu\left(\left|f-f_{n}\right| \geq \epsilon\right)=\epsilon^{p} \cdot \mu\left(\left|f-f_{n}\right|^{p} \geq \epsilon^{p}\right) \leq$ $\int\left|f-f_{n}\right|^{p} d \mu$ According to the hypothesis for every $k \geq 1$ there is an $n_{k} \geq n_{k-1} \in \mathbb{N}$ such that $\left\|f-f_{n_{k}}\right\|_{p} \leq \frac{1}{2^{2 k}}$. Then for $Y_{k}=\left\{\left|f-f_{n_{k}}\right|^{p} \geq \frac{1}{2^{k}}\right\}$ we have $\frac{1}{2^{k}} \mu\left(Y_{k}\right)=\int_{Y_{n}} \frac{1}{2^{k}} d \mu \leq \int_{X}\left|f-f_{n_{k}}\right|^{p} d \mu \leq$ $\frac{1}{2^{2 k}}$ whence $\mu\left(Y_{k}\right) \leq \frac{1}{2^{k}}$. Hence $\mu\left(Z_{m}\right) \leq \frac{1}{2^{m-1}}$ for $Z_{m}=\bigcup_{k=m}^{\infty} Y_{k}$ and $\left|f(x)-f_{n_{k}}(x)\right|^{p}<\frac{1}{2^{k}}$ for every $x \in X \backslash Z_{m}$ resp. $k \geq m$ such that $\left(f_{n_{k}}\right)_{k \geq m}$ converges to f absolutely and uniformly on on $X \backslash Z_{m}$ as well as pointwise on $X \backslash \bigcap_{m=1}^{\infty} Z_{m}$ with $\mu\left(\bigcap_{m=1}^{\infty} Z_{m}\right)=0$.

6.10 Lebesgue's dominated convergence theorem for L^{p}-spaces

A sequence $\left(f_{n}\right)_{n \in \mathbb{N}} \subset L^{p}(X ; Y)$ converging μ-a. e. to some f converges in the p-th mean to $f \in L^{p}(X ; Y)$ iff there is an integrable majorant $g \in L^{p}\left(X ; \mathbb{R}_{0}^{+}\right)$such that for every $n \in \mathbb{N}$ and μ-a.e. we have $\left|f_{n}\right| \leq g$.
Proof: For every $K \in \mathbb{N}$ the increasing sequence $\left(\sup _{k \leq m ; n \leq l}\left|f_{n}-f_{m}\right|^{p}\right)_{l>k}$ is bounded by $\left|f_{n}-f_{m}\right|^{p} \leq$ $2^{p} g^{p}$ and hence has bounded integrals $\int\left(\sup _{k \leq m ; n \leq l}\left|f_{n}-f_{m}\right|^{p}\right) d \mu \leq 2^{p} \int g^{p} d \mu=2^{p}\|g\|_{p}^{p}$. According to the monotone convergence theorem 5.13 we conclude $\int\left(\sup _{k \leq m ; n}\left|f_{n}-f_{m}\right|^{p}\right) d \mu \leq 2^{p} \int g^{p} d \mu$ for every $k \in \mathbb{N}$. Hence we can apply the monotone convergence theorem a second time to the decreasing
 Hence $\left(f_{n}\right)_{n \in \mathbb{N}}$ is L^{p}-Cauchy and due to the completeness 6.7 of $L^{p}(X ; Y)$ it converges in the p-th mean to an $f^{\#} \in L^{p}(X ; Y)$ coninciding μ-a.e. with f according to 5.11.

Note: The proofs of the preceding two theorems is completely analogous to those of the corresponding statements 5.11 resp. 5.14 for L^{1} with the small but essential difference that the generalized theorems 6.9 resp. 6.10 require the completeness 6.7 of L^{p} which like the dominated convergence for L^{1} is based in the completeness5.10 of L^{1}. Alas the proof of this latter property depends on an elementary approximation by step functions and cannot be duplicated for L^{p}.

6.11 L^{p} - and uniform limits of step functions

1. For $1 \leq p<\infty$ we have $\overline{\left(\mathcal{S}(\mathcal{A} ; Y) ;\| \|_{p}\right)}=L^{p}(X ; Y)$
2. For a finite measure space $(X ; A ; \mu)$ and a finite dimensional Banach space $\left(K^{n} ;| |\right)$ we have $\overline{\left(\mathcal{S}\left(\mathcal{A} ; K^{n}\right) ;\| \|_{\infty}\right)}=L^{\infty}\left(X ; K^{n}\right)$.

Proof:

1. According to 5.5 for every $f \in L^{p}(\mu)$ resp. $f^{p} \in L^{1}(\mu)$ and $p<\infty$ there is a sequence $\left(\varphi_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{S}(\mathcal{A} ; Y)$ of step functions converging μ-a.e. to f. The truncated version $\psi_{n}(x)=$ $\left\{\begin{array}{c}\left|\varphi_{n}(x)\right| \text { for }\left|\varphi_{n}(x)\right| \leq 2|f(x)| \\ 0 \\ \text { else }\end{array}\right.$ still converges μ-a-e- to f and satisfies the hypothesis for 6.10 with the majorant $2|f| \in L^{p}\left(X ; \mathbb{R}_{0}^{+}\right)$which yields the convergence in tne p-th mean and hence the assertion.
2. For $|f| \leq N ; M \geq 1$ and $\mathbf{k}=\left(k_{1} ; \ldots ; k_{n}\right) \in K_{M}=\left[-N M ; N M{ }^{n} \subset \mathbb{Z}^{n}\right.$ we define $\varphi_{M}=$ $\sum_{k \in K_{M}} \frac{k}{M} \chi_{A_{k}, M} \in \mathcal{S}\left(\mathcal{A} ; K^{n}\right)$ with $A_{k, M}=f^{-1}\left[\prod_{i=1}^{n}\left[\frac{k_{i}}{M} ; \frac{k_{i}+1}{M}[] \in \mathcal{A}\right.\right.$ and $\mu\left(A_{k, M}\right)$ such that $\left\|f-\varphi_{M}\right\|_{\infty} \leq \frac{\sqrt{n}}{M}$.

6.12 Continuity of the integral measure

For an integrable $f \in L^{p}(X ; Y)$ and every $\epsilon>0$ there is a $\delta>0$ such that for every $E \in \mathcal{A}$ with $\mu(E)<\delta$ we have $\int_{E}|f| d \mu<\epsilon$.
Proof: The sequence $\left(\varphi_{n}\right)_{n \geq 1}$ with $\varphi_{n}(x)=\left\{\begin{array}{c}|f(x)| \text {, for } \left\lvert\, \begin{array}{c}|f(x)| \leq n \\ n \\ \text { else }\end{array}\right. \text { satisfies the conditions for monotone }\end{array}\right.$ convergence 5.13 such that $\lim _{n \rightarrow \infty} \int \varphi_{n} d \mu=\int|f| d \mu$. Hence for $\epsilon>0$ there is an $n_{0} \geq 1$ such that $\int\left(|f|-\varphi_{n}\right) d \mu<\frac{\epsilon}{2}$. Since for $\delta=\frac{\epsilon}{2 n}$ and every $E \in \mathcal{A}$ with $\mu(E)<\delta$ we have $\int_{E} \varphi_{n} d \mu \leq n \cdot \mu(E)=\frac{\epsilon}{2}$ it follows that $\int_{E}|f| d \mu \leq \int_{E}\left(|f|-\varphi_{n}\right) d \mu+\int_{E} \varphi_{n} d \mu \leq \epsilon$.

6.13 Vitali's convergence theorem

A sequence $\left(f_{n}\right)_{n \geq 1} \subset L^{p}(\mu)$ converging μ-a.e. for $1 \leq p<\infty$ to some f also converges in the p-th mean to $f \in L^{p}(\mu)$ iff for every $\epsilon>0$

1. there is an $A_{\epsilon} \in \mathcal{A}$ with $\mu\left(A_{\epsilon}\right)<\infty$ and $\int_{X \backslash A_{\epsilon}}\left|f_{n}\right|^{p} d \mu<\epsilon$ for all $n \geq 1$.
2. there is a $\delta>0$ such that for every $E \in \mathcal{A}$ with $\mu(E)<\delta$ we have $\int_{E}\left|f_{n}\right|^{p} d \mu<\epsilon$ for all $n \geq 1$.

Proof:

$\Rightarrow: 1$.: Due to the hypothesis for $\epsilon>0$ there is an $n_{0} \geq 1$ such that $\int\left|f_{n}-f\right|^{p} d \mu<\epsilon$ for all $n \geq n_{0}$. Owing to 5.13 with $|f|^{p}=\sup _{m \geq 1}|f|^{p} \cdot \chi_{\left\{|f|^{p}>\frac{1}{m}\right\}}$ and $f \in L^{p}(\mu)$ there is an $m_{0} \geq 1$ with $\int|f|^{p}$. $\chi_{\left\{|f|^{p} \leq \frac{1}{m}\right\}^{2}} d \mu=\int|f|^{p} d \mu-\int|f|^{p} \cdot \chi_{\left\{|f|^{p}>\frac{1}{m}\right\}^{2}} d \mu<\epsilon$ and $\mu\left(|f|^{p} \leq \frac{1}{m}\right) \leq \mu\left(|f|^{p} \leq \frac{1}{m}\right) \leq \int|f|^{p} d \mu<\infty$ for all $m \geq m_{0}$. For those f_{n} with $1 \leq n \leq n_{0}$ we use the same reasoning as above to find an $m_{1} \geq m_{0}$ such that the sets $B_{\epsilon}=\left\{|f|^{p}>\frac{1}{m_{1}}\right\} \in \mathcal{A}$ resp. $C_{\epsilon}=\left\{\max _{1 \leq n<n_{0}}\left|f_{n}\right|^{p}>\frac{1}{m_{1}}\right\} \in \mathcal{A}$ with $\mu\left(X \backslash B_{\epsilon}\right), \mu\left(X \backslash C_{\epsilon}\right)<\infty$ satisfy $\int_{X \backslash B_{\epsilon}}|f|^{p} d \mu<\epsilon$ resp. $\int_{X \backslash C_{\epsilon}}\left|f_{n}\right|^{p} d \mu<\epsilon$ for all $1 \leq n<n_{0}$. For $A_{\epsilon}=B_{\epsilon} \cup C_{\epsilon}$ Minkowski's inequality 6.4.2 yields $\left(\int_{X \backslash A_{\epsilon}}\left|f_{n}\right|^{p} d \mu\right)^{\frac{1}{p}} \leq\left(\int_{X \backslash A_{\epsilon}}\left|f_{n}-f\right|^{p} d \mu\right)^{\frac{1}{p}}+$ $\left(\int_{X \backslash A_{\epsilon}}|f|^{p} d \mu\right)^{\frac{1}{p}}<\epsilon^{\frac{1}{p}}+\epsilon^{\frac{1}{p}}$ resp. $\int_{X \backslash A_{\epsilon}}\left|f_{n}\right|^{p} d \mu<2^{p} \epsilon$ for all $n \geq 1$.
2.: For a given $\epsilon>0$ choose $n_{0} \geq 1$ as in 1 . such that $\int\left|f_{n}-f\right|^{p} d \mu<\epsilon$ for all $n \geq n_{0}$. According to the preceding lemma 6.12 there is a $\delta>0$ such that for all $E \in \mathcal{A}$ with $\mu(E)<\delta$ we have $\int_{E}|f|^{p} d \mu<\epsilon$ resp. $\int_{E}\left|f_{n}\right|^{p} d \mu<\epsilon$ for all $1 \leq n<n_{0}$. As in 1 . Minkowski's inequality 6.4 .2 yields the desired estimate $\int_{E}\left|f_{n}\right|^{p} d \mu<2^{p} \epsilon$ for the remaining $n \geq n_{0}$.
\Leftarrow : According to 1 . for $\epsilon>0$ there is an $A_{\epsilon} \in \mathcal{A}$ with $\mu\left(A_{\epsilon}\right)<\infty$ such that $\int_{X \backslash A_{\epsilon}}\left|f_{n}\right|^{p} d \mu<\epsilon$ for all $n \geq 1$ so thath with Fatou 5.14 we obtain $\int_{X \backslash A_{\epsilon}}|f|^{p} d \mu \leq \liminf _{n \geq 1} \int_{X \backslash A_{\epsilon}}\left|f_{n}\right|^{p} d \mu<\epsilon$. As Minkowski 6.4.2 gives $\left(\int_{X \backslash A_{\epsilon}}\left|f-f_{n}\right|^{p} d \mu\right)^{\frac{1}{p}} \leq\left(\int_{X \backslash A_{\epsilon}}\left|f_{n}\right|^{p} d \mu\right)^{\frac{1}{p}}+\left(\int_{X \backslash A_{\epsilon}}|f|^{p} d \mu\right)^{\frac{1}{p}}<2 \epsilon^{\frac{1}{p}}$. According to 2. resp. Egorov 4.15 for every $\delta>0$ there is a $B_{\delta} \in \mathcal{A}$ as well as an $n_{0} \geq 1$ with $\mu\left(B_{\delta}\right)<\delta$ such that $\left|f(x)-f_{n}(x)\right|^{p}<\epsilon$ for every $x \in A_{\epsilon} \backslash B_{\delta}$ and hence $\left(\int_{A_{\epsilon} \backslash B_{\delta}}\left|f-f_{n}\right|^{p} d \mu\right)^{\frac{1}{p}}<\epsilon^{\frac{1}{p}}$ for every $n \geq n_{0}$. On the set B_{δ} we follow the reasoning for $X \backslash A_{\epsilon}$ from above to find $\int_{B_{\delta}}|f|^{p} d \mu \leq \liminf _{n \geq 1} \int_{B_{\delta}}\left|f_{n}\right|^{p} d \mu<\epsilon$ with Fatou and finally $\left(\int_{B_{\delta}}\left|f-f_{n}\right|^{p} d \mu\right)^{\frac{1}{p}} \leq\left(\int_{B_{\delta}}\left|f_{n}\right|^{p} d \mu\right)^{\frac{1}{p}}+\left(\int_{B_{\delta}}|f|^{p} d \mu\right)^{\frac{1}{p}}<2 \epsilon^{\frac{1}{p}}$. Combining our results over $X \backslash A_{\epsilon}, A_{\epsilon} \backslash B_{\delta}$ and B_{δ} we obtain $\left(\int_{X}\left|f-f_{n}\right|^{p} d \mu\right)^{\frac{1}{p}}<5 \epsilon^{\frac{1}{p}}$ for $n \geq n_{0}$.

7 Product spaces

7.1 The initial σ-algebra

The initial σ-algebra $\sigma\left(f_{i}: i \in I\right):=\sigma\left(\bigcup_{i \in I} f_{i}^{-1}\left(\mathcal{A}_{i}\right)\right)$ on a set X referring to the functions f_{i} : $X \rightarrow\left(Y_{i} ; \mathcal{A}_{i}\right)$ with $i \in I$ is the smallest σ-algebra on X such that all f_{i} are measurable. This concept is closely related to that of the initial topology, cf. [13].

7.2 The trace of a measure space

The trace σ-algebra $\mathcal{A}_{B}=\sigma(i)$ on a subset $B \subset X$ of a measure space $(X ; \mathcal{A} ; \mu)$ ist the initial σ-algebra with reference to the canonical injection $i: B \rightarrow X$. On account of $i^{-1}[A]=A \cap B$ the measurable sets in B simply are the intersections of the measurable sets in A in X with B. The trace of the measure μ is its restriction $\left.\mu\right|_{B}$.

7.3 The product- σ-algebra

The product- σ-algebra $\mathcal{A}_{I}=\bigotimes_{i \in I} \mathcal{A}_{i}=\sigma\left(\pi_{i}: i \in I\right)$ on the product $X_{I}=\prod_{i \in I} X_{i}$ of the measurable spaces $\left(X_{i} ; \mathcal{A}_{i}\right)_{i \in I}$ is the initial σ-Algebra with reference to the projections $\pi_{i}: X_{I} \rightarrow X_{i}$. A mapping $f: Y \rightarrow X_{I}$ is measurable iff the inverse images $f^{-1}\left[\pi_{i}^{-1}\left[A_{i}\right]\right]=\left(\pi_{i} \circ f\right)^{-1}\left[A_{i}\right]$ of measurable sets in X_{i} are measurable in $(Y ; \mathcal{A})$. Hence f is measurable iff every component $\pi_{i} \circ f:(Y ; \mathcal{A}) \rightarrow$ $\left(X_{i} ; \mathcal{A}_{i}\right)$ is measurable. Due to 4.4 the product σ-algebra induced by the families $\mathcal{E}_{i} \subset \mathcal{P}\left(X_{i}\right)$ with $i \in I$ is $\bigotimes_{i \in I} \sigma\left(\mathcal{E}_{i}\right)=\sigma\left(\bigcup_{i \in I} \pi_{i}^{-1}\left(\sigma\left(\mathcal{E}_{i}\right)\right)\right)=\sigma\left(\bigcup_{i \in I} \sigma\left(\pi_{i}^{-1}\left(\mathcal{E}_{i}\right)\right)\right)=\sigma\left(\bigcup_{i \in I} \pi_{i}^{-1}\left(\mathcal{E}_{i}\right)\right)$.

7.4 Measurable rectangles and cylinder sets

1. The family $\mathcal{S}_{I}=\left\{\bigcap_{j \in J} \pi_{j}^{-1}\left[A_{j}\right]=\prod_{j \in J} A_{i} \times \prod_{i \in I \backslash J} X_{i}: A_{j} \in \mathcal{A}_{j}, j \in J \subset I \wedge J\right.$ finite $\}$ of measurable rectangles is closed under intersections and a basis for the product- σ-algebra $\mathcal{A}_{I}=\sigma\left(\mathcal{S}_{I}\right)$.
2. For $J \subset K \subset I$ the projections $\pi_{K}^{J}:\left(X_{J} ; \mathcal{A}_{J}\right) \rightarrow\left(X_{K} ; \mathcal{A}_{K}\right)$ are measurable and for $J \cap K=\emptyset$ we have $\mathcal{A}_{J \cup K}=\mathcal{A}_{J} \otimes \mathcal{A}_{K}$.
3. The algebra $\mathcal{Z}_{I}=\left\{\pi_{J}^{-1}\left[A_{J}\right]=A_{J} \times \prod_{i \in I \backslash J} X_{i}: A_{J} \in \mathcal{A}_{J}, J \subset I \wedge J\right.$ finite $\}$ of cylinder sets also is a π-basis for the product- σ-algebra: $\mathcal{A}_{I}=\sigma\left(\mathcal{Z}_{I}\right)$. The cylinder sets $\mathcal{Z}_{J}=\sigma\left(\mathcal{S}_{J}\right)$ themselves are σ-algebrae with $\mathcal{Z}_{J} \subset \mathcal{Z}_{K}$ for $J \subset K$.
4. The family $\mathcal{A}_{Z}=\left\{\pi_{J}^{-1}\left[A_{J}\right]=A_{J} \times \prod_{i \in I \backslash J} X_{i}: A_{J} \in \mathcal{A}_{J}, J \subset I \wedge J\right.$ countable $\}$ of countable cylinder sets is a σ-algebra and identical with the product- σ-algebra: $\mathcal{A}_{I}=\mathcal{A}_{Z}$. Every measurable set A of a product- σ-algebra may depend from a countable set of coordinates in contrast to the product topology whose open sets are defined by finitely many coordinates (cf. [13, p. 4.2]).

Proof:

1. \mathcal{S}_{I} is closed under intersection since for finite $J, K \subset I$ and $A_{j} \in \mathcal{A}_{j}$ with $j \in J$ resp. $B_{k} \in \mathcal{A}_{k}$ with $k \in K$ we have $\left(\bigcap_{j \in J} \pi_{j}^{-1}\left[A_{j}\right]\right) \cap\left(\bigcap_{k \in K} \pi_{k}^{-1}\left[B_{k}\right]\right)=\left(\bigcap_{j \in J \backslash K} \pi_{j}^{-1}\left[A_{j}\right]\right) \cap$ $\left(\bigcap_{l \in J \cap K} \pi_{l}^{-1}\left[A_{l} \cap B_{l}\right]\right) \cap\left(\bigcap_{k \in K \backslash J} \pi_{k}^{-1}\left[B_{k}\right]\right) \in \mathcal{S}_{I}$ with $A_{l} \cap B_{l} \in \mathcal{A}_{l}$ for $l \in J \cap K$. Due to $\left\{\pi_{i}^{-1}\left[A_{i}\right]: A \in \mathcal{A}_{i}, i \in I\right\} \subset \mathcal{S}_{I}$ we have $\mathcal{A}_{I}=\sigma\left(\left\{\pi_{i}^{-1}\left[A_{i}\right]: A_{i} \in \mathcal{A}_{i}, i \in I\right\}\right) \subset \sigma\left(\mathcal{S}_{I}\right)$ and on account of $\mathcal{S}_{I} \subset \mathcal{A}_{I}$ the converse follows: $\sigma\left(\mathcal{S}_{I}\right) \subset \mathcal{A}_{I}$.
2. The projections are measurable since with $\bigcap_{k \in K}\left(\pi_{k}^{K}\right)^{-1}\left[A_{k}\right] \in \mathcal{S}_{K}$ for $A_{k} \in \mathcal{A}_{k}$ and $k \in K$ we have $\left(\pi_{K}^{J}\right)^{-1}\left(\bigcap_{k \in K}\left(\pi_{k}^{K}\right)^{-1}\left[A_{k}\right]\right)=\bigcap_{k \in K}\left(\pi_{K}^{J}\right)^{-1}\left(\left(\pi_{k}^{K}\right)^{-1}\left[A_{k}\right]\right)=\bigcap_{k \in K}\left(\pi_{k}^{J}\right)^{-1}\left[A_{k}\right] \in \mathcal{A}_{J}$ and hence with 1. follows the assertion. The measurability of $\pi_{J}^{J \cup K}$ resp. $\pi_{K}^{J \cup K}$ entails $\mathcal{A}_{J \cup K} \supset$ $\mathcal{A}_{J} \otimes \mathcal{A}_{K}$ and from 1. resp. $\mathcal{S}_{J \cup K} \subset \mathcal{A}_{J} \otimes \mathcal{A}_{K}$ follows the converse $\mathcal{A}_{J \cup K}=\sigma\left(\mathcal{S}_{J \cup K}\right) \subset \mathcal{A}_{J} \otimes \mathcal{A}_{K}$.
3. \mathcal{Z}_{I} is an algebra since obviously $\emptyset, X \in \mathcal{A}_{Z}$ and for $\pi_{J}^{-1}\left[A_{J}\right], \pi_{K}^{-1}\left[A_{K}\right] \in \mathcal{Z}_{I}$ with $A_{J} \in$ $\mathcal{A}_{J}, B_{K} \in \mathcal{A}_{K}$ and finite $J, K \subset I$ owing to 2 . we have $\left(\pi_{J}^{J \cup K}\right)^{-1}\left[A_{J}\right],\left(\pi_{K}^{J \cup K}\right)^{-1}\left[B_{K}\right] \in \mathcal{A}_{J \cup K}$. Hence the intersection $\left(\pi_{J}^{-1}\left[A_{J}\right]\right) \cap\left(\pi_{K}^{-1}\left[B_{K}\right]\right)=\pi_{J \cup K}^{-1}\left(\left(\left(\pi_{J}^{J \cup K}\right)^{-1}\left[A_{J}\right]\right) \cap\left(\pi_{K}^{J \cup K}\right)^{-1}\left[B_{K}\right]\right)$ $\in \mathcal{Z}_{I}$ and likewise the union are contained in \mathcal{Z}_{I}. Concerning the complements we consult e.g. [Vorwerg2022a] to obtain $X_{I} \backslash \pi_{J}^{-1}\left[A_{J}\right]=\left(\pi_{J}^{-1}\left[X_{J}\right]\right) \backslash\left(\pi_{J}^{-1}\left[A_{J}\right]\right)=\pi_{J}^{-1}\left[X_{J} \backslash A_{J}\right] \in \mathcal{Z}_{I}$ since $X_{J} \backslash A_{J} \in \mathcal{A}_{J}$. On the one hand we have $\sigma\left(\mathcal{Z}_{I}\right) \subset \mathcal{A}_{I}$ since according to 2 . we have $\mathcal{Z}_{I} \subset \mathcal{A}_{I}$. On the other hand 1. yields $\mathcal{A}_{I}=\sigma\left(\mathcal{S}_{I}\right) \subset \sigma\left(\mathcal{Z}_{I}\right)$ since $\mathcal{S}_{I} \subset \mathcal{Z}_{I}$. Again on account of 2 . the families $\mathcal{Z}_{J}=\pi_{J}^{-1}\left(\mathcal{A}_{J}\right)$ are σ-algebrae whereas the linear order by inclusion on the family of cylinder sets follows from $\left(\pi_{J}^{K}\right)^{-1}\left(\mathcal{A}_{J}\right) \subset \mathcal{A}_{K}$ by application of π_{K}^{-1}. Note: The properties of a σ-algebra as well as the linear ordering by inclusion obviously extend to arbitrary index sets, notable countable ones, as shown below:
4. The family \mathcal{A}_{Z} is again an algebra since the reasoning from 3. can be transferred to countable index sets. It is a σ-algebra since $\bigcup_{n \in \mathbb{N}} \pi_{J_{n}}^{-1}\left[A_{J_{n}}\right]=\pi_{J}^{-1}\left(\bigcup_{n \in \mathbb{N}}\left(\left(\pi_{J_{n}}^{J}\right)^{-1}\left[A_{J_{n}}\right]\right)\right) \in \mathcal{A}_{Z}$ with $\left(\pi_{J_{n}}^{J}\right)^{-1}\left[A_{J_{n}}\right] \in \mathcal{A}_{J}$ and countable $J=\bigcup_{n \in \mathbb{N}} J_{n}$. In particular we have $\mathcal{A}_{Z} \subset \sigma\left(\mathcal{Z}_{I}\right)=\mathcal{A}_{I}$. Conversely from $\mathcal{A}_{Z} \supset \mathcal{Z}_{I}$ and 3 . follows the inclusion $\mathcal{A}_{Z} \supset \sigma\left(\mathcal{Z}_{I}\right)=\mathcal{A}_{I}$.

7.5 The product of Borel σ-algebrae and the Borel σ-algebra of a product

The product $\mathcal{B}_{I}:=\bigotimes_{i \in I} \sigma\left(\mathcal{O}_{i}\right)$ of the Borel σ-algebrae \mathcal{B}_{i} of the topological spaces $\left(X_{i} ; \mathcal{O}_{i}\right)_{i \in I}$ is the smallest σ-Algebra on $X=\prod_{i \in I} X_{i}$ or initial σ-algebra such that all projections π_{i} : $\left(X ; \mathcal{B}_{I}\right) \rightarrow\left(X_{i} \mathcal{B}_{i}\right)$ are measurable. The π_{i} are continuous with reference to the product topology $\mathcal{O}=\bigotimes_{i \in I} \mathcal{O}_{i}$ (cf. [13, p. 4.2]) and hence due to 4.4 measurable with regard to the Borel σ-algebra $\mathcal{B}=\sigma\left(\bigotimes_{i \in I} \mathcal{O}_{i}\right)$, i.e. $\mathcal{B}_{I}=\bigotimes_{i \in I} \sigma\left(\mathcal{O}_{i}\right) \subset \sigma\left(\bigotimes_{i \in I} \mathcal{O}_{i}\right)=\mathcal{B}$. For countable I and second countable \mathcal{O}_{i} the converse inclusion is also true since with countable bases \mathcal{E}_{i} of \mathcal{O}_{i} the basis $\mathcal{E}=\left\{\pi_{i}^{-1}\left(E_{i}\right): E_{i} \in \mathcal{E}_{i}, i \in I\right\}$ of the topology is again countable and hence also generates the Borel σ-algebra $\mathcal{B}=\sigma(\mathcal{O}(\mathcal{E}))=\sigma(\mathcal{E})$ due to 1.2 such that from $\mathcal{E} \subset \mathcal{B}_{I}$ follows $\mathcal{B}=\sigma(\mathcal{E}) \subset \mathcal{B}_{I}$. Especially on polish spaces the two σ-algebrae coincide: $\mathcal{B}=\mathcal{B}_{I}$. For Hausdorff components according to [13, p. 7.10] the separation axiom T_{2} extends to the product space and owing to Tychonoff's theorem (cf. [13, p. 9.9]) any product of compact sets is again compact and hence Borel measurable due to 1.2.

7.6 Finite products of σ-algebrae

If every basis \mathcal{E}_{j} for $1 \leq j \leq m$ includes a countable cover $\left(E_{j n}\right)_{n \in \mathbb{N}} \subset \mathcal{E}_{j}$ with $\bigcup_{n \in \mathbb{N}} E_{j n}=X_{j}$ the product $\bigotimes_{j=1}^{m} \sigma\left(\mathcal{E}_{j}\right)$ is generated by the intersections $\bigcap_{j=1}^{m} \pi_{j}^{-1}\left[E_{j}\right]=\prod_{j=1}^{m} \mathcal{E}_{j}$ for all possible $E_{j} \in \mathcal{E}_{j}$: $\bigotimes_{j=1}^{m} \sigma\left(\mathcal{E}_{j}\right)=\sigma\left(\prod_{j=1}^{m} \mathcal{E}_{j}\right)$. Due to 7.4.1 on the one hand we have $\sigma\left(\prod_{j=1}^{m} \mathcal{E}_{j}\right) \subset \bigotimes_{j=1}^{m} \sigma\left(\mathcal{E}_{j}\right)$ and on the other hand $\pi_{i}^{-1}\left[E_{i}\right]=\bigcup_{n \in \mathbb{N}}\left(\prod_{j=1}^{m} \pi_{j}^{-1}\left[E_{j n}\right] \cap \pi_{i}^{-1}\left[E_{i}\right]\right) \in \sigma\left(\left\{\bigcap_{j=1}^{m} \pi_{j}^{-1}\left[E_{j}\right]: E_{j} \in \mathcal{E}_{j}\right\}\right)=\sigma\left(\prod_{j=1}^{m} \mathcal{E}_{i}\right)$ whence $\bigotimes_{j=1}^{m} \sigma\left(\mathcal{E}_{j}\right) \subset \sigma\left(\prod_{j=1}^{m} \mathcal{E}_{j}\right)$ on account of 4.1.

7.7 Finite products of Borel σ-algebrae

Analogously to the one dimensional case dealt with in 1.4 and according to 7.5 the \mathbf{n}-dimensional intervals $\mathcal{I}^{n}:=$ $\left.\left.\left\{\prod_{i=1}^{n}\right] a_{i} ; b_{i}\right]: a_{i} \leq b_{i} \in \mathbb{R}\right\} \subset \mathbb{R}^{n}$ are G_{δ} and hence \mathcal{B}^{n}-measurable. Also on account of $\left(\prod_{i=1}^{n} I_{i}\right) \cap\left(\prod_{i=1}^{n} J_{i}\right)=\prod_{i=1}^{n}\left(I_{i} \cap J_{i}\right)$ with intervals $I_{i} ; J_{i} \subset \mathbb{R}$ they are closed under intersection. Their finite unions form the algebra \mathcal{F}^{n} of the \mathbf{n}-dimensional figures: For $F=\bigcup_{k=1}^{p} \prod_{i=1}^{n} I_{k, i} ; G=\bigcup_{l=1}^{q} \prod_{i=1}^{n} J_{l, i} \in \mathcal{F}^{n}$ we obviously have $F \cup G \in \mathcal{F}^{n} ;$ $F \cap G=\bigcup_{k=1}^{p} \bigcup_{l=1}^{q} \prod_{i=1}^{n}\left(I_{k, i} \cap J_{l, i}\right) \in \mathcal{F}^{n}$ and $F \backslash G=\bigcup_{k=1}^{p} \bigcup_{l=1}^{q} \prod_{i=1}^{n}\left(I_{k, i} \backslash J_{l, i}\right) \in$ \mathcal{F}^{n}. On account of $\left.\left.\prod_{i=1}^{n}\right] a_{i} ; b_{i}\left[=\bigcup_{k \in \mathbb{N}} \prod_{i=1}^{n}\right] a_{i} ; b_{i}-\frac{1}{k}\right]$ both the intervals and the figures generate the
 Borel σ-algebra: $\mathcal{B}^{n}:=\bigotimes_{i=1}^{n} \mathcal{B}_{i}=\sigma\left(\mathcal{I}^{n}\right)=\sigma\left(\mathcal{F}^{n}\right)=\sigma\left(\left\{\prod_{i=1}^{n}\right] a_{i} ; \infty\left[: a_{i} \in \mathbb{R}\right\}\right)$ due to 1.1.2.

8 Product measure

8.1 Measurable cuts

For two measure spaces $\left(X_{i} ; \mathcal{A}_{i} ; \mu_{i}\right)$ with $i \in\{1 ; 2\}$, every $A \subset \mathcal{A}_{1} \otimes \mathcal{A}_{2}$ and $x_{1} \in X_{1}, x_{2} \in X_{2}$ the cuts $A_{x_{1}}:=\left\{x_{2} \in X_{2}:\left(x_{1} ; x_{2}\right) \in A\right\}$ resp. $A_{x_{2}}$ are measurable with respect to \mathcal{A}_{2} resp. \mathcal{A}_{1}.
Proof: Due to $(X \backslash Q)_{x_{1}}=X_{2} \backslash Q_{x_{1}}$ and $\left(\cup_{n \in \mathbb{N}} Q_{n}\right)_{x_{1}}=\bigcup_{n \in \mathbb{N}}\left(Q_{n}\right)_{x_{1}}$ the family of all sets $Q \subset$ $X_{1} \times X_{2}$ with measurable cuts $Q_{x_{1}} \in \mathcal{A}_{2}$ is a σ-algebra containing all measurable rectangles $A_{1} \times A_{2}$ with $A_{1} \in \mathcal{A}_{1}$ resp. $A_{2} \in \mathcal{A}_{2}$ since $\left(A_{1} \times A_{2}\right)_{x_{1}}=\left\{\begin{array}{cc}A_{2}, & x_{1} \in A_{1} \\ \emptyset, & x_{1} \notin A_{1}\end{array}\right.$. Hence according to 7.4 .3 it includes the σ-algebra $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$ generated by these sets.

8.2 Measurable measures of cuts

For two σ-finite measure spaces $\left(X_{i} ; \mathcal{A}_{i} ; \mu_{i}\right)$ with $i \in\{1 ; 2\}$ and every $A \in \mathcal{A}_{1} \otimes \mathcal{A}_{2}$ the mappings $s_{1 A}: X_{2} \rightarrow[0 ; \infty]$ with $s_{1 A}\left(x_{2}\right)=\mu_{1}\left(A_{x_{2}}\right)$ resp. $s_{2 A}: X_{1} \rightarrow[0 ; \infty]$ with $s_{2 A}\left(x_{1}\right)=\mu_{2}\left(A_{x_{1}}\right)$ are measurable.
Proof: Preliminarily so as to have access to complements we confine ourselves to $s_{1 n A}\left(x_{2}\right):=$ $\left.\mu_{1}\right|_{A_{n}}\left(A_{x_{2}}\right)$ with the restriction $\left.\mu_{1}\right|_{A_{n}}$ on one of the μ_{1}-finite sets $A_{1 n}$ from the w.l.o.g. increasing cover $\bigcup_{n \in \mathbb{N}} A_{1 n}=X_{1}$. The family \mathcal{D} of subsets $D \subset X_{1} \times X_{2}$ with a measurable $s_{1 n D}$ is a Dynkin system since the constant function $s_{1 n \emptyset}=0$ is measurable, for every measurable $s_{1 n A}$ the complement function $s_{1 n\left(X_{1} \times X_{2}\right) \backslash A}\left(x_{2}\right)=\left.\mu_{1}\right|_{A_{n}}\left(\left(\left(X_{1} \times X_{2}\right) \backslash A\right)_{x_{2}}\right)=\left.\mu_{1}\right|_{A_{n}}\left(\left(X_{1} \times X_{2}\right)_{x_{2}} \backslash A_{x_{2}}\right)=$ $\left.\mu_{1}\right|_{A_{n}}\left(\left(X_{1} \times X_{2}\right)_{x_{2}}\right)-\left.\mu_{1}\right|_{A_{n}}\left(A_{x_{2}}\right)=\left.\mu_{1}\right|_{A_{n}}\left(X_{1}\right)-s_{1 n A}\left(x_{2}\right)$ is measurable and so is the summation function $s_{1 n U ٌ D_{m}}=\sum_{m \in \mathbb{N}} s_{1 n D_{m}}$ with $\left(s_{1 n D_{m}}\right)_{m \in \mathbb{N}}$ for pairwise disjoint sets $\left(D_{m}\right)_{m \in \mathbb{N}}$ owing to 4.9. Furthermore $s_{1 n\left(A_{1} \times A_{2}\right)}\left(x_{2}\right)=\left.\mu_{1}\right|_{A_{n}}\left(\left(A_{1} \times A_{2}\right)_{x_{2}}\right)=\left.\mu_{1}\right|_{A_{n}}\left(A_{1}\right) \cdot \chi_{A_{2}}\left(x_{2}\right)$ is measurable for every measurable rectangle $A_{1} \times A_{2}$ with $A_{1} \in \mathcal{A}_{1}$ resp. $A_{2} \in \mathcal{A}_{2}$. Hence the system $\mathcal{A}_{1} \times \mathcal{A}_{2}$ of measurable rectangles is included in \mathcal{D} and since it is closed under intersection we can apply the Dynkin δ - π-theorem 1.6 resp. 7.4 .3 to obtain $\sigma\left(\mathcal{A}_{1} \times \mathcal{A}_{2}\right)=\mathcal{A}_{1} \otimes \mathcal{A}_{2} \subset \mathcal{D}$. According to the continuity from below 2.2 .2 and 4.9 the measurability of the $s_{1 n A}$ extends to $\sup _{n \in \mathbb{N}} s_{1 n A}\left(x_{2}\right)=\left.\sup _{n \in \mathbb{N}} \mu_{1}\right|_{A_{n}}\left(A_{x_{2}}\right)=\sup _{n \in \mathbb{N}} \mu_{1}\left(A_{n} \cap A_{x_{2}}\right)=\mu_{1}\left(\bigcup_{n \in \mathbb{N}} A_{n} \cap A_{x_{2}}\right)=\mu_{1}\left(A_{x_{2}}\right)=s_{1 A}\left(x_{2}\right)$. The proof for $s_{2 A}$ is of course analogous.

8.3 The product measure

On the product ($X_{1} \times X_{2} ; \mathcal{A}_{1} \otimes \mathcal{A}_{2}$) of two σ-finite measure spaces $\left(X_{i} ; \mathcal{A}_{i} ; \mu_{i}\right)$ with $i \in\{1 ; 2\}$ the expression $\left(\mu_{1} \otimes \mu_{2}\right)(A):=\int \mu_{1}\left(A_{x_{2}}\right) d \mu_{2}=\int \mu_{2}\left(A_{x_{1}}\right) d \mu_{1}$ for $A \in \mathcal{A}_{1} \otimes \mathcal{A}_{2}$ defines a σ-finite measure uniquely determined by its multiplicity $\left(\mu_{1} \otimes \mu_{2}\right)\left(A_{1} \times A_{2}\right)=\mu_{1}\left(A_{1}\right) \cdot \mu_{2}\left(A_{2}\right)$ for every $A_{1} \times A_{2} \in \mathcal{A}_{1} \times \mathcal{A}_{2}$.
Proof: On account of $\mu_{1}\left(\left(A_{1} \times A_{2}\right)_{x_{2}}\right)=\mu_{1}\left(A_{1}\right) \cdot \chi_{A_{2}}\left(x_{2}\right)$ and vice versa the two integrals coincide and the set function $\mu_{1} \otimes \mu_{2}$ is well defined and obviously uniquely determined by its multiplicity on the family $\mathcal{A}_{1} \times \mathcal{A}_{2}$ of all cylinder sets. Due to 8.2 both integrals are well defined on $\mathcal{A}_{1} \otimes \mathcal{A}_{2}=\sigma\left(\mathcal{A}_{1} \times \mathcal{A}_{2}\right)$. The first integral is σ-additive on $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$ since for every sequence $\left(A_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{A}_{1} \times \mathcal{A}_{2}$ of pairwise disjoint measurable sets the σ-additivity of μ_{1} and monotone convergence 5.13 applied to μ_{2} yield $\left(\mu_{1} \otimes \mu_{2}\right)\left(\dot{\cup}_{n \in \mathbb{N}} A_{n}\right)=\int \mu_{1}\left(\left(\cup_{n \in \mathbb{N}} A_{n}\right)_{x_{2}}\right) d \mu_{2}=$ $\int\left(\sum_{n \in \mathbb{N}} \mu_{1}\left(A_{n}\right)_{x_{2}}\right) d \mu_{2}=\sum_{n \in \mathbb{N}} \int \mu_{1}\left(A_{x_{2}}\right) d \mu_{2}=\sum_{n \in \mathbb{N}}\left(\mu_{1} \otimes \mu_{2}\right)\left(A_{n}\right)$ in the case of the latter series converging to a finite limit. In the case of a diverging series $\sum_{n \in \mathbb{N}} \int \mu_{1}\left(A_{x_{2}}\right) d \mu_{2}=\infty$ there is an $N \in \mathbb{N}$ with $\int\left(\sum_{n=0}^{N} \mu_{1}\left(A_{n}\right)_{x_{2}}\right) d \mu_{2}=\sum_{n=0}^{N} \int \mu_{1}\left(A_{x_{2}}\right) d \mu_{2} \geq C$ for every $C>0$ and hence $\left(\mu_{1} \otimes \mu_{2}\right)\left(\cup_{n \in \mathbb{N}} A_{n}\right)=\sum_{n \in \mathbb{N}}\left(\mu_{1} \otimes \mu_{2}\right)\left(A_{n}\right)=\infty$. The same argument of course appplies to the second integral such that both are measures on $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$ coinciding on the π-basis $\mathcal{A}_{1} \times \mathcal{A}_{2}$ and hence on all of $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$ due to 3.4. $\mu_{1} \otimes \mu_{2}$ is σ-finite since for a cover $\left(A_{\text {in }}\right)_{n \in \mathbb{N}} \subset \mathcal{A}_{i}$ of μ_{i}-sets $A_{\text {in }}$ with $i \in\{1 ; 2\}$ the sequence $\left(A_{1 n} \times A_{2 n}\right)_{n \in \mathbb{N}} \subset \mathcal{A}_{1} \otimes \mathcal{A}_{2}$ is a cover of $X_{1} \times X_{2}$ from $\mu_{1} \otimes \mu_{2}$-finite sets $A_{1 n} \times A_{2 n}$.

8.4 Cuts of null sets

Almost all cuts $Z_{x_{1}}$ of a $\mu_{1} \otimes \mu_{2}$-null set $Z \in \mathcal{A}_{1} \otimes \mathcal{A}_{2}$ are μ_{2}-null sets: $\left(\mu_{1} \otimes \mu_{2}\right)(Z)=0 \Rightarrow$ $\mu_{2}\left(Z_{x_{1}}\right)=0$ for every $x_{1} \in X_{1} \backslash Z_{1}$ with $\mu_{1}\left(Z_{1}\right)=0$ and analogously for $Z_{x_{2}}$.
Proof: By the approximation property 3.6 for every $\epsilon>0$ there exists a sequence $\left(A_{n}\right)_{n \in \mathbb{N}} \subset$ $\mathcal{A}_{1} \times \mathcal{A}_{2}$ of cylinder sets with $Z \subset \bigcup_{n \in \mathbb{N}} A_{n}$ and $\sum_{n \in \mathbb{N}}\left(\mu_{1} \otimes \mu_{2}\right)\left(A_{n}\right) \leq \frac{\epsilon}{n \cdot 2^{n}}$. Hence $Z_{x_{1}} \subset$ $\cup_{n \in \mathbb{N}} A_{n, x_{1}}$ and for $T_{n}=\left\{x_{1} \in X_{1}: \sum_{n \in \mathbb{N}} \mu_{2}\left(A_{n, x_{1}}\right) \geq \frac{1}{n}\right\}$ we have $\frac{1}{n} \mu_{1}\left(T_{n}\right) \leq \int \sum_{n \in \mathbb{N}} \mu_{2}\left(A_{n, x_{1}}\right) d \mu_{1}$ $\stackrel{5.12}{=} \sum_{n \in \mathbb{N}} \int \mu_{2}\left(A_{n, x_{1}}\right) d \mu_{1} \stackrel{8.3}{=} \sum_{n \in \mathbb{N}}\left(\mu_{1} \otimes \mu_{2}\right)\left(A_{n}\right) \leq \frac{\epsilon}{n \cdot 2^{n}}$ whence $\mu_{1}\left(\bigcup_{n \in \mathbb{N}} T_{n}\right) \leq \sum_{n \in \mathbb{N}} \mu_{1}\left(T_{n}\right) \leq$ ϵ and finally $\mu_{1}\left(\mu_{2}\left(Z_{x_{1}}\right)>0\right) \leq \mu_{1}\left(\mu_{2}\left(\bigcup_{n \in \mathbb{N}} A_{n, x_{1}}\right)>0\right)<\epsilon$ which proves the assertion for $Z_{1}=$ $\left\{x_{1} \in X_{1}: \mu_{2}\left(\cup_{n \in \mathbb{N}} A_{n, x_{1}}\right)>0\right\}$.

8.5 Fubini's theorem

For two σ-finite measure spaces $\left(X_{i} ; \mathcal{A}_{i} ; \mu_{i}\right)$ with $i \in\{1 ; 2\}$ every $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$-measurable function $f: X_{1} \times X_{2} \rightarrow Y$ into a separable Banach space $(Y ;| |)$ is $\mu_{1} \otimes \mu_{2}$ - integrable iff either $f_{x_{1}}: X_{2} \rightarrow Y$ with $f_{x_{1}}\left(x_{2}\right)=f\left(x_{1} ; x_{2}\right)$ is μ_{2} integrable for μ_{1}-a.e. $x_{1} \in X_{1}$ and $\int\left(\int f_{x_{1}} d \mu_{2}\right) d \mu_{1}<\infty$ or vice versa and in that case we have $\int f d\left(\mu_{1} \otimes \mu_{2}\right)=\int\left(\int f_{x_{1}} d \mu_{2}\right) d \mu_{1}=\int\left(\int f_{x_{2}} d \mu_{1}\right) d \mu_{2}$.

Proof:

Step I: The function $f_{x_{1}}: X_{2} \rightarrow Y$ with $f_{x_{1}}\left(x_{2}\right)=f\left(x_{1} ; x_{2}\right)$ is \mathcal{A}_{2}-measurable since due to 8.1 for every Borel measurable set $B \subset Y$ we have $f_{x_{1}}^{-1}[B]=\left\{\left(x_{1} ; \xi_{2}\right): f\left(x_{1} ; \xi_{2}\right) \in B\right\}=\left(f^{-1}[B]\right)_{x_{1}} \in \mathcal{A}_{2}$. For step functions $\varphi=\sum_{i=1}^{n} \alpha_{i} \chi_{F_{1, i} \times F_{2, i}}=\sum_{i=1}^{n} \alpha_{i} \chi_{F_{1, i}} \cdot \chi_{F_{2, i}} \in \mathcal{S}\left(\mathcal{F}_{1} \times \mathcal{F}_{2} ; Y\right)$ with $\alpha_{i} \in Y$ and w.l.o.g. pairwise disjoint cylinder sets $F_{1, i} \times F_{2, i} \in \mathcal{F}_{1} \times \mathcal{F}_{2}$ for the algebrae \mathcal{F}_{j} of μ_{j}-finite sets such that $\mathcal{A}_{j}=\sigma\left(\mathcal{F}_{j}\right)$ with $j \in\{1 ; 2\}$ the step function $\varphi_{x_{1}}=\sum_{i=1}^{n} \alpha_{i} \chi_{F_{1, i}}\left(x_{1}\right) \cdot \chi_{F_{2, i}} \in \mathcal{S}\left(\mathcal{F}_{2} ; Y\right)$ are obviously \mathcal{A}_{2}-measurable. On account of 8.3 the integration formula holds for these step functions since $\int \varphi d\left(\mu_{1} \otimes \mu_{2}\right)=\sum_{i=1}^{n} \alpha_{i} \cdot \mu_{1}\left(F_{1, i}\right) \cdot \mu_{2}\left(F_{2, i}\right)=\int\left(\int \varphi_{x_{1}} d \mu_{2}\right) d \mu_{1}$. Assuming $f \in L^{1}\left(X_{1} \times X_{2} ; Y\right)$
by 7.7 resp. 5.23 there is a sequence $\left(\varphi_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{S}\left(\mathcal{F}_{1} \times \mathcal{F}_{2} ; Y\right)$ with $\lim _{n \rightarrow \infty} \int\left|\varphi_{n}-f\right| d\left(\mu_{1} \otimes \mu_{2}\right)=0$ and in particular $\lim _{n \rightarrow \infty} \int\left(\int \varphi_{n, x_{1}} d \mu_{2}\right) d \mu_{1}=\lim _{n \rightarrow \infty} \int \varphi_{n} d\left(\mu_{1} \otimes \mu_{2}\right)=\int f d\left(\mu_{1} \otimes \mu_{2}\right)$.
Step II: By 5.11 and w.l.o.g. transferring to a subsequence there is a $\mu_{1} \otimes \mu_{2}$-null set $Z \in \mathcal{A}_{1} \otimes \mathcal{A}_{2}$ with $\lim _{n \rightarrow \infty} \varphi_{n}\left(x_{1} ; x_{2}\right)=f\left(x_{1} ; x_{2}\right)$ for every $\left(x_{1} ; x_{2}\right) \in\left(X_{1} \times X_{2}\right) \backslash Z$. Hence due to 8.4 we have $\lim _{n \rightarrow \infty} \varphi_{n, x_{1}}\left(x_{2}\right)=f_{x_{1}}\left(x_{2}\right)$ for every $x_{2} \in X_{2} \backslash Z_{x_{1}}$ with $\mu_{2}\left(Z_{x_{1}}\right)=0$ and $x_{1} \in X_{1} \backslash Z_{1}$ for a $\mu_{1^{-}}$ null set Z_{1}. The sequence $\left(\Phi_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{S}\left(X_{1} ; \mathcal{S}\left(\mathcal{F}_{2} ; Y\right)\right)$ with $\Phi_{n}\left(x_{1}\right)=\varphi_{n, x_{1}}$ is $L^{1}\left(\mu_{1}\right)$-Cauchy since $\left\|\Phi_{n}-\Phi_{m}\right\|_{1}=\int\left|\Phi_{n}-\Phi_{m}\right| d \mu_{1}=\int\left(\int\left|\varphi_{n, x_{1}}-\varphi_{m, x_{1}}\right| d \mu_{2}\right) d \mu_{1}=\int\left|\varphi_{n}-\varphi_{m}\right| d\left(\mu_{1} \otimes \mu_{2}\right) . \quad$ By 5.11 and w.l.o.g. retreating to a subsequence there is a a $\Phi \in \overline{\left(\mathcal{S}\left(X_{1} ; \mathcal{S}\left(\mathcal{F}_{2} ; Y\right)\right) ;\| \|_{1}\right)}=L^{1}\left(X_{1} ; \mathcal{S}\left(\mathcal{F}_{2} ; Y\right)\right)$ and a μ_{1}-null set W_{1} such that $\lim _{n \rightarrow \infty}\left\|\Phi_{n}\left(x_{1}\right)-\Phi\left(x_{1}\right)\right\|_{1}=0$ for every $x_{1} \in X_{1} \backslash\left(Z_{1} \cup W_{1}\right)$. In particular $\left\|\varphi_{n, x_{1}}\right\|_{1}=\left\|\Phi_{n}\left(x_{1}\right)\right\|_{1} \leq\left\|\Phi_{n}\left(x_{1}\right)-\Phi\left(x_{1}\right)\right\|_{1}+\left\|\Phi\left(x_{1}\right)\right\|_{1} \leq 2\left\|\Phi\left(x_{1}\right)\right\|_{1}$ for n large enough whence $\Phi\left(x_{1}\right) \in L^{1}\left(X_{2} ; Y\right)$ by 5.18. A third instance of 5.11 verifies that μ_{2}-a.e. and for $x_{1} \in$ $X_{1} \backslash\left(Z_{1} \cup W_{1}\right)$ we have $\Phi\left(x_{1}\right)=f_{x_{1}}$, i.e. $\lim _{n \rightarrow \infty}\left\|\Phi_{n}\left(x_{1}\right)-\Phi\left(x_{1}\right)\right\|_{1}=\lim _{n \rightarrow \infty} \int\left|\varphi_{n, x_{1}}-f_{x_{1}}\right| d \mu_{2}=0$ and hence $\lim _{n \rightarrow \infty} \int \varphi_{n, x_{1}} d \mu_{2}=\lim _{n \rightarrow \infty} \int f_{x_{1}} d \mu_{2}$.
Step III: Due to 4.9 the function $x_{1} \mapsto \int f_{x_{1}} d \mu_{2}$ is \mathcal{A}_{1}-measurable. The step functions $\left(\Psi_{n}\right)_{n \in \mathbb{N}} \subset$ $\mathcal{S}\left(X_{1} ; Y\right)$ with $\Psi_{n}\left(x_{1}\right)=\int \varphi_{n, x_{1}} d \mu_{2}=\sum_{i=1}^{n} \alpha_{i} \chi_{F_{1, i}}\left(x_{1}\right) \cdot \mu_{2}\left(F_{2, i}\right)$ are again $L^{1}\left(\mu_{1}\right)$-Cauchy since $\left\|\Psi_{n}-\Psi_{m}\right\|_{1}=\int\left|\Psi_{n}-\Psi_{m}\right| d \mu_{1}=\int\left(\int\left|\varphi_{n, x_{1}}-\varphi_{m, x_{1}}\right| d \mu_{2}\right) d \mu_{1}=\int\left|\varphi_{n}-\varphi_{m}\right| d\left(\mu_{1} \otimes \mu_{2}\right)$. Since by step II we have $\lim _{n \rightarrow \infty} \Psi_{n}\left(x_{1}\right)=\lim _{n \rightarrow \infty} \int \varphi_{n, x_{1}} d \mu_{2}=\int f_{x_{1}} d \mu_{2}$ for every $x_{1} \in X_{1} \backslash\left(Z_{1} \cup W_{1}\right)$ by 5.11 we conclude $\lim _{n \rightarrow \infty} \int\left|\int \varphi_{n, x_{1}} d \mu_{2}-\int f_{x_{1}} d \mu_{2}\right| d \mu_{1}=\lim _{n \rightarrow \infty}\left\|\Psi_{n}-\int f_{x_{1}} d \mu_{2}\right\|_{1}=0$. In particular by step I we have shown that $\int\left(\int f_{x_{1}} d \mu_{2}\right) d \mu_{1}=\lim _{n \rightarrow \infty} \int\left(\int \varphi_{n, x_{1}} d \mu_{2}\right) d \mu_{1}=\lim _{n \rightarrow \infty} \int \varphi_{n} d\left(\mu_{1} \otimes \mu_{2}\right)=\int f d\left(\mu_{1} \otimes \mu_{2}\right)$.
Step IV: By 5.16 we may assume $|f|_{x_{1}} \in L^{1}\left(\mu_{2} ; \mathbb{R}_{0}^{+}\right)$for every $x_{1} \in X_{1} \backslash V_{1}$ with $\mu_{1}\left(V_{1}\right)=0$ resp. $\int\left(\int|f|_{x_{1}} d \mu_{2}\right) d \mu_{1}<\infty$ and by steps I - III it suffices to show that $|f| \in L^{1}\left(\mu_{1} \otimes \mu_{2} ; \mathbb{R}_{0}^{+}\right)$. Since $|f|: X_{1} \times X_{2} \rightarrow \mathbb{R}_{0}^{+}$is measurable 5.6 provides an w.l.o.g. increasing sequence $\left(\varphi_{n}\right)_{n \in \mathbb{N}} \subset$ $\mathcal{S}\left(X_{1} \times X_{2} ; \mathbb{R}\right)$ converging outside of a $\mu_{1} \otimes \mu_{2}$-null set Z to f. As above resp. according to 8.4 we have $\lim _{n \rightarrow \infty} \varphi_{n, x_{1}}\left(x_{2}\right)=|f|_{x_{1}}\left(x_{2}\right)$ for every $x_{2} \in X_{2} \backslash Z_{x_{1}}$ with $\mu_{2}\left(Z_{x_{1}}\right)=0$ and $x_{1} \in X_{1} \backslash Z_{1}$ for a μ_{1}-null set Z_{1}. Monotone convergence 5.13 then yields $\lim _{n \rightarrow \infty} \int \varphi_{n, x_{1}} d \mu_{2}=\int|f|_{x_{1}} d \mu_{2}$ for every $x_{1} \in X_{1} \backslash\left(Z_{1} \cup V_{1}\right)$. By definition 5.1 every step function $\varphi_{n} \in L^{1}\left(X_{1} \times X_{2} ; \mathbb{R}\right)$ is integrable so that steps I - III yield $\int \varphi_{n} d\left(\mu_{1} \otimes \mu_{2}\right)=\int\left(\int \varphi_{n, x_{1}} d \mu_{2}\right) d \mu_{1}$. Since the sequence $\left(\int \varphi_{n, x_{1}} d \mu_{2}\right)_{n \in \mathbb{N}}$ is increasing we may invoke monotone convergence a second time to obtain $\lim _{n \rightarrow \infty} \int\left(\int \varphi_{n, x_{1}} d \mu_{2}\right) d \mu_{1}=$ $\int\left(\int|f|_{x_{1}} d \mu_{2}\right) d \mu_{1}$. A third instance of the monotone convergence theorem applied to $\left(\varphi_{n}\right)_{n \in \mathbb{N}} \subset$ $L^{1}\left(X_{1} \times X_{2} ; \mathbb{R}\right)$ delivers $\lim _{n \rightarrow \infty} \int \varphi_{n} d\left(\mu_{1} \otimes \mu_{2}\right)=\int|f| d\left(\mu_{1} \otimes \mu_{2}\right)$ and hence the assertion.

8.6 Finite products of measure spaces

On the finite product $\left(\prod_{i \in J} X_{i} ; \bigotimes_{i \in J} \mathcal{A}_{i}\right)$ of the σ-finite measure spaces $\left(X_{i} ; \mathcal{A}_{i} ; \mu_{i}\right)$ with a finite index set $J=\{1, \ldots, n\}$ the product measure $\bigotimes_{i \in J} \mu_{i}$ is uniquely determined by the multiplicity condition $\mu\left(\prod_{i \in J} A_{i}\right)=\prod_{i \in J} \mu_{i}\left(A_{i}\right)$ and is constructed inductively according to 8.3 by means of $\otimes_{1 \leq j \leq i} \mu_{j}:=\left(\otimes_{1 \leq j<i} \mu_{j}\right) \otimes \mu_{i}$. The resulting product of measure spaces is denoted as $\otimes_{i \in J}\left(X_{i} ; \mathcal{A}_{i} ; \mu_{i}\right):=\left(\prod_{i \in J} X_{i} ; \otimes_{i \in J} \mathcal{A}_{i} ; \otimes_{i \in J} \mu_{i}\right)$. For a Borel measurable function $f: \prod_{i \in J} X_{i} \rightarrow Y$ with finite integrals $\int\left(\ldots\left(\int f_{x_{j(2)} \ldots x_{j(n)}} d \mu_{j(1)}\right) \ldots\right) d \mu_{j(k)}$ for every $1 \leq k \leq n$ and some permutation $j: J \rightarrow J$ we have $\int f d \mu=\int\left(\ldots\left(\int f_{x_{j(2)} \ldots x_{j(n)}} d \mu_{j(1)}\right) \ldots\right) d \mu_{j(n)}$ for every permutation. Hence the convergence for one particular order of integration grants the integrability of all permutations.

8.7 Completion of λ^{n}

The product $\lambda^{n}=\otimes_{1 \leq i \leq n} \lambda$ of the complete Lebesgue measures λ on the product $\mathcal{B}^{n}=\otimes_{1 \leq i \leq n} \mathcal{B}$ of the Lebesgue σ-algebrae \mathcal{B} on \mathbb{R} is not complete any more since for any λ-null set $A \in \mathcal{B}$ we have $\lambda^{2}(A \times \mathbb{R})=0$ and for any non Lebesgue measurable $B \notin \mathcal{B}$ (cf. 3.11) evidently $A \times B \subset A \times \mathbb{R}$ holds but $A \times B \notin \mathcal{B}^{2}$. The completion of the product according to 3.9 will be included without change of notation in the extension obtained by means of the Riesz representation theorem 10.13 to the Lebesgue measure λ^{n} on the Lebesgue σ-algebra \mathcal{B}^{n}.

8.8 Translation invariance of λ^{n}

The Lebesgue-Borel measure λ^{n} on the Borel σ-algebra \mathcal{B}^{n} on \mathbb{R}^{n} is uniquely determined by its translation invariance on the π-basis of the \mathbf{n}-dimensional intervals \mathcal{I}^{n} : For every translation $T_{\mathbf{c}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with $T_{\mathbf{c}}(\mathbf{x})=\mathbf{x}+\mathbf{c}$ for a $\mathbf{c} \in \mathbb{R}^{\mathbf{n}}$ and every interval $\left[\mathbf{a} ; \mathbf{b}\left[:=\prod_{i=1}^{n}\right] a_{i} ; b_{i}\right] \in \mathcal{I}^{n}$ with $a_{i} \leq b_{i} \in \mathbb{R}$ due to 4.3 and 8.3 we have $\left.\left.\left.\left.\left.\left.T_{\mathbf{c}}\left(\lambda^{n}\right)(] \mathbf{a} ; \mathbf{b}\right]\right)=\lambda^{n}\left(T_{\mathbf{c}}^{-1}(] \mathbf{a} ; \mathbf{b}\right]\right)\right)=\lambda^{n}(] \mathbf{a}-\mathbf{c} ; \mathbf{b}-\mathbf{c}\right]\right)=$ $\left.\left.\lambda^{n}(] \mathbf{a} ; \mathbf{b}\right]\right)=\prod_{i=1}^{n}\left(b_{i}-a_{i}\right)$, i.e. the σ-finite measures $T_{\mathbf{c}}\left(\lambda^{n}\right)$ and λ^{n} coincide on the π-basis \mathcal{I}^{n} and hence on $\sigma\left(\mathcal{I}^{n}\right)=\mathcal{B}^{n}$ due to 3.4.

8.9 The transformation formula

The image of the Lebesgue-Borel measure λ^{n} under a homomorphism $T \in G L(n ; \mathbb{R})$ is $T \circ \lambda^{n}=$ $\frac{\lambda^{n}}{|\operatorname{det} T|}$ such that $\lambda^{n}(T[A])=|\operatorname{det} T| \cdot \lambda^{n}(A)$ for every Borel-measurable $A \in \mathcal{B}^{n}$.
Proof: According to the Gauss algorithm every automorphism resp. every invertible matrix is the product of elementary transformations resp. elementary matrices of the two following types:

$$
\begin{aligned}
& E_{k l}=\left(\begin{array}{ccccccc}
1 & & & & & & \\
& \ddots & & & & & \\
& & 1 & & 1 & & \\
& & & \ddots & & & \\
& & & & 1 & & \\
& & & & & \ddots & \\
& & & & & & 1
\end{array}\right)\left(\begin{array}{c}
1 \\
\vdots \\
l \\
\vdots \\
n
\end{array}\right. \\
& E_{23}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \\
& \text { (H2 } \\
& 1 \cdots k \cdots n \\
& E_{k \alpha}=\left(\begin{array}{ccccc}
1 & & & & \\
& \ddots & & & \\
& & \alpha & & \\
& & & \ddots & \\
& & & & 1
\end{array}\right) \begin{array}{c}
1 \\
\vdots \\
k \\
\vdots \\
n
\end{array} \\
& E_{22}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \text { (}
\end{aligned}
$$

Multiplication with $E_{k l}$ results in an addition of the l-th row to the k-th row, i.e. a shearing so that the image of the unit cube $Q:=\left[\mathbf{0} ; \mathbf{1}\left[\right.\right.$ generated by the basis vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ with the measure $\lambda^{n}(Q)=(1-0)^{n}=1$ is $E_{k l}[Q]=\left\{\sum_{1 \leq i \leq n} x_{i} \mathbf{e}_{i}: 0 \leq x_{i} \leq 1 ; i \neq k \wedge x_{l} \leq x_{k}<x_{l}+1\right\}$. This parallelepiped can be split into two disjoint halves $L=\left\{\mathbf{x} \in E_{k l}[Q]: x_{l} \leq x_{k}<1\right\}$ and $R=$ $\left\{\mathbf{x} \in E_{k l}[Q]: 1 \leq x_{k}<x_{l}+1\right\}$ such that $E_{k l}[Q]=L \cup ْ R$ but also $Q=\left(R-\mathbf{e}_{k}\right) \cup \circ L$ and due to the translation invariance of λ^{n} we obtain $\lambda^{n}\left(E_{k l}[Q]\right)=\lambda^{n}(K)+\lambda^{n}(L)=\lambda^{n}(K)+\lambda^{n}\left(L-\mathbf{e}_{k}\right)=$ $\lambda^{n}(Q)=1 \cdot \lambda^{n}(Q)=\left|\operatorname{det} E_{k l}\right| \cdot \lambda^{n}(Q)$.
Multiplication with $E_{k \alpha}$ results in a multiplication of the k th row with the factor $\alpha \in \mathbb{R}$ resulting in the dilation $E_{k \alpha}[Q]=\left\{\sum_{1 \leq i \leq n} x_{i} \mathbf{e}_{i}: 0 \leq x_{i}<1 ; i \neq k \wedge 0 \leq x_{k}<\alpha\right\}$ with measure $\lambda^{n}\left(E_{k \alpha}(H)\right)=$ $(1-0)^{n-1} \cdot(\alpha-0)=\alpha=\left|\operatorname{det} E_{k \alpha}\right| \cdot \lambda^{n}(Q)$.
The assertion then follows from the multiplicity of the determinant: $|\operatorname{det}(A \cdot B)|=|\operatorname{det}(A)|$. $|\operatorname{det}(B)|$:

8.10 Special cases of the transformation formula

1. A dilation along the axes by $T\left(e_{i}\right)=r_{i} \cdot e_{i}$ for $r_{i} \in \mathbb{R}$ and $0 \leq i \leq n$ results in $\lambda^{n}(T(A))=\left|\prod_{i=1}^{n} r_{i} \cdot \lambda^{n}(A)\right| \cdot \lambda^{n}(A)$ and particularly a simple scaling of the set A by the scaling factor $r \in \mathbb{R}$ yields the volume $\lambda^{n}(r A)=\left|r^{n}\right| \cdot \lambda^{n}(A)$.
2. A rotation by an orthogonal matrix $T \in O(n ; \mathbb{R})$ leaves the volume unacffected: $\lambda^{n}(T[A])=|\operatorname{det} T| \cdot \lambda^{n}(A)=\lambda^{n}(A)$.
3. In the three dimensions of \mathbb{R}^{3} the homomorphism T may be represented by a matrix with n linearly independent column vec-
 tors $\mathbf{x}_{i}=\sum_{k=1}^{n} x_{k i} \mathbf{e}_{k} \in \mathbb{R}^{n}$ for $1 \leq i \leq n$ generating a parallelepiped $T[Q]=\left\{\sum_{1 \leq i \leq n} t_{i} \mathbf{x}_{i}: 0 \leq x_{i}<1\right\}$ which is the image of the unit cube $Q=\left\{\sum_{1 \leq k \leq n} t_{k} \mathbf{e}_{k}: 0 \leq t_{k}<1\right\}$. Its volume is $\lambda^{3}(T[Q])=|\operatorname{det} T| \cdot \lambda^{3}(Q)=\operatorname{det}\left(\left(x_{k i}\right)_{1 \leq k, i \leq n}\right) \cdot 1$.
4. With the integral transformation formula 5.8 we obtain the linear form of the change-of-variables theorem [9, th. 13.7] since $\int_{T[A]} f \cdot \frac{1}{|\operatorname{det} T|} d \lambda^{n}=\int_{T[A]} f d\left(T \circ \lambda^{n}\right)=\int_{A}(f \circ T) d \lambda^{n}$ implies $\int_{T[A]} f d \lambda^{n}=\int_{A}(f \circ T) \cdot|\operatorname{det} T| \cdot d \lambda^{n}$

8.11 Cavalieri's principle

For a compact $K \subset \mathbb{R}^{n}$ and any cut $K_{t}=\left\{\boldsymbol{x} \in \mathbb{R}^{n-1}:(\boldsymbol{x} ; t) \in K\right\}$ with $t \in \mathbb{R}$ we have $\lambda^{n}(K)=$ $\int_{\mathbb{R}} \lambda^{n-1}\left(K_{t}\right) d t$.
Proof: Due to Fubini's theorem 8.5 we have $\lambda^{n}(K)=\int_{\mathbb{R}^{n}} \chi_{K}(\boldsymbol{x}) d \boldsymbol{x}=\int\left(\int_{\mathbb{R}^{n-1}} \chi_{K}(\boldsymbol{x} ; t) d \boldsymbol{x}\right) d t=$ $\int\left(\int_{\mathbb{R}^{n-1}} \chi_{K_{t}}(\boldsymbol{x}) d \boldsymbol{x}\right) d t=\int_{\mathbb{R}} \lambda^{n-1}\left(K_{t}\right) d t$.

8.12 The cone

The cone $C_{h}(B)=\left\{((1-\lambda) \boldsymbol{\xi}, \lambda h) \in \mathbb{R}^{n}: \boldsymbol{\xi} \in B ; 0 \leq \lambda \leq 1\right\}$ with compact base $B \subset \mathbb{R}^{n-1}$ and height $h>0$ has the volume $\lambda^{n}\left(C_{h}(B)\right)=\frac{h}{n} \cdot \lambda^{n-1}(B)$.
Proof: According to Cavalieri's principle8.11 and by the condition $\lambda h=t$ we obtain the cuts $C_{h}(B)_{t}= \begin{cases}\left(1-\frac{t}{h}\right) B & \text { for } 0 \leq t \leq h \\ 0 & \text { else }\end{cases}$ with $\lambda^{n-1}\left(C_{h}(B)_{t}\right)=\left(1-\frac{t}{h}\right)^{n-1} \cdot \lambda^{n-1}(B)$ due to 8.9 whence $\lambda^{n}\left(C_{h}(B)\right)=\int_{\mathbb{R}} \lambda^{n-1}\left(C_{h}(B)_{t}\right) d t=\lambda^{n-1}(B) \cdot \int_{0}^{h}=\left(1-\frac{t}{h}\right)^{n-1} d t=$ $\frac{h}{n} \cdot \lambda^{n-1}(B)$.

8.13 The unit simplex

The unit simplex $S_{1}^{n}=\left\{\sum_{i=1}^{n} \lambda_{i} e_{i}: \sum_{i=1}^{n} \lambda_{i}=1\right\} \subset \mathbb{R}^{n}$ has the volume $\lambda^{n}\left(S_{1}^{n}\right)=\frac{1}{n!}$.
Proof: By induction over n we start with $\lambda^{1}\left(S_{1}^{1}\right)=\lambda^{1}([0 ; 1])=1$ and proceed from $n-1$ to n by 8.12 with $\lambda^{n}\left(S_{1}^{n}\right)=\frac{1}{n} \cdot \lambda^{n-1}\left(S_{1}^{n-1}\right)=$ $\frac{1}{n} \cdot \frac{1}{(n-1)!}=\frac{1}{n!}$.

8.14 The unit sphere

The unit sphere B_{1}^{n} has the volume $\tau_{n}=\lambda^{n}\left(B_{1}^{n}\right)=\frac{\pi^{n / 2}}{\Gamma\left(\frac{n}{2}+1\right)}$.
Proof: As above we procced by induction over n starting with $\lambda^{1}\left(B_{1}^{1}\right)=\lambda^{1}([-1 ; 1])=2$ and proceed from $n-1$ to n by Cavalieri's principle 8.11 with $\lambda^{n}\left(B_{1}^{n}\right)=\int_{\mathbb{R}} \lambda^{n-1}\left(\left(B_{1}^{n-1}\right)_{t}\right) d t=$ $\int_{\mathbb{R}} \lambda^{n-1}\left(\left(B_{\sqrt{1-t^{2}}}^{n-1}\right)\right) d t=\lambda^{n-1}\left(B_{1}^{n-1}\right) \cdot \int_{[-1 ; 1]}\left(1-t^{2}\right)^{(n-1) / 2} d t=$ $\lambda^{n-1}\left(B_{1}^{n-1}\right) \cdot c_{n}$. By substitution and integration by parts we can simplify $c_{n}=\int_{-1}^{1}\left(1-t^{2}\right)^{(n-1) / 2} d t=2 \int_{0}^{\pi / 2} \sin ^{n}(\alpha) d \alpha=$
 $2(n-1) \int_{0}^{\pi / 2} \cos ^{2}(\alpha) \cdot \sin ^{(n-2)}(\alpha) d \alpha$. By expanding this expression to $(1-n) \int_{0}^{\pi / 2}\left(\sin ^{2}(\alpha)+\cos ^{2}(\alpha)\right) \cdot \sin ^{(n-2)}(\alpha) d a+n \int_{0}^{\pi / 2} \sin ^{n}(\alpha) d \alpha=0$ we can use Pythagoras to obtain

$$
\begin{aligned}
c_{n} & =2 \cdot \frac{n-1}{n} \int_{0}^{\pi / 2} \sin ^{n-2}(\alpha) d \alpha \\
& =2 \cdot \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \ldots \cdot \begin{cases}\frac{1}{2} \cdot \int_{0}^{\pi / 2} 1 d \alpha=\frac{\pi}{4} & \text { for } n \text { even } \\
\frac{2}{3} \cdot \int_{0}^{\pi / 2} \sin (\alpha) d \alpha=\frac{2}{3} & \text { for } n \text { odd }\end{cases} \\
& =2 \cdot \begin{cases}\frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \ldots \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} & \text { for } n \text { even } \\
\frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \ldots \cdot \frac{4}{5} \cdot \frac{2}{3} & \text { for } n \text { odd }\end{cases}
\end{aligned}
$$

Hence we have $c_{n} \cdot c_{n-1}=\frac{2 \pi}{n}$ so that with $\lambda^{2}\left(B_{1}^{2}\right)=\lambda^{1}\left(B_{1}^{1}\right) \cdot c_{2}=\pi$ follows

$$
\lambda^{n}\left(B_{1}^{n}\right)=\frac{2 \pi}{n} \cdot \lambda^{n-2}\left(B_{1}^{n-2}\right)= \begin{cases}\frac{2 \pi}{n} \cdot \frac{2 \pi}{n-2} \cdot \ldots \cdot \frac{2 \pi}{4} \cdot \pi=\frac{\pi}{n / 2} \cdot \frac{\pi}{n / 2-1} \cdot \ldots \cdot \frac{\pi}{2} \cdot \frac{\pi}{1} & \text { for } n \text { even } \\ \frac{2 \pi}{n} \cdot \frac{2 \pi}{n-2} \cdot \ldots \frac{2 \pi}{3} \cdot 2=\frac{\pi}{n / 2} \cdot \frac{\pi}{n / 2-1} \cdot \ldots \cdot \frac{\pi}{3 / 2} \cdot \frac{\sqrt{\pi}}{1 / 2} \cdot \frac{1}{\sqrt{\pi}} & \text { for } n \text { odd }\end{cases}
$$

A comparison with the Gamma function (cf. [9, p. 2.1]) with the functional equation $\Gamma(x+1)=$ $x \cdot \Gamma(x)$ for $0<x<\infty$ and initial values $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi} \Rightarrow \Gamma\left(\frac{3}{2}\right)=\frac{1}{2} \cdot \sqrt{\pi} \Rightarrow \Gamma\left(\frac{5}{2}\right)=\frac{3}{2} \cdot \frac{1}{2} \cdot \sqrt{\pi} \Rightarrow \ldots$ resp. $\Gamma(1)=1 \Rightarrow \Gamma(2)=1 \Rightarrow \Gamma(3)=1 \cdot 2 \Rightarrow \ldots$ yields the desired formula.

8.15 Probability measures on function spaces

On the product $\left(X_{I} ; \mathcal{A}_{I}\right)$ of probability spaces $\left(X_{i} ; \mathcal{A}_{i} ; \mu_{i}\right)_{i \in I}$ with arbitrary index set I exists a probability measure μ_{I} uniquely determined by its multiplicity $\mu_{I} \mid \mathcal{Z}_{J}=\mu_{J}:=\otimes_{\in J} \mu_{i}$ for all finite $J \subset I$, i.e. on cylinder sets $\pi_{J}^{-1}(A) \in \mathcal{Z}_{J}$ with $A \in A_{J}=\bigotimes_{i \in J} \mathcal{A}_{i}=\pi_{J}\left(\mathcal{A}_{I}\right)=\pi_{J}\left(\mathcal{Z}_{J}\right)$ (cf. 7.4.3) it coincides with the corresponding finite product measure $\mu_{J}=\bigotimes_{i \in J} \mu_{i}$ on the finite product- σ-algebrae \mathcal{A}_{J}. The elements $x_{I} \in X_{I}$ with $x_{I}: I \rightarrow X_{I}$ are the sample paths or realizations of the stochastic process $\left(X_{I} ; \mathcal{A}_{I} ; \mu_{I}\right)$
Proof: The function $\mu_{I}: \mathcal{S}_{I} \rightarrow[0 ; 1]$ given by $\mu_{I}\left(\pi_{J}^{-1}\left(\prod_{i \in J} A_{i}\right)\right):=\prod_{i \in J} \mu_{i}\left(A_{i}\right)$ for $A_{j} \in \mathcal{A}_{j}$ and finite $J \subset I$ is well defined and in particular independent of the representation of the measurable rectangle $S=\prod_{l \in L} S_{l}=\left(\pi_{J}^{L}\right)^{-1}\left(\prod_{j \in J} A_{j}\right)=\left(\pi_{K}^{L}\right)^{-1}\left(\prod_{k \in K} B_{k}\right) \in \mathcal{S}_{L}$ with $A_{j} \in \mathcal{A}_{j}, j \in J$ and $B_{k} \in \mathcal{A}_{k}, k \in K$ for finite $J, K, L \subset I$ with $J \cup K \subset L$. By the equality of the two representations we have $S_{j}=A_{j}=B_{j}$ for $j \in J \cap K, Z_{j}=A_{j}=X_{j}$ for $j \in J \backslash K, S_{j}=B_{j}=X_{j}$ for $j \in K \backslash J$ and finally $S_{l}=X_{l}$ for $l \in L \backslash(J \cup K)$. Hence the multiplicity condition with $\mu_{i}\left(X_{i}\right)=1$ for all $i \in I$ yields $\mu_{L}(S)=\mu_{J}\left(\prod_{j \in J} A_{j}\right)=\prod_{j \in J \cap K} \mu_{j}\left(A_{j}\right)=\prod_{j \in J \cap K} \mu_{j}\left(B_{j}\right)=\mu_{K}\left(\prod_{k \in K} B_{k}\right)$. According to 8.6 for every finite $J \subset I$ there is a uniquely determined product measure $\mu_{J}=\otimes_{\in J} \mu_{i}$ on the finite product- σ-algebra \mathcal{A}_{J} with $\mu_{I}\left(\prod_{i \in J} A_{i}\right):=\prod_{i \in J} \mu_{i}\left(A_{i}\right)$ for $A_{j} \in \mathcal{A}_{j}$. Hence the extension $\mu_{I}: \mathcal{Z}_{I} \rightarrow[0 ; 1]$ given by $\mu_{I}(Z):=\mu_{J}\left(A_{J}\right)$ for $Z=\pi_{J}^{-1}\left(A_{J}\right)$ and $A_{J} \in \mathcal{A}_{J}$ with finite $J \subset I$ on the algebra \mathcal{Z}_{I} is well defined and in particular independent of the representation of the cylinder set $Z=\pi_{J}^{-1}\left(A_{J}\right)=\pi_{K}^{-1}\left(B_{K}\right)$ with $A_{J} \in \mathcal{A}_{J}$ and $B_{K} \in \mathcal{A}_{K}$ for finite $J, K \subset I$. We now prove that μ_{I} is \emptyset-continuous on the algebra of cylinder sets.
To this end for a given path $x_{J} \in X_{J}$ and a given K-cylinder set $Z \in \mathcal{Z}_{K}$ with finite $J \subset K \subset I$ we examine the Z-extensions $Z^{x_{J}}=\left\{\xi_{I} \in X_{I}:\left(x_{J} ; \pi_{K \backslash J}\left(\xi_{I}\right)\right) \in Z\right\}=\pi_{K \backslash J}^{-1}\left(A_{x_{J}}\right) \in \mathcal{Z}_{K}$ for $A=$ $\pi_{K}(Z) \in \mathcal{A}_{K}=\mathcal{A}_{J} \otimes \mathcal{A}_{K \backslash J}$ and the cuts $A_{x_{J}}$ of $A \in A_{K}$ being $\mathcal{A}_{K \backslash J \text {-measurable due to 8.1. Hence he }}$ family $Z^{x_{J}}$ consists of all measurable extensions $\xi_{I} \in X_{I}$ of the given path x_{J} with an arbitrary course during J (!) and passing through Z during $K \backslash J$. (cf. the set of all paths passing a given tree in [13, p. 15.5]). Owing to 8.3 we have $\mu_{I}(Z)=\mu_{I \backslash K}\left(\pi_{I \backslash K}(Z)\right) \cdot \mu_{K}\left(\pi_{K}(Z)\right)=1 \cdot \mu_{K}(A)=$ $\int \mu_{K \backslash J}\left(A_{x_{J}}\right) d \mu_{J}=\int \mu_{I}\left(Z^{x_{J}}\right) d \mu_{J}$.
Now let $\left(Z_{n}\right)_{n \geq 1} \subset \mathcal{Z}_{I}$ be a decreasing sequence of cylinder sets $Z_{n}=\pi_{J_{n}}^{-1}\left(A_{n}\right)$ with $A_{n} \in \mathcal{A}_{J_{n}}$ for finite $J_{n+1} \supset J_{n}$ and $Z_{n+1} \subset Z_{n}$ as well as $\mu_{I}\left(Z_{n}\right) \geq \alpha>0$ for $n \geq 1$ such that $\inf _{n \geq 1} \mu_{I}\left(Z_{n}\right) \geq \alpha$. In order to show the \emptyset-continuity we have to prove that $\bigcap_{n \geq 1} Z_{n} \neq \emptyset$, i.e. we must find a path $x \in \bigcap_{n \geq 1} Z_{n}$. We start on the interval J_{1} with a section $x_{J_{1}}$ and proceed by induction to extend it to $\left(x_{J_{1}} ; x_{J_{2} \backslash J_{1}} ; \ldots\right)$:
Due to 8.2 the mapping $x_{J_{1}} \mapsto \mu_{I}\left(Z_{n}^{x_{J_{1}}}\right)=\pi_{J_{n} \backslash J_{1}}^{-1}\left(\left(A_{n}\right)_{x_{J_{1}}}\right)$ is measurable and hence the set $Q_{n}^{J_{1}}=$ $\left(x_{J_{1}} \in X_{J_{1}}: \mu_{I}\left(Z_{n}^{J_{J_{1}}}\right) \geq \frac{\alpha}{2}\right) \in \mathcal{A}_{J_{1}}$ of all paths $x_{J_{1}} \in X_{J_{1}}$ which can be extended with a probability of at least $\frac{\alpha}{2}$ on Z_{n} is $\mathcal{A}_{J_{1}}$-measurable. According to the preceding paragraph we obtain the estimate $\alpha \leq \mu_{I}\left(Z_{n}\right) \leq \int_{Q_{n}^{J_{1}}} \mu_{I}\left(Z_{n}^{x_{J_{1}}}\right) d \mu_{J_{1}}+\int_{X_{I} \backslash Q_{n}^{J_{1}}} \mu_{I}\left(Z_{n}^{x_{J_{1}}}\right) d \mu_{J_{1}} \leq \mu_{J_{1}}\left(Q_{n}^{J_{1}}\right)+\frac{\alpha}{2}$ and hence $\mu_{J_{1}}\left(Q_{n}^{J_{1}}\right) \geq \frac{\alpha}{2}$ for all $n \geq 1$. Since $\mu_{J_{1}}$ is continuous from above and $Q_{n+1}^{J_{1}} \subset Q_{n}^{J_{1}}$ for all $n \geq 1$ there is an $x_{J_{1}} \in \bigcap_{n \geq 1} Q_{n}^{J_{1}} \neq \emptyset$, i.e. $\mu_{I}\left(Z_{n}^{x_{J_{1}}}\right) \geq \frac{\alpha}{2}$ for all $n \geq 1$.
We now extend the path $x_{J_{1}}$ inductively with $Z_{n}^{x_{J_{k}}}$ taking the place of Z_{n} : Assuming there is an $x_{J_{k}} \in X_{J_{k}}$ with $\mu_{I}\left(Z_{n}^{x_{J_{k}}}\right) \geq \frac{\alpha}{2^{k}}$ for all $n \geq 1$ we have

$$
Q_{n}^{J_{k+1}}=\left(x_{J_{k+1} \backslash J_{k}} \in X_{J_{k+1} \backslash J_{k}}: \mu_{I}\left(\left(Z_{n}^{x_{J_{k}}}\right)^{x_{J_{k+1}} \backslash x_{J_{k}}}\right) \geq \frac{\alpha}{2^{k+1}}\right) \in \mathcal{A}_{J_{k+1}}
$$

whence $\frac{\alpha}{2^{k}} \leq \mu_{I}\left(Z_{n}^{x_{J_{k}}}\right)$

$$
\begin{aligned}
& \leq \int_{Q_{n}^{J_{k+1}}} \mu_{I}\left(\left(Z_{n}^{x_{J_{k}}}\right)^{x_{J_{k+1}} \backslash x_{J_{k}}}\right) d \mu_{J_{k+1}}+\int_{X_{I} \backslash Q_{n}^{J_{k+1}}} \mu_{I}\left(\left(Z_{n}^{x_{J_{k}}}\right)^{x_{J_{k+1}} \backslash x_{J_{k}}}\right) d \mu_{J_{k+1}} \\
& \leq \mu_{J_{k+1}}\left(Q_{n}^{J_{k+1}}\right)+\frac{\alpha}{2^{k+1}}
\end{aligned}
$$

such that $\mu_{J_{k+1}}\left(Q_{n}^{J_{k+1}}\right) \geq \frac{\alpha}{2^{k+1}}$ for all $n \geq 1$. Consequently there must exist an extension $x_{J_{k+1} \backslash J_{k}} \in$ $\bigcap_{n \geq 1} Q_{n}^{J_{k+1}} \neq \emptyset$, i.e. $\mu_{I}\left(\left(Z_{n}^{x_{J_{k}}}\right)^{x_{J_{k+1}} \backslash x_{J_{k}}}\right) \geq \frac{\alpha}{2^{k+1}}$ for all $n \geq 1$. If we add the new section to $x_{J_{k}}$ we obtain $x_{J_{k+1}}:=\left(x_{J_{k}} ; x_{J_{k+1} \backslash J_{k}}\right) \in X_{J_{k+1}}$ with $Z_{n}^{x_{J_{k+1}}}=\left(Z_{n}^{x_{J_{k}}}\right)^{x_{J_{k+1}} \backslash x_{J_{k}}}$, particularly $\pi_{J_{k}}^{J_{k+1}}\left(x_{k+1}\right)=$ x_{k} and $\mu_{I}\left(Z_{n}^{x_{J_{k+1}}}\right) \geq \frac{\alpha}{2^{k+1}}$ for all $n \geq 1$. Thus we have found a path $x^{\prime}=\left(x_{J_{1}} ; x_{J_{2} \backslash J_{1}} ; \ldots\right) \in$ $\pi_{\bigcup_{n \geq 1} J_{n}}\left(\bigcap_{n \geq 1} Z_{n}\right) \subset X_{\bigcup_{n \geq 1} J_{n}}$ and by an arbitrary extension on the remaining time $I \backslash \bigcup_{n \geq 1} J_{n}$ we get the desired $x \in \bigcap_{n \geq 1} Z_{n} \neq \emptyset$ with $\pi_{\bigcup_{n \geq 1} J_{n}}(x)=x^{\prime}$.
Hence μ_{I} is \emptyset-continuous and since due to 8.6 it is finitely additive as well as bounded according to 2.2 .4 its σ-additivity follows. Due to the extension theorem 3.5 the pre-measure μ_{I} on the algebra \mathcal{Z}_{I} of the cylinder sets can be extended in a unique way to a measure μ_{I} on the σ-algebra $\sigma\left(Z_{I}\right)=A_{I}$. This completes the proof.

9 Measures with densities

9.1 Complex measure and total variation

A complex measure is a complex and σ-additive set function $\mu: \mathcal{A} \rightarrow \mathbb{C}$ on a measurable space $(X ; \mathcal{A})$. Contrary to the positive measure $\mu: \mathcal{A}: \rightarrow[0 ; \infty]$ defined in 3.1 the complex measure is finite. According to the theorem of Lévy und Steinitz ([10, th. 8.18]) the σ-additivity $\mu\left(\cup_{n \in \mathbb{N}} A_{n}\right)=\sum_{n \in \mathbb{N}} \mu\left(A_{n}\right)<\infty$ resp. the interchangeability of the union imply the absolute convergence of the series.
So its total variation $|\mu|: \mathcal{A}: \rightarrow \mathbb{R}$ with $|\mu|(A):=\sup \left\{\sum_{n \in \mathbb{N}}\left|\mu\left(A_{n}\right)\right|:\left(A_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{A}: \bigcup_{n \in \mathbb{N}}^{\circ} A_{n}=A\right\}$ is well defined as well as σ-additive: On the one hand for every $A_{m} \in \mathcal{A}$ and $\epsilon>0$ there is a partition $\left(A_{m n}\right)_{n \in \mathbb{N}} \subset \mathcal{A}$ with $|\mu|\left(A_{m}\right)-\epsilon \cdot 2^{-m-1}<\sum_{n \in \mathbb{N}}\left|\mu\left(A_{m n}\right)\right| \leq|\mu|\left(A_{m}\right)$ such that $\sum_{m \in \mathbb{N}}|\mu|\left(A_{m}\right)-\epsilon<$ $\sum_{m, n \in \mathbb{N}}\left|\mu\left(A_{m n}\right)\right| \leq \sum_{m \in \mathbb{N}}|\mu|\left(A_{m}\right)$ and hence $\sum_{m \in \mathbb{N}}|\mu|\left(A_{m}\right) \leq|\mu|\left(\dot{\cup}_{m \in \mathbb{N}} A_{m}\right)$. On the other hand for every partition $\left(B_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{A}$ with $\bigcup_{n \in \mathbb{N}}^{\circ} B_{n}=\bigcup_{m \in \mathbb{N}} A_{m}$ the intersections $\left(B_{n} \cap A_{m}\right)_{n \in \mathbb{N}}$ partition A_{m} while the intersections $\left(B_{n} \cap A_{m}\right)_{m \in \mathbb{N}}$ partition B_{n} such that due to the σ-additivity of μ holds $\sum_{n \in \mathbb{N}}\left|\mu\left(B_{n}\right)\right| \leq \sum_{m, n \in \mathbb{N}}\left|\mu\left(A_{m} \cap B_{n}\right)\right| \leq \sum_{m \in \mathbb{N}}|\mu|\left(A_{m}\right)$. This estimate extends to the suprema such that $|\mu|\left(\cup^{\circ}{ }_{m \in \mathbb{N}} A_{m}\right) \leq \sum_{m \in \mathbb{N}}|\mu|\left(A_{m}\right)$. Hence $|\mu|$ is a measure.

9.2 The minimal range of a set of complex numbers

For any n complex z_{1}, \ldots, z_{n} there is a subset $S \subset\{1 ; \ldots ; n\}$ with $\left|\sum_{k \in S} z_{k}\right| \geq \frac{1}{\pi} \sum_{i=1}^{n}\left|z_{i}\right|$.
Proof: For $z_{i}=\left|z_{i}\right| \cdot e^{i \alpha_{i}}$ and $-\pi \leq \vartheta \leq \pi$ let $S(\vartheta):=\left\{1 \leq k \leq n: \cos \left(\alpha_{k}-\vartheta\right)>0\right\}$. Then for every such ϑ we have $\left|\sum_{k \in S} z_{k}\right|=\left|\sum_{k \in S} e^{-i \vartheta} \cdot z_{k}\right| \geq \operatorname{Re}\left(\sum_{k \in S} e^{-i \vartheta} \cdot z_{k}\right)=\sum_{k \in S}\left|z_{k}\right| \cdot \cos \left(\alpha_{k}-\vartheta\right) \geq \sum_{i=1}^{n}$ $\left|z_{i}\right| \cdot \cos ^{+}\left(\alpha_{k}-\vartheta\right)$ and the maximal value of the sum on the right hand side attained for say $\vartheta=\vartheta_{0}$ is not less than the average $\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\sum_{i=1}^{n}\left|z_{i}\right| \cdot \cos ^{+}\left(\alpha_{k}-\vartheta\right)\right) d \vartheta=\frac{1}{\pi} \sum_{i=1}^{n}\left|z_{i}\right|$ which proves the lemma for $S:=S\left(\vartheta_{0}\right)$.

9.3 The total variation of complex measures

The total variation $|\mu|$ of a complex measure μ is finite.
Proof: Assuming $|\mu|(X)=\infty$ there must be a partition $\left(A_{i}\right)_{i \in \mathbb{N}} \subset \mathcal{A}$ of X and an $n \in \mathbb{N}$ with $\frac{1}{\pi} \sum_{i=1}^{n}\left|\mu\left(A_{i}\right)\right|>|\mu(X)|+1$. Due to 9.2 there is a subset $S \subset\{1 ; \ldots ; n\}$ such that for $B_{1}:=\bigcup_{k \in S} A_{i}$ on the one hand $\left|\mu\left(B_{1}\right)\right|=\left|\sum_{k \in S} \mu\left(A_{i}\right)\right|>|\mu(X)|+1 \geq 1$ and on the other hand $\left|\mu\left(X \backslash B_{1}\right)\right|=$ $\left|\mu(X)-\mu\left(B_{1}\right)\right| \geq\left|\mu\left(B_{1}\right)\right|-|\mu(X)| \geq 1$. According to the hypothesis we have either $|\mu|\left(B_{1}\right)=\infty$ or $|\mu|\left(X \backslash B_{1}\right)=\infty$ and assuming this being the case for $X \backslash B_{1}$ we can repeat the argument from above to split off a subset $B_{2} \subset X \backslash B_{1}$ with $|\mu|\left(X \backslash\left(B_{1} \cup B_{2}\right)\right)=\infty$ and $\left|\mu\left(B_{2}\right)\right| \geq 1$. Hence by induction we obtain a sequence $\left(B_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{A}$ of paiwise disjoint sets B_{n} with $\left|\mu\left(B_{n}\right)\right| \geq 1 \forall n \in \mathbb{N}$ and consequently $\left|\mu\left(\dot{U}_{n \in \mathbb{N}} B_{n}\right)\right|=\left|\sum_{n \in \mathbb{N}} \mu\left(B_{n}\right)\right|=\infty$ contrary tor the finite character of μ according to definition 9.1.

9.4 The Banach space of complex measures

The set $\mathcal{M}(\mathcal{A}, \mathbb{C})$ of complex measures on a measurable space $(X ; \mathcal{A})$ with the operations $(\lambda+\mu)(A):=$ $\lambda(A)+\mu(A)$ resp. $(c \cdot \lambda)(A):=c \cdot \lambda(A)$ for $A \in \mathcal{A}, c \in \mathbb{C}, \lambda, \mu \in \mathcal{M}$ and the norm $\|\mu\|:=|\mu|(X)$ is a Banach space.
Proof: The vector space axioms are clearly satisfied. The positive definiteness $\|\mu\|=0 \Rightarrow \mu=0$ follows from the monotonicity $A \subset B \Rightarrow|\mu|(A) \leq|\mu|(B)$ of the total variation. With regard to the completeness for every Cauchy sequence $\left(\mu_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{M}(\mathcal{A}, \mathbb{C})$ and every measurable set $A \in \mathcal{A}$ we have $\left|\mu_{n}(A)-\mu_{m}(A)\right|=\left|\left(\mu_{n}-\mu_{m}\right)(A)\right| \leq\left|\mu_{n}-\mu_{m}\right|(A) \leq\left|\mu_{n}-\mu_{m}\right|(X)=\left\|\mu_{n}-\mu_{m}\right\|$ such that the corresponding Cauchy sequence $\left(\mu_{n}(A)\right)_{n \in \mathbb{N}} \subset \mathbb{C}$ converges to a complex number $\mu(A)$ hence defining a complex set function $\mu: \mathcal{A} \rightarrow \mathbb{C}$. For a sequence of disjoint measurable sets $\left(A_{k}\right)_{k \in \mathbb{N}} \subset \mathcal{A}$ and every $k \in \mathbb{N}$ there is an $n_{k} \in \mathbb{N}$ with $\left|\mu_{n}\left(A_{k}\right)-\mu\left(A_{k}\right)\right| \leq \epsilon 2^{-k}$ for every $n \geq n_{k}$ such that for every $N \geq \max \left\{n_{k}: k \leq m\right\}$ and $\sum_{k=0}^{m} \mu_{N}\left(A_{k}\right)=\mu_{N}\left(\bigcup_{k=0}^{m} A_{k}\right)$ we have $\left|\sum_{k=0}^{m} \mu\left(A_{k}\right)-\mu\left(\bigcup_{k=0}^{m} A_{k}\right)\right|=\left|\sum_{k=0}^{m} \mu\left(A_{k}\right)-\sum_{k=0}^{m} \mu_{N}\left(A_{k}\right)+\mu_{N}\left(\bigcup_{k=0}^{m} A_{k}\right)-\mu\left(\bigcup_{k=0}^{m} A_{k}\right)\right| \leq \epsilon 2^{-m+1}+$ $\left|\mu_{N}\left(\bigcup_{k=0}^{m} A_{k}\right)-\mu\left(\bigcup_{k=0}^{m} A_{k}\right)\right| \leq \epsilon 2^{-m+2}$ for a suitably large N. Since ϵ and m are arbitrary we have shown the σ-additivity $\sum_{k=0}^{\infty} \mu\left(A_{k}\right)=\mu\left(\bigcup_{k=0}^{\infty} A_{k}\right)$, i.e. $\mu \in \mathcal{M}$. Assuming there is an $\epsilon>0$ with $\left\|\mu-\mu_{n}\right\|=\sup \left\{\sum_{k \in \mathbb{N}}\left|\left(\mu-\mu_{n}\right)\left(A_{k}\right)\right|:\left(A_{k}\right)_{k \in \mathbb{N}} \subset \mathcal{A}: \cup_{k \in \mathbb{N}} A_{k}=X\right\} \leq \epsilon$ for every $n \in \mathbb{N}$ we find an $B_{n}=\bigcup_{k=0}^{K_{n}} A_{k} \in \mathcal{A}$ with $\left|\left(\mu-\mu_{n}\right)\left(B_{n}\right)\right| \geq \frac{\epsilon}{2}$ whence $\left|\left(\mu-\mu_{n}\right)(B)\right| \geq \frac{\epsilon}{2}$ for $B=\bigcup_{n \in \mathbb{N}} B_{n}$ and every $n \in \mathbb{N}$ contrary to $\left(\mu_{n}(B)\right)$ converging to $\mu(B)$. Hence $\lim _{n \rightarrow \infty}\left\|\mu-\mu_{n}\right\|=0$

9.5 Continuous and singular measures

A complex or positive measure μ is λ-absolutely continuous with respect to the positive measure λ on the same measurable space (X, \mathcal{A}) with the notation $\mu \lessdot \lambda$ iff $\lambda(A)=0 \Rightarrow \mu(A)=0 \forall A \in \mathcal{A}$. The measure μ is concentrated on the set $A \in \mathcal{A}$ iff $\lambda(B)=\mu(B \cap A) \forall B \in \mathcal{A}$ resp. $\mu(B)=0 \Leftrightarrow$ $A \cap B=\emptyset$. The measures μ and λ are mutually singular with the notation $\mu \perp \lambda$ iff μ and λ are concentrated on two disjoint sets. These relations have the following properties:

1. If μ is concentrated on A the so is $|\mu|$ since for every partition $\left(E_{m}\right)_{m \in \mathbb{N}}$ of the set $E \in \mathcal{A}$ with $E \cap A=\emptyset$ we have $\mu\left(E_{m}\right)=0 \forall m \in \mathbb{N}$.
2. $\mu \perp \lambda \Rightarrow|\mu| \perp|\lambda|$ due to 1 .
3. $\mu \lessdot \lambda \Rightarrow|\mu| \lessdot \lambda$ since from $\lambda(A)=0$ for every partition $\left(A_{m}\right)_{m \in \mathbb{N}}$ of A follows $\mu\left(A_{m}\right)=\lambda\left(A_{m}\right)=$ $0 \forall m \in \mathbb{N}$.
4. $\mu \perp \lambda \wedge \mu \lessdot \lambda \Rightarrow \mu=0$ is obvious.
5. $\mu_{1} \perp \lambda \wedge \mu_{2} \perp \lambda \Rightarrow \mu_{1}+\mu_{2} \perp \lambda$ since if μ_{1}, μ_{2} and λ are concentrated on A_{1}, A_{2} resp. B with $A_{1} \cap B=A_{2} \cap B=\emptyset$ the measure $\mu_{1}+\mu_{2}$ is concentrated on $A_{1} \cup A_{2}$ with $\left(A_{1} \cup A_{2}\right) \cap B=\emptyset$.
6. $\mu_{1} \lessdot \lambda \wedge \mu_{2} \lessdot \lambda \Rightarrow \mu_{1}+\mu_{2} \lessdot \lambda$ is obvious.
7. $\mu_{1} \perp \lambda \wedge \mu_{2} \lessdot \lambda \Rightarrow \mu_{1} \perp \mu_{2}$ since if μ_{1} is concentrated on A we have $\mu_{1}(A) \neq 0$ and hence $\mu_{2}(A)=\lambda(A)=0$, i.e. μ_{2} is concentrated on $X \backslash A$.

$9.6 \epsilon-\delta$-definition of absolute contiuity

A complex measure μ is absolutely continuous with respect to the positive measure λ iff for every $\epsilon>0$ exists a $\delta>0$ such that for every $A \in \mathcal{A}$ holds: $\lambda(A)<\delta \Rightarrow|\mu|(A)<\epsilon$.

Proof:
\Rightarrow : Assuming an $\epsilon>0$ and a sequence $\left(A_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{A}$ with $\lambda\left(A_{n}\right)<2^{-n}$ but $\left|\mu\left(A_{n}\right)\right| \geq \epsilon$ then $\left(B_{m}\right)_{m \in \mathbb{N}} \subset \mathcal{A}$ with $B_{m}=\bigcup_{n \geq m} A_{n}$ is a decreasing sequence of measurable sets with $\lambda\left(B_{m}\right)<2^{-m+1}$ and $\lambda\left(\bigcap_{m \in \mathbb{N}} B_{m}\right)=0$ on account of the continuity from above 2.2.3. But the measure $|\mu|$ is also continuous from above such that $|\mu|\left(\bigcap_{m \in \mathbb{N}} B_{m}\right)=\lim _{m \rightarrow \infty}|\mu|\left(B_{m}\right) \geq \inf _{m \in \mathbb{N}}|\mu|\left(A_{m}\right) \geq \epsilon$ contrary to the hypothesis $|\mu| \lessdot \lambda$ resp. 9.5.3.
$\Leftarrow: \lambda(A)=0 \Rightarrow|\mu|(A)<\epsilon \forall \epsilon>0 \Rightarrow|\mu(A)| \leq|\mu|(A)=0$.

9.7 The Jordan decomposition of signed measures

The real and complex parts of complex measures are finite and are called signed measures to distinguish them from the positive measures. The Jordan decomposition $\mu=\mu^{+}-\mu^{-}$resp. $|\mu|=\mu^{+}+\mu^{-}$of a signed measure μ splits it into its positive and negative variations $\mu^{+}=$ $\frac{1}{2}(|\mu|+\mu)$ resp. $\mu^{-}=\frac{1}{2}(|\mu|-\mu)$ both being finite and positive. On account of the σ-additivity the total variation of a positive signed measure coincides with the measure itself: $\left|\mu^{+}\right|=\mu^{+}$ bzw. $\left|\mu^{-}\right|=\mu^{-}$.

9.8 The theorem of Lebesgue Radon-Nikodym

For a positive, σ-finite measure $\lambda: \mathcal{A} \rightarrow[0 ; \infty]$ and a complex measure $\mu: \mathcal{A} \rightarrow \mathbb{C}$ on a common measurable space $(X ; \mathcal{A})$ exist:

1. a uniquely determined Lebesgue decomposition of $\mu=\mu_{a}+\mu_{s}$ with respect to λ into two complex measures μ_{a} and μ_{s} such that $\mu_{a} \lessdot \lambda$ and $\mu_{s} \perp \lambda$.
2. a uniquely determined Radon-Nikodym density or derivative $\frac{d \mu_{a}}{d \lambda} \in L^{1}(\lambda)$ with $\mu_{a}(A)=$ $\int_{A} \frac{d \mu_{a}}{d \lambda} d \lambda$ for every $A \in \mathcal{A}$.
Proof: The Lebesgue decomposition is uniquely determined since for every other decomposition μ_{a}^{\prime} and μ_{s}^{\prime} we have $\mu_{a}^{\prime}-\mu_{a} \stackrel{9.4 .6}{\leftarrow} \sum \lambda$ bzw. $\mu_{s}-\mu_{s}^{\prime} \stackrel{9.4 .5}{\perp} \lambda$ and hence $\mu_{a}^{\prime}-\mu_{a} \stackrel{9.4 .4}{=} \mu_{s}-\mu_{s}^{\prime}=0$. The uniqueness of the Radon-Nikodym density follows from 5.6.3 resp. 9.6.
We start the construction of the decomposition with $\left.w=\sum_{n \in \mathbb{N}} \frac{\chi_{A_{n}}}{2^{n+1} \cdot\left(1+\lambda\left(A_{n}\right)\right)}: X \rightarrow\right] 0 ; 1[$ for a countable cover $\left(A_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{A}$ of X with $\lambda\left(A_{n}\right)<\infty \forall n \in \mathbb{N}$ such that the measure ν with $\nu(A):=$ $\int_{A} w d \lambda$ is finite and due to $w>0$ possesses the same null sets as λ. Then $\varphi=|\mu|+\nu$ is again a positive and finite measure with $\int f d \varphi=\int f d|\mu|+\int f w d \lambda$ for every step function f and due to 5.4 for positive measurable f. Applying 9.5.1, the Schwarz inequality 6.4.1 and the finite character of φ for every $f \in L^{2}(\varphi)$ we obtain $\left|\int f d\right| \mu\left|\left|\leq \int\right| f\right| d \mu \leq \int|f| d \varphi \leq\left(\int|f|^{2} d \varphi\right)^{\frac{1}{2}} \cdot(\varphi(X))^{\frac{1}{2}}<\infty$. In particular for every null sequence $\left(f_{n}\right) \subset L^{2}(\varphi)$ with $\left(\left\|f_{n}\right\|_{2}\right)_{n} \rightarrow 0$ we have $\left(\left|\int f_{n} d\right| \mu \|\right)_{n} \rightarrow 0$,
i.e. the linear functional $I_{\mu}: L^{2}(\varphi) \rightarrow\left[0 ; \infty\left[\right.\right.$ with $I_{\mu} f=\int f d|\mu|$ is continuous at the origin. According to [13, p. 20.11] it is also bounded resp. uniformly continuous and hence a member of the dual space $\left(L^{2}(\varphi)\right)^{*}$. Due to [7, p 308 Th 12.5$] I_{\mu}$ possesses a φ-a.e. uniquely determined representant $g \in L^{2}(\varphi)$ with respect to the inner product $\int f d|\mu|=I_{\mu} f=\langle f, g\rangle=\int f g d \varphi$ resp. $\int(1-g) f d|\mu|=\int f g w d \lambda$ for every positive measurable f. We keep this result in mind as equation (X). Choosing $f=\chi_{A}$ for every $A \in \mathcal{A}$ with $\varphi(A)>0$ we obtain $0 \leq \int_{A} g d \varphi=|\mu|(A) \leq \varphi(A)$ and hence φ a.e. $0 \leq g \leq 1$. The Lebesgue decomposition of the total variation $|\mu|=\mu_{a}+\mu_{s}$ can now be given by $\mu_{a}=|\mu|_{\{g<1\}}$ and $\mu_{s}=|\mu|_{\{g=1\}}$: Substituting $f=\chi_{\{g=1\}}$ in equation (X) yields $0=\int_{\{g=1\}} w d \lambda$ such that on account of $w(x)>0$ follows $\lambda(\{g=1\})=0$ and hence $\mu_{s} \perp \lambda$. The Radon-Nikodym density is $\frac{d \mu_{a}}{d \lambda}=w \sum_{n=1}^{\infty} g^{n}$ such that $\frac{d \mu_{a}}{d \lambda}(x)=\frac{w(x) \cdot g(x)}{1-g(x)}$ in the case of $g(x)<1$ and $\frac{d \mu_{a}}{d \lambda}(x)=\infty$ else: Substituting $f=\chi_{A} \cdot \sum_{n=0}^{m} g^{n}$ in equation (X) we obtain $\int_{A}\left(1-g^{m+1}\right) d|\mu|=\int_{A} w \cdot \sum_{n=1}^{m+1} g^{n} d \lambda$ and taking recourse to monotone convergence 5.13 for $m \rightarrow \infty$ leads to $\mu_{a}(A)=\int_{A} \frac{d \mu_{a}}{d \lambda} d \lambda$ which also yields $\mu_{a} \lessdot \lambda$. The boundedness of $|\mu|$ transfers to μ_{a} such that $\frac{d \mu_{a}}{d \lambda} \in L^{1}(\lambda)$. The Lebesgue decomposition for the complex measure $\mu=\operatorname{Re} \mu+i \operatorname{Im} \mu=(\operatorname{Re} \mu)^{+}-(\operatorname{Re} \mu)^{-}+i\left((\operatorname{Im} \mu)^{+}-(\operatorname{Im} \mu)^{-}\right)$ is accomplished by applying the above construction four times to the positive resp. negative variation of the rea resp. imaginary part of μ.

9.9 Polar representation of complex measures

For every complex measure μ exists a measurable complex function $\frac{d \mu}{d|\mu|}: X \rightarrow \mathbb{C}$ with $\left|\frac{d \mu}{d|\mu|}\right|=1$ and $d \mu=\frac{d \mu}{d|\mu|} d|\mu|$.
Proof: According to the Lebesgue-Radon-Nikodym theorem9.8 and on account of $\mu \lessdot|\mu|$ there is a $\frac{d \mu}{d|\mu|} \in L^{1}$ with $d \mu=\frac{d \mu}{d|\mu|} d|\mu|$ which only has to be adapted to the absolute value $\left|\frac{d \mu}{d|\mu|}\right|=1$: For a partition $\left(A_{n}\right)_{n \in \mathbb{N}}$ of the set $A=\left\{\left|\frac{d \mu}{d|\mu|}\right|<r\right\}$ holds $|\mu|(A) \leq \sum_{n \in \mathbb{N}}\left|\mu\left(A_{n}\right)\right|=\sum_{n \in \mathbb{N}}\left|\int_{A_{n}} \frac{d \mu}{d|\mu|} d\right| \mu| | \leq$ $\sum_{n \in \mathbb{N}} r \cdot|\mu|\left(A_{n}\right)=r \cdot|\mu|(A)$, i.e. for $r<1$ we have $|\mu|(A)=0$ resp. μ-a.e. $\left|\frac{d \mu}{d|\mu|}\right| \geq 1$. On the other hand for every $A \in \mathcal{A}$ with $|\mu|(A)>0$ holds $\left|\frac{1}{|\mu|(A)} \int_{A} \frac{d \mu}{d|\mu|} d\right| \mu\left|\left\lvert\,=\frac{|\mu(A)|}{|\mu|(A)} \leq 1\right.\right.$ so that we can apply the mean value theorem 5.20 with $S=\bar{B}_{1}(0)$ to obtain μ-a.e. $\left|\frac{d \mu}{d|\mu|}\right| \leq 1$. Hence the assertion holds μ-a.e. and by redefining $\frac{d \mu}{d|\mu|}:=1$ on the μ-null set $\left\{\frac{d \mu}{d|\mu|} \neq 1\right\}$ we obtain the desired absolute value for every $x \in X$.

9.10 The density of the total variation

For a positive measure λ and $h \in L^{1}(\lambda)$ with $d \mu=\frac{d \mu}{d \lambda} d \lambda$ we have $d|\mu|=\left|\frac{d \mu}{d \lambda}\right| d \lambda$.
Proof: Owing to 9.9 there is a $\frac{d \mu}{d|\mu|}$ with $\left|\frac{d \mu}{d|\mu|}\right|=1$ so that $d \mu=\frac{d \mu}{d|\mu|} d|\mu|$ and hence $\frac{d \mu}{d|\mu|} d|\mu|=\frac{d \mu}{d \lambda} d \lambda$ resp. $d|\mu|=\overline{\frac{d \mu}{d \mid \mu}} \frac{d \mu}{d \lambda} d \lambda$. From $|\mu| \geq 0$ and $\lambda \geq 0$ follows λ-a.e. $\frac{\overline{d \mu}}{d|\mu|} \frac{d \mu}{d \lambda} \geq 0$ and hence $\frac{\overline{d \mu}}{d \mid \mu} \frac{d \mu}{d \lambda}=\left|\frac{d \mu}{d \lambda}\right|$.

9.11 Decomposition of complex measures

Every complex measure μ can be decomposed into four positive and finite measures according to $\mu=\operatorname{Re} \mu^{+}-\operatorname{Re} \mu^{-}+i\left(\operatorname{Im} \mu^{+}-\operatorname{Im} \mu^{-}\right)$.

Proof: Owing to 9.9 and the additivity of the integral for every measurable A we have $\mu(A)=$ $\int \chi_{A}(\operatorname{Re} h)^{+} d|\mu|-\int \chi_{A}(\operatorname{Re} h)^{-} d|\mu|+i\left(\int \chi_{A}(\operatorname{Im} h)^{+} d|\mu|-\int \chi_{A}(\operatorname{Im} h)^{-} d|\mu|\right)$. Each of the four summands is a positive and finite measure with the σ-additivity resulting from the monotone convergence 5.13 in the form of $\mu\left(\stackrel{\cup}{\cup}_{n \in \mathbb{N}} A_{n}\right)=\int\left(\sum_{n \in \mathbb{N}} \chi_{A}\right) g d|\mu|=\sum_{n \in \mathbb{N}} \int \chi_{A} g d|\mu|=\sum_{n \in \mathbb{N}} \mu\left(A_{n}\right)$ for every positive and real measurable g.

9.12 The Hahn decomposition for signed measures

The Jordan decomposition of a signed measure $\mu=\mu^{+}-\mu^{-}$extends to the measure space $(X ; \mathcal{A} ; \mu)$: There is a Hahn decomposition of X into two disjoint subsets $M^{+} \cup M^{-}=X$ with $M^{+} \cap M^{-}=\emptyset$ and $\mu^{+}(A)=\mu\left(A \cap M^{+}\right)$resp. $\mu^{-}(A)=\mu\left(A \cap M^{-}\right)$for every $A \in \mathcal{A}$.
Proof: Due to 9.10 there is a measurable $\frac{d \mu}{d|\mu|}: X \rightarrow\{-1 ; 1\}$ with $d \mu=\frac{d \mu}{d|\mu|} d|\mu|$ such that $M^{+}:=$ $\left\{\frac{d \mu}{d|\mu|}=1\right\}$ and $M^{-}:=\left\{\frac{d \mu}{d|\mu|}=-1\right\}$ are measurable. On account of $\frac{1}{2}\left(1+\frac{d \mu}{d|\mu|}\right)=\chi_{M^{+}}$follows $\mu^{+}(A)=\frac{1}{2}(|\mu|(A)+\mu(A))=\int_{A} \frac{1}{2}\left(1+\frac{d \mu}{d|\mu|}\right) d|\mu|=\mu\left(A \cap M^{+}\right)$resp. $\mu^{-}(A)=\mu\left(A \cap M^{-}\right)$.

9.13 The dual space of $L^{p}(\lambda)$

For every σ-finite and positive measure λ and $1<p<\infty$ the bounded linear functional M : $L^{p}(\lambda) \rightarrow \mathbb{C}$ can be expressed uniquely as an integral $M f=\int f \frac{d \mu}{d \lambda} d \lambda$ for $f \in L^{p}(\lambda)$ with the RadonNikodym density of the measure μ defined by $\mu(A)=M \chi_{A}$ with respect to λ. Furthermore we have $\frac{d \mu}{d \lambda} \in L^{q}(\lambda)$ for $\frac{1}{p}+\frac{1}{q}=1$ and the norm $\|M\|^{*}=\sup \left\{\left|M\left(\frac{f}{\|f\|_{p}}\right)\right|: f \in L^{p}(\lambda)\right\}$ of the linear functional satisfies $\|M\|^{*}=\left\|\frac{d \mu}{d \lambda}\right\|_{q}$, i.e. the dual space $\left(L^{p}(\lambda)\right)^{*}$ is isometric and hence isomorphic to $L^{q}(\lambda)$.
Proof: The λ-a.e. uniqueness of the representant $\frac{d \mu}{d \lambda}=g$ follows from the comparison of two possible candidates g and g^{\prime} with $f_{1}=\chi_{\left\{g<g^{\prime}\right\}}$ resp. $f_{2}=\chi_{\left\{g>g^{\prime}\right\}}$ by means of $\int f_{1} g^{\prime} d \lambda=\int f_{1} g d \lambda$ and $\int f_{2} g^{\prime} d \lambda=\int f_{2} g d \lambda$ from 5.6.3.
Before we can use 9.8 we have to show that μ is a complex measure and absolutely continuous with respect to λ. Since we need the continuity from above 2.2 .3 in this first part of the proof we have to restrict our reasoning to the case $\lambda(X)<\infty$. In a second part we will adapt the case $\lambda(X)=\infty$ to the first part making use of the σ-finiteness of λ :
For a sequence $\left(A_{k}\right)_{k \in \mathbb{N}} \subset \mathcal{A}$ of pairwise disjoint measurable sets with $B_{n}=\bigcup_{0 \leq k \leq n} A_{k}$ and $B=$ $\cup_{k \in \mathbb{N}} A_{k}$ the continuity from above 2.2.3 of the measure λ yields $\lim _{n \rightarrow \infty}\left\|\chi_{B}-\chi_{B_{n}}\right\|_{p}=\lim _{n \rightarrow \infty}\left\|\chi_{B \backslash B_{n}}\right\|_{p}$ $=\lim _{n \rightarrow \infty}\left(\lambda\left(B \backslash B_{n}\right)\right)^{\frac{1}{p}}=0$ whence from the continuity of the functional M follows $\lim _{n \rightarrow \infty} \mu\left(B_{n}\right)=$ $\mu(B)$. Hence μ is σ-additive and thus a complex measure. For a λ-null set E we have $\left\|\chi_{E}\right\|_{p}=0$ and since $M 0=0$ the continuity of M implies $\mu(E)=0$, i.e. $\mu \lessdot \lambda$. Hence 9.8 provides $\frac{d \mu}{d \lambda} \in L^{1}(\lambda)$ with $M \chi_{A}=\int \chi_{A} \frac{d \mu}{d \lambda} d \lambda$ for all $A \in \mathcal{A}$. The linearity of M guarantees $M \varphi=\int \varphi \frac{d \mu}{d \lambda} d \lambda$ for step functions $\varphi \in \mathcal{S}(X ; \mathbb{C})$. According to 6.11 the step functions $\mathcal{S}(X ; \mathbb{C})$ are dense in $L^{p}(\lambda)$ for every $1 \leq p \leq \infty$ and $\lambda(X)<\infty$. For now we apply only the case $p=\infty$, i.e. we extend the proposition to $f \in L^{\infty}(\lambda)$: On the left hand side a λ-a.e. bounded $f \in L^{\infty}(\lambda)$ is a limit of a uniformly convergent sequence $\left(\varphi_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{S}(X)$ converging also in the p-th mean on account of $\|f\|_{p} \leq\|f\|_{\infty} \cdot(\lambda(X))^{\frac{1}{p}}$ whence follows the convergence of $\left(M \varphi_{n}\right)_{n \in \mathbb{N}}$. On the right hand side the uniform convergence directly entails the convergence of the integral on $L^{\infty}(\lambda)$ due to $\left|\int f \frac{d \mu}{d \lambda} d \lambda\right| \leq\|f\|_{\infty} \cdot\|g\|_{1}$. In order to extend the validity of the proposition to $f \in L^{p}(\lambda)$ we show that $g:=\frac{d \mu}{d \lambda} \in L^{q}(\lambda)$: Let $E_{n}=\{|g| \geq n\}$ for $n \in \mathbb{N}$ and $f=\frac{|g|^{q}}{g} \cdot \chi_{E_{n}} \in L^{\infty}(\lambda)$ for $n \in \mathbb{N}$ such that $|f|^{p} \cdot \chi_{E}=|g|^{(q-1) p} \cdot \chi_{E}=|g|^{q} \cdot \chi_{E}=f g$. Hence we have $\int_{E_{n}}|g|^{q} d \lambda=\int f g d \lambda=\Lambda(f) \leq\|\Lambda\|^{*} \cdot\|f\|_{p}=\|\Lambda\|^{*} \cdot\left(\int_{E_{n}}|g|^{q} d \lambda\right)^{\frac{1}{p}} \Leftrightarrow\left(\int_{E_{n}}|g|^{q} d \lambda\right)^{1-\frac{1}{p}} \leq$ $\|\Lambda\|^{*} \Leftrightarrow \int_{E_{n}}|g|^{q} d \lambda \leq\|\Lambda\|^{* q}$ such that with monotone convergence 5.13 we obtain $\|g\|_{q} \leq\|\Lambda\|^{*}<\infty$ and in particular $g=\frac{d \mu}{d \lambda} \in L^{q}(\lambda)$. The Hölder inequality 6.4.1 combined with $\left\|\frac{d \mu}{d \lambda}\right\|_{q}<\infty$ asserts the continuity of the mapping $f \mapsto \int f \frac{d \mu}{d \lambda} d \lambda$ on $L^{p}(\lambda)$ and since it coincides on the dense subset $\mathcal{E}(X) \subset L^{p}(\lambda)$ with the continuous mapping M the assertion follows for $\lambda(X)<\infty$. Another look at Hölder yields $\|M\|^{*} \leq\left\|\frac{d \mu}{d \lambda}\right\|_{q}$ and hence the second assertion $\|M\|^{*}=\left\|\frac{d \mu}{d \lambda}\right\|_{q}$.

In the case of $\lambda(X)=\infty$ as in the proof of 9.8 we define $\left.w=\sum_{n \in \mathbb{N}} \frac{\chi_{A_{n}}}{2^{n} \cdot\left(1+\lambda\left(A_{n}\right)\right)}: X \rightarrow\right] 0 ; 1[$ for a countable cover $\left(A_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{A}$ of X with $\lambda\left(A_{n}\right)<\infty \forall n \in \mathbb{N}$ such that the measure ν with $\nu(A):=\int_{A} w d \lambda$ is finite and on account of $w>0$ has the same null sets as λ. Then the bijection $\omega_{p}: L^{p}(\lambda) \rightarrow L^{p}(\nu)$ with $\omega_{p}(f)=w^{-\frac{1}{p}} \cdot f$ is a linear isometry and $M \circ \omega_{p}^{-1}: L^{p}(\nu) \rightarrow \mathbb{C}$ is a bounded linear functional with $\left\|M \circ \omega_{p}^{-1}\right\|^{*}=\sup \left\{\left|M\left(\frac{w^{\frac{1}{p}} \cdot \omega_{p}(f)}{\left(\int|\omega(f)|_{p}^{p} \cdot w d \lambda\right)^{\frac{1}{p}}}\right)\right|: \omega_{p}(f) \in L^{p}(\nu)\right\}=$ $\sup \left\{\left|M\left(\frac{f}{\left(\int|f|^{p} d \lambda\right)^{\frac{1}{p}}}\right)\right|: f \in L^{p}(\lambda)\right\}=\|M\|^{*}$. According to the first part of the proof there is an $\omega_{q}\left(\frac{d \mu}{d \lambda}\right) \in L^{q}(\nu)$ with $\left(M \circ \omega_{p}^{-1}\right)\left(\omega_{p}(f)\right)=\int \omega_{p}(f) \cdot \omega_{q}\left(\frac{d \mu}{d \lambda}\right) w d \lambda$ for all $\omega_{p}(f) \in L^{p}(\nu)$ resp. $M f=\int f g d \lambda$ for all $f \in L^{p}(\lambda)$.

9.14 The case $p=q=2$

The special case of the Hilbert space with $p=q=2$ is the central argument in the proof of the Lebesgue-Radon-Nikodym theorem 9.8 where [7, p 308 Th 12.5] is used to find a uniquely determined representant $g \in L^{2}(\varphi)$ with $M f=\langle f, g\rangle=\int f g d \varphi$ for the bounded functional $M \in$ $\left(L^{2}(\varphi)\right)^{*}$ with $M f=\int f d|\lambda|$. Alas the isometry of the two spaces is not an issue in this proof.

9.15 Scheffé's theorem

For bounded positive measures μ_{n} resp. μ on a common measurable space $(X ; \mathcal{A})$ with $\mu_{n}(X)=$ $\mu(X)<\infty$ for $n \geq 1$ and λ-a.e. converging densities $\lim _{n \rightarrow \infty} \frac{d \mu_{n}}{d \lambda}=\frac{d \mu}{d \lambda}$ we have $\lim _{n \rightarrow \infty}\left|\mu(A)-\mu_{n}(A)\right|=$ 0 for every measurable $A \in \mathcal{A}$.
Proof: By the hypothesis we have $\lim _{n \rightarrow \infty} \int g_{n} d \mu=0$ for $g_{n}=\frac{d \mu}{d \lambda}-\frac{d \mu_{n}}{d \lambda}$. Furthermore we have the integrable majorant $\frac{d \mu}{d \lambda} \geq g_{n}^{+} \geq 0$ for the positive part whence $\lim _{n \rightarrow \infty} \int g_{n}^{+} d \mu=0$ by the dominated convergence theorem 5.15 and consequently $\lim _{n \rightarrow \infty} \int g_{n}^{-} d \mu=\lim _{n \rightarrow \infty} \int\left(g_{n}-g_{n}^{+}\right) d \mu=0$. Hence $\lim _{n \rightarrow \infty}\left|\mu(A)-\mu_{n}(A)\right|=\lim _{n \rightarrow \infty} \int\left|g_{n}\right| d \mu=\lim _{n \rightarrow \infty}\left(\int g_{n}^{+} d \mu-\int g_{n}^{-} d \mu\right)=\lim _{n \rightarrow \infty} \int g_{n}^{+} d \mu-\lim _{n \rightarrow \infty} \int g_{n}^{-} d \mu=0$.

10 Measures on locally compact spaces

In this section X will always be a locally compact space furnished with the Borel σ-algebra $\mathcal{B}(X)=\sigma(\mathcal{O})$ induced by its topology \mathcal{O}.

10.1 Linear functionals on locally compact spaces

1. The dual space $\left(\mathcal{C}_{c}(X, \mathbb{C})\right)^{*}$ of the complex linear functionals $\Lambda: \mathcal{C}_{c}(X, \mathbb{C}) \rightarrow \mathbb{C}$ on the Banach space $\mathcal{C}_{c}(X, \mathbb{C})$ of complex continuous functions $f: X \rightarrow \mathbb{C}$ with compact support under the supremum norm $\|\|\| \text { is furnished with the dual norm }\|\|^{*}$ defined by $\|\Lambda\|^{*}=\sup \left\{\left|\Lambda\left(\frac{f}{\|f\|_{\infty}}\right)\right|: f \in \mathcal{C}_{c}(X, \mathbb{C})\right\}=\sup \left\{|\Lambda f|: f \in \mathcal{C}_{c}(X,[0 ; 1])\right\}$ according to 9.13 and considering $f \in \mathcal{C}_{c}(X, \mathbb{C}) \Rightarrow \frac{|f|}{\|f\|_{\infty}} \in \mathcal{C}_{c}(X,[0 ; 1])$. According to [10, th. 1.10] every complex functional Λ is bounded and in particular uniformly continuous with regard to this norm whence due to $[10$, th. 1.10$]$ the vector space $\left(\mathcal{C}_{c}(X, \mathbb{C})\right)^{*}$ is a Banach space.
2. The \mathbb{C}-linearity of a complex functional Λ implies $\Lambda(\operatorname{Re} f+i \operatorname{Im} f)=\Lambda \operatorname{Re} f+i \Lambda \operatorname{Im} f=\operatorname{Re} \Lambda \operatorname{Re} f-$ $\operatorname{Im} \Lambda \operatorname{Im} f+i \operatorname{Re} \Lambda \operatorname{Im} f+i \operatorname{Im} \Lambda \operatorname{Re} f$ such that it suffices to examine complex linear functionals $\Lambda: \mathcal{C}_{c}(X, \mathbb{R}) \rightarrow \mathbb{C}$ with real valued arguments as e.g. in the case of $\Lambda f=\int f d(\operatorname{Re} \mu)+$ $i \int f d(\operatorname{Im} \mu)=\int f d \mu$ with a complex measure $\mu=\operatorname{Re} \mu+i \operatorname{Im} \mu$ according to 9.11. A complex linear functional $\Lambda: \mathcal{C}_{c}(X, \mathbb{C}) \rightarrow \mathbb{C}$ is positive resp. $\Lambda \in\left(\mathcal{C}_{c}(X, \mathbb{C})\right)_{+}^{*}$ iff for positive f
the value Λf also is positive, i.e. positive real part $\operatorname{Re} \Lambda \in\left(\mathcal{C}_{c}(X, \mathbb{R})\right)_{+}^{*}$ and vanishing imaginary part $\operatorname{Im} \Lambda=0$, the directly available example being the integral $\Lambda f=\int f d \lambda$ with a positive measure $\lambda \in \mathcal{M}\left(\mathcal{B}(X) ; \mathbb{R}^{+}\right)$.
3. Due to their positive character the two classes $\left(\mathcal{C}_{c}(X, \mathbb{C})\right)_{+}^{*}$ and $\mathcal{M}\left(\mathcal{B}(X) ; \mathbb{R}^{+}\right)$are not vector spaces any more but since we still have have $\alpha \Gamma+\beta \Lambda \in\left(\mathcal{C}_{c}(X, \mathbb{C})\right)^{*}$ for every $\Gamma ; \Lambda \in$ $\left(\mathcal{C}_{c}(X, \mathbb{C})\right)^{*}$ and $\alpha ; \beta \geq 0$ they are convex cones. The Riesz representation theorem 10.13 resp. 10.14 states that in fact every positive resp. complex functional can be represented as an integral with regard to a measure with corresponding properties:

10.2 Measures on locally compact spaces

A positive Borel measure μ is outer regular iff $\mu(A)=\inf \{\mu(O): A \subset O$ open $\}$ and inner regular iff $\mu(A)=\sup \{\mu(K):$ compact $K \subset A\}$ respectively for every measurable $A \in \mathcal{B}(X)$. It is regular iff both conditions hold for every measurable set A and σ-regular if the latter condition holds for measurable sets which are either open or σ-finite. A set is σ-finite iff it is a countable union of sets with finite measure. Hence every inner regular measure is σ-regular and on a σ-finite space X every σ-regular measure is already regular. A complex Borel measure is regular iff its variation $|\mu|$ is regular.

Examples:

1. On a Hausdorff space X the Dirac measure $\epsilon_{x}(A)=\chi_{A}(x)$ for any point $x \in X$ and a Borel set $A \in \mathcal{B}(X)$ is regular.
2. The measure $\mu(A):= \begin{cases}0 & \text { for } A \text { countable defined in 2.3.2 on the } \sigma \text {-algebra } \mathcal{B}(X)=\sigma(\mathcal{O})= \\ \infty & \text { else }\end{cases}$ $\mathcal{O}=\mathcal{P}(X)$ of a discrete space X is a locally finite and outer regular Borel measure. It is inner regular iff X is countable.
3. The Lebesgue measure $\lambda^{n}:=\bigotimes_{1 \leq i \leq n} \lambda$ on the Borel σ-algebra \mathcal{B}^{n} of \mathbb{R}^{n} is a σ-finite Borel measure owing to 7.7 resp. the Heine-Borel theorem [13, p. 9.10]. Its regularity is a consequence of the locally compact character of \mathbb{R}^{n} and follows from the Riesz representation theorem 10.13 applied to the positive functional Λ with $\Lambda f=\int f d \lambda^{n}$ for $f \in C_{c}\left(\mathbb{R}^{n}, \mathbb{R}\right)$.

10.3 Separation properties on locally compact spaces

For real $f \in C_{c}(X, \mathbb{R})$, open $V \subset X$ and compact $K \subset X$ we write $K \prec f$ iff $\chi_{K} \leq f \leq 1$ and $f \prec V$ iff $0 \leq$ $f \leq \chi_{V}$. In these terms the separation property [13, th. 10.5] for locally compact spaces states that for every compact K and open $V \supset K$ there is an $f \in C_{c}(X, \mathbb{R})$ with $K \prec f \prec V$ resp. $\mu(K) \leq \int f d \mu \leq \mu(V)$. Since in a locally compact space the compact neighbourhoods form a
 neighbourhood basis we can strengthen this proposition to $\chi_{V}=\sup \left\{f \in C_{c}(X, \mathbb{R}): f \prec V\right\}$.

10.4 The $\left\|\|_{p}\right.$-closure of $\mathcal{C}_{c}(X, \mathbb{C})$

For every positive σ-regular Borel measure λ and $1 \leq p<\infty$ we have $\overline{\mathcal{C}_{c}(X, \mathbb{C})}=L^{p}(\lambda)$ with regard to $\left\|\|_{p}\right.$.
Proof: According to 6.11 .1 it suffices to find for every $A \in \mathcal{B}(X)$ with $\lambda(A)<\infty$ a function $g \in \mathcal{C}_{c}(X, \mathbb{R})$ such that $\left\|\chi_{A}-g\right\|_{p}=\left\|i \chi_{A}-i g\right\|_{p}<\epsilon$. Since λ is σ-regular and $\lambda(A)<\infty$ there is a compact K and an open V with $K \subset A \subset V$ and $\lambda(K)<\lambda(V)+\epsilon$ as well as a $g \in C_{c}(X, \mathbb{R})$
with $K \prec g \prec V$ such that $\lambda(K) \leq \int g d \lambda \leq \lambda(V)$ whence $\left\|\chi_{A}-g\right\|_{p} \leq\left\|\chi_{A}-\chi_{K}\right\|_{p}+\left\|\chi_{K}-g\right\|_{p}<$ $\epsilon^{1 / p}+\epsilon^{1 / p}$.

10.5 The $\left\|\|_{\infty}\right.$ closure of $\mathcal{C}_{c}(X, \mathbb{C})$

The closure $\mathcal{C}_{0}(X, \mathbb{C})=\overline{\mathcal{C}_{c}(X, \mathbb{C})} \subset \mathcal{C}_{0}(X, \mathbb{C})$ with regard to the supremum norm $\left\|\|_{\infty}\right.$ is the vector space of the continuous functions vanishing at infinity. These functions can be characterized by the following three equivalent conditions for every bounded continuous $f \in \mathcal{C}_{0}(X, \mathbb{C})$:

1. $f \in \mathcal{C}_{0}(X, \mathbb{C})$.
2. $f \in \mathcal{C}(X, \mathbb{C})$ and the sets $\{|f| \geq \epsilon\}$ are compact for every $\epsilon>0$.
3. The extension $\bar{f}: \bar{X} \rightarrow \mathbb{C}$ on the Alexandrov-compactification $\bar{X}=X \cup\{\infty\}$ defined by $\left.\bar{f}\right|_{X}=f$ and $\bar{f}(\infty)=0$ is uniformly continuous.

Proof:

1. $\Rightarrow 2$.: For the given $\epsilon>0$ exists a $g \in \mathcal{C}_{c}(X, \mathbb{C})$ with $\|f-g\|<\frac{\epsilon}{2}$ whence the closed set $\{|f| \geq \epsilon\}$ $\subset\left\{|g| \geq \frac{\epsilon}{2}\right\} \subset \operatorname{supp} g$ is compact owing to [13, th. 9.4].
2. $\Rightarrow 3 .: \bar{f}$ is continuous in $x=\infty$ since according to [13, th. 10.2] the open sets $\{|\bar{f}|<\epsilon\}=$ $\bar{X} \backslash\{|f| \geq \epsilon\}$ are contained in the neighbouhood basis of ∞.
3. $\Rightarrow 1$.: For every $\epsilon>0$ exists a compact $K \subset X$ with $|f(x)|=|\bar{f}(x)-\bar{f}(\infty)| \leq \epsilon$ for every $x \in X \backslash K$ and due to 10.3 there is a $g \in \mathcal{C}_{c}(X, \mathbb{C})$ with $K \prec g \prec X$. Then we have $f \cdot g \in \mathcal{C}_{c}(X, \mathbb{C})$ with $|f(x) \cdot g(x)-f(x)|=|f(x)| \cdot(1-g(x)) \leq \epsilon$ for all $x \in X$, i.e. $\|f \cdot g-f\| \leq \epsilon$ which proves the assertion.

10.6 Lusin's Theorem

For every positive σ-regular Borel measure λ and $f: X \rightarrow \mathbb{C}$ with $\lambda(f \neq 0)<\infty$ for every $\epsilon>0$ exists a $g \in \mathcal{C}_{c}(X, \mathbb{C})$ such that $\lambda(f \neq g)<\epsilon$ and $\|g\| \leq\|f\|$.
Proof: Due to $\bigcap_{n \geq 1}\{|f| \geq n\}=\emptyset$ and the continuity of λ from above there is an $n_{\epsilon} \in \mathbb{N}$ with $\lambda\left(A_{1}\right)<\frac{\epsilon}{4}$ for $A_{1}=\left\{|f| \geq n_{\epsilon}\right\}$ and hence $f \in L^{1}\left(\lambda^{\prime}\right)$ with $\lambda^{\prime}=\left.\lambda\right|_{X \backslash A_{1}}$. According to 10.4 there is a sequence $\left(f_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{C}_{c}\left(X \backslash A_{1} ; \mathbb{C}\right)$ converging in mean to f and according to 5.11 we have a subsequence uniformly converging on $X \backslash\left(A_{1} \cup A_{2}\right)$ with $\lambda\left(A_{2}\right)<\frac{\epsilon}{4}$ to f and consequently $f \in \mathcal{C}\left(X \backslash\left(A_{1} \cup A_{2}\right) ; \mathbb{C}\right)$. By the σ-regularity we find a compact $K \subset\{f \neq 0\} \backslash\left(A_{1} \cup A_{2}\right)$ with $\lambda\left(A_{3}\right)<\frac{\epsilon}{4}$ for $A_{3}=\{f \neq 0\} \backslash\left(K \cup A_{1} \cup A_{2}\right)$ and $f \in \mathcal{C}(K, \mathbb{C})$. Since in a locally compact space the compact neighbourhoods form a neighbourhood basis we find an open set $V \subset K$ with compact closure \bar{V} which due to the outer regularity of λ we can choose such that w.l.o.g. $\lambda\left(A_{4}\right)<\frac{\epsilon}{4}$ for $A_{4}=V \backslash K$. The compact set \bar{V} is also normal such that we can apply Tietze's extension theorem [13, p. 8.5] to find $\operatorname{Re} g^{*}$ resp. $\operatorname{Im} g^{*} \in \mathcal{C}(\bar{V}, \mathbb{R})$ coinciding with $\operatorname{Re} f$ resp. $\operatorname{Im} f$ on K and vanishing on the closed boundary $\bar{V} \backslash V$. Extending $g^{*}=\operatorname{Re} g^{*}+i \operatorname{Im} g^{*}$ to X by assigning the value 0 outside \bar{V} we obtain a $g \in \mathcal{C}_{c}(X, \mathbb{C})$ coinciding with f on $X \backslash A_{\epsilon} \subset K \cup X \backslash\left(A_{1} \cup A_{2} \cup\{f \neq 0\} \cup V\right)$ with $A_{\epsilon}=A_{1} \cup A_{2} \cup A_{3} \cup A_{4}$ and $\lambda\left(A_{\epsilon}\right)<\epsilon$. In order to scale g according to $\|g\| \leq\|f\|$ we define a continuous $h: \mathbb{C} \rightarrow \mathbb{C}$ by $h(z)=z$ if $|z| \leq\|f\|$ and $h(z)=\|f\| \cdot \frac{z}{|z|}$ otherwise such that $\|h \circ g\| \leq\|f\|$.

10.7 The Vitali-Carathéodory theorem

For every Lebesgue integrable $f \in L^{1}(X ; \mathbb{R})$ with positive σ-regular Borel measure λ and $\epsilon>0$ there are bounded and upper resp. lower semicontinuous (cf. [13, p. 3.3]) functions $u ; v: X \rightarrow \mathbb{R}$ such that $u \leq f \leq v$ and $\int(v-u) d \lambda<\epsilon$.

Proof: We start with $f \geq 0$ which due to 5.4 has an approximating sequence $\left(\varphi_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{S}\left(X ; \mathbb{R}_{0}^{+}\right)$ of step functions such that for every $k \geq 1$ there is an $n_{k} \geq 1$ with $\left|\varphi_{n_{k}}(x)-f(x)\right|<\frac{1}{k}$ for every $x \in Z_{k} \subset X$ with $\mu\left(Z_{k}\right)<\frac{1}{k}$ such that the sequence $\sup _{k \leq m}\left(\varphi_{n_{k}} \cdot \chi_{Z_{k}}-\frac{2}{k}\right)_{m \in \mathbb{N}} \subset \mathcal{S}\left(X ; \mathbb{R}_{0}^{+}\right)$is increasing and μ-a.e. converges to f. Hence we have measurable sets $\left(A_{i}\right)_{i \in \mathbb{N}} \subset \mathcal{B}(X)$ and positive $c_{i}>0$ such that $f=\sum_{i \geq 1} c_{i} \chi_{A_{i}}$ and $\sum_{i \geq 1} c_{i} \cdot \lambda\left(A_{i}\right)=\int f d \lambda<\infty$. Due to the regularity of λ there are compact K_{i} and open V_{i} with $K_{i} \subset A_{i} \subset V_{i}$ and $\lambda\left(V_{i} \backslash K_{i}\right)<\frac{\epsilon}{c_{i} \cdot 2^{i+1}}$. Then $u=\sum_{i=1}^{N} c_{i} \chi_{K_{i}}$ with $\sum_{i \geq N} c_{i} \cdot \lambda\left(A_{i}\right)<\frac{\epsilon}{2}$ is upper semicontinuous, $v=\sum_{i \geq 1} c_{i} \chi_{V_{i}}$ is lower semicontinuous, $u \leq f \leq v$ and $\int(v-u) d \lambda=\sum_{i=1}^{N} c_{i} \cdot \lambda\left(V_{i} \backslash K_{i}\right)+\sum_{i \geq N} c_{i} \lambda\left(V_{i}\right) \leq \sum_{i \geq 1} c_{i} \cdot \lambda\left(V_{i} \backslash K_{i}\right)+\sum_{i \geq N} c_{i} \lambda\left(A_{i}\right)<\frac{\epsilon}{2}+\frac{\epsilon}{2}$. In the general case we apply the first step to the positive and negative parts of $f=f^{+}-f^{-}$to find corresponding $u^{+} \leq f^{+} \leq v^{+}$resp. $u^{-} \leq f^{-} \leq v^{-}$such that $u=u^{+}-v^{-} \leq f$ is upper semicontinuous, $v=v^{+}-u^{-} \geq f$ is lower semicontinuous and $\int(v-u) d \lambda=\int\left(v^{+}-u^{+}\right) d \lambda-\int\left(v^{-}-u^{-}\right) d \lambda<\epsilon$.

10.8 Positive functionals are bounded on compact sets

Every positive $\Lambda: \mathcal{C}_{c}(X, \mathbb{C}) \rightarrow \mathbb{C}$ is bounded on $\mathcal{C}_{K}(X, \mathbb{C})$ for every compact K.
Proof: Due to the separation property [13, p. 10.5] of locally compact spaces already cited in 10.1 there is a continuous $g: X \rightarrow[0 ; 1]$ with $g^{-1}(\{1\})=K$ and compact support. Then for $f \in \mathcal{C}_{K}(X, \mathbb{C})$ we have $\|\operatorname{Re} f\| \cdot g \pm \operatorname{Re} f \geq 0$ whence $\Lambda(\|\operatorname{Re} f\| \cdot g) \pm \Lambda(\operatorname{Re} f)=\|\operatorname{Re} f\| \cdot \Lambda g \pm \Lambda(\operatorname{Re} f) \geq 0$, i.e. $\Lambda\left(\frac{\operatorname{Re} f}{\|f\|}\right) \leq$ $\Lambda\left(\frac{\operatorname{Ref}}{\|\operatorname{Re} f\|}\right) \leq \Lambda g$ and since the same is true for $\operatorname{Im} f$ we obtain $\left|\Lambda\left(\frac{f}{\|f\|}\right)\right|=\left|\Lambda\left(\frac{\operatorname{Ref}}{\|f\|}\right)+i \Lambda\left(\frac{\operatorname{Im} f}{\|f\|}\right)\right| \leq$ $\sqrt{2} \cdot \Lambda g<\infty$.

10.9 Decomposition of complex and bounded real functionals

1. Every bounded real functional $\Lambda \in\left(\mathcal{C}_{c}(X, \mathbb{R})\right)^{*}$ has a decomposition $\Lambda=\Lambda^{+}-\Lambda^{-}$with positive real and bounded $\Lambda^{+} ; \Lambda^{-} \in\left(\mathcal{C}_{c}(X, \mathbb{R})\right)^{*}$.
2. Every complex functional $\Lambda \in\left(\mathcal{C}_{c}(X, \mathbb{R})\right)^{*}$ allows the decomposition into four positive real and bounded functionals $\operatorname{Re} \Lambda^{+} ; \operatorname{Re} \Lambda^{-} ; \operatorname{Im} \Lambda^{+} ; \operatorname{Im} \Lambda^{-} \in\left(\mathcal{C}_{c}(X, \mathbb{R})\right)^{*}$ such that $\Lambda f=\operatorname{Re} \Lambda^{+} f-$ $\operatorname{Re} \Lambda^{-} f+i\left(\operatorname{Im} \Lambda^{+} f+\operatorname{Im} \Lambda^{-} f\right)$.

Note: Recall that according to the definition in 10.1 a positive complex linear functional Λ : $C_{c}(X, \mathbb{C}) \rightarrow \mathbb{C}$ has a positive real part $\operatorname{Re} \Lambda \in\left(C_{c}(X, \mathbb{R})\right)_{+}^{*}$ and a vanishing imaginary part $\operatorname{Im} \Lambda=0$ whence the decompostion from 2. extends to positive functionals $\Lambda: \mathcal{C}_{c}(X, \mathbb{C}) \rightarrow \mathbb{C}$ as in the following theorem:

Proof:

1. For positive $f \in \mathcal{C}_{c}(X, \mathbb{R})$ define $\Lambda^{+} f:=\sup \left\{\Lambda g: g \in \mathcal{C}_{c}(X, \mathbb{R}) ; 0 \leq g \leq f\right\}$ such that $0 \leq$ $\Lambda^{+} f \leq\|\Lambda\|^{*}\|f\|$, i.e. Λ^{+}is positive and bounded. For positive $c \in \mathbb{R}$ we have $g \leq$ $c f \Leftrightarrow g=c g^{\prime}: g^{\prime} \leq f$ for any positive $g ; g^{\prime} \in \mathcal{C}_{c}(X, \mathbb{R})$ such that $\Lambda^{+}(c f)=c \Lambda^{+} f$ thus establishing conformity with scalar muplitplication. With regard to additivity we take any positive $f_{1} ; f_{2} ; g_{1} ; g_{2} ; g \in \mathcal{C}_{c}(X, \mathbb{R})$ with $g_{1} \leq f_{1}, g_{2} \leq f_{2}$ resp. $g \leq f_{1}+f_{2}$ in order to note that $\Lambda^{+} f_{1}+\Lambda^{+} f_{2}=\sup \Lambda^{+} g_{1}+\sup \Lambda^{+} g_{2}=\sup \left(\Lambda^{+} g_{1}+\Lambda^{+} g_{2}\right)=\sup \Lambda^{+}\left(g_{1}+g_{2}\right) \leq$ $\sup \Lambda^{+} g=\Lambda^{+}\left(f_{1}+f_{2}\right)$ and conversely $\inf \left(g ; f_{1}\right) \leq f_{1}$ resp. $g-\inf \left(g ; f_{1}\right) \leq f_{2}$ hence $\Lambda^{+} g \leq$ $\Lambda^{+} f_{1}+\Lambda^{+} f_{2}$,i.e. $\Lambda^{+}\left(f_{1}+f_{2}\right)=\sup \Lambda^{+} g \leq \Lambda^{+} f_{1}+\Lambda^{+} f_{2}$ thus demonstrating additivity. We extend Λ^{+}to real $f \in \mathcal{C}_{c}(X, \mathbb{R})$ with decomposition $f=f^{+}-f^{-}$with positive $f^{+} ; f^{-} \in \mathcal{C}_{c}(X, \mathbb{R})$ by means of $\Lambda^{+} f:=\Lambda^{+} f^{+}-\Lambda^{+} f^{-}$being independent of the choice of the decomposition and hence well defined as well as linear on account of the linearity of the components. The same is true for $\Lambda^{-}:=\Lambda-\Lambda^{+}$which completes the proof.
2. directly follows from 1 .

10.10 The outer measure of a positive functional

For every positive functional $\Lambda: \mathcal{C}_{c}(X, \mathbb{C}) \rightarrow \mathbb{C}$ the set function $\mu: \mathcal{P}(X) \rightarrow[0 ; \infty]$ defined by $\mu(V)$ $=\sup \{\Lambda g: g \prec V\}$ for open $V \subset X$ and $\mu(A)=\inf \{\mu(V): A \subset V$ open $\}$ for arbitrary $A \subset X$ is an outer measure according to 10.1 with the additional regularity property $\mu(K) \leq \Lambda g \leq \mu(V)$ for any compact K, open V and $g \in C_{c}(X, \mathbb{R})$ with $K \prec g \prec V$.
Proof: Obviously we have $\mu(\emptyset)=0$ and $\mu(A) \leq \mu(B)$ if $A \subset B$. The subadditivity requires more attention. We start with $\mu(U \cup V) \leq \mu(U)+\mu(V)$ for open U and V : Let $f \prec U \cup V$ and $\Phi=\{\sup (g ; h): g \prec U ; h \prec V\}$ and $\Phi_{f}=\{\inf (f ; \bar{f}): \bar{f} \in \Phi\}$. Then $f=\sup \Phi_{f} \leq \sup \Phi=\chi_{U \cup V}$ such that on account of Dini's theorem [13, p. 9.12] and the continuity of Λ we have

$$
\begin{aligned}
\Lambda f & =\Lambda \sup \Phi_{f} \\
& =\sup \Lambda \Phi_{f} \\
& =\sup \{\Lambda(\inf (f ; \sup (g ; h))): g \prec U ; h \prec V\} \\
& \leq \sup \{\Lambda(\inf (f ; g)+\inf (f ; h)): g \prec U ; h \prec V\} \\
& \leq \sup \{\Lambda(g+h): g \prec U ; h \prec V\} \leq \mu(U)+\mu(V) .
\end{aligned}
$$

Since this estimate holds for every $f \prec U \cup V$ we obtain the subadditivity for open sets. In order to show the σ-subadditivity 3.2 .3 we take a sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ of arbitrary subsets with $A=\cup_{n \in \mathbb{N}} A_{n}$, open sets V_{n} with $A_{n} \subset V_{n}$ and $\mu\left(A_{n}\right) \leq \mu\left(V_{n}\right)+\epsilon 2^{-n}$ such that $A \subset V=\bigcup_{n \in \mathbb{N}} V_{n}$. Since any $g \prec V$ has a compact support there is an $n \in \mathbb{N}$ with $g \prec \bigcup_{k \leq n} V$ and hence $\Lambda g \leq \mu\left(\bigcup_{k \leq n} V_{n}\right) \leq \sum_{k \leq n} \mu\left(V_{n}\right)$ due to the subadditivity inductively extended to finite unions. Again we use the validity of this estimate for every $g \prec V$ to infer $\mu(A) \leq \mu(V) \leq \sum_{n \in \mathbb{N}} \mu\left(A_{n}\right)+\epsilon$ thus proving the main assertion.
Concerning the additional regularity property we only have to show the left inequality: For any $\epsilon>0$ we have $K \subset\{g>1-\epsilon\}$ and hence a $f \in C_{c}(X)$ with on the one hand $K \prec f \prec\{g>1-\epsilon\}$ such that $(1-\epsilon) f \leq g$, i.e. $(1-\epsilon) \Lambda f \leq \Lambda g$ and on the other hand $\Lambda f \geq \mu(\{g>1-\epsilon\})-\epsilon \geq \mu(K)-\epsilon$ whence $(\mu(K)-\epsilon)(1-\epsilon) \leq \Lambda g$ which proves the assertion.

10.11σ-Additivity of the outer measure on sets of finite measure

The outer measure μ determined by Λ according to the preceding lemma 10.10 is σ additive and hence a pre-measure on the algebra $\mathcal{A}(X)$ of all sets $A \subset X$ with $\mu(A)=$ $\sup \{\mu(K): A \supset K$ compact $\}<\infty$. Furthermore $\mathcal{A}(X)$ contains all open sets.
Proof: For brevity in this proof we omit the argument and write \mathcal{A} for $\mathcal{A}(X)$.
Step I. Every compact set K has a finite measure and hence belongs to \mathcal{A} : There is an open $V \subset K$ with compact closure \bar{V} such that the separation property of locally compact spaces ensures the existence of $f, g \in C_{c}(X)$ with $K \prec f \prec V$ resp. $\bar{V} \prec g \prec X$ hence $g-f \geq 0 \Rightarrow \Lambda(g-f) \geq 0 \Rightarrow$ $\Lambda f \leq \Lambda g<\infty$ due to the positiv and linear character of Λ. Furthermore we can choose f such that $\mu(V) \leq \Lambda f+\epsilon$ whence $\mu(K) \leq \mu(V) \leq \Lambda f+\epsilon \leq \Lambda g+\epsilon<\infty$.
Step II. \mathcal{A} contains every open set V : In the case of $\mu(V)=0$ the definition of μ immediately yields $\mu(K)=\inf \{\mu(V): K \subset V$ open $\}=0$ for every compact $K \subset V$. Hence we can assume $\mu(V)>0$ and for every $\epsilon>0$ the existence of an $f \prec V$ with $\mu(V)-\epsilon<\Lambda f<\mu(V)$ and compact support $K=\overline{\{f>0\}}$. For every open $W \supset K$ we have $f \prec W$ and hence $\Lambda f \leq \mu(K)$ and consequently $\mu(V)-\epsilon<\Lambda f \leq \mu(K)<\mu(V)<\infty$ on account of $K \subset V$ and 10.10.
Step III. μ is finitely additive for compact sets: For disjoint and compact sets K, L and $\epsilon>0$ according to the separation property [13, p. 10.5] of locally compact spaces choose disjoint and open $U \supset K, V \supset L$ and an open $W \supset K \cup L$ with $\mu(W)<\mu(K \cup L)+\epsilon$ as well as $f \prec U \cap W$ resp. $g \prec V \cap W$ with $\Lambda f>\mu(U \cap W)-\epsilon$ resp. $\Lambda g>\mu(V \cap W)-\epsilon$. We then have $\mu(K)+\mu(L) \leq$ $\mu(W \cap U)+\mu(W \cap V) \leq \Lambda f+\Lambda g+2 \epsilon=\Lambda(f+g)+2 \epsilon \leq \mu(W)+2 \epsilon \leq \mu(K \cup L)+3 \epsilon$. Since the reverse inequality follows from the montonicity of μ we have proved the asssertion.

Step IV. μ is σ-additive on \mathcal{A} : For a sequence $\left(A_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{A}$ with $A=\bigcup_{n \in \mathbb{N}} A_{n}$ there are compact $K_{n} \subset A_{n}$ with $\mu\left(A_{n}\right) \leq \mu\left(K_{n}\right)+\epsilon 2^{-n}$ whence $\sum_{k=1}^{n} \mu\left(A_{k}\right) \leq \sum_{k=1}^{n} \mu\left(K_{k}\right)+\epsilon=\mu\left(\bigcup_{k=1}^{n} K_{k}\right)+\epsilon \leq \mu(A)+\epsilon$. Since this estimate remains valid for $n \rightarrow \infty$ and $\epsilon \rightarrow 0$ we obtain $\sum_{n \in \mathbb{N}} \mu\left(A_{n}\right) \leq \mu(A)$ and with the reverse inequality following from property 3.2.3 of the outer measure we have proved the assertion. Furthermore we note that for every sequence $\left(A_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{A}$ the union $A=\cup_{n \in \mathbb{N}} A_{n}$ also belongs to \mathcal{A} if it has finite measure, i.e. for finite μ the algebra \mathcal{A} is a σ-algebra. This will be used of in the subsequent lemma to construct the actual σ-algebra \mathcal{M} carrying the measure μ determined by Λ.

Step V. \mathcal{A} is an algebra: Clearly $\emptyset \in \mathcal{A}$. For $A, B \in \mathcal{A}$ we can find compact K, L and open U, V such that $K \subset A \subset V$ resp. $L \subset B \subset V$ and $\mu(K) \leq \mu(A) \leq \mu(U)<\mu(K)+\epsilon$ resp. $\mu(L) \leq \mu(B) \leq \mu(V)<\mu(L)+\epsilon$. By the finite additivity of μ follows $\mu(U \backslash K), \mu(V \backslash L)<\epsilon$ and with $(U \cup V) \backslash(K \cup L) \subset$ $(U \backslash K) \cup(V \backslash L)$ we get $\mu(A \cup B)<\mu(K \cup L)+2 \epsilon$ and hence $A \cup B \in \mathcal{A}$. Regarding the intersection we note that $K \backslash V \subset$ $A \backslash B \subset V \backslash L$ and the two outer sets are open with $(V \backslash L) \backslash$
 $(K \backslash V) \subset(U \backslash K) \cup(V \backslash L)$ so that $A \backslash B \in \mathcal{A}$ and finally $A \cap B=B \backslash(B \backslash A) \in \mathcal{A}$.

10.12σ-Additivity of the outer measure on $\mathcal{L}(X)$

The outer measure μ determined by Λ according to lemma 10.10 is σ-additive and hence a measure on the Lebesgue σ-algebra $\mathcal{L}(X)=\bigcap_{K \text { compact }} \mathcal{L}_{K}(X)$ with $\mathcal{L}_{K}(X)=\{A \subset X: A \cap K \in \mathcal{A}(X)\}$ including the Borel σ-algebra $\mathcal{B}(X)$ as well as the algebra $\mathcal{A}(X)$ of sets of finite measure introduced in the preceding lemma 10.11. $\mathcal{A}(X)$ consists precisely of all sets of finite measure in $\mathcal{L}(X)$. In particular μ is complete, outer regular and σ-regular on $\mathcal{L}(X)$.
Proof: Again we abbreviate $\mathcal{A}=\mathcal{A}(X)$ etc. Obviously we have $\mathcal{A} \subset \mathcal{L}$. According to the step IV of the proof of the preceding lemma the families \mathcal{L}_{K} are σ-algebrae and so is \mathcal{L}. Every \mathcal{L}_{K} contains all closed sets (cf. [13, p. 9.4] and hence $\mathcal{B}(X) \subset \mathcal{L}$. Every μ-null set $A \subset X$ with $\mu(A)=0$ is either empty or contains a point $x \in A \subset X$ and hence a compact set $\{x\} \subset A$ which must have the measure $\mu(\{x\})=0$ due to the monotonicity of μ. Hence $A \in \mathcal{L}$ and in particular μ is complete.
For $A \in \mathcal{L}$ with $\mu(A)<\infty$ there is an open $V \supset A$ with $\mu(V)<\infty$. Furthermore according to step II in the proof of 10.11 we can find a compact $K \subset V$ such that $\mu(V)<\mu(K)+\epsilon$. Since $A \cap K \in \mathcal{A}$ there is a compact $K_{A} \subset A \cap K$ such that $\mu(A \cap K)<\mu\left(K_{A}\right)+\epsilon$. With $A \subset(A \cap K) \cup V \backslash K$ we obtain $\mu(A) \leq \mu(A \cap K)+\mu(V \backslash K) \leq \mu\left(K_{A}\right)+2 \epsilon$ and since ϵ was arbitrary we have $\mu(A)=\sup \{\mu(K): A \supset K$ compact $\}$ whence follows $A \in \mathcal{A}$. Finally the σ-additivity of μ extends from \mathcal{A} to \mathcal{L} since for a disjoint sequence $\left(A_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{L}$ with $\mu\left(A_{n}\right)<\infty$ for all $n \in \mathbb{N}$ we have $\left(A_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{A}$ such that the preceding lemma applies. In the case of $\mu\left(A_{n}\right)=\infty$ for an $n \in \mathbb{N}$ the σ-additivity follows from the monotonicity of μ. Due to its definition in 10.10μ is outer regular on \mathcal{L}. According to 10.11 it is inner regular for all sets open or with finite measure. For $\epsilon>0$ and a σ-finite set $A=\bigcup_{n \in \mathbb{N}} A_{n}$ with $\mu\left(A_{n}\right)<\infty$ and w.l.o.g $A_{n} \subset A_{n+1}$ for $n \in \mathbb{N}$ we find compact $K_{n} \subset A_{n}$ with $\mu\left(K_{n}\right) \geq \mu\left(A_{n}\right)-\frac{\epsilon}{2}$ for $n \in \mathbb{N}$. In the case of $\mu(A)<\infty$ there is an $m \in \mathbb{N}$ with $\mu\left(A_{m}\right) \geq \mu(A)-\frac{\epsilon}{2}$ and hence $\mu\left(K_{m}\right) \geq \mu(A)-\epsilon$. In the case of $\mu(A)<\infty$ for every $N \in \mathbb{N}$ there is an $m \in \mathbb{N}$ with $\mu\left(A_{m}\right) \geq N+\frac{\epsilon}{2}$ and hence $\mu\left(K_{m}\right) \geq N$. Hence we have shown that $\mu(A)=\sup \{\mu(K): K$ compact with $K \subset A\}$.

10.13 The Riesz representation theorem for positive functionals

The normed, complete and closed convex cone $\left(\mathcal{C}_{c}(X, \mathbb{C})\right)_{+}^{*}$ of the positive functionals on $\mathcal{C}_{c}(X, \mathbb{C})$ with the norm $\left\|\|^{*}\right.$ defined by $\| \Lambda \|^{*}=\sup \left\{\left|\Lambda\left(\frac{f}{\|f\|_{\infty}}\right)\right|: f \in C_{c}\left(X, \mathbb{R}^{+}\right)\right\}$is positively isometric and isomorphic to the normed, complete and convex cone $\mathcal{M}_{\sigma 0}\left(\mathcal{L}(X) ; \mathbb{R}^{+}\right)$of the complete, outer and σ-regular positive Borel measures on a σ-algebra $\mathcal{L}(X)$ including the Borel σ-algebra $\mathcal{B}(X) \subset \mathcal{L}(X)$ under the norm $\|\|$ with $\| \mu \|=\mu(X)$ by $\mu \simeq \Lambda$ iff $\Lambda f=\int f d \mu$ for every $f \in$ $\mathcal{C}_{c}(X, \mathbb{C})$.
Notes:

1. Corresponding to the restriction of the algebraic closure to positive scalars in a convex cone as given in 10.1 we define a positive vector isomorphism between convex cones \mathcal{C}^{*} and \mathcal{M} as a bijection $\mu: \mathcal{C}^{*} \rightarrow \mathcal{M}$ with $\mu_{\alpha \Lambda+\beta \Gamma}=\alpha \mu_{\Lambda}+\beta \mu_{\Gamma}$ for every $\Gamma ; \Lambda \in \mathcal{C}^{*}$ and $\alpha ; \beta \geq 0$.
2. The norm $\left\|\|\right.$ on $\mathcal{M}_{\sigma 0}\left(\mathcal{L}(X) ; \mathbb{R}^{+}\right)$induces a subclass of the weak topology which will be examined in 11.8.
3. Apart from above used outer or principal measure defined in 10.10 by $\mu(V)=\sup \{\Lambda g: g \prec V\}$ for open $V \subset X$ and $\mu(A)=\inf \{\mu(V): A \subset V$ open $\}$ for arbitrary $A \subset X$ there are other representation measures, among them the inner or essential measure defined in 11.1 by $\dot{\mu}(K)$ $=\inf \{\Lambda g: K \prec g\}$ for compact $K \subset X$ resp. $\dot{\mu}(A)=\sup \{\dot{\mu}(K):$ compact $K \subset A\}$ for arbitrary $A \subset X$. The inner measure is not necessarily complete but obviously finite on compact sets and inner regular, i.e. a Radon measure according to the definition in 10.1. Furthermore it is uniquely defined by these properties whence we have a second variation of the Riesz representation theorem: The convex cone $\left(\mathcal{C}_{c}(X, \mathbb{C})\right)_{+}^{*}$ of the positive functionals on $\mathcal{C}_{c}(X, \mathbb{C})$ is positively isometric and isomorphic to the convex cone $\mathcal{M}_{i 0}^{c}\left(\mathcal{B}(X) ; \mathbb{R}^{+}\right)$ of the Radon measures on $\mathcal{B}(X)$ with $\mu \simeq \Lambda$ iff $\Lambda f=\int f d \mu$ for every $f \in \mathcal{C}_{c}(X, \mathbb{C})$. According to 11.1 the outer and the inner measure coincide on σ-compact spaces.
Proof:
Step I. Uniqueness: Assuming that there are two σ-regular and complete positive Borel measures μ_{1} and μ_{2} such that $\int f d \mu_{1}=\int f d \mu_{2}$ for all $f \in \mathcal{C}_{c}(X, \mathbb{C})$ for every $\epsilon>0$, compact $K \subset X$ open $V \supset K$ with $\mu_{2}(V)<\mu_{2}(K)+\epsilon$ and $f \in C_{c}(X, \mathbb{R})$ with $K \prec f \prec V$, i.e. $\chi_{K} \leq f \leq \chi_{V}$ follows $\mu_{1}(K) \leq \int f d \mu_{1}=\int f d \mu_{2} \leq \mu_{2}(V) \leq \mu_{2}(K)+\epsilon$. and vice versa. Hence the two measures coincide on the compact sets and due to their σ-regularity this identity extends first to the open sets and by the uniqueness theorem 3.4 to all measurable sets.
Step II. Existence: Since the $f \in \mathcal{C}_{c}(X, \mathbb{C})$ are continuous and in particular Borel measurable we can restrict the measure μ determined by Λ according to lemma 10.10 on the σ-algebra $\mathcal{L}(X)$ from 10.12 to the Borel σ-algebra $\mathcal{B}(X) \subset \mathcal{L}(X)$. On account of $\operatorname{Re} \Lambda f=\Lambda \operatorname{Re} f$ resp. $\operatorname{Im} \Lambda f=\Lambda \operatorname{Im} f$ for positive functionals it suffices to show the equation for real f. Since $f \in \mathcal{C}_{c}(X) \Leftrightarrow-f \in \mathcal{C}_{c}(X)$ we only have to show $\Lambda f \leq \int f d \mu$ for every $f \in \mathcal{C}_{c}(X, \mathbb{R})$. Since the step functions defining the integral are not continuous we have to take recourse to a corresponding partition of unity consisting of continuous functions of compact support being amenable to Λ and providing a result which can be compared to the integral. Furthermore the general case only provides for pointwise convergence so that we need the compactness of the support $K=\overline{\{f \neq 0\}}$ in order to find elementary functions uniformly converging to f : For $\epsilon>0$ let $A_{k}=\{k \epsilon \leq f<(k+1) \epsilon\}$ with $-n \leq k \leq n=\left[\frac{\|f\|}{\epsilon}\right]$ such that $\left(A_{k}\right)_{|k| \leq n}$ is a partition of the compact support $K=\bigcup_{k=-n}^{n} A_{k}$ and $e=\sum_{k=-n}^{n} k \in \chi_{A_{k}} \in \mathcal{S}(X)$ according to 5.2 and 5.4 such that $e \leq f \leq e+\epsilon$ whence $\int e d \mu \leq \int f d \mu \leq \int e d \mu+\epsilon \cdot \mu(K)$. Due to 10.10 for every $|k| \leq n$ there is an open V_{k} with $A_{k} \subset V_{k} \subset\{f<e+\epsilon\}$ and $\mu\left(V_{k}\right) \leq \mu\left(A_{k}\right)+\frac{\epsilon}{n\|f\|}$. On account of [13, 8.9, 9.5 and 10.5] we can find a partition of unity $\left(h_{k}\right)_{|k| \leq n} \subset \mathcal{C}_{c}(X, \mathbb{R})$ subordinate to $\left(V_{k}\right)_{|k| \leq n}$ with $f h_{k} \prec V_{k}$ and $f h_{k} \leq(k+1) \epsilon h_{k}$ as well as $K \prec \sum_{k=-n}^{n} h_{k}$ such that $\mu(K) \leq \sum_{k=-n}^{n} \Lambda h_{k}$. Thus we have

$$
\begin{aligned}
\Lambda f & =\sum_{k=-n}^{n} \Lambda f h_{k} \\
& \leq \sum_{k=-n}^{n}(k+1) \epsilon \Lambda h_{k} \\
& =\sum_{k=-n}^{n}(k \epsilon+\epsilon+\|f\|) \Lambda h_{k}-\|f\| \sum_{k=-n}^{n} \Lambda h_{k} \\
& \leq \sum_{k=-n}^{n}(k \epsilon+\epsilon+\|f\|) \mu\left(V_{k}\right)-\|f\| \mu(K) \\
& \leq \sum_{k=-n}^{n}(k \epsilon+\epsilon+\|f\|)\left(\mu\left(A_{k}\right)+\frac{\epsilon}{n\|f\|}\right)-\|f\| \mu(K) \\
& \leq \int e d \mu+\epsilon \mu(K)+\|f\| \mu(K)+2(n(n+1) \epsilon+2 n\|f\|) \frac{\epsilon}{n\|f\|}-\|f\| \mu(K) \\
& =\int e d \mu+\epsilon \mu(K)+\frac{2(n+1) \epsilon^{2}}{\|f\|}+2 \epsilon \\
& \leq \int f d \mu+\epsilon \mu(K)+6 \epsilon .
\end{aligned}
$$

Step III. The map $\mu \mapsto \Lambda$ is isometric: In the case of $\mu(X)<\infty$ on the one hand we have $\|\Lambda\|^{*}$ $=\sup \left\{\left|\frac{\int f d \mu}{\sup |f|}\right|: f \in \mathcal{C}_{c}(X, \mathbb{R})\right\}=\sup \left\{\left|\int f d \mu\right|: f \in \mathcal{C}_{c}\left(X, \mathbb{R}^{+}\right), \sup f=1\right\} \leq \mu(X)=\|\mu\|$. On the other hand according to Lusin's theorem 10.6 for every $\epsilon>0$ there exists a $g \in \mathcal{C}_{c}(X, \mathbb{C})$ such that $\mu(g \neq 1)<\epsilon$ and $\|g\| \leq 1$. This implies $\|\Lambda\|^{*} \geq\left|\int_{X} g d \mu\right| \geq|\mu(X \backslash\{g \neq 1\})-\mu(g \neq 1)| \geq \mu(X)-2 \epsilon$ whence $\|\Lambda\|^{*} \geq\|\mu\|$. Hence in the finite case we conclude that $\|\Lambda\|^{*}=\|\mu\|$ and the estimates also show that $\|\Lambda\|^{*}<\infty$ iff $\mu(X)<\infty$.
Step IV. The convex cone $\left(\mathcal{C}_{c}(X, \mathbb{C})\right)_{+}^{*}$ is normed, complete and closed: For every $\Lambda \in$ $\left(\mathcal{C}_{c}(X, \mathbb{C})\right)^{*} \backslash\left(\mathcal{C}_{c}(X, \mathbb{C})\right)_{+}^{*}$ there is an $f \in \mathcal{C}_{c}(X,[0 ; 1])$ and an $\epsilon>0$ such that $\Lambda f<-\epsilon$. Due to [10, th. 1.10] the bounded functional Λ is uniformly continuous such that there is a $\delta>0$ with $\Lambda\left[B_{\delta}(f)\right] \subset$ $B_{\epsilon / 2}(\Lambda f) \subset \mathbb{R}$. Then for every $\Gamma \in B_{\epsilon \cdot\|f\|}(\Lambda)=\left\{\Gamma \in\left(\mathcal{C}_{c}(X, \mathbb{C})\right)^{*}:\|\Gamma\|^{*}=\sup _{\|g\| \leq 1} \Gamma g<\epsilon \cdot\|f\|\right\}$ we have $\Gamma\left(\frac{f}{\|f\|}\right)<\epsilon$, i.e. $B_{\epsilon \cdot\|f\|}(\Lambda) \subset\left(\mathcal{C}_{c}(X, \mathbb{C})\right)^{*} \backslash\left(\mathcal{C}_{c}(X, \mathbb{C})\right)_{+}^{*}$. Hence $\left(\mathcal{C}_{c}(X, \mathbb{C})\right)_{+}^{*}$ is a closed subset of the vector space $\left(C_{c}(X, \mathbb{C})\right)^{*}$ and since according to [10, th. 7.1] the set $\left(\mathcal{C}_{c}(X, \mathbb{C})\right)_{+}^{*}$ is a Banach space the completeness follows from [13, th. 14.2.2]. The corresponding properties of $\mathcal{M}_{\sigma 0}\left(\mathcal{L}(X) ; \mathbb{R}^{+}\right)$are a consequence of the isometry between the two spaces.

10.14 The Riesz representation theorem for complex functionals

The Banach space $\left(C_{c}(X, \mathbb{C})\right)^{*}$ with the norm $\left\|\left\|\|^{*} \text { defined by }\right\| \Lambda\right\|^{*}=\sup \left\{\left|\Lambda\left(\frac{f}{\|f\|_{\infty}}\right)\right|: f \in C_{c}\left(X, \mathbb{R}^{+}\right)\right\}$ is isometric and isomorphic to the Banach space $\mathcal{M}_{0}(\mathcal{B}(X) ; \mathbb{C})$ of complex regular Borel measures on $\mathcal{B}(X)$ under the norm $\|\|$ with $\| \mu \|=|\mu|(X)$ defined in 9.1 with $\mu \simeq \Lambda$ iff $\Lambda f=$ $\int f d \mu=\int f \frac{d \mu}{d \mid \mu d} d|\mu|$ for every $f \in \mathcal{C}_{c}(X, \mathbb{C})$ (cf. 9.8).
Note: According to $[10$, th. 7.1$]$ the completeness of the dual space $\left(C_{c}(X, \mathbb{C})\right)^{*}$ follows from the completeness of \mathbb{C} while the corresponding property of the space $\mathcal{M}_{0}(\mathcal{B}(X) ; \mathbb{C})$ is a consequence of the isometry with $\left(C_{c}(X, \mathbb{C})\right)^{*}$. The topology on $\mathcal{M}_{\sigma 0}\left(\mathcal{L}(X) ; \mathbb{R}^{+}\right)$induced a norm $\|\|$will be examined in 11.8.

Proof: According to [13, th. 20.6.6] and 9.4 the closed vector subspace $\mathcal{M}_{0}(\mathcal{L}(X) ; \mathbb{C})$ of the Banach space $\mathcal{M}(\mathcal{L}(X) ; \mathbb{C})$ is again a Banach space.
The map $\mu \mapsto \Lambda$ is well defined and \mathbb{C}-linear: The complete and regular complex measure
$\mu=\operatorname{Re} \mu^{+}-\operatorname{Re} \mu^{-}+i\left(\operatorname{Im} \mu^{+}-\operatorname{Im} \mu^{-}\right)$with

$$
\mu(A)=\int \chi_{A} \operatorname{Re} h^{+} d|\mu|-\int \chi_{A} \operatorname{Re} h^{-} d|\mu|+i\left(\int \chi_{A} \operatorname{Im} h^{+} d|\mu|-\int \chi_{A} \operatorname{Im} h^{-} d|\mu|\right)
$$

represented by four complete and regular positive measures according to 9.11 is mapped to the complex functional Λ with

$$
\Lambda f=\int f d \mu=\int f \operatorname{Re} h^{+} d|\mu|-\int f \operatorname{Re} h^{-} d|\mu|+i\left(\int f \operatorname{Im} h^{+} d|\mu|-\int f \operatorname{Im} h^{-} d|\mu|\right)
$$

constructed of four positive bounded functionals matching the four summands in the decomposition of Λ in 10.9.2. Since the range of μ resp. Λ has been extended to \mathbb{C} the map is now completely \mathbb{C}-linear.

The map $\mu \mapsto \Lambda$ is surjective: For every complex functional $\Lambda=\operatorname{Re} \Lambda^{+}-\operatorname{Re} \Lambda^{-}+i\left(\operatorname{Im} \Lambda^{+}+\operatorname{Im} \Lambda^{-}\right)$ each positive bounded functional of the decomposition according to 10.9.2 is represented by an integral, e.g. $\operatorname{Re} \Lambda^{+} f=\int f d\left(\operatorname{Re} \mu^{+}\right)$for every $f \in \mathcal{C}_{c}(X, \mathbb{C})$ resp. a complete and σ-regular positive Borel measure Re μ^{+}etc. due to the preceding version 10.13 of the Riesz representation theorem such that $\mu=\operatorname{Re} \mu^{+}-\operatorname{Re} \mu^{-}+i\left(\operatorname{Im} \mu^{+}-\operatorname{Im} \mu^{-}\right)$is the uniquely determined complete and σ-regular complex Borel measure with $\Lambda f=\int f d \mu$ for every $f \in \mathcal{C}_{c}(X, \mathbb{C})$. For any complete and σ-regular positive Borel measure λ determined by a positive bounded functional Γ, every compact K and $f \in \mathcal{C}_{c}(X,[0 ; 1])$ with $K \prec f$ according to 10.13 we have $\lambda(K) \leq \int f d \lambda \stackrel{11.9}{=} \Gamma f \stackrel{11.1}{\leq}\|\Gamma\|^{*} \cdot\|f\|=\|\Gamma\|^{*}$ and on account of the regularity condition follows $\|\lambda\|=\mu(X)=\sup \{\lambda(K): K$ compact $\} \leq\|\Gamma\|^{*}$. Hence every component of μ is finite and since this condition transfers to μ itself it is also regular.

The map $\mu \mapsto \Lambda$ is injective: Assuming $\Lambda=0$, i.e. $\Lambda f=\int f h d|\mu|=0$ for every $f \in \mathcal{C}_{c}(X, \mathbb{C})$. Since according to 10.4 the space $\mathcal{C}_{c}(X, \mathbb{C})$ is dense in $L^{1}(|\mu|)$ this implies $\int \chi_{A} h d|\mu|=\int_{A} h d|\mu|=0$ for every measurable A and hence $|\mu|$-a.e. $h=0$. But on the other hand we have $|h|=1$ which only leaves $|\mu|(X)=0$, i.e. $\mu=0$. Thus the kernel of the isomorphism $\mu \mapsto \Lambda$ contains only the trivial element 0 which implies the assertion.
The map $\mu \mapsto \Lambda$ is isometric: On the one hand we have $\|\Lambda\|^{*}=\sup \left\{\left|\frac{\int f h d \mid \mu \|}{\sup |f|}\right|: f \in \mathcal{C}_{c}(X, \mathbb{R})\right\}=$ $\sup \left\{\left|\int f h d\right| \mu \|: f \in \mathcal{C}_{c}\left(X, \mathbb{R}^{+}\right), \sup f=1\right\} \leq|\mu|(X)=\|\mu\|$. On the other hand according to Lusin's theorem 10.6 for every $\epsilon>0$ there exists a $g \in \mathcal{C}_{c}(X, \mathbb{C})$ such that $|\mu|(\bar{h} \neq g)<\epsilon$ and $\|g\| \leq 1$. This implies $\|\Lambda\|^{*} \geq \int_{X} g h d|\mu| \geq|\mu|(X \backslash\{\bar{h} \neq g\})-|\mu|(\bar{h} \neq g) \geq|\mu|(X)-2 \epsilon$ whence $\|\Lambda\|^{*} \geq\|\mu\|$.

11 Vague convergence on locally compact spaces

11.1 The inner measure of a positive functional

On a locally compact space X for every positive functional $\Lambda: \mathcal{C}_{c}(X, \mathbb{C}) \rightarrow \mathbb{C}$ the inner measure $\dot{\mu}: \mathcal{P}(X) \rightarrow[0 ; \infty]$ defined by

1. $\check{\mu}(K)=\inf \{\Lambda g: K \prec g\}$ for compact $K \subset X$ resp. $\check{\mu}(A)=\sup \{\circ(K): \operatorname{compact} K \subset A\}$ for arbitrary $A \subset X$
coincides with the outer measure μ defined in 10.10 by
2. $\mu(O)=\sup \{\Lambda g: g \prec O\}$ for open $O \subset X$ resp. $\mu(A)=\inf \{\mu(O): A \subset O$ open $\}$ for arbitrary $A \subset X$
on Borel sets of finite outer measure : $\dot{\mu}(A)=\mu(A) \forall A \in \mathcal{B}(X)$ with $\mu(A)<\infty$.
In particular the inner and the outer measure coincide on the Borel σ-algebra $\mathcal{B}(X)$ of every locally and σ-compact space X.

Proof: Due to 10.3 for every compact K and open O with $K \subset O$ there is $g \in C_{c}(X, \mathbb{R})$ with $K \prec g \prec O$.

Step I: $\dot{\mu}(O)=\mu(O)$ for every open $O \subset X$ since obviously $\dot{\mu}(O)$ $=\sup \{\inf \{\Lambda g: K \prec g\}:$ compact $K \subset O\} \leq \sup \{\Lambda g: g \prec O\}=\mu(O)$. Conversely the assumption $\stackrel{\circ}{\mu}(O)<\mu(O)$ implies the existence of a $g \prec O$ such that for every compact $K \subset O$ there is an $K \prec f$ with $\Lambda f<\Lambda g$. Since one of these f must coincide with g we have a contradiction whence follows the equality.

Step II: $\stackrel{\circ}{\mu}(K)=\mu(K)$ for every compact $K \subset X$ since obviously $\dot{\mu}(K)$ $=\inf \{\Lambda g: K \prec g\} \leq \inf \{\sup \{\Lambda g: g \prec O\}: K \subset O$ open $\}=\mu(K)$. Con-
 versely the assumption $\dot{\mu}(K)<\mu(K)$ implies the existence of a $K \prec g$ such that for every open $O \supset K$ there is an $f \prec O$ with $\Lambda g<\Lambda f$. Since one of these f must coincide with g we have a contradiction whence follows the equality.

Step III: $\check{\mu}(A)=\mu(A)$ for arbitrary $A \in \mathcal{B}(X)$ since the assumption $\check{\mu}(A)>\mu(A)$ implied the existence of compact K and open O with $K \subset A \subset O$ and $\check{\mu}(K)>\mu(O)$ whence from step II followed $\mu(K)=\stackrel{\mu}{\mu}(K)>\mu(O)$ in contradiction to the monotonicity of μ. Conversely for every $\epsilon>0$ there is an open $U \supset A$ with $\mu(U \backslash A)=\mu(U)-\mu(A)<\frac{\epsilon}{2}$ and due to step I resp. step II there is a compact $L \subset U$ with $\mu(U \backslash L)=\mu(U)-\mu(L)=\dot{\mu}(U)-\dot{\mu}(L)<\frac{\epsilon}{2}$. Hence we have $\mu(Q)<\epsilon$ for $Q=(U \backslash A) \cup(U \backslash L)=U \backslash(A \cap L)$ and according to the definition of the outer measure an open $G \supset Q$ with $\mu(G)<\epsilon$. Then $K=L \backslash G \subset A$ is compact with $A \backslash K \subset G$ such that $\mu(A)-\mu(K)=\mu(A \backslash K) \leq \mu(G)<\epsilon$ whence $\mu(A)<\mu(K)+\epsilon=\check{\mu}(K)+\epsilon \leq \stackrel{\circ}{\mu}(A)+\epsilon$.

11.2 Radon measures

On a locally and σ-compact space X every Radon measure $\mu \in \mathcal{M}_{i 0}^{c}\left(\mathcal{B}(X) ; \mathbb{R}^{+}\right)$defined as an inner regular positive Borel measure μ on $\mathcal{B}(X)$ with $\mu(K)<\infty$ for every compact $K \subset X$ is σ-finite and regular.

Note: According to 10.2 on a locally and σ-compact space X the Radon measures $\mathcal{M}_{i 0}^{c}\left(\mathcal{B}(X) ; \mathbb{R}^{+}\right)$ coincide with the normed, complete and convex cone of the positive regular measures $\mathcal{M}_{0}\left(\mathcal{B}(X) ; \mathbb{R}^{+}\right)$ under the norm $\|\|$ with $\| \mu \|=\mu(X)$. The corresponding norm topology will be examined in 11.8.

Proof: Since X is σ-compact and $\mu(K)<\infty$ for every compact $K \subset X$ the measure μ is σ-finite. The regularity is a direct consequence of the preceding theorem 11.1 and the Riesz representation theorem for positive functionals 10.13.

11.3 The Lebesgue measure

Since \mathbb{R}^{n} is σ-compact we can apply the preceding theorem to the Lebesgue-Borel measure λ^{n} and obtain its σ-finite, regular and complete extension, the Lebesgue measure λ^{n} on the extended σ-algebra $\mathcal{L}\left(\mathbb{R}^{n}\right)$ of the Lebesgue measurable sets. A set A is Lebesgue measurable iff there are an F_{σ}-set F and a G_{δ}-set G such that $F \subset A \subset G$ and $\lambda^{n}(G \backslash F)=0$. This follows from 10.11 resp. 10.12 and the σ-compactness of \mathbb{R}^{n} together with the observation that for any σ-compact set A with $A=\bigcup_{n \in \mathbb{N}} K_{n}$ for a sequence of compact K_{n} and any other given compact K the intersection $A \cap K \in \mathcal{A}(X)$ since $\lambda^{n}(A \cap K)=\sup \left\{\lambda^{n}\left(K_{n} \cap K\right)\right\}<\infty$. Consequently every Lebesgue set is the union of a Borel measurable G_{δ}-set and a λ^{n}-null set. Thus every Lebesgue measurable function f coincides λ^{n}-a.e. with a Borel measurable function f_{0} and identical integral $\int_{A} f d=\int_{A} f_{0} d$ for every Lebesgue measurable A. The translation invariance 8.8 as well as the transformation formula 8.9 extend from $\mathcal{B}(X)$ to $\mathcal{L}(X)$ due to the regularity of λ^{n}.

11.4 The vague topology

For a topological space X the vague topology is the initial topology on the family of positive Borel measures $\mathcal{M}\left(\mathcal{B}(X) ; \mathbb{R}^{+}\right)$with regard to the maps $\left\{\mu \mapsto \int f d \mu: f \in \mathcal{C}_{c}(X ; \mathbb{R})\right\}$, i.e. it is the weakest or smallest topology on $\mathcal{M}\left(\mathcal{B}(X) ; \mathbb{R}^{+}\right)$such that these maps are continuous.

In the case of a locally compact space X according to the Riesz representation theorem for positive functionals 10.13 these maps are isometric isomorphisms on $\mathcal{M}_{\sigma 0}\left(\mathcal{L}(X) ; \mathbb{R}^{+}\right)$with regard to the much stronger and larger topology of uniform convergence induced by the supremum norm.

The vague topology on the convex cone of the Radon measures $\mathcal{M}_{i 0}^{c}\left(\mathcal{B}(X) ; \mathbb{R}^{+}\right)$on a locally compact space X is generated by the subbasis

$$
\mathcal{S}=\left\{V_{f ; \epsilon}(\mu): \nu \in \mathcal{M}_{i 0}^{c}\left(\mathcal{B}(X) ; \mathbb{R}^{+}\right) ; f \in \mathcal{C}_{c}(X ; \mathbb{R}) ; \epsilon>0\right\}
$$

formed by the neighbourhoods

$$
V_{f ; \epsilon}=\left\{\mu ; \nu \in \mathcal{M}_{i 0}^{c}\left(\mathcal{B}(X) ; \mathbb{R}^{+}\right):\left|\int f d \mu-\int f d \nu\right|<\epsilon\right\} .
$$

On a locally compact space X a sequence $\left(\mu_{n}\right)_{n \geq 1} \subset \mathcal{M}_{i 0}^{c}\left(\mathcal{B}(X) ; \mathbb{R}^{+}\right) \subset \mathcal{M}_{\sigma 0}\left(\mathcal{L}(X) ; \mathbb{R}^{+}\right)$of Radon measures vaguely converges to a $\mu \in \mathcal{M}_{i 0}^{\geq}\left(\mathcal{B}(X) ; \mathbb{R}^{+}\right)$iff one of the following two equivalent conditions holds:

1. $\lim _{n \rightarrow \infty} \int f d \mu_{n}=\int f d \mu$ for every $f \in \mathcal{C}_{c}(X ; \mathbb{R})$.
2. $\underset{n \rightarrow \infty}{\limsup } \mu_{n}(K) \leq \mu(K)$ for every compact $K \subset X$ and $\liminf _{n \rightarrow \infty} \mu_{n}(G) \geq \mu(G)$ for every open $G \subset{ }^{n \rightarrow \infty}$.

Examples:

3. Since X is a Hausdorff space and [13, th. 9.4] for every convergent sequence $\left(x_{n}\right)_{n \geq 1} \subset X$ with $\lim _{n \rightarrow \infty} x_{n}=x \in X$ the sequence $\left(\delta_{x_{n}}\right)_{n \geq 1}$ vaguely converges to δ_{x}. Obviously we have $\lim _{n \rightarrow \infty} \delta_{x_{n}}(A)=1 \neq 0=\delta_{x}(A)$ for every open $A \subset X$ with $x \in \delta A$.
4. For every sequence $\left(x_{n}\right)_{n \geq 1} \subset X$ without accumulation points (cf. [13, th. 2.7]) in X every compact K contains only finitely many x_{j} (cf. [13, th. 9.2.3]) such that the sequence $\left(\delta_{x_{n}}\right)_{n \geq 1}$ vaguely converges to the null measure 0 .
Proof:
5. $\Rightarrow 2$. : According to 10.1 for every compact K there is an $f \in \mathcal{C}_{c}(X, \mathbb{R})$ with $K \prec f$ whence follows $\limsup _{n \rightarrow \infty} \mu_{n}(K) \leq \lim _{n \rightarrow \infty} \int f d \mu_{n}=\int f d \mu$. Due to 11.1.1 and the Riesz representation theorem 10.13 we have $\mu(K)=\inf \left\{\int f d \mu: K \prec f\right\}$ and consequently $\limsup _{n \rightarrow \infty} \mu_{n}(K) \leq \mu(K)$. According to 10.1 for every open $V \supset K$ there is an $f \in C_{c}(X, \mathbb{R})$ with $f \prec V$ whence follows $\int f d \mu=\lim _{n \rightarrow \infty} \int f d \mu_{n} \leq$ $\liminf _{n \rightarrow \infty} \mu_{n}(V)$. Due to 11.1.2 and 10.13 we have $\mu(V)=\sup \left\{\int f d \mu: f \prec V\right.$ open $\}$ and consequently $\mu(V) \leq \liminf _{n \rightarrow \infty} \mu_{n}(V)$.
6. \Rightarrow 1. :By the decomposition $f=f^{+}-f^{-}$with $f^{+} ; f^{-} \in \mathcal{C}_{c}\left(X ; \mathbb{R}^{+}\right)$w.l.o.g. we assume $f \in$ $\mathcal{C}_{c}\left(X ; \mathbb{R}^{+}\right)$. For every $m \geq 1$ we consider the compact sets $K_{0}=\{f \geq 0\}=\operatorname{supp} f, K_{i}=$ $\left\{f \geq \frac{i}{m}\|f\|\right\}$ and $A_{i}=K_{i-1} \backslash K_{i}$ resp. the open sets $G_{0}=\{f>0\}=\stackrel{\circ}{K}_{0}, G_{i}=\left\{f>\frac{i}{m}\|f\|\right\}$ and $B_{i}=G_{i-1} \backslash G_{i}$ for $1 \leq i \leq m+1$. Note that $K_{m+1}=G_{m}=G_{m+1}=\emptyset$. On account of $\sum_{i=1}^{m+1} \frac{i-1}{m}\|f\| \chi_{A_{i}} \leq f<\sum_{i=1}^{m+1} \frac{i}{m}\|f\| \chi_{A_{i}}$ resp. $\sum_{i=1}^{m} \frac{i-1}{m}\|f\| \chi_{B_{i}}<f \leq \sum_{i=1}^{m} \frac{i}{m}\|f\| \chi_{B_{i}}$ for every Radon measure $\nu \in \mathcal{M}_{0}^{c}\left(\mathcal{B}(X) ; \mathbb{R}^{+}\right)$follows $\sum_{i=1}^{m+1} \frac{i-1}{m}\|f\| \nu\left(A_{i}\right) \leq \int f d \nu<\sum_{i=1}^{m+1} \frac{i}{m}\|f\| \nu\left(A_{i}\right)$ resp.
$\sum_{i=1}^{m} \frac{i-1}{m}\|f\| \nu\left(B_{i}\right)<\int f d \nu \leq \sum_{i=1}^{m} \frac{i}{m}\|f\| \nu\left(B_{i}\right)$. For $1 \leq i \leq m+1$ we have $\nu\left(A_{i}\right)=\nu\left(K_{i-1}\right)-\nu\left(K_{i}\right)$ resp. $\quad \nu\left(B_{i}\right)=\nu\left(G_{i-1}\right)-\nu\left(G_{i}\right)$ whence $\frac{1}{m} \sum_{i=0}^{m+1} \nu\left(K_{i}\right)-\frac{1}{m} \nu\left(K_{0}\right)=\frac{1}{m} \sum_{i=1}^{m+1} \nu\left(K_{i}\right) \leq \int f d \nu<$ $\frac{1}{m} \sum_{i=0}^{m+1} \nu\left(K_{i}\right)$ resp. $\frac{1}{m} \sum_{i=0}^{m} \nu\left(G_{i}\right)-\frac{1}{m} \nu\left(G_{0}\right)=\frac{1}{m} \sum_{i=1}^{m} \nu\left(G_{i}\right)<\int f d \nu \leq \frac{1}{m} \sum_{i=0}^{m} \nu\left(G_{i}\right)$. For $\nu=\mu_{n}$ the right resp. left hand sides yield $\int f d \mu_{n}<\frac{1}{m} \sum_{i=0}^{m+1} \nu\left(K_{i}\right)$ resp. $\frac{1}{m} \sum_{i=1}^{m} \nu\left(G_{i}\right)<\int f d \mu_{n}$ for every $n \geq 1$ whence $\frac{1}{m} \sum_{i=1}^{m} \nu\left(G_{i}\right) \leq \liminf _{n \rightarrow \infty} \int f d \mu_{n} \leq \limsup _{n \rightarrow \infty} \int f d \mu_{n}<\frac{1}{m} \sum_{i=0}^{m+1} \nu\left(K_{i}\right)$. For $\nu=\mu$ the left resp. right hand sides yield $\frac{1}{m} \sum_{i=0}^{m+1} \nu\left(K_{i}\right) \leq \int f d \mu+\frac{1}{m} \nu\left(K_{0}\right)$ resp. $\int f d \mu-\frac{1}{m} \nu\left(G_{0}\right) \leq \frac{1}{m} \sum_{i=1}^{m} \nu\left(G_{i}\right)$. By combining these four estimates we obtain $\int f d \mu-\frac{1}{m} \nu\left(G_{0}\right) \leq \liminf _{n \rightarrow \infty} \int f d \mu_{n} \leq \limsup _{n \rightarrow \infty} \int f d \mu_{n} \leq$ $\int f d \mu+\frac{1}{m} \nu\left(K_{0}\right)$ for every $m \geq 1$ whence follows the assertion.

11.5 Vague convergence on continuous functions vanishing at infinity

On a locally compact space X for every sequence $\left(\mu_{n}\right)_{n \geq 1} \subset \mathcal{M}_{i 0}^{c}\left(\mathcal{B}(X) ; \mathbb{R}^{+}\right)$of Radon measures vaguely converging to a $\mu \in \mathcal{M}_{i 0}^{c}\left(\mathcal{B}(X) ; \mathbb{R}^{+}\right)$with $\sup _{n \geq 1}\left\|\mu_{n}\right\|<\infty$ we have $\lim _{n \rightarrow \infty} \int f d \mu_{n}=\int f d \mu$ for every continuous $f \in C_{0}(X ; \mathbb{R})$ vanishing at infinity.
Proof: Due to 11.4 .2 we have $\|\mu\| \leq \alpha=\sup _{n \geq 1}\left\|\mu_{n}\right\|<\infty$ which implies $\mu \in \mathcal{M}_{i 0}^{b}\left(\mathcal{B}(X) ; \mathbb{R}^{+}\right)$. According to 10.5 every $f \in C_{0}(X ; \mathbb{R})$ and $\epsilon>0$ exists a $g \in C_{c}(X ; \mathbb{R})$ with $\|f-g\| \leq \epsilon$ which implies $\left|\int f d \mu_{n}-\int g d \mu_{n}\right| \leq \alpha \cdot \epsilon$ and also $\left|\int f d \mu-\int g d \mu\right| \leq \alpha \cdot \epsilon$. Owing to 11.4.1 exists an $N \in \mathbb{N}$ with $\left|\int g d \mu-\int g d \mu_{n}\right| \leq \alpha \cdot \epsilon$ for all $n \geq N$.By the triangle equation we obtain $\left|\int f d \mu_{n}-\int f d \mu\right| \leq$ $\left|\int f d \mu_{n}-\int g d \mu_{n}\right|+\left|\int g d \mu_{n}-\int g d \mu\right|+\left|\int g d \mu-\int f d \mu\right| \leq 3 \alpha \epsilon$ whence follows the assertion.

11.6 Vague approximation of the Dirac measure

For every $\psi_{n} \in L^{1}$ with $\int \psi_{n}(\mathbf{x}) d \mathbf{x}=1$ like e.g. the characteristic function of the unit cube $\psi_{n}=\chi_{[\mathbf{0} ; \mathbf{1}]}$ and $\psi_{n ; k}(\mathbf{x})=k^{n}(k \mathbf{x})$ we have $\lim _{k \rightarrow \infty} \int f \cdot \psi_{n ; k} d \lambda=f(\mathbf{0})$ for every $f \in C_{c}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$, i.e. the sequence $\left(\psi_{n ; k} \circ \lambda\right)_{k \geq 1}$ vaguely converges to the Dirac measure $\delta_{\mathbf{0}}$.
Note: Similar to the approximate identities $\psi_{n} \in L^{1}$ with $\int \psi_{n}(\mathbf{x}) d \mathbf{x}=1$ and $\psi_{n ; k}(\mathbf{x})=k^{n} \psi_{n}(k \mathbf{x})$ such that $\lim _{k \rightarrow \infty}\left\|f-f * \psi_{n ; k}\right\|_{1}=0$ for every $f \in L^{1}$ defined in [9, th. 7.13] used in the Fourier inversion formula [9, th. 7.14].
Proof: For every $f \in \mathcal{C}_{c}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ and $k \geq 1$ holds $\left|f\left(\frac{1}{k} \mathbf{x}\right) \cdot \psi(\mathbf{x})\right| \leq\|f\|_{\infty} \cdot K(\mathbf{x})$ such that by a change of variable $[9$, th. 3.7$] \mathbf{y}=k \mathbf{x}$ with $\left|\operatorname{det}\left(\frac{d \mathbf{y}}{d \mathbf{x}}\right)\right|=k^{n}$ resp. dominated convergence 5.15 yields $\lim _{k \rightarrow \infty} \int f \cdot \psi_{n ; k} d \lambda=\lim _{k \rightarrow \infty} \int f(\mathbf{x}) \cdot k^{n} \psi_{n}(k \mathbf{x}) d \mathbf{x}=\lim _{k \rightarrow \infty} \int f\left(\frac{1}{k} k \mathbf{x}\right) \cdot \psi_{n}(k \mathbf{x}) d(k \mathbf{x})=\lim _{k \rightarrow \infty} \int f\left(\frac{1}{k} \mathbf{y}\right)$. $\psi_{n}(\mathbf{y}) d \mathbf{y}=\int \lim _{k \rightarrow \infty} f\left(\frac{1}{k} \mathbf{y}\right) \cdot \psi_{n}(\mathbf{y}) d \mathbf{y}=\int f(\mathbf{0}) \cdot \psi_{n}(\mathbf{y}) d \mathbf{y}=f(\mathbf{0})$.

11.7 Vague limits of discrete Radon measures

On a locally compact space X the linear combinations $\delta=\sum_{i=1}^{k} \alpha_{i} \delta_{\mathbf{x}_{i}}$ of Dirac measures $\delta_{\mathbf{x}_{i}}$ on $\mathbf{x}_{i} \in X$ with $\alpha_{i} \geq 0$ for $1 \leq i \leq k$ and some $k \geq 1$ are called discrete Radon measures. Then with regard to vague convergence

1. the family of all discrete Radon measures is dense in $\mathcal{M}_{i 0}^{c}\left(\mathcal{B}(X) ; \mathbb{R}^{+}\right)$
2. the family of all discrete probability measures is dense in $\mathcal{M}_{i 0}^{c}(\mathcal{B}(X) ;[0 ; 1])$

Proof:

1. According to [13, th. 10.3 and 13.5] the locally compact space X is uniformizable whence due to to Heine's theorem [13, th. 12.9] every $f \in \mathcal{C}_{c}(X ; \mathbb{R})$ is uniformly continuous on its compact support $K=\operatorname{supp} f$. Thus for every $\epsilon>0$ exists a finite cover of relatively compact neighbourhoods $B\left(x_{i}\right)$ with $x_{i} \in K$ for $1 \leq i \leq k$ and $K \subset \bigcup_{1 \leq i \leq k} B\left(x_{i}\right)$. Hence the disjoint sets $A_{j}=K \cap B\left(x_{j}\right) \backslash \bigcup_{1 \leq i<j} B\left(x_{j}\right)$ still cover K and are relatively compact. Then for every $\mu \in \mathcal{M}_{0}^{c}\left(\mathcal{B}(X) ; \mathbb{R}^{+}\right)$and any collection $\left(y_{j}\right)_{1 \leq j \leq k} \subset K$ with $y_{j} \in A_{j}$ for $1 \leq j \leq k$ the discrete Radon measure $\delta=\sum_{1 \leq j \leq k} \mu\left(A_{j}\right) \cdot \delta_{y_{j}}$ satisfies $\left|\int f d \mu-\int f d \delta\right|=$ $\left|\sum_{1 \leq j \leq k}\left(\int_{A_{j}} f d \mu-\mu\left(A_{j}\right) \cdot f\left(y_{j}\right)\right)\right|=\left|\sum_{1 \leq j \leq k} \int_{A_{j}}\left(f-f\left(y_{j}\right)\right) d \mu\right| \leq \sum_{1 \leq j \leq k} \int_{A_{j}}\left|f-f\left(y_{j}\right)\right| d \mu$ $\leq \epsilon \sum_{1 \leq j \leq k} \mu\left(A_{j}\right)=\epsilon \cdot \mu(K) \leq \epsilon$ which proves the assertion.
2. Follows from 1. with $\delta_{0}=\mu(X \backslash K) \cdot \delta_{y_{0}}+\sum_{1 \leq j \leq k} \mu\left(A_{j}\right) \cdot \delta_{y_{j}}$ for some $y_{0} \in X \backslash K$ since $\sum_{1 \leq j \leq k} \mu\left(A_{j}\right)=\mu(K) \leq 1$.

11.8 The weak topology

On a topological space X the weak topology is defined as the initial topology on the family of positive Borel measures $\mathcal{M}\left(\mathcal{B}(X) ; \mathbb{R}^{+}\right)$with regard to the maps $\left\{\mu \mapsto \int f d \mu: f \in \mathcal{C}_{b}(X ; \mathbb{R})\right\}$.
On a locally compact space X the weak topology on the convex cone of bounded Radon measures $\mathcal{M}_{i 0}^{b}\left(\mathcal{B}(X) ; \mathbb{R}^{+}\right) \subset \mathcal{M}_{\sigma 0}\left(\mathcal{L}(X) ; \mathbb{R}^{+}\right)$is generated by the subbasis

$$
\mathcal{S}=\left\{W_{f ; \epsilon}(\mu): \nu \in \mathcal{M}_{i 0}^{c}\left(\mathcal{B}(X) ; \mathbb{R}^{+}\right) ; f \in \mathcal{C}_{b}(X ; \mathbb{R}) ; \epsilon>0\right\}
$$

of the neighbourhoods

$$
W_{f ; \epsilon}=\left\{\mu ; \nu \in \mathcal{M}_{i 0}^{c}\left(\mathcal{B}(X) ; \mathbb{R}^{+}\right):\left|\int f d \mu-\int f d \nu\right|<\epsilon\right\}
$$

Due to $C_{c}(X ; \mathbb{R}) \subset C_{b}(X ; \mathbb{R})$ resp. $1 \in C_{b}(X ; \mathbb{R})$ the weak topology is both stronger than the vague topology defined in 11.4 and the topology of the norm $\|\|$ given by $\| \mu \|=\mu(X)=\int 1 d \mu$ in the Riesz representation theorem 10.13.2 on the subset of the bounded Radon measures $\mathcal{M}_{i 0}^{b}\left(\mathcal{B}(X) ; \mathbb{R}^{+}\right) \subset \mathcal{M}_{i 0}\left(\mathcal{B}(X) ; \mathbb{R}^{+}\right)$. The following theorem in essential states that on the convex cone of the bounded Radon measures the union of these two topologies generates the weak topology.
On a locally compact space X a sequence $\left(\mu_{n}\right)_{n \geq 1} \subset \mathcal{M}_{i 0}^{b}\left(\mathcal{B}(X) ; \mathbb{R}^{+}\right)$of bounded Radon measures weakly converges to a $\mu \in \mathcal{M}_{i 0}^{b}\left(\mathcal{B}(X) ; \mathbb{R}^{+}\right)$iff one of the following equivalent conditions is satisfied:

1. $\lim _{n \rightarrow \infty} \int f d \mu_{n}=\int f d \mu$ for every $f \in C_{b}(X ; \mathbb{R})$
2. $\lim _{n \rightarrow \infty} \int f d \mu_{n}=\int f d \mu$ for every $f \in C_{c}(X ; \mathbb{R})$ and $\lim _{n \rightarrow \infty}\left\|\mu_{n}\right\|=\|\mu\|$.

Proof:

1. $\Rightarrow 2$ 2: Due to $C_{c}(X ; \mathbb{R}) \subset C_{b}(X ; \mathbb{R})$ the first part is obvious and the second part follows from 11.1.2 since $\|\mu\|=\mu(X)=\sup \left\{\int f d \mu: f \prec X\right\}=\sup \left\{\int f d \mu: f \in C_{c}(X ; \mathbb{R})\right\}$.
$2 . \Rightarrow 1 .:$ According to 11.1 .2 for every $\epsilon>0$ there is an $g \in C_{c}(X ;[0 ; 1])$ with $\mu(X)-\int g d \mu=$ $\int(1-g) d \mu<\epsilon$. Hence for every $f \in C_{b}(X ; \mathbb{R})$ holds $\left|\int f \cdot(1-g) d \mu\right| \leq\|f\| \cdot \int(1-g) d \mu \leq\|f\| \cdot \epsilon$. The hypothesis implies $\lim _{n \rightarrow \infty} \int g d \mu_{n}=\int g d \mu$ and $\lim _{n \rightarrow \infty} \int 1 d \mu_{n}=\int 1 d \mu$ such that there isn an $m \geq 1$ with $\int(1-g) d \mu<\epsilon$ for every $n \geq m$. For these n and every $f \in C_{b}(X ; \mathbb{R})$ follows $\left|\int f \cdot(1-g) d \mu_{n}\right|$ $\leq\|f\| \cdot \int(1-g) d \mu_{n} \leq\|f\| \cdot \epsilon$ such that by the triangle equation we obtain $\left|\int f d \mu_{n}-\int f d \mu\right| \leq$ $2\|f\| \cdot \epsilon+\left|\int g d \mu_{n}-\int g d \mu\right|$ whence follows the assertion.

11.9 The Portmanteau theorem for locally compact spaces

On a locally compact space X a sequence $\left(P_{n}\right)_{n \geq 1} \subset \mathcal{M}_{i 0}(X ;[0 ; 1])$ of inner regular probability measures weakly converges to an inner regular probability measure $P \in \mathcal{M}_{i 0}(X ;[0 ; 1])$ iff one of the following equivalent conditions is satisfied:

1. $\lim _{n \rightarrow \infty} \int f d P_{n}=\int f d P$ for every $f \in C_{b}(X ; \mathbb{R})$.
2. $\lim _{n \rightarrow \infty} \int f d P_{n}=\int f d P$ for every $f \in C_{c}(X ; \mathbb{R})$.
3. $\limsup _{n \rightarrow \infty} P_{n}(K) \leq P(K)$ for every closed $K \subset X$.
4. $\liminf _{n \rightarrow \infty} P_{n}(O) \geq P(O)$ for every open $O \subset X$.
5. $\lim _{n \rightarrow \infty} \int f d P_{n}=\int f d P$ for every Borel measurable, bounded and μ-a.e. continuous $f: X \rightarrow$ R.

Note: Condition 5. implies the condition $\lim _{n \rightarrow \infty} P_{n}(A)=P(A)$ for every P-continuous $A \subset X$ with $P(\delta A)=0$ corresponding to 12.6 .5 in the Portmanteau theorem for metric spaces.

Proof:

$1 . \Rightarrow 2$.: obvious since $C_{c}(X ; \mathbb{R}) \subset C_{b}(X ; \mathbb{R})$
2. \Rightarrow 3.: follows from 11.4.2
3. $\Rightarrow 4$.: obvious since $\mu(O)=\mu(X)-\mu(X \backslash O)=1-\mu(X \backslash O)$
4. \Rightarrow 5.: Due to the hypothesis there is a set $X_{0} \subset X$ with $f \in C_{b}\left(X_{0} ; \mathbb{R}\right)$ and $\mu\left(X \backslash X_{0}\right)=0$. Since μ is inner regular for every $\epsilon>0$ exists a compact $K \subset X_{0}$ with $\mu\left(X_{0} \backslash K\right)<\epsilon$. Then for every $x \in K$ there is an open neighbourhood U_{x} with $\left|f\left(y_{1}\right)-f\left(y_{2}\right)\right|<\epsilon$ for all $y_{1} ; y_{2} \in U_{x}$ and a compact $x \in V_{x} \subset U_{x}$. According to 10.3 for the finite cover $\left(V_{x_{i}}\right)_{1 \leq i \leq n}$ of $K \subset \bigcup_{1 \leq i \leq n} V_{x_{i}}$ exist $\AA_{i} \in \mathcal{C}_{b}\left(X_{0} ; \mathbb{R}\right)$ with $V_{x_{i}} \prec \hat{f}_{i} \prec X \backslash \bigcup_{1 \leq i \leq n} U_{x_{i}}$. By $g_{i}(x)=\alpha_{i} \cdot \mathscr{f}_{i}+\alpha$ resp. $h_{i}(x)=\beta_{i} \cdot \stackrel{\circ}{f}_{i}+\beta$ with $\alpha=\inf f[X] ;$ $b=\sup f[X] ; \alpha_{i}=\inf f\left[U_{x_{i}}\right] ; \beta_{i}=\sup f\left[U_{x_{i}}\right]$ we obtain $g_{i} ; h_{i} \in \mathcal{C}_{b}\left(X_{0} ; \mathbb{R}\right)$ with $\alpha \leq g_{i} \leq \alpha_{i} \leq f \leq \beta_{i} \leq$ $h_{i} \leq \beta$ and finally $g=\min _{1 \leq i \leq n} g_{i}$ resp. $\quad h=\max _{1 \leq i \leq n} h_{i}$ with $\alpha \leq g_{i}(y) \leq g(y) \leq f(y) \leq h_{i}(y) \leq h(y) \leq \beta$ for every $y \in V_{x_{i}}$. In particular we have $h-g \leq \epsilon$ such that $\int(h-g) d \mu=\int_{K}(h-g) d \mu+\int_{X \backslash K}(h-g) d \mu$
 $\leq \epsilon \cdot \mu(K)+(\beta-\alpha) \mu(X \backslash K) \leq \epsilon \cdot(\mu(X)+\beta-\alpha)$.
Also on the one hand we have $\int g d \mu=\lim _{n \rightarrow \infty} \int g d \mu_{n} \leq \liminf _{n \rightarrow \infty} \int f d \mu_{n} \leq \limsup _{n \rightarrow \infty} \int f d \mu_{n} \leq \lim _{n \rightarrow \infty} \int h d \mu_{n}=$ $\int h d \mu$ while on the other hand holds $\int g d \mu \leq \int g d \mu \leq \int h d \mu$ such that $\left\{\liminf _{n \rightarrow \infty} \int f d \mu_{n} ; \int g d \mu ; \limsup _{n \rightarrow \infty} \int f d \mu_{n}\right\} \subset$ $\left[\int g d \mu ; \int g d \mu+\epsilon \cdot(\mu(X)+\beta-\alpha)\right]$ whence follows the assertion.
$5 . \Rightarrow 1$.: obvious.

11.10 Vaguely compact sets

On a locally compact space X every family $H \subset \mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right)$of Radon measures is relatively compact with regard to the vague topology iff it is vaguely bounded with $\sup _{\mu \in H}\left|\int f d \mu\right|<\infty$ for every $f \in \mathcal{C}_{c}(X ; \mathbb{R})$.
Note: According to [13, def. 9.1] a set A is relatively compact iff its closure \bar{A} is compact.

Proof:
\Rightarrow : Due to the Heine-Borel theorem [13, th. 9.10] for every $f \in \mathcal{C}_{c}(X ; \mathbb{R})$ the image $\left\{\int f d \mu: \mu \in H\right\}$ $\subset \mathbb{R}$ of a relatively compact $H \subset \mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right)$under the continuous map $\mu \mapsto \int f d \mu$ is again relatively compact and in particular bounded which implies the assertion.
\Leftarrow :
Step I. The set $\mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right)$is homeomorphic to $\Phi\left[\mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right)\right] \subset \mathcal{J}$: According to Tychonov's theorem [13, th. 9.9] the product $\mathcal{J}=\prod_{f \in \mathcal{C}_{c}(X ; \mathbb{R})} J_{f} \subset \mathbb{R}^{\mathcal{C}_{c}(X ; \mathbb{R})}$ of the compact intervals $J_{f}=\left[-\alpha_{f} ; \alpha_{f}\right]$ for $\alpha_{f}=\sup _{\mu \in H}\left|\int f d \mu\right|$ is again compact. By Riesz' representation theorem for positive functionals 10.13 the map $\Phi: H \rightarrow \mathcal{J}=\prod_{f \in \mathcal{C}_{c}(X ; \mathbb{R})} J_{f} \subset \mathbb{R}^{\mathcal{C}_{c}(X ; \mathbb{R})}$ defined by $\Phi(\mu)=\left(\int f d \mu\right)_{f \in \mathcal{C}_{c}(X ; \mathbb{R})}$ is injective and due to the continuity of ist components $\Phi_{f}: \mu \mapsto \int f d \mu$ and [13, th. 4.2] it is also continuous. Its is also open since for every $\mu \in \mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right) ; f \in \mathcal{C}_{c}(X ; \mathbb{R})$; $\delta>0$ and $0<\eta<\delta$ there is a $\nu_{\eta}=\frac{\int f d \mu+\eta}{\int f d \mu} \mu \in \mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right)$with $\int f d \nu_{\eta}=\int f d \mu+\eta$ such that every neighbourhood $B_{\delta}(\mu)=\left\{\nu \in \mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right):\left|\int f d \mu-\int f d \nu\right|<\delta\right\}$ has an open image $\Phi\left[B_{\delta}(\mu)\right]=\pi_{f}^{-1}\left[B_{\delta}\left(\int f d \mu\right)\right] \subset \mathcal{J}$ with the component $B_{\delta}\left(\int f d \mu\right) \subset J_{f}=\pi_{f}\left[\mathcal{P}_{c}\right]$ in the product topology of $\mathcal{J} \subset \mathbb{R}^{\mathcal{C}_{c}(X ; \mathbb{R})}$.
Step II. $\Phi[\bar{H}] \subset \mathcal{J}$: For every $\mu \in \bar{H}$ with regard to the vague topology holds $\left|\int f d \mu\right| \leq \alpha_{f}$ since for every $f \in \mathcal{\mathcal { C } _ { c }}(X ; \mathbb{R})$ and $\epsilon>0$ there is a $\nu \in \mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right)$with $\left|\int f d \mu-\int f d \nu\right|<\epsilon$ whence follows $\left|\int f d \mu\right| \leq\left|\iint f d \nu\right|+\left|\int f d \mu-\int f d \nu\right|<\alpha_{f}+\epsilon$ such that $\left|\int f d \mu\right| \leq \alpha_{f}$. Hence for every $f \in \mathcal{C}_{c}(X ; \mathbb{R})$ we have $\left(\pi_{f} \circ \Phi\right)[\bar{H}] \subset J_{f}$ whence follows the proposition.
Step III. $\Phi\left[\mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right)\right]$is closed in $\mathbb{R}^{\mathcal{C}_{c}(X ; \mathbb{R})}:$ For every element $I \in \overline{\Phi\left[\mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right)\right]} \subset \mathbb{R}^{\mathcal{C}_{c}(X ; \mathbb{R})}$ being regarded as a map $I: \mathcal{C}_{c}(X ; \mathbb{R}) \rightarrow \mathbb{R}$ defined by $I f=\pi_{f}(I)$, every $f ; g \in \mathcal{C}_{c}(X ; \mathbb{R})$ and every $\epsilon>0$ the set $\pi_{f}^{-1}\left[B_{\epsilon}(I)\right] \cap \pi_{g}^{-1}\left[B_{\epsilon}(I)\right] \cap \pi_{f+g}^{-1}\left[B_{\epsilon}(I)\right]$ is a neighbourhood of $I \in \mathbb{R}^{\mathcal{C}_{c}(X ; \mathbb{R})}$. It therefore contains an $I^{\prime} \subset \Phi\left[\mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right)\right]$whence $|I(f+g)-I f-I g| \leq\left|I(f+g)-I^{\prime}(f+g)\right|+$ $\left|I^{\prime} f-I f\right|+\left|I^{\prime} g-I g\right|<3 \epsilon$ and consequently $I(f+g)=I f+I g$. Similarly for $\alpha \in \mathbb{R}$ there is an $I^{\prime} \in \pi_{f}^{-1}\left[B_{\epsilon}(I)\right] \cap \pi_{\alpha f}^{-1}\left[B_{\epsilon}(I)\right] \cap \Phi\left[\mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right)\right]$whence $|I(\alpha f)-\alpha I f| \leq\left|I(\alpha f)-I^{\prime}(\alpha f)\right|+$ $\left|I^{\prime}(\alpha f)-\alpha I^{\prime} f\right|+\left|\alpha I^{\prime} f-\alpha I f\right|<\epsilon+2 \cdot|\alpha| \cdot \epsilon$. Hence we have proved that $I \in\left(\mathcal{C}_{c}(X ; \mathbb{R})\right)^{*}$ is a linear functional. A third application of this argument delivers If ≥ 0 for every $f \geq 0$ whence follows $I \subset \Phi\left[\mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right)\right]$.
Step IV. Due to steps I and II the homeomorphic image $\Phi[\bar{H}]$ is closed in $\Phi\left[\mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right)\right]$. By step III $\Phi[\bar{H}]$ is a closed subset of the compact set $\mathcal{J} \subset \mathbb{R}^{\mathcal{C}_{c}(X ; \mathbb{R})}$ and hence compact.

11.11 Vague compactness of open balls

For every $\epsilon>0$ the open ball $\overline{B_{\epsilon}(0)}=\left\{\mu \in \mathcal{M}_{i 0}\left(X ; \mathbb{R}^{+}\right):|\mu(X)| \leq \epsilon\right\}$ of bounded Radon measures is vaguely compact.
Proof: Owing to $\left|\int f d \mu\right| \leq \int|f| d \mu \leq \epsilon \cdot\|f\|$ for every $f \in \mathcal{C}_{c}(X ; \mathbb{R})$ and $\mu \in B_{\epsilon}(0)$ the set $B_{\epsilon}(0)$ is vaguely bounded whence by the preceding theorem 11.10 follows its vague relative compactness. According to the Riesz representation theorem for positive functionals 10.13 we have $B_{\epsilon}(0)$ $=\left\{\mu \in \mathcal{M}_{i 0}\left(X ; \mathbb{R}^{+}\right): \int f d \mu \leq \epsilon \forall f \in \mathcal{C}_{c}(X ;[0 ; 1])\right\}=\bigcap_{f \in \mathcal{C}_{c}(X ;[0 ; 1])} M_{f ; \epsilon}$ with vaguely closed $M_{f ; \epsilon}$ $=\left\{\mu \in \mathcal{M}_{i 0}\left(X ; \mathbb{R}^{+}\right): \int f d \mu \leq \epsilon\right\}$ whence $B_{\epsilon}(0)$ is vaguely closed and hence compact.

11.12 Separability of $\mathcal{C}_{c}(X ; \mathbb{R})$

A locally compact space X is second countable iff $\mathcal{C}_{c}(X ; \mathbb{R})$ is separable with regard to uniform convergence.

Proof:

\Rightarrow : For the countable basis \mathcal{G} of the topology on X and every $n \geq 1$ the products $U_{1} \times \ldots \times U_{n} \subset X^{n}$ with $U_{i} \in \mathcal{G}$ and $I_{1} \times \ldots \times I_{n} \subset \mathbb{R}^{n}$ with $I_{i} \in \mathcal{R}=\{] a ; b[\subset \mathbb{R}: a<b \in \mathbb{Q}\}$ for $1 \leq i \leq n$ are compatible iff there is at least one compatibility function $f \in \mathcal{C}_{c}(X ; \mathbb{R})$ with $f\left[U_{i}\right] \subset I_{i}$ and $\operatorname{supp} f \subset \bigcup_{1 \leq i \leq n} U_{j}$. For every compatible product $U_{1} \times \ldots \times U_{n} \times I_{1} \times \ldots \times I_{n}$ we choose one possible compatible function such that the resulting set \mathcal{F} of these functions is countable. For every $g \in \mathcal{C}_{c}(X ; \mathbb{R})$ with compact $K=\operatorname{supp} g ; x \in K$ and $\epsilon>0$ exists an open neighbourhood $x \in U_{x} \in \mathcal{G}$ with $g\left[U_{x}\right] \subset B_{\epsilon}(g(x))$ and a finite subcover $\left(U_{x_{i}}\right)_{1 \leq i \leq n}$ with $K \subset \bigcup_{1 \leq i \leq n} U_{x_{i}}$. Also there are $\left.I_{i}=\right] a_{i} ; b_{i}[\in \mathcal{R}$ with length $b_{i}-a_{i}<3 \epsilon$ with $g\left(U_{x_{i}}\right) \subset I_{i}$ for $1 \leq i \leq n$. Hence g is a compatible function and there exists an $f \in \mathcal{F}$ for the same compatible product $U_{x_{1}} \times \ldots \times U_{x_{n}} \times I_{1} \times \ldots \times I_{n}$ with $|f(x)-g(x)| \leq \lambda\left(I_{i}\right)<3 \epsilon$ for every $x \in \bigcup_{1 \leq i \leq n} U_{j}$ and $f(x)=g(x)=0$ for $x \in X \backslash \bigcup_{1 \leq i \leq n} U_{j}$. Hence \mathcal{F} is dense in $\mathcal{C}_{c}(X ; \mathbb{R})$. \Leftarrow : For a countable dense subset $\mathcal{F} \subset \mathcal{C}_{c}(X ; \mathbb{R})$ the countable family $\mathcal{G}=\left\{\left\{f>\frac{1}{2}\right\}: f \in \mathcal{F}\right\}$ is a basis for the topology on X since according to 10.3 for every open U and every $x \in U$ exists a $g \in \mathcal{C}_{c}(X ; \mathbb{R})$ with $\{x\} \prec g \prec U$ and due to the hypothesis an $f \in \mathcal{F}$ with $\|f-g\|<\frac{1}{2}$ such that $x \in\left\{f>\frac{1}{2}\right\} \subset\{g>0\} \subset \operatorname{supp} g \subset U$.

11.13 Embedding of X into $\mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right)$

Every locally compact space X by $\varphi: X \rightarrow \mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right)$with $\varphi(x)=\delta_{x}$ is homeomorphic to the family of all Dirac measures $\varphi[X]=\left\{\delta_{x}: x \in X\right\} \subset \mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right)$.
Proof: φ obviously is injective and also continuous since due to $\int f d \delta_{x}=f(x)$ for every subbasis set $V_{f ; \epsilon}\left(\delta_{x}\right)=\left\{\delta_{y} \in \varphi[X]:|f(x)-f(y)|<\epsilon\right\} \in \mathcal{S} \cap \varphi[X]$ with $x \in X ; f \in C_{c}(X ; \mathbb{R})$ and $\epsilon>0$ according to 11.4 the inverse image $\varphi^{-1}\left[V_{f ; \epsilon}\left(\delta_{x}\right)\right]=f^{-1}\left[B_{\epsilon}(f(x))\right]$ is open in X. Furthermore φ is open since owing to 10.3 for every $x \in X$ and every open neighbourhood $x \in U$ exists a $f \in C_{c}(X ; \mathbb{R})$ with $\{x\} \prec f \prec U$ such that $V_{f ; 1 / 2}\left(\delta_{x}\right)=\left\{\delta_{y} \in \varphi[X]: f(y)>\frac{1}{2}\right\} \subset\left\{\delta_{y} \in \varphi[X]: y \in U\right\}=\varphi[U]$.

11.14 Metrizability and completeness of $\mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right)$

A locally compact space X is polish iff the convex cone of the Radon measures $\mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right)$ is polish with regard to the vague topology.

Note:

Due to [13, th. 15.2 a a locally compact space X is polish iff it is second countable and according to Urysohns metrization theorem [13, th. 11.14.3] it is σ-compact such that in this case every Radon measure is complete and regular: $\mathcal{M}_{i 0}^{c}\left(\mathcal{B}(X) ; \mathbb{R}^{+}\right)=\mathcal{M}_{\sigma 0}\left(\mathcal{B}(X) ; \mathbb{R}^{+}\right)$.
Proof:
\Rightarrow :
Step I. Definition of the metric: According to 11.12 exists a countable dense set $\mathcal{D} \subset \mathcal{C}_{c}(X ; \mathbb{R})$. Owing to [13, th. 10.6] the space X is σ-compact so that we have an increasing sequence $\left(L_{n}\right)_{n \in \mathbb{N}}$ of compact L_{n} with $\bigcup_{n \in \mathbb{N}} L_{n}=X$ and 10.3 yields another countable set $\mathcal{E} \subset \mathcal{C}_{c}(X ;[0 ; 1])$ containing for each L_{n} exactly one e_{n} with $L_{n} \prec e_{n} \prec B_{1}\left(L_{n}\right)=\left\{x \in X: d\left(x ; L_{n}\right)<1\right\}$. The set of products $\mathcal{D} \cdot \mathcal{E}=\left\{d \cdot e_{n}: d \in \mathcal{D} ; e_{n} \in \mathcal{E}\right\}$ is still countable. The map $\rho: \mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right) \times \mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right) \rightarrow[0 ; 1]$ defined by $\rho(\mu ; \nu)=\sum_{n \geq 1} 2^{-n} \cdot \min \left\{1 ;\left|\int d_{n} d \mu-\int d_{n} d \nu\right|\right\}$ with $d_{n} \in \mathcal{D} \cup \mathcal{E} \cup \mathcal{D} \cdot \mathcal{E}$ obviously is symmetric and satisfies the triangle inequality. Concerning the positive definiteness for every $f \in \mathcal{C}_{c}(X ; \mathbb{R})$ and $\epsilon>0$ there is a $k \geq 1$ with $\operatorname{supp} f \subset L_{k}$ whence $f=e_{k} \cdot f$ and a $d \in \mathcal{D}$ with $\|f-d\| \leq \epsilon$. Hence we have $\left|\int f d \mu-\int d \cdot e_{k} d \mu\right| \leq \int\left|f-d \cdot e_{k}\right| d \mu \leq \epsilon \int e_{k} d \mu$ and analogously $\left|\int f d \nu-\int d \cdot e_{k} d \nu\right| \leq \epsilon \int e_{k} d \nu$. The hypothesis $\rho(\mu ; \nu)=0$ implies $\int d \cdot e_{k} d \mu-\int d \cdot e_{k} d \nu$ for every $n \geq 1$ whence follows $\left|\int f d \mu-\int f d \nu\right| \leq 2 \epsilon \int e_{k} d \mu$. This estimate holds for every $\epsilon>0$ and every $f \in \mathcal{C}_{c}(X ; \mathbb{R})$ whence the Riesz representation theorem for positive functionals 10.13 implies $\mu=\nu$.

Step II. The metric determines the vague topology: According to the definition of the vague topology in 11.4 for every $\epsilon>0$ exists an $m \geq-\frac{\ln e}{\ln 2}$ such that $\sum_{n>m} 2^{-n}<\frac{\epsilon}{2}$ and consequently $\bigcap_{1 \leq n \leq m} V_{d_{n} ; \epsilon / 2}(\mu)=\left\{\nu \in \mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right):\left|\int d_{n} d \mu-\int d_{n} d \nu\right|<\frac{\epsilon}{2} \forall n \leq m\right\} \subset B_{\epsilon}(\mu)$. Conversely for every $f \in \mathcal{C}_{c}(X ; \mathbb{R}), \mu \in \mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right)$and $\epsilon>0$ exists a $k \geq 1$ with $\operatorname{supp} f \subset L_{k}$ and a $d \in \mathcal{D}$ such that $\|f-d\|<\delta=\frac{\epsilon}{2+2 \int e_{k} d \mu}<1$ whence $\left|f-d \cdot e_{k}\right| \leq \delta \cdot e_{k}$. As above we obtain $\left|\int f d \mu-\int d \cdot e_{k} d \mu\right| \leq$ $\delta \int e_{k} d \mu$ but also $\left|\int f d \nu-\int d \cdot e_{k} d \nu\right| \leq \delta \int e_{k} d \nu$ for every other $\nu \in \mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right)$. For $m \geq 1$ large enough so that $\left\{d \cdot e_{k} ; e_{k}\right\} \subset\left\{d_{1} ; \ldots ; d_{m}\right\}, \nu \in B_{\eta}(\mu)$ with $\eta=\delta \cdot 2^{-m}$ and every $j \leq m$ follows 2^{-j}. $\min \left\{1 ;\left|\int d_{j} d \mu-\int d_{j} d \nu\right|\right\} \leq \rho(\mu ; \nu)<\eta \leq \delta \cdot 2^{-j}$ and consequently $\left|\int d_{j} d \mu-\int d_{j} d \nu\right|<\delta$ which implies $\left|\int d \cdot e_{k} d \mu-\int d \cdot e_{k} d \nu\right|<\delta$. The triangle equation yields $\left|\int f d \mu-\int f d \nu\right| \leq \delta\left(1+\int e_{k} d \mu+\int e_{k} d \nu\right)$ and since the choice of $m \geq 1$ also implies $\left|\int e_{k} d \mu-\int e_{k} d \nu\right|<\delta$ resp. $\int e_{k} d \nu<\delta+\int e_{k} d \mu$ we finally obtain $\left|\int f d \mu-\int f d \nu\right| \leq \delta^{2}+\delta\left(1+2 \int e_{k} d \mu\right) \leq \delta\left(2+2 \int e_{k} d \mu\right)=\epsilon$. Hence we have shown that $B_{\eta}(\mu) \subset V_{f ; \epsilon}(\mu)$.
Step III. The metric space $\left(\mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right) ; \rho\right)$ is complete: For every $f \in \mathcal{C}_{c}(X ; \mathbb{R})$ and every $0<\delta<1$ exits a $k \geq 1$ with $\operatorname{supp} f \subset L_{k}$ and a $d \in \mathcal{D}$ such that $\|f-d\|<\delta$. As above we choose an $m \geq 1$ such that $\left\{d \cdot e_{k} ; e_{k}\right\} \subset\left\{d_{1} ; \ldots ; d_{m}\right\}, \nu \in B_{\eta}(\mu)$ and define $\eta=\delta \cdot 2^{-m}$. Then for a ρ-Cauchy sequence $\left(\mu_{n}\right)_{n \geq 1} \subset \mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right)$exists an $N \geq 1$ such that $\rho\left(\mu_{r} ; \mu_{s}\right)<\eta$ for every $r ; s \geq N$. Following step II again we conclude $\left|\int d_{j} d \mu_{r}-\int d_{j} d \mu_{s}\right|<\delta$ for every $r ; s \geq N$ and $j \leq m$ whence $\left|\int d \cdot e_{k} d \mu_{r}-\int d \cdot e_{k} d \mu_{s}\right|<\delta$. As above we arrive at $\left|\int f d \mu_{r}-\int f d \mu_{s}\right| \leq \delta^{2}+\delta\left(1+2 \int e_{k} d \mu\right)$. The estimate $\left|\int e_{k} d \mu_{r}-\int e_{k} d \mu_{s}\right|<\delta$ for every $r ; s \geq N$ implies the existence of an $M<\infty$ such that $\int e_{k} d \mu_{n}<M$ for $n \geq 1$ whence $\left|\int f d \mu_{r}-\int f d \mu_{s}\right| \leq \delta^{2}+\delta(1+2 M)$. Since M depends only on the choice of f and $\left(\mu_{n}\right)_{n \geq 1}$ for every $\epsilon>0$ we find a $\delta=\frac{\epsilon}{2+2 M}<1$ such that $\left|\int f d \mu_{r}-\int f d \mu_{s}\right|$ $<\epsilon$ for every $r ; s \geq N$. Hence $\left(\mu_{n}\right)_{n \geq 1} \subset \mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right)$is a Cauchy sequence with regard to the vague topology whence the Riesz representation theorem for positive functionals 10.13 resp. the completeness of $\mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right)=\mathcal{M}_{\sigma 0}\left(X ; \mathbb{R}^{+}\right)$(see Note) imply the vague convergence of $\left(\mu_{n}\right)_{n \geq 1}$ to a uniquely determined limit $\mu \in \mathcal{M}_{\sigma 0}\left(X ; \mathbb{R}^{+}\right)$.
Step IV. The metric space $\left(\mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right) ; \rho\right)$ is second countable: According to 11.7.1 for every $f \in \mathcal{C}_{c}(X ; \mathbb{R}), \mu \in \mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right)$and $\epsilon>0$ esists a discrete Radon measure $\delta=\sum_{1 \leq i \leq k} \alpha_{i} \delta_{x_{i}}$ with $\mathbf{x}_{i} \in X$ and $\alpha_{i} \geq 0$ for $1 \leq i \leq k$ such that $\left|\int f d \mu-\int f d \delta\right|=\left|\int f d \mu-\sum_{1 \leq i \leq k} \alpha_{i} f\left(x_{i}\right)\right|<\frac{\epsilon}{3}$. For $1 \leq i \leq k$ we choose $\beta_{i} \in \mathbb{Q}$ with $\left|\alpha_{i}-\beta_{i}\right|<\frac{\epsilon}{3 k\|f\|}$. According to [13, th. 2.8] the second countable set X is separable with a countable dense subset $Y \subset X$ such that we can find $y_{i} \in Y$ with $\left|f\left(x_{i}\right)-f\left(y_{i}\right)\right|<\frac{\epsilon}{3 k \beta_{i}}$. Hence we obtain a new discrete Radon measure $\gamma=\sum_{1 \leq i \leq k} \beta_{i} \delta_{y_{i}}$ with

$$
\begin{aligned}
\left|\int f d \mu-\int f d \gamma\right| & \leq\left|\int f d \mu-\int f d \gamma\right|+\left|\int f d \delta-\int f d \gamma\right| \\
& \leq \frac{\epsilon}{3}+\left|\sum_{1 \leq i \leq k} \alpha_{i} f\left(x_{i}\right)-\beta_{i} f\left(x_{i}\right)+\beta_{i} f\left(x_{i}\right)-\beta_{i} f\left(y_{i}\right)\right| \\
& \leq \frac{\epsilon}{3}+\sum_{1 \leq i \leq k}\left|\alpha_{i}-\beta_{i}\right| \cdot\|f\|+\sum_{1 \leq i \leq k}\left|\beta_{i}\right| \cdot\left|f\left(x_{i}\right)-f\left(y_{i}\right)\right| \\
& \leq \frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3} \\
& =\epsilon
\end{aligned}
$$

Hence the countable set $\mathcal{D}=\left\{\sum_{1 \leq i \leq k} \beta_{i} \delta_{y_{i}}: \beta_{i} \in \mathbb{Q} ; y_{i} \in Y ; 1 \leq i \leq k ; k \geq 1\right\}$ of discrete Radon measures with rational coefficients on points of the dense countable subset $Y \subset X$ is dense in $\mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right)$with regard to the vague topology whence again due to $[13$, th. 2.8$]$ follows that $\mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right)$is second countable.
\Leftarrow : Directly follows from the preceding theorem 11.13.

11.15 Convergence of sequences in vaguely bounded sets

Every vaguely bounded sequence $\left(\mu_{n}\right)_{n \geq 1} \subset \mathcal{M}_{i 0}^{c}\left(X ; \mathbb{R}^{+}\right)$of Radon measures on a polish space X has a vaguely convergent subsequence.

Proof: Follows directly from 11.10, 11.14 and the Bolzano-Weierstrass theorem [13, th. 10.12].

11.16 Metrizability and completeness of $\mathcal{C}\left(\mathbb{R}^{+} ; X\right)$

For every polish space X the vector space of the continuous paths $\mathcal{C}\left(\mathbb{R}^{+} ; X\right)$ is polish with regard to the compact open topology.

Note: Every metric $\rho: X \times X \rightarrow \mathbb{R}^{+}$can be shrinked to the range $[0 ; 1]$ by transition e.g. to $\rho^{\prime}=\min \{1 ; \rho\}$ or $\rho^{\prime \prime}=\frac{\rho}{1+\rho}$.
Proof: The function $d: \mathcal{C}\left(\mathbb{R}^{+} ; X\right) \times \mathcal{C}\left(\mathbb{R}^{+} ; X\right) \rightarrow[0 ; 1]$ defined by $d(f ; g)=\sum_{n \geq 1} 2^{-n} d_{n}(f ; g)$ with $d_{n}(f ; g)=\sup \{\rho(f(x) ; g(x)): x \in[0 ; n]\}$ and the metric $\rho: X \times X \rightarrow[0 ; 1]$ obviously is again a metric with $2^{-n} d_{n}(f ; g) \leq d(f ; g) \leq \sum_{1 \leq i \leq n} 2^{-i} d_{n}(f ; g)+\sum_{i>n} 2^{-i} \leq d_{n}(f ; g)+2^{-n}$. Hence the metric d induces the compact open topology of the space $\mathcal{C}\left(\mathbb{R}^{+} ; X\right)$ which is complete according to $\left[13\right.$, p. 18.7.3]. Analogously to the proof of 11.12 we show that $\mathcal{C}\left(\mathbb{R}^{+} ; X\right)$ has a countable basis: According to [13, th. 2.8] the second countable set X is separable with a countable dense subset $Y \subset X$ so that $\mathcal{G}=\left\{B_{r}(y): r \in \mathbb{Q} ; y \in Y\right\}$ is a countable basis of the open sets in X. For every $n \geq 1$ the products $G_{1} \times \ldots \times G_{n} \subset X^{n}$ with $G_{i} \in \mathcal{G}$ and $I_{1} \times \ldots \times I_{n} \subset \mathbb{R}^{n}$ with $I_{i} \in \mathcal{R}=$ $\left] a ; b\left[\subset \mathbb{R}^{+}: 0<a<b \in \mathbb{Q}\right\}\right.$ for $1 \leq i \leq n$ are compatible iff there is at least one compatibility function $f \in \mathcal{C}\left(\mathbb{R}^{+} ; X\right)$ with $f\left[I_{i}\right] \subset G_{i}$. For every compatible product $G_{1} \times \ldots \times G_{n} \times I_{1} \times \ldots \times I_{n}$ we choose one possible compatible function such that the resulting set \mathcal{F} of these functions is countable. For every $g \in \mathcal{C}\left(\mathbb{R}^{+} ; X\right) ; N \geq 1,0<\epsilon \in \mathbb{Q}$ and $x \in[0 ; N]$ exists an open neighbourhood $x \in U_{x} \in \mathcal{R}$ with $g\left[U_{x}\right] \subset B_{\epsilon}(g(x))$ and a finite subcover $\left(U_{x_{i}}\right)_{1 \leq i \leq n}$ with $[0 ; N] \subset \bigcup_{1 \leq i \leq n} U_{x_{i}}$. Then for $1 \leq i \leq n$ we have $G_{i}=B_{2 \epsilon}\left(y_{i}\right) \in \mathcal{G}$ with some $y_{i} \in Y \cap \overline{B_{\epsilon}}\left(g\left(x_{i}\right)\right)$ such that for every $x \in U_{x_{i}}$ follows $\rho\left(g(x) ; y_{i}\right) \leq \rho\left(g(x) ; g\left(x_{i}\right)\right)+\rho\left(g\left(x_{i}\right) ; y_{i}\right)<2 \epsilon$ whence $g\left[U_{x_{i}}\right] \subset G_{i}$. Hence g is a compatible function and there exists an $f \in \mathcal{F}$ for the same compatible product $G_{1} \times \ldots \times G_{n} \times I_{1} \times \ldots \times I_{n}$ with $f\left[U_{x_{i}}\right] \subset G_{i}$ for $1 \leq i \leq n$ whence $\rho(f(x) ; g(x))<4 \epsilon$ for every $x \in[0 ; N]$. Hence \mathcal{F} is dense in $\mathcal{C}_{c}(X ; \mathbb{R})$.

12 Probability measures on metric spaces

In this chapter without further notice $P \in \mathcal{M}(X ;[0 ; 1])$ will always be a probability measures on the Borel- σ-algebra $\mathcal{B}(X)$ of a metric space $(X ; d)$.

12.1 Discontinuities of functions between metric spaces

The set $D_{f}=\left\{x \in X: \exists \epsilon>0: \forall \delta>0 \exists y ; z \in B_{\delta}(x): D(f(y) ; f(z)) \geq \epsilon\right\}$ of discontinuities of the (not necessarily measurable) function $f:(X ; d) \rightarrow(Y ; D)$ lies in $\mathcal{B}(X)$.

Notes:

1. In [12, th. 3.1] it is shown that for every monotone $f:] a ; b\left[\rightarrow \mathbb{R}\right.$ the set D_{f} of discontinuities is countable and all discontinuities $c \in D_{f}$ are simple, i.e. $-\infty<\sup _{a<x<c} f(x)=$ $\lim _{n \rightarrow \infty} f\left(c-\frac{1}{n}\right)<\lim _{n \rightarrow \infty} f\left(c+\frac{1}{n}\right)=\inf _{c<x<b} f(x)<\infty$.
2. In [9, th. 1.2] it is proved that for every real $f: \mathbb{R} \rightarrow \mathbb{R}$ the set of jump and vertex points with existing but differing Dini derivatives $\left\{D_{+} f=D^{+} f=D_{+}^{+} f \neq D_{-}^{-} f=D_{-} f=D^{-} f\right\}$ is countable.

Proof: The sets $A_{\epsilon ; \delta}=\left\{x \in X: \exists y ; z \in B_{\delta}(x): D(f(y) ; f(z)) \geq \epsilon\right\}$ are open because $x \in B_{\delta}(y) \cap$ $B_{\delta}(y)$ whence $D_{f}=\bigcup_{\epsilon \in \mathbb{Q}^{+}} \bigcap_{\delta \in \mathbb{Q}^{+}} A_{\epsilon ; \delta} \in \mathcal{B}(X)$.

12.2 Regularity on metric spaces

Every probability measure $P \in \mathcal{M}(X ;[0 ; 1])$ on a metric space $(X ; d)$ is weakly regular, i.e. for every measurable set $A \in \mathcal{B}(X)$ there is a closed K and an open O such that $K \subset A \subset O$ and $P(O \backslash K)<\epsilon$.
Proof: The family \mathcal{A} of alls sets $A \in \mathcal{B}(X)$ satisfying the hypothesis is a σ-algebra since for every sequence $\left(A_{n}\right)_{n \geq 1} \subset \mathcal{A}$ and $\epsilon>0$ due to the hypothesis we have closed K_{n} with open O_{n} such that $K_{n} \subset A_{n} \subset O_{n}$ and $P\left(O_{n} \backslash K_{n}\right)<\frac{\epsilon}{2^{n+1}}$ and owing to the continuity from below 2.2.2 there is an $m \in \mathbb{N}$ with $P\left(\bigcup_{n \geq 1} K_{n} \backslash \bigcup_{n=1}^{m} K_{n}\right)<\frac{\epsilon}{2}$ whence $\bigcup_{n=1}^{m} K_{n} \subset \bigcup_{n \geq 1} A_{n} \subset \bigcup_{n \geq 1} O_{n}$ and $P\left(\bigcup_{n \geq 1} O_{n} \backslash \bigcup_{n=1}^{m} K_{n}\right)$ $<P\left(\bigcup_{n \geq 1} O_{n} \backslash \bigcup_{n \geq 1} K_{n}\right)+P\left(\bigcup_{n \geq 1} K_{n} \backslash \bigcup_{n=1}^{m} K_{n}\right) \leq P\left(\bigcup_{n \geq 1}\left(O_{n} \backslash K_{n}\right)\right)+\frac{\epsilon}{2}<\epsilon$. The closedness under complementation is obvious. Due to the continuity from above \mathcal{A} includes every closed set A with a suitable δ-neighbourhood $A^{\delta}=\{x \in X: d(x ; A)<\delta\}$ hence every open set whence follows $\sigma(\mathcal{O})=\mathcal{B}(X) \subset \mathcal{A}$ and the theorem is proved.

12.3 Regularity on Polish spaces

Every probability measure $P \in \mathcal{M}(X ;[0 ; 1])$ on a polish space $(X ; d)$ is regular, i.e. for every measurable set $A \in \mathcal{B}(X)$ there is a compact K and an open O such that $K \subset A \subset O$ and $P(O \backslash K)<\epsilon$.
Proof: Since Ω is separable there is a countable and dense subset $\left(\omega_{n}\right)_{n \geq 1}$ and for every $k \geq 1$ a sequence $\left(B_{k_{i}}\right)_{k_{i} \geq 1}$ of open balls $B_{k_{i}}=B_{\frac{1}{k}}\left(\omega_{k_{i}}\right)$ covering Ω. Owing to the continuity from below 2 there is an $n_{k} \geq 1$ such that $P\left(\bigcup_{i \leq n_{k}} B_{k_{i}}\right)>1-\frac{\epsilon}{2^{k}}$. Since Ω is complete the closure $K=\overline{\bigcap_{k \geq 1} \bigcup_{i \leq n_{k}} B_{k_{i}}}$ due to [13, p. 10.12] is compact: For any sequence $\left(x_{j}\right)_{j \geq 1} \subset K$ and every $k \geq 1$ exists an open ball $B_{k_{i}}$ containing infinitely many elements of $\left(x_{j}\right)_{j \geq 1}$ such that the resulting subsequence is Cauchy and due to the completeness converges to an $x \in K$. Since $P(K)>1-\epsilon$ and every intersection between a compact and a closed set is compact again we have shown that every closed set A for every $\epsilon>0$ contains a compact set $K \subset A$ with $\mathrm{P}(A \backslash K)<\epsilon$.
Since every closed set $A=\bigcap_{n \geq 1} O_{1 / n}$ is the intersection of open $O_{1 / n}=\left\{\omega \in \Omega: d(\omega ; A)<\frac{1}{n}\right\}$ and P is continuous from above we have shown that P is regular on all closed sets $A \subset \Omega$: For any $\epsilon>0$ there are compact K resp. open O with $K \subset A \subset O$ and $P(O \backslash K)<\epsilon$. Since $\mathcal{B}(\Omega)$ is generated by the closed sets it remains to prove that the family $\mathcal{R} \subset \mathcal{P}(\Omega)$ of all sets which satisfy the regularity property is a σ-algebra. To this end for $\epsilon>0$ and any given sequence $\left(A_{n}\right)_{n \geq 1} \subset \mathcal{R}$ we choose compact K_{n} and open O_{n} with $K_{n} \subset A_{n} \subset O_{n}$ and $\mathrm{P}\left(O_{n} \backslash K_{n}\right) \leq \frac{\epsilon}{2^{n+1}}$. Then we find an $n_{\epsilon} \geq 1$ such that with $P\left(\bigcup_{n \geq 1} K_{n} \backslash K\right)<\frac{\epsilon}{2}$ for $K=\bigcup_{n=1}^{n_{\epsilon}} K_{n}$ whence $K \subset \bigcup_{n \geq 1} A_{n} \subset O=\bigcup_{n \geq 1} O_{n}$ with $P(O \backslash K)<\epsilon$. Hence \mathcal{R} is closed under countable unions. Since it is obviously closed under intersection and complementation the proof is complete.

12.4 Characterization by bounded continuous functions

Two probability measures $P, Q: \mathcal{B}(X) \rightarrow[0 ; 1]$ on a metric space $(X ; d)$ coincide iff $\int f d P=$ $\int f d Q$ for every bounded and uniformly continuous $f: X \rightarrow \mathbb{R}$.
Proof: For every closed $A \subset X$ the functions $f_{n}: X \rightarrow[0 ; 1]$ with $f_{n}(x)=(1-n \cdot d(x ; A))^{+}$are bounded and uniformly continuous since $|f(x)-f(y)|<n \cdot d(x ; y)$. Since we have pointwise everywhere $\chi_{A}=\lim _{n \rightarrow \infty} f_{n}$ the dominated convergence theorem 5.15 yields $P(A)=\int \chi_{A} d P=$ $\int \lim _{n \rightarrow \infty} f_{n} d P=\lim _{n \rightarrow \infty} \int f_{n} d P=\lim _{n \rightarrow \infty} \int f_{n} d Q=\int \lim _{n \rightarrow \infty} f_{n} d Q=Q(A)$. Since the closed sets are a π -basis for $\mathcal{B}(X)$ the assertion follows from the uniqueness theorem 3.4.

12.5 Tightness on complete and separable metric spaces

Every probability measure $P \in \mathcal{M}(X ;[0 ; 1])$ on a complete and separable metric space $(X ; d)$ is tight, i.e. for every $\epsilon>0$ exists a compact $K \subset X$ with $P(K)>1-\epsilon$.

Proof: According to the separable character for every $n \geq 1$ there is a sequence $\left(x_{k}\right)_{k \geq 1} \subset X$ with $\bigcup_{k \geq 1} B_{1 / n}\left(x_{k}\right)=X$ and in particular an $n_{k} \geq 1$ such that $P\left(\bigcup_{k=1}^{n_{k}} \overline{B_{1 / n}\left(x_{k}\right)}\right)>1-\frac{\epsilon}{2^{n}}$. The set $B=\bigcap_{n \geq 1} \bigcup_{k=1}^{n_{k}} \overline{B_{1 / n}\left(x_{k}\right)}$ is precompact resp. totally bounded whence due to the complete character and [13, th. 17.2] it has a compact closure $K=\bar{B}$ with $P(K)>1-\epsilon$.

12.6 The Portmanteau theorem for metric spaces

A sequence $\left(P_{n}\right)_{n>1} \subset \mathcal{M}(X ;[0 ; 1])$ of probability measures weakly converges to a probability measure $P \in \mathcal{M}(\bar{X} ;[0 ; 1])$ iff one of the following equivalent conditions is satisfied:

1. $\lim _{n \rightarrow \infty} \int f d P_{n}=\int f d P$ for every bounded, continuous $f: X \rightarrow \mathbb{R}$.
2. $\lim _{n \rightarrow \infty} \int f d P_{n}=\int f d P$ for every bounded, uniformly continuous $f: X \rightarrow \mathbb{R}$.
3. $\limsup _{n \rightarrow \infty} P_{n}(K) \leq P(K)$ for every closed $K \subset X$.
4. $\liminf _{n \rightarrow \infty} P_{n}(O) \geq P(O)$ for every open $O \subset X$.
5. $\lim _{n \rightarrow \infty} P_{n}(A)=P(A)$ for every P-continuous $A \subset X$ with $P(\delta A)=0$.

In a separable metric space $(X ; d)$ we have the additional equivalent property:
6. There is a convergence-determining π-system \mathcal{A} such that for every $x \in X$ and $\epsilon>0$ the subfamily $\delta \mathcal{A}_{x ; \epsilon}=\left\{A \in \mathcal{A}: x \in \AA \subset A \subset B_{\epsilon}(x)\right\}$ contains a P-null set $A \in \delta \mathcal{A}_{x ; \epsilon} \subset \mathcal{A}$ with $P(A)=0$ and $\lim _{n \rightarrow \infty} P_{n}(A)=P(A)$ for every $A \in \mathcal{A}$. Due to 2.2 the former condition is satisfied if $\delta \mathcal{A}_{x ; \epsilon}$ contains uncountably many disjoint sets.

Note: The Helly-Bray theorem [12, th. 3.8] is a corollary to the Portmanteau theorem for the case $X=\mathbb{R}$ with an application to distribution functions.

Proof:

$1 . \Rightarrow 2$.: trivial
2. \Rightarrow 3.: The separation function $K \prec f \prec K^{\epsilon}$ defined in the proof of 12.4 by $f(x)=\left(1-\frac{d(K ; x)}{\epsilon}\right)^{+}$ is uniformly continuous with $\limsup _{n \rightarrow \infty} P_{n}(K) \leq \limsup _{n \rightarrow \infty} \int f d P_{n}=\int f d P \leq P\left(K^{\epsilon}\right)$ for every $\epsilon>0$.

$$
\text { 3. } \Rightarrow 4 .: \liminf _{n \rightarrow \infty} P_{n}(O)=\liminf _{n \rightarrow \infty}(1-P(X \backslash O))=1-\limsup _{n \rightarrow \infty} P_{n}(X \backslash O) \geq 1-P(X \backslash O)=P(O) .
$$

3.\&4. \Rightarrow 5.: According to the hypothesis $P(\AA) \leq \liminf _{n \rightarrow \infty} P_{n}(\AA) \leq \liminf _{n \rightarrow \infty} P_{n}(A) \leq \limsup _{n \rightarrow \infty} P_{n}(A) \leq$ $\limsup _{n \rightarrow \infty} P_{n}(\bar{A}) \leq P(\bar{A})$ and in the case of $P(\bar{A})-P(\AA)=P(\delta A)=0$ all terms coincide.
5. $\Rightarrow 1 .:$ By the decomposition $f=f^{+}-f^{-}$resp. the bounded character of f and the linearity of the integral it suffices to examine the case $f: X \rightarrow[0 ; 1]$. The continuity of f implies $\delta\{f>t\} \subset\{f=t\}$ for every $t \geq 0$. According to 2.1 we have $P(f=t)>0$ for at most countably many t whence the sets $\{f>t\}$ are λ-almost everywhere P-continuous. By [12, th. 1.5] and the dominated convergence theorem 5.15 we conclude $\lim _{n \rightarrow \infty} \int f d P_{n} \stackrel{1.5}{=} \lim _{n \rightarrow \infty} \int P_{n}(f>t) d t \stackrel{5.15}{=} \int \lim _{n \rightarrow \infty} P_{n}(f>t) d t \stackrel{5}{=}$ $\int P(f>t) d t=\int f d P$.
$5 . \Rightarrow 6$.: According to 12.2 every open set is P-continuous. Since the topology \mathcal{O} is a π-system and every $\delta \mathcal{O}_{x ; \epsilon}$ contains uncountably many disjoint sets we chan choose $\mathcal{A}=\mathcal{O}$.
6. $\Rightarrow 4$.: Since $\delta(A \cup B) \subset \delta A \cup \delta B$ the class \mathcal{A}_{P} of all P-continuous sets in \mathcal{A} is a π-system. Since each $\delta \mathcal{A}_{x ; \epsilon}$ contains a P-null set $A_{x} \in \mathcal{A}_{P}$ with $x \in \AA_{x} \subset A_{x} \subset B_{\epsilon}(x)$ and X is separable for every open $O \subset X$ exists a sequence $\left(A_{x_{i}}\right)_{i \geq 1} \subset \mathcal{A}_{P}$ with $\bigcup_{i \geq 1} A_{x_{i}}=O$. Hence for every $\eta>0$ there is an $r \in \mathbb{N}$ such that $P\left(\bigcup_{i=1}^{r} A_{x_{i}}\right)>P(O)-\eta$. The hypothesis implies that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} P_{n}\left(\bigcup_{i=1}^{r} A_{x_{i}}\right) & =\lim _{n \rightarrow \infty} \sum_{i=1}^{r} P_{n}\left(A_{x_{i}}\right)-\lim _{n \rightarrow \infty} \sum_{i ; j=1}^{r} P_{n}\left(A_{x_{i}} \cap A_{x_{j}}\right)+\lim _{n \rightarrow \infty} \sum_{i ; j ; k=1}^{r} P_{n}\left(A_{x_{i}} \cap A_{x_{j}} \cap A_{x_{k}}\right)-\ldots \\
& =\sum_{i=1}^{r} P\left(A_{x_{i}}\right)-\sum_{i ; j=1}^{r} P\left(A_{x_{i}} \cap A_{x_{j}}\right)+\sum_{i ; j ; k=1}^{r} P\left(A_{x_{i}} \cap A_{x_{j}} \cap A_{x_{k}}\right)-\ldots \\
& P\left(\bigcup_{i=1}^{r} A_{x_{i}}\right)
\end{aligned}
$$

whence follows $P(O)-\eta<P\left(\bigcup_{i=1}^{r} A_{x_{i}}\right)=\lim _{n \rightarrow \infty} P_{n}\left(\bigcup_{i=1}^{r} A_{x_{i}}\right) \leq \liminf _{n \rightarrow \infty} P_{n}(O)$.

12.7 Weak convergence on product spaces

A sequence $\left(P_{n} \otimes Q_{n}\right)_{n \geq 1} \subset \mathcal{M}(X \times Y ;[0 ; 1])$ on the product of separable metric spaces $(X ; d)$ and $(Y ; e)$ weakly converges to a $P \otimes Q \in \mathcal{M}(X \times Y ;[0 ; 1])$ iff $\lim _{n \rightarrow \infty}\left(P_{n} \otimes Q_{n}\right)(A \times B)=(P \otimes Q)(A \times B)$ for every P-continuous $A \subset X$ and Q-continuous $B \subset Y$.

Proof: The family $\mathcal{A}=\{A \times B \in \mathcal{B}(X \times Y)=\mathcal{B}(X) \otimes \mathcal{B}(Y): P(\delta A)=Q(\delta B)=0\}$ (cf. [13, th. 4.2] and 7.7) is a π-system since $(A \times B) \cap(C \times D)=(A \cap C) \times(B \cap D)$ and $\delta(A \cap C) \subset \delta A \cup \delta C$. It is $P \otimes Q$-continuous since $\delta(A \times B) \subset((\delta A) \times Y) \cup(X \times(\delta B))$. If we choose the metric $\Delta: X \times Y \rightarrow$ \mathbb{R}^{+}defined by $\Delta((x ; y) ;(u ; v))=\max \{d(x ; u) ; e(y ; v)\}\left(c f .[13\right.$, th. 1.8.3] $)$ the balls $B_{\Delta<\epsilon}((x ; y))=$ $B_{d<\epsilon}(x) \times B_{e<\epsilon}(y)$ have boundaries of the form $\delta\left(B_{\Delta<\epsilon}((x ; y))\right) \subset \delta\left(B_{d<\epsilon}(x)\right) \times Y \cup X \times \delta\left(B_{e<\epsilon}(y)\right)$. Hence they all are $P \otimes Q$-null sets and lie in $\delta \mathcal{A}_{(x ; y) ; \epsilon} \subset \mathcal{A}$ so that we can apply 12.6.6 and the theorem is proved.

12.8 The mapping theorem

For every $\mathcal{B}(X)-\mathcal{B}(Y)$ measurable, P-a.e. continuous $f:(X ; d) \rightarrow(Y ; D)$ and a sequence $\left(P_{n}\right)_{n \geq 1} \subset \mathcal{M}(X ;[0 ; 1])$ weakly converging to $P \in \mathcal{M}(X ;[0 ; 1])$ the images $\left(f \circ P_{n}\right)_{n \geq 1} \subset \mathcal{M}(Y ;[0 ; 1])$ weakly converge to $f \circ P \in \mathcal{M}(Y ;[0 ; 1])$.
Proof: For every closed $K \in \mathcal{B}(Y)$ and $x \in \overline{f^{-1}[K]} \backslash D_{f}$ with the set $D_{f} \in \mathcal{B}(X)$ of the discontinuities of f according to 12.1 there is a sequence $\left(x_{n}\right)_{n \geq 1} \subset X$ with $\lim _{n \rightarrow \infty} x_{n}=x$ and $\left(f\left(x_{n}\right)\right)_{n \geq 1} \subset K$ whence follows $f(x) \in K$ since f is continuous in x and K is closed. Therefore $\overline{f^{-1}[K]} \backslash D_{f} \subset$ $f^{-1}[K]$ and from the hypothesis $P\left(D_{f}\right)=0$ follows $\limsup _{n \rightarrow \infty}\left(f \circ P_{n}\right)(K)=\limsup _{n \rightarrow \infty} P_{n}\left(f^{-1}[K]\right)=$ $\limsup _{n \rightarrow \infty} P_{n}\left(\overline{f^{-1}[K]}\right) \leq P\left(\overline{f^{-1}[K]}\right)=P\left(\overline{f^{-1}[K]} \backslash D_{f}\right) \leq P\left(f^{-1}[K]\right)=(f \circ P)(K)$ which by3 proves the theorem.

12.9 The diagonal principle

For every real double sequence $\left(x_{i, j}\right)_{i, j \geq 1} \subset \mathbb{R}$ with bounded rows $\left(x_{i, j}\right)_{j \geq 1}$ there is a sequence $\left(i_{k}\right)_{k \geq 1}$ such that in each row $i \geq 1$ the limit $\lim _{k \rightarrow \infty} x_{i, j_{k}} \in \mathbb{R}$ exists.

Proof: According to the Heine-Borel theorem [13, p. 9.10] we can find a subsequence $\left(j_{1, n}\right)_{n \geq 1} \subset \mathbb{N}$ such that $\lim _{n \rightarrow \infty} x_{1, j_{1, n}} \in \mathbb{R}$ exists. Given a subsequence $\left(j_{k, n}\right)_{n \geq 1}$ such that $\lim _{n \rightarrow \infty} x_{k, j_{k, n}} \in \mathbb{R}$ exists we change into the next row and by the same argument from the preceding subsequence choose a further
subsequence $\left(j_{k+1, n}\right)_{n \geq 1} \subset\left(j_{k, n}\right)_{n \geq 1}$ such that $\lim _{n \rightarrow \infty} x_{k+1, j_{k+1, n}} \in \mathbb{R}$ exists. Since the subsequences $\left(\left(j_{k, n}\right)_{n \geq 1}\right)_{k \geq 1}$ form a decreasing family of sets with $\lim _{n \rightarrow \infty} x_{k, j_{k, n}} \in \mathbb{R}$ for every row $k \geq 1$ the diagonal sequence $\left(j_{k}\right)_{k \geq 1}$ with $j_{k}=j_{k, k}$ is increasing and $\lim _{k \rightarrow \infty} x_{i, j_{k}} \in \mathbb{R}$ for every row $i \geq 1$.

12.10 Tight families of measures and distribution functions

Weak limits $P=\lim _{n \rightarrow \infty} P_{n}$ of probability measures P_{n} on measurable spaces $(\Omega ; \mathcal{A})$ may exist in the form of finite measures $\mu \in \mathcal{M}_{0}\left(\mathcal{A} ; \mathbb{R}^{+}\right)$but in order to guarantee the condition $\mu(\Omega)=1$ resp. $\lim _{m \rightarrow \infty} F(m)=1$ and $\lim _{m \rightarrow \infty} F(-m)=0$ in terms of the distribution function $F: \mathbb{R} \rightarrow[0 ; 1]$ defined by $F(x)=P(]-\infty ; x])$ in the case of $\Omega=\mathbb{R}$ we have to avoid the "loss of mass" as in the two following examples:

1. The sequence $\left(X_{n}\right)_{n \geq 1}$ with $X_{n}=n$ resp. $P_{X_{n}}=\delta_{n}$ and $F_{n}=\chi_{[n ; \infty[}$ has $\lim _{n \rightarrow \infty} F_{n}=0$ since the mass "escapes to infinity".
2. The sequence $\left(Y_{n}\right)_{n \geq 1}$ with $P\left(\left|Y_{n}\right| \leq n\right)=\frac{1}{2 n} \lambda$ such that $F_{n}(t)=\left(\frac{1}{2}+\frac{t}{n}\right) \cdot \chi_{[-n ; n]}$ again has $\lim _{n \rightarrow \infty} F_{n}=0$ since in this case the uniformly over the interval $[-n ; n]$ distributed part of the mass "evaporates".

Thus we define that the family Π of probability measures on the Borel σ-algebra $\mathcal{B}(X)$ of a metric space ($X ; d$) is tight iff for every $\epsilon>0$ exists a compact $K_{e} \subset X$ such that $P\left(K_{\epsilon}\right)>1-\epsilon$ for every $p \in \Pi$. In the case of $X=\mathbb{R}$ this definition extends to the corresponding family $\Phi=\left\{F_{P}: P \in \Pi\right\}$ of distribution functions which is tight iff for every $\epsilon>0$ exist real numbers $a_{\epsilon}<b_{\epsilon} \in \mathbb{R}$ such that $P([a ; b]) \geq P(] a ; b])=F_{P}(b)-F_{P}(a) \geq P([a+\epsilon ; b])>1-\epsilon$ for every $P \in \Pi$.

12.11 Prohorov's theorem

Every family Π of probability measures on the Borel σ-algebra $\mathcal{B}(X)$ of a separable and complete metric space $(X ; d)$ is tight iff it is sequentially compact with regard to weak convergence.

Notes:

1. The set \mathcal{P} of all probability measures on a separable and complete metric space $(X ; \mathcal{B}(X))$ according to $[2$, th. 6.8$]$ by the Skorohod metric π becomes itself a separable and complete metric space with pointwise π-convergence being equivalent to weak convergence. Hence due to [13, th. 10.12] the spaces X resp. \mathcal{P} are second countable whence the properties of being compact, countably compact and sequentially compact are equivalent.
2. Helly's selection theorem [12, th. 3.9] is a corollary to Prohorov's theorem for the case $X=\mathbb{R}$ and applied to distribution functions.

Proof:

\Rightarrow : Since X is second countable there is an increasing sequence of open sets G_{n} with $\bigcup_{n \geq 1} G_{n}=X$. Then for every $\epsilon>0$ there is an $n \geq 1$ such that $P\left(G_{n}\right)>1-\epsilon$ for every $P \in \Pi$ since otherwise we had a sequence $\left(P_{n}\right)_{n \geq 1} \subset \Pi$ with $P_{n}\left(G_{n}\right)<1-\epsilon$ and by the hypothesis a subsequence $\left(P_{n_{k}}\right)_{k \geq 1}$ with a weak limit $P=\lim _{k \rightarrow \infty} P_{n_{k}} \in \Pi$ whence 12.6.4 implied $P\left(G_{n}\right) \leq \liminf _{k \rightarrow \infty} P_{n_{k}}\left(G_{n}\right) \leq \liminf _{k \rightarrow \infty} P_{n_{k}}\left(G_{n_{k}}\right) \leq$ $1-\epsilon$ and by 2.2.2 followed $P(X)=\lim _{n \rightarrow \infty} P\left(G_{n}\right) \leq 1-\epsilon$. With this result we can proceed as in the proof of 12.5: According to the separable character for every $n \geq 1$ there is a sequence $\left(x_{k}\right)_{k \geq 1} \subset X$ with $\bigcup_{k \geq 1} B_{1 / n}\left(x_{k}\right)=X$ and an $n_{k} \geq 1$ such that $P\left(\bigcup_{k=1}^{n_{k}} \overline{B_{1 / n}\left(x_{k}\right)}\right)>1-\frac{\epsilon}{2^{n}}$ for all $P \in \Pi$. The set $B=\bigcap_{n \geq 1} \bigcup_{k=1}^{n_{k}} \overline{B_{1 / n}\left(x_{k}\right)}$ is precompact resp. totally bounded whence due to the complete character and [13, th. 17.2] it has a compact closure $K=\bar{B}$ with $P(K)>1-\epsilon$ for all $P \in \Pi$.
\Leftarrow : According to the hypothesis for any given sequence $\left(P_{n}\right)_{n>1} \subset \Pi$ there is an increasing sequence $\mathcal{K}=\left(K_{u}\right)_{u \geq 1}$ of compact sets such that $P_{n}\left(K_{u}\right) \geq 1-\frac{1}{u}$ for all $n ; u \geq 1$. Since $K=\bigcup_{u \geq 1} K_{u}$ is separable there exists a countable family $\mathcal{B}=B_{k ; n}=\left(B_{1 / n}\left(x_{k}\right)\right)_{k ; n \geq 1}$ such that for every open $O \subset X$ and $x \in O \cap K$ there is an $B_{k ; n} \in \mathcal{B}$ with $x \in B_{k ; n} \subset \bar{B}_{k ; n} \subset O$. Let \mathcal{H} be the countable class containing \emptyset and every finite union of sets $\overline{B_{k ; n} \cap} K_{u}$ with $B_{k ; n} \in \mathcal{B}$ and $K_{u} \in \mathcal{K}$. According to the diagonal principle 12.9 there is a subsequence $\left(P_{n_{i}}\right)_{i \geq 1}$ such that for every $H \in \mathcal{H}$ exists the limit $\alpha(H)=\lim _{i \rightarrow \infty} P_{n_{i}}(H)$. It is monotone with $\alpha\left(H_{1}\right) \leq \alpha\left(H_{2}\right)$ if $H_{1} \subset H_{2}$, subadditive with $\alpha\left(H_{1} \cup H_{2}\right) \leq \alpha\left(H_{1}\right)+\alpha\left(H_{2}\right)$ with equality if $H_{1} \cap H_{2}=\emptyset$ and obviously $\alpha(\emptyset)=0$. The set function $\beta: \mathcal{O} \rightarrow[0 ; 1]$ defined by $\beta(O)=\sup _{H \subset O} \alpha(H)$ for every open $O \in \mathcal{O}$ is still monotone and satisfies $\beta(\emptyset)=0$. In the following six steps we show that $\gamma: \mathcal{P}(X) \rightarrow[0 ; 1]$ defined by $\gamma(A)=\inf _{A \subset O} \beta(O)$ for every $A \subset X$ is an outer measure:

Step I: For every closed $K \subset O \cap H$ with $O \in \mathcal{O}$ and $H \in \mathcal{H}$ exists a $H_{0} \in \mathcal{H}$ with $K \subset H_{0} \subset O$: Due to Heine-Borel [13, th. 9.10] the set $K \subset H$ is compact whence there is an $u \geq 1$ with $K \subset K_{u}$ and a finite subcover $\left(B_{x_{i}}\right)_{1 \leq i \leq k} \subset \mathcal{B}$ with $B_{x_{i}} \subset O \forall 1 \leq i \leq k$ and $K \subset \bigcup_{1 \leq i \leq k} B_{x_{i}}$ such that we can choose $H_{0}=\bigcup_{1 \leq i \leq k} \bar{B}_{x_{i}} \cap K_{u}$.
Step II: β is subadditive on the open sets with $\beta\left(O_{1} \cup O_{2}\right) \leq \beta\left(O_{1}\right)+$ $\beta\left(O_{2}\right)$ for every $O_{1} ; O_{2} \in \mathcal{O}$: For every $H \in \mathcal{H}$ and open $O_{1} ; O_{2}$ with $H \subset O_{1} \cup O_{2}$ define $K_{1}=\left\{x \in H: d\left(x ; X \backslash O_{1}\right) \geq d\left(x ; X \backslash O_{2}\right)\right\}$ and $K_{2}=\left\{x \in H: d\left(x ; X \backslash O_{2}\right) \geq d\left(x ; X \backslash O_{1}\right)\right\}$. Since $X \backslash O_{2}$ is closed for every $x \in K_{1} \cap X \backslash O_{1}$ follows the contradiction $d\left(x ; X \backslash O_{1}\right)=0<$ $d\left(x ; X \backslash O_{2}\right)$ so that we infer $K_{1} \subset O_{1}$ and analogously $K_{2} \subset O_{2}$. Since
 $K_{1} \subset H \in \mathcal{H}$ by step I exist $H_{1} ; H_{2} \in \mathcal{H}$ with $K_{1} \subset H_{1} \subset O_{1}$ resp. $K_{2} \subset H_{2} \subset O_{2}$. By the monotonicity resp. subadditivity of α follows $\alpha(H) \leq \alpha\left(H_{1} \cup H_{2}\right) \leq$ $\alpha\left(H_{1}\right)+\alpha\left(H_{2}\right) \leq \beta\left(O_{1}\right)+\beta\left(O_{2}\right)$. Since we can find an increasing sequence $\left(H_{j}\right)_{j \geq 1} \subset \mathcal{H}$ with $\bigcup_{j \geq 1} H_{j}=O_{1} \cup O_{2}$ the assertion follows.

Step III: β is σ-subadditive on the open sets with $\beta\left(\cup_{n \geq 1} O_{n}\right) \leq \sum_{n \geq 1} \beta\left(O_{n}\right)$ for every sequence $\left(O_{n}\right)_{n \geq 1} \subset \mathcal{O}$: For every $H \in \mathcal{H}$ with $H \subset \bigcup_{n \geq 1} O_{n}$ its compact character implies the existence of an $m \geq 1$ with $H \subset \bigcup_{1 \leq n \leq m} O_{n}$ and by step II we have $\alpha(H) \leq \beta\left(\cup_{1 \leq n \leq m} O_{n}\right) \leq \sum_{1 \leq n \leq m} \beta\left(O_{n}\right) \leq$ $\sum_{n \geq 1} \beta\left(O_{n}\right)$. Since this estimate holds for every $H \subset \bigcup_{n \geq 1} O_{n}$ we can infer its validity for the supremum of all such H whence follows the proposition.

Step IV: γ is an outer measure: Since γ is obviously monotone with $\gamma(\emptyset)=0$ we only have to prove the σ-subadditivity: For every $\epsilon>0$ and a sequence $\left(A_{n}\right)_{n \geq 1}$ of arbitrary subsets $A_{n} \subset X$ there are open $O_{n} \supset A_{n}$ with $\beta\left(O_{n}\right)<\gamma\left(A_{n}\right)+\frac{\epsilon}{2^{n}}$ and by step III follows $\gamma\left(\cup_{n \geq 1} A_{n}\right) \leq \beta\left(\cup_{n \geq 1} A_{n}\right) \leq$ $\sum_{n \geq 1} \beta\left(A_{n}\right) \leq \sum_{n \geq 1} \gamma\left(A_{n}\right)+\epsilon$ whence $\gamma\left(\cup_{n \geq 1} A_{n}\right) \leq \sum_{n \geq 1} \gamma\left(A_{n}\right)$ since ϵ was arbitrary.
Step V: For every closed $K \subset X$ and open $O \subset X$ holds $\beta(O) \geq$ $\gamma(O \cap K)+\gamma(O \backslash K)$: For every $\epsilon>0$ there is an $H_{1} \in \mathcal{H}$ with $H_{1} \subset O \backslash K$ and $\alpha\left(H_{1}\right)>\beta(O \backslash K)-\epsilon$. Now choose an $H_{0} \in \mathcal{H}$ with $H_{0} \subset O \backslash H_{1}$ and $\alpha\left(H_{0}\right)>\beta\left(O \backslash H_{1}\right)-\epsilon$. Since $H_{0} \cap H_{1}=\emptyset$ and $H_{0} \cup H_{1} \subset O$ by the additivity of α follows $\beta(O) \geq \alpha\left(H_{0} \cup H_{1}\right)=\alpha\left(H_{0}\right)+\alpha\left(H_{1}\right)>$ $\beta\left(O \backslash H_{1}\right)+\beta(O \backslash K)-2 \epsilon \geq \gamma(O \backslash K)+\gamma(O \backslash K)-2 \epsilon$.

Step VI: Every closed set K is γ-measurable: For every arbitrary
 $A \subset X$ and open $O \supset A$ step \mathbf{V} and the montonicity of γ imply $\beta(O) \geq \gamma(O \cap K)+\gamma(O \backslash K) \geq \gamma(A \cap K)+\gamma(A \backslash K)$. Taking the infimum over all such A we obtain $\gamma(A) \geq \gamma(A \cap K)+\gamma(A \backslash K)$ and the subadditivity of γ yields the desired equality according to the definition 3.2.4.

According to Carathéodory's theorem 3.3 the restriction $P=\left.\gamma\right|_{\mathcal{A}}$ of the outer measure γ to the σ-algebra \mathcal{A} of all γ-measurable sets is a measure and since every closed set is γ-measurable
we have $\mathcal{B}(X) \subset \mathcal{A}$ and in particular $X \in \mathcal{A}$. For every open set $O \in \mathcal{O} \subset \mathcal{B}(X) \subset \mathcal{A}$ follows $P(O)=\gamma(O)=\beta(O)$. Owing to their compact character all K_{u} lie in \mathcal{H} such that $1 \geq P(X)=$ $\beta(X) \geq \sup _{u \geq 1}\left(K_{u}\right) \geq \sup _{u \geq 1} 1-\frac{1}{u}=1$ whence P is a probability measure. For every $H \in \mathcal{H}$ with $H \subset O$ follows $\alpha(H)=\lim _{i \rightarrow \infty} P_{n_{i}}(H) \leq \liminf _{i \rightarrow \infty} P_{n_{i}}(O)$ and in particular $P(O)=\gamma(O)=\alpha(O) \leq \liminf _{i \rightarrow \infty} P_{n_{i}}(O)$ which by the Portmanteau theorem 12.6.4 completes the proof.

Index

P-continuous, 60, 66, 67
$0 \cdot \infty, 7$
absolute convergence, 42
absolute homogeneity, 29
absolute value, 14,24
accumulation points, 57
addition, 13
additivity, 19
Alexandrov-compactification, 49
algebra, $6,33,35,41,51$
almost everywhere, 12
approximate identities, 58
approximating sequence, 19, 50
approximation property, 10, 36
arithmetic mean, 28
automorphism, 38
axiom of choice, 12
Banach algebra, 14
Banach space, 13, 23, 30, 43, 47
base, 40
basis, 12
basis of a σ-algebra, 6,33
Bochner integral, 19, 24, 25
Bochner space, 19
Borel measurable, 6
Borel measurable function, 12, 13, 56
Borel sets, 12
Borel σ-algebra, 6, 52, 68
Borel-Cantelli lemma, 15
Borel-measurable, 28
bounded, 29, 49
bounded functional, 47
bounded linear functional, 45, 46
bounded measures, 59
canonical injection, 33
Cantor set, 11
Carathéodory's theorem, 9, 69
Cauchy sequence, 16, 19, 30
Cavalieri's principle, 39,40
change of variable, 58
change-of-variables theorem, 39
characteristic functions, 18
closed set, 6
compact, $6,34,68$
compact convergence, 15
compact support, 47
compatibility function, 62,64
compatible, 62, 64
complete measure, 12, 52
complete space, 16,22
Completeness, 16, 30
completeness, 27, 31, 54
complex conjugate, 14
complex measure, 42
component, 33
components, 20
composition, 13
concentrated measure, 43
cone, 40
continuity form above, 20
continuity from above, $8,11,15-17,46,65$
continuity from below, $8,11,17,25,35,65$
continuity of the integral, 24
continuous, $28,34,45$
continuous from above, 15,65
continuous function, 13
continuous paths, 64
contiuity of the integral, 28
convergence in p-th mean, 31
convergence in mean, 19, 23
convergence in measure, 15
convergence in the p-th mean, 29,32
convergence μ-a.e., 32
convergence μ-almost everywhere, 14
convergence-determining class, 66
convex, 28
convex cone, 53,56
convex cones, 48
countable at infinity, 6
countably compact, 68
cut, 35,41
cylinder set, $33,36,41$
cylinder sets, 14, 36
càdlàg, 10
Darboux sum, 27
δ-system, 7
dense, 11, 18
diagonal principle, 69
dilation, 13, 39
Dini derivatives, 64
Dini's theorem, 51
Dirac measure, $8,10,48,58$
Dirac measures, 58
discontinuities, 64
discrete Radon measure, 63
discrete Radon measures, 58
discrete space, 6
distribution function, 66, 68
distribution functions, 10, 68
domain, 7
dominated convergence, $27,28,47,65$
dominated convergence theorem, 58, 66
dual norm, 47
dual space, 45-47
Dynkin δ - π-theorem, 7
Dynkin δ - π-theorem, 35
Dynkin system, 7, 9, 35
Egorov's convergence theorem, 17, 32
elementary matrix, 38
elementary transformation, 38
\emptyset-continuity, 8,41
ϵ-neighbourhood, 65
equivalence classes, 23
equivalence relation, $12,18,29$
essential measure, 53
exponential function, 16
extension, 41
extension theorem, 42
Fatou's lemma, 24, 27, 30, 32
Fatou's lemma:, 23
field, 14
figure, 11
figures, 6,25
finite dimensional, 31
finite measure, 15
finitely additive, 7
first category, 11
first countable, 14
Fourier inversion formula, 58
Fubini's theorem, 36, 39
functional equation, 41
Gamma function, 41
Gauss algorithm, 38
geometric mean, 28
global convergence in measure, 15
good set principle, 7
Hahn decomposition, 46
Hahn's extension theorem, 10, 11
Hausdorff, 34
Hausdorff space, 6
height, 40
Heine's theorem, 59
Heine-Borel theorem, 48, 61, 67, 69
Helly's selection theorem, 68
Helly-Bray theorem, 66
Hilbert space, 30,47
homomorphism, 38
Hölder inequality, 28, 29, 46
image of a measure, 13
image of a σ-algebra, 13
imaginary part, 14
improper Riemann integral, 24, 27
independent sets, 15
induction, $9,37,40$
Initial σ-algebra, 33
initial σ-algebra, 33,34
initial topology, 33, 57, 59
inner measure, 53,55
inner product, 30,45
inner regular, 48, 53, 60
integrable, 27, 29
integrable functions, 19
integral transformation formula, 39
invariant, 13
inverse image of a σ-algebra, 13
invertible matrix, 38
isometric, 53, 54
isometry, 47
isomorphism, 53
Jensen's inequality, 28
Jordan decomposition, 44, 46
jump, 64
Lebesgue integrable, 19, 49
Lebesgue integral, 25
Lebesgue measurable, 56
Lebesgue measurable function, 56
Lebesgue measure, $12,15,38,48,56$
Lebesgue Radon-Nikodym theorem, 44
Lebesgue sets, 12
Lebesgue σ-algebra, 38, 52
Lebesgue space, 19
Lebesgue's convergence theorem, 15
Lebesgue's dominated convergence theorem, 23
Lebesgue's dominated convergence theorem:, 31
Lebesgue-Borel measure, 10, 12
Lebesgue-integrable, 24
Lebesgue-Radon-Nikodym theorem, 47
Lebesgue-Stieltjes measure, 10
left limits, 10
left-open interval, $6,10,11$
Levi's monotone convergence theorem, 23
linear functional, 45, 47
linearity, 29
local convergence in measure, 15
locally compact, 6
lower semicontinuous, 49
Lusin's Theorem, 49
Lusin's theorem, 54, 55
Lévy und Steinitz, theorem of, 42
$\mathrm{F}_{\sigma^{\text {-set }}} 6$
$\mathrm{G}_{\boldsymbol{\delta}}$-set, 35
$\mathrm{G}_{\boldsymbol{\delta}}$-set, 6
maximum, 13
mean value theorem, 45
mean value theorem for integration, 25, 27
measurable function, 12
measurable rectangle, $33,35,41$
measurable set, 9
measurable space, 6,12
measure, 9
measure space, 9
metric, 13
metric space, $13,65,68$
minimum, 13
Minkowski inequality, 28
Minkowski's inequality, 32
monotone, 69
Monotone class theorem, 7
Monotone convergence, 37
monotone convergence, $24,31,32,36,45$
monotone convergence theorem, 46
monotone function, 64
monotonicity, 19, 43
monotonicity of a pre-measure, 7
monotonicity of the integral, 20, 23
μ-absolutely continuous measure, 43
mulitplicity of the determinant, 39
multiple, 13, 14
multiplication, 14
multiplicity, 37, 41
multiplicity of a measure, 36
mutually singular measures, 43
n-dimensional figure, 35
n-dimensional interval, 35,38
negative part, 13,20
neighbourhoods, 57, 59
Non measurable sets, 12
norm, 13, 29, 30, 43, 46, 59
nowhere dense, 11
null set, 11, 12
open, 12
open map, 62
open set, 6,13
orthogonal matrix, 39
outer measure, $9,51,53,55,69$
outer measure, 10
outer regular, 48
parallelepiped, 39
partition, 29
partition of unity, 53
path, 41
paths, 41
permutation, 37
π-basis, 65
π-basis, 38
π-basis, 9
π-system, 7, 66
pointwise convergence, 15
polar representation of complex measures, 45
polish space, $34,62,64,65$
Portmanteau theorem, 60, 66, 70
Portmanteau theorem for metric spaces, 60
positive definiteness, 23, 43, 62
positive functional, 47, 50
positive measure, 42
positive part, 13, 20
positive und negative variations, 44
positive vector isomorphism, 53
powers, 14
pre-measure, 8, 42, 51
precompact, 66,68
principal measure, 53
probability measure, $15,41,64,65$
probability measures, 9
probability space, 9,41
probability theory, 12
product measure, 36
product space, 13
product topology, 14, 33, 34
product- σ-algebra, 33
projection, 13, 33, 34
projections, 20
pseudonorm, 22
Pythagoras, 40
quotient space, 18, 23, 29
Radon measure, 53, 56
Radon measures, 57, 58, 62
Radon-Nikodym density, 44, 46
Radon-Nikodym derivative, 44
range, 7
rational numbers, 11
ray, 6
real numbers, 8,27
real part, 14
realization, 41
reciprocal, 14
regular, 48, 56, 65
relatively compact, 60
restriction, 20
restriction of a measure, 33
Riemann integrable, 27
Riemann integral, 27
Riesz convergence theorem, 16

Riesz representation theorem, 38, 48, 53, 54, 57, 59
Riesz representation theorem for positive functionals, 57, 61, 62
right continuous, 10
right-open intervals, 7
rotation, 39
sample path, 41
scaling, 39
Scheffé's theorem, 47
Schwarz inequality, 44
second countable, $6,34,61,62,68$
semicontinuous, 13
seminorm, 19, 29
separable, $14,18,19,24-27,61,63-65$
separation axiom, 34
separation property, 51
sequentially compact, 68
shearing, 39
σ-additive, $8,51,52$
σ-additivity, 42
σ-algebra, 6
σ-compact, 56, 62
σ-finite, 18, 38, 48, 56
σ-finite, 9
σ-finite measure, 46
σ-regular, 48
signed measure, 44
simple discontinuity, 64
simplex, 40
Skorohod metric, 68
step function, $18,19,36,44,46,53$
step functions, 31,46
stochastic convergence, 15
stochastic process, 41
subadditive, 69
subadditivity, 7, 16, 51
subbasis, 57, 59
support, 18
supports, 19
supremum norm, 19, 29, 47
supremum property, 8,11
three dimensions, 39
Tight families, 68
tight measure, 66
topogical basis, 6
topological space, 6,13
total variation, 42
totally bounded, 66, 68
trace algebra, 25
trace σ-algebra, 6,33
trace topology, 6
transformation formula, 38,56
translation, 13
translation invariance, 56
translation invariant, 38
tree, 41
triangle inequality, 19, 62
triangle inequation, 29
Tychonoff's theorem, 34
Tychonov's theorem, 61
uniform convergence, 17, 28
uniformizable, 59
uniformly continuous, $45,59,65$
uniformly continuous faunctional, 47
uniqueness theorem, $9,53,65$
unit cube, 39
unit sphere, 40
upper semicontinuous, 49
vague convergergence, 57
vague topology, 57, 59, 60
vaguely bounded, 60
vanishing at infinity, 49, 58
variation of a measure, 48
vector space, 29
vertex, 64
Vitali, 12
Vitali's convergence theorem, 32
Vitali-Carathéodory theorem, 49
volume, 40
weak convergence, $59,60,66$
Weak limits, 68
weak topology, 53, 59
weakl convergence, 67
weakly regular measure, 65
well ordering, 20
Zorn's lemma, 6, 29

References

[1] Heinz Bauer. Maß- und Integrationstheorie. De Gruyter, 1990.
[2] Patrick Billingsley. Convergence of Probability Measures. 2nd ed. Wiley, 1999.
[3] Otto Forster. Analysis III. Vieweg, 1984.
[4] Edwin Hewitt and Karl Stromberg. Real and Abstract Analysis. Springer, 1965.
[5] Serge Lang. Real and Functional Analysis. 3rd ed. Springer, 1996.
[6] Gerhard Preuss. "Order convergence and convergence almost everywhere revisited". In: Refubium . Repositorium der freien Universität Berlin (2010). URL: https://refubium.fu-berlin.de/ handle/fub188/17741.
[7] Walter Rudin. Functional Analysis. 2nd ed. McGraw Hill, 1991.
[8] Walter Rudin. Principles of mathematical analysis. 3rd ed. McGraw Hill, 1976.
[9] Arne Vorwerg. "Analysis". In: (2023). URL: http : / / www . vorwerg - net . de / Mathematik / Analysis.pdf.
[10] Arne Vorwerg. "Functional Analysis". In: (2023). URL: http://www.vorwerg-net.de/Mathematik/ Functional\%20Analysis.pdf.
[11] Arne Vorwerg. "Mengenlehre". In: (2022). URL: http://www.vorwerg-net.de/Mathematik/ Mengenlehre.pdf.
[12] Arne Vorwerg. "Probability Theory". In: (2023). URL: http://www.vorwerg-net.de/Mathematik/ Probability\%20Theory.pdf.
[13] Arne Vorwerg. "Topology". In: (2020). URL: http://www.vorwerg-net/Mathematik/Topology. pdf.

