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Preface

This text is essentially a working reference and follows the classical expositions of Bauer [1], Forster
[3], Hewitt/Stromberg [4], Lang [5] and Rudin [7] to develop the foundations of the analysis
of functions needed for the research on partial differential equations in probability and physics.The
necessary results from set theory and topology can be found in [11] and [13]; the corresponding
references are given in the text. For reasons of brevity motivations and proofs for simple definitions
and propositions are omitted.

The exposition starts with measure theory which is the field of mathematics dedicated to the study
of the content or weight of a set expressed by its measure. If the set is defined by a function on a
certain domain its measure can be written as an integral. In this case the function turns out to be
the derivative of the measure, i.e. it is itself a measure for the rate of change of the given measure
depending on the change of the domain. Thus measure theory provides one of the basic methods for
the study of functions in analysis. Since the measure of a set can be interpreted as the probability
for the realization of the events represented by its elements measure theory has proved to be a very
useful foundation of probability theory and statistics.

The first section introduces measurable sets, measures and measurable functions in a pronounced
analogy to the open sets, metrics and continuous functions in topology. The concept of integration
provides the basis for the extension of measures on product spaces. For the sake of clarity the integral
is introduced in the generalized Bochner variant for functions with values in Banach spaces and
later specialized to the usual Lebesgue integral so as to profit from the full range of possibilities of
differentiation. The Lebesgue integral and the associated product measures on countable products
of measure spaces prove to be a very useful concept for the description of sequences of independent
random variables and their mean rep. expected values leading to the strong law of large numbers.
In analysis they constitute the foundation for the integral transformations needed for the solution
of partial differential equations, e.g. convolutions, distributions and fourier transforms.
These integral transformations also provide an easy approach to the central limit theorem of
probability theory. Mean values resp. integrals of functions on subsets are themselves measures and
the Lebesgue-Radon-Nikodym theorem states that in fact every positive σ-finite measure can
be represented as an integral over a suitable second measure. This result provides the foundation
for two central theorems in functional resp. real analysis: Positive resp. bounded measures on
locally compact vector spaces prove to be eqiuvalent to the corresponding functionals. Hence the
set of all such measures on such a space is the dual space of a locally compact vector space. This is
the content of the Riesz representation theorem.
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1 Measurable sets

1.1 σ-algebrae

A family A ⊂ P (X) is an algebra iff
1. ∅ ∈ A.
2. A,B ∈ A ⇒ A ∩B;A ∪B;A \B ∈ A

In the case of
3. X ∈ A

4. (An)n∈N ⊂ A ∧ (n ̸= m ⇒ An ∩Am = ∅) ⇔
⋃̊
n∈NAn ∈ A

we have a σ-algebra. The pair (X; A) then is a measurable space. Every σ-algebra is closed
under arbitrary countable unions and intersections since for (An)n∈N ⊂ A we obtain paiwise
disjoint A′

n := An \
⋃

1≤k<nAk = ⋂
1≤k<n (An \Ak) ∈ D whence ⋃n∈NAn = ⋃̊

n∈NA
′
n ∈ D and⋂

n∈NAn = X \
⋃
n∈N (X \An).

1.2 Borel σ-algebrae

For an arbitrary M ⊂ P(X) the intersection σ (M) of all σ-algebrae containing M is again a σ-algebra.
It is the σ-algebra induced by M and M is its basis. On a topological space (X; O) we have the
Borel σ-algebra B (X) = σ (O) induced by the topology O. Owing to 1.1 it contains the open sets
and their countable intersections, i.e. the Gδ-sets as well as the closed sets and their countable
unions, i.e. the Fσ-sets. The Borel σ-algebra of a second countable topological space O (E)
induced by a countable topogical basis E is induced by E itself, i.e. B (X) = σ (O (E)) = σ (E). In
a Hausdorff space all compact sets are closed and hence Borel measurable, i.e. measurable with
respect to B (X). For a locally compact X which is countable at infinity the Borel σ-algebra
B (X) = σ (K) is induced by the family K of all compact sets since due to [13, p. 10.6] every closed set is
the countable intersection of compact sets. In a discrete space X with B (X) = σ (O) = O = P (X)
a set is compact iff it is finite and σ (K) is the σ-algebra of all sets A ⊂ X with countable A or X \A.
Using Zorn’s lemma ([11, p. 14.2.4]) we can infer that σ (K) = B (X) iff X itself is countable.

1.3 The trace of a σ-algebra

The trace σ-algebra A ∩ B := {A ∩B : A ∈ A} on a subset B ⊂ X of a measurable space (X; A)
simply consists of the inter sections of measurable A in X with B. On account of (O1 ∩O2) ∩B
= (O1 ∩B) ∩ (O2 ∩B), (O1 ∪O2) ∩ B = (O1 ∩B) ∪ (O2 ∩B), (O1 \O2) ∩ B = (O1 ∩B) \ (O2 ∩B)
and (⋃n∈NOn) = ⋃

n∈N (On ∩B) the trace σ (O) ∩ B of the Borel σ-algebra B (X) = σ (O) on a
topological space (X; O) is identical with the σ-algebra σ (O ∩B) of the trace O∩B of the topology
O on B.

1.4 Intervals and figures

The finite unions of pairwise disjoint left-open intervals I = {]a; b] : a ≤ b ∈ R} form the alge-
bra F =

{⋃̊
0≤k≤mIk : Ik ∈ I; 0 ≤ k ̸= l ≤ m ⇒ Ik ∩ Il = ∅;m ∈ N

}
of the one-dimensional figures

since ∅ = ]a; a] ∈ I and for I, J ∈ I we have I ∩ J ∈ I, I \ J ∈ I as well as I ∪ J ∈ I in the case of
I ∩ J ̸= ∅ resp. I ∪ J ∈ F for I ∩ J = ∅. Hence for F = ⋃̊

0≤k≤mIk ∈ F and G = ⋃̊
0≤l≤nJl ∈ F we

have F ∩G = ⋃̊
0≤k≤m

⋃̊
0≤k≤mIk ∩ Jl ∈ F , F \G = F \ (F ∩G) ∈ F and F ∪G ∈ F . The left-open

intervals ]a; b] are Gδ-sets hence they are Borel-measurable and because of ]a; b[ = ⋃
k∈N

]
a; b− 1

n

]
they induce the Borel σ-algebra on R as well as the algebra of figures: B = σ (F) = σ (I). Alter-
native basis families are the closed rays ]−∞; b] = ⋃

n∈N

]
a; b− 1

n

]
since ]a; b] = ]−∞; b] \ ]−∞; a] as
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well as the open rays ]−∞; b[, ]a; ∞[, [a; ∞[ and by analogous arguments the right-open intervals
[a; b[ for a ≤ b ∈ R.

1.5 Dynkin systems

A family D ⊂ P (X) is a Dynkin system or δ-system iff

1. ∅ ∈ D.

2. A ∈ D ⇔ X \A ∈ D

3. (An)n∈N ⊂ D ∧ (n ̸= m ⇒ An ∩Am = ∅) ⇔
⋃̊
n∈NAn ∈ D

1.6 The Dynkin δ-π-theorem

The Dynkin system δ(E) generated by a π-basis E ⊂ P(X) being closed under intersections
coincides with the corresponding σ-algebra σ (E).

Proof : For every B ⊂ A we have A \B = X \
(
(X \A) ∪̊B

)
whence (X \A) ∩D = D \ (A ∩D) ∈ D

for every D ∈ δ(E) and A ⊂ X. Hence the family DD := {A ⊂ X : A ∩D ∈ δ(E)} is itself a Dynkin
system including E and consequently δ(E). Hence δ (E) is closed under intersection. On account of
A ∪B = X \ ((X \A) ∩ (X \B)), A \B = A ∩ (X \B) resp. 1.5.3 it is a σ-algebra, i.e. σ(E) ⊂ δ(E)
and since every σ-algebra is a Dynkin system we have σ(E) = δ(E).

1.7 The monotone class theorem

A class M ⊂ P (X)is monotone iff it is closed under the formation of monotone unions and intersec-
tions, i.e. for every increasing sequence (An)n≥1 we have ⋃n≥1An ∈ M and for every decreasing
sequence (An)n≥1 we have ⋂n≥1An ∈ M. Every monotone class M including an algebra A ⊂ M
also includes the σ-algebra σ (A) ⊂ M generated by A.

Proof : We apply the “good set principle” three times in a row: Since every monotone algebra
is a σ-algebra it suffices to show that the monotone class m (A) generated by A, i.e. the intersection
of all monotone classes including A, is an algebra: The class F = {A ⊂ X : X \A ∈ m (A)} is
monotone and includes A whence follows m (A) ⊂ F , i.e. m (A) is closed under complementation.
The class G = {A ⊂ X : A ∪B ∈ m (A) ∀B ∈ A} is monotone and includes A, hence m (A). The class
H = {A ⊂ X : A ∪B ∈ m (A) ∀B ∈ m (A)} is monotone and includes A since m (A) ⊂ G. Hence
m (A) ⊂ H, i.e. m (A) is closed under formation of unions. Due to A ∩B = X \ ((X \A) ∪ (X \B))
we obtain the intersections which completes the proof.

2 Pre-measures

2.1 Pre-measures

The inclusion of big sets like X = C into the domain of a measure makes it necessary to include
the corresponding value ∞ into its range. Since we expect integrals of vanishing functions on sets of
infinite measure to have the value zero we define ∞ · 0 := 0 · ∞ := 0. The corresponding extended
ranges are denoted as R ∪ {∞} = R resp. C ∪ {∞} = C resp. [0; ∞[ ∪ {∞} = [0; ∞]. A set function
µ : A → [0; ∞] on an algreba A ⊂ P (X) is finitely additive iff µ

(
A∪̊B

)
= µ (A) +µ (B) for disjoint

A,B ∈ A. In the general case with A ∩ B ∈ A follows the subadditivity µ (A ∪B) ≤ µ (A) +µ (B).
If there is an A ∈ A with µ (A) < ∞ we have µ (∅) = µ (A ∪ ∅) −µ (A) = 0. Also µ is monotone: For
A ⊂ B and µ (A) < ∞ on account of A \B ∈ A and B = A∪B \A we have µ (B \A) = µ (B) −µ (A)
and particularly µ (A) < µ (B). Note that µ (B) = ∞ ⇒ µ (B \A) = ∞ if µ (A) < ∞. In the case
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of σ-additivity with µ
(⋃̊

n∈NAn
)

= ∑
n∈N µ (An) for pairwise disjoint (An)n∈N ⊂ A it is a pre-

measure. The supremum property (cf. [13, p. 14.12]) of the real numbers permits the extension
of the subadditivity to countable unions: µ (⋃n∈NAn) ≤

∑
n∈N µ (An).

2.2 Characterization of pre-measures

A finite and finitely additive set function µ : A → [0; ∞[ on an algebra A ⊂ P (X) is a pre-
measure if one of the following equivalent conditions holds.

1. σ-additivity: For a sequence (An)n∈N ⊂ A of pairwise disjoint measurable sets with ⋃̊n∈NAn ∈
A we have µ

(⋃̊
n∈NAn

)
= ∑

n∈N µ (An).

2. Continuity from below: For an increasing sequence of measurable sets A0 ⊂ A1 ⊂ ... with⋃
n∈NAn ∈ A we have lim

n∈N
µ (An) = µ(⋃n∈NAn).

3. Continuity from above: For a decreasing sequence of measurable sets A0 ⊃ A1 ⊃ ... with⋂
n∈NAn ∈ A we have lim

n∈N
µ (An) = µ (⋂n∈NAn).

4. ∅-Continuity: For a decreasing sequence of measurable sets A0 ⊃ A1 ⊃ ... with ⋂n∈NAn = ∅
we have lim

n∈N
µ (An) = 0.

Note: Owing to the σ-additivity every set A with finite pre-measure µ (A) < ∞ has at most
countably many disjoint subsets Ai ⊂ A, i ∈ I of non-zero pre-measure µ (Ai) > 0 ∀i ∈ I since
every subfamily In =

{
i ∈ I : µ (Ai) ≥ µ(A)

n

}
must be finite and I = ⋃

n≥1
In.

Proof :

1. ⇒ 2. : With A′
n := An \ An−1 we obtain a pairwise disjoint family (A′

n)n∈N ⊂ A with µ (An) =
µ
(⋃

1≤k≤nA
′
k

)
= ∑

1≤k≤n µ (A′
k) such that lim

n∈N
µ (An) = ∑

n∈N µ (A′
n) = µ (⋃n∈NA

′
n) =

µ(⋃n∈NAn).

2. ⇒ 3. : We apply 2. to the increasing sequence ∅ = A′
0 ⊂ A′

1 ⊂ ... of the complements A′
n := A0\

An ∈ A such that lim
n∈N

µ (An) = lim
n∈N

µ (A0 \A′
n) = lim

n∈N
(µ (A0) − µ (A′

n)) = µ (A0)− lim
n∈N

µ (A′
n)

= µ (A0) − µ (⋃n∈NA
′
n) = µ (A0 \

⋃
n∈NA

′
n) = µ (⋂n∈NA0 \A′

n) = µ (⋂n∈NAn).

3. ⇒ 4. : Obvious.

4. ⇒ 1. : With A′
k := ⋃̊

n>kAn we obtain a decreasing sequence (A′
k)k∈N with ⋂

k∈NA
′
k = ∅ and

µ (A′
k) < ∞ such that due to 4. we have 0 = lim

k∈N
µ (A′

k) = µ
(⋃̊

n∈NAn
)

− lim
k∈N

µ
(⋃̊

n≤kAn
)

=

µ
(⋃̊

n∈NAn
)

−
∑
n∈N µ (An).

2.3 Examples

1. The Dirac measure δx (A) :=
{

1, x ∈ A
0, x /∈ A

for A ⊂ X and x ∈ X is a pre-measure on every

ring on a set X.

2. The measure µ (A) :=
{

0 for countable A
∞ else

on the algebra P (X) of a discrete space X

according to 1.2.
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3 Measures

3.1 Measures

A pre-measure µ on a σ-algebra A is a measure and (X; A;µ) is a measure space. Probability
measures have the range [0; 1] and in that case (X; A;µ) is a probability space.

3.2 Outer measures

A set function µ̃ : P (X) → [0; ∞] is an outer measure iff for all A,B,An ∈ A, n ∈ N the following
properties hold:

1. Homogeneity: µ̃(∅) = 0

2. Monotonicity: A ⊂ B ⇒ µ̃(A) ≤ µ̃(B)

3. Sub-additivity: µ̃ (⋃n∈NAn) ≤
∑
n∈N µ̃ (An)

A set A ⊂ X is µ̃-measurable iff for every Q ⊂ X we have

4. µ̃(Q) = µ̃ (Q ∩A) + µ̃ (Q \A).

3.3 Carathéodory’s theorem

For an outer measure µ̃ on a set X the system A of all µ̃-measurable sets A ⊂ X is a σ-algebra and
the restriction µ̃|A is a measure.

Proof: Obviously we have ∅, X ∈ A and on account of 3.2.4 every A ∈ A has a measurable com-
plement X \ A ∈ A . For A,B ∈ A the union A ∪ B ∈ A is measurable too since by applying
3.2.4 successively we obtain first an equation (I): µ̃(Q) = µ̃ (Q ∩A) + µ̃ (Q \A) = µ̃ (Q ∩A ∩B) +
µ̃ (Q ∩A \B) + µ̃ (Q \A ∩B) + µ̃ (Q \A \B) and if we substitute Q with Q ∩ (A ∪B) in (I) we ar-
rive at another equatiuon (II): µ̃ (Q ∩ (A ∪B)) = µ̃ (Q ∩A ∩B) + µ̃ (Q ∩A \B) + µ̃ (Q \A ∩B). We
can substitute the first three terms in (I) by (II) and hence obtain the measurability of the union:
µ̃(Q) = µ̃ (Q ∩ (A ∪B)) + µ̃ (Q \ (A ∪B)). Thuas and because of A ∩ B = X \ ((X \A) ∪ (X \B))
and A \B = A ∩ (X \B) the family A is an algebra.

For a sequence (An)n∈N ⊂ A of pairwise disjoint measurable sets A := ⋃
n∈NAn equation (II) yields

µ̃ (Q ∩ (A0 ∪A1)) = µ̃ (Q ∩A0) + µ̃ (Q ∩A1) resp. by induction µ̃

(
Q∩

n⋃
k=0

Ak

)
=

n∑
k=0

µ̃ (Q ∩Ak).

On account of
n⋃
k=0

Ak ∈ A and 3.2.2 we conclude that (III): µ̃(Q) = µ̃

(
Q∩

n⋃
k=0

Ak

)
+ µ̃

(
Q\

n⋃
k=0

Ak

)
≥

n∑
k=0

µ̃ (Q ∩Ak) + µ̃ (Q \A). Since this estimate holds for all n ∈ N it extends to n → ∞ such that
by 3.2.3 we arrive at the measurability criterion 3.2.4 for A. Due to 1.5.3 the family A is a Dynkin
system which is closed under intersection and in accordance with 1.6 it is a σ-algebra. If in (III)
we substitute Q = A and observe 3.2.3 we obtain the σ-additivity of µ̃ on A, i.e. µ̃|A is a measure.

3.4 The uniqueness theorem

Two measures µ1 and µ2 on a σ-Algebra σ (E) induced by a π-basis E ⊂ P (X) are identical iff they
coincide on E and are σ-finite on E , i.e. ∃ (En)n∈N ⊂ E with ⋃n∈NEn = X and µ1 (En) = µ2 (En) < ∞
for all n ∈ N.

Proof: For E ∈ E with µ1 (E) = µ2 (E) < ∞ the family DE := {D ∈ σ (E) : µ1 (E ∩D) = µ2 (E ∩D)}
is a Dynkin system since ∅ ∈ DE and for every D ∈ DE on account of µ1 (E ∩X \D) = µ1(E) −
µ1 (E ∩D) = µ2(E) − µ2 (E ∩D) = µ2 (E ∩X \D) we also have X \ D ∈ DE . Criterion 1.5.3
follows from the σ-additivity of µ1 and µ2. Since E is closed under intersection we have E ⊂ DE
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and since DE is a Dynkin system 1.6 entails σ (E) = δ (E) ⊂ DE ⊂ σ (E), i.e.DE = σ (E) resp.
µ1 (E ∩A) = µ2 (E ∩A) for all E ∈ E and A ∈ σ (E).

As in the proof of 2.2.2 we define a sequence of pairwise disjoint sets E′
n := En \

⋃
1≤k<nEk ∈ σ (E)

with ⋃̊
n∈NE

′
n = X such that for A ∈ σ (E) we have E′

n ∩ A ∈ σ (E), hence µ1 (En ∩ E′
n ∩A) =

µ2 (En ∩ E′
n ∩A) and the σ-additivity of µ1 resp. µ2 yields µ1 (A) = µ2 (A).

3.5 Hahn’s extension theorem

Every σ-finite pre-measure µ on an algebra A can be extended in a unique way to a measure
µ on σ (A).

Proof: For every set Q ⊂ X let U (Q) ̸= ∅ be the family of sequences (An)n∈N ⊂ A with Q ⊂
⋃
n∈NAn.

Then µ̃(Q) := inf
{∑

n∈N µ (An) : (An)n∈N ∈ U (Q)
}

in case of U (Q) ̸= ∅ and µ̃(Q) := ∞ else is an
outer measure since obviously we have µ̃(∅) = 0 and for P ⊂ Q follows U (P ) ⊃ U (Q) and hence
µ̃(P ) ≤ µ̃(Q), particularly µ̃(Q) ≥ 0 ∀Q ⊂ X. For every sequence (Qn)n∈N ⊂ P(X), ϵ > 0 and
n ∈ N there is a sequence (Anm)m∈N ⊂ U (Qn) ̸= ∅ with ∑m∈N µ (Anm)< µ̃(Qn) + ϵ · 2−n−1 and since
(Anm)n,m∈N ⊂ U (⋃n∈NQn) it follows that µ̃ (⋃n∈NQn) ≤

∑
n,m∈N µ (Anm) < ∑

n∈N µ̃ (Qm) + ϵ. Since
ϵ > 0 is arbitrary condition 3.2.3 is satisfied.

The algebra A is µ̃-measurable since for every A ∈ A and Q ⊂ X with (An)n∈N ⊂ U (Q) we have
(An ∩A)n∈N ⊂ U (Q ∩A) resp. (An \A)n∈N ⊂ U (Q \A) and since µ (An) = µ (An ∩A) + µ (An \A)
we obtain µ̃(Q) ≥ µ̃ (Q ∩A) + µ̃ (Q \A) and hence equality on account of 3.2.3. The assertion then
follows from 3.3 and 3.4.

3.6 The approximation property

Every set Q ∈ σ (A) with finite measure µ (Q) < ∞ on a σ-algebra σ (A) induced by an algebra
A can be approximated in measure by a sequence (Cn)n∈N ⊂ A such that lim

n→∞
µ (Q∆Cn) = 0 and

particularly lim
n→∞

µ (Cn) = µ (Q).

Proof: As in the proof for 3.5 and since µ (Q) < ∞ for every ϵ > 0 we can find a sequence of w.l.o.g.
(cf. proof of 2.2.2) pairwise disjoint sets (Ak)k∈N ⊂ A with Q ⊂

⋃̊
k∈NAk and µ

(⋃̊
k∈NAk

)
− µ (Q) =∑

k∈N µ (Ak) − µ (Q) < ϵ
2 . The unions Cn := ⋃̊

0≤k≤nAk already constitute the desired sequence since
owing to µ

(⋃̊
k∈NAk

)
< ∞ we can apply 2.2.2 such that there is an n0 ∈ N with µ

(⋃̊
n∈NAn

)
−µ (Cn0)

< ϵ
2 and hence µ (Q∆Cn0) = µ (Q \ Cn0)+µ (Cn0 \Q) ≤ µ

(⋃̊
n∈NAn \ Cn0

)
+µ

(⋃̊
n∈NAn \Q

)
< ϵ

2 + ϵ
2

= ϵ. The second assertion follows from µ (Cn) = µ (Q) + µ (Cn \ C) and µ (Cn \ C) ≤ µ (Q∆Cn).

3.7 Distribution functions and Lebesgue-Stieltjes measures

right continuous
left limits

x

y

λf (]0;x]) = f(x)

The real vector space of nondecreasing and right continuous distribu-
tion functions f : R → R with existing left limits (càdlàg = continue à
droite et limite à gauche) and f (0) = 0 by µf (]a; b]) = f (b) − f (a) for every

left-open interval ]a; b] ∈ I resp. fµ (x) =
{
µ (]0;x]) : x ≥ 0
µ (]−x; 0]) : x < 0

for x ∈ R is

isomorphic to the real vector space M
(
B (R) ;R+) of positive measures on

the Borel σ-algebra on the real numbers.

Notes:

1. These measures are sometimes called Lebesgue-Stieltjes measures and in the case of the
identity f (x) = x we have the Lebesgue-Borel measure λ = µid. Another example is the
Dirac measure δx = µχ[x;∞[ from 2.3.1 generated by χ[x;∞[.
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2. According to [12, th. 3.1] every distribution function has at most a countable number of
simple discontinuities.

Proof : The linearity of the map f → µf is obvious. For a given distribution function f the
set function µf defined as above is obviously finite and finitely additive on the π-system of the
left-open intervals I = {]a; b] : a ≤ b ∈ R}. Hence its extension by µf (F ) =

m∑
k=1

µf (Ik) =
m∑
k=1

n∑
l=1

µf (Ik ∩ Jl) =
n∑
l=1

µf (Jl) for any F = ⋃̊
0≤k≤mIk = ⋃̊

0≤l≤nJl ∈ F to the algebra F of the one-

dimensional figures from 1.4 is well defined and independent of the representation of F .

For every decreasing sequence of figures F0 ⊃ F1 ⊃ ... with Fn = ⋃̊
0≤kn≤ln ]akn ; bkn ] ∈ F and⋂

n∈N Fn = ∅ the decreasing character implies that ∀m ≥ 0 ∀n > m ∀0 ≤ kn ≤ ln ∃0 ≤ km ≤
lm with ]akn ; bkn ] ⊂ ]akm ; bkm ], i.e. from every m ≥ 0 onwards we are left with at most lm + 1
decreasing sequences (]akn ; bkn ])n≥m of intervals. Furthermore the condition ⋂

n∈N Fn = ∅ implies
that each of these decreasing sequences must terminate in an empty set after finitely many steps:
∀ (]akn ; bkn ])n≥m ∃N ∈ N with akN

= bkN
since otherwise due to the supremum property [13, th.

14.12] of the real numbers we had limits a = sup
n→∞

akn ≤ inf
n→∞

bkn = b and consequently ∅ ≠ [a; b] ⊂⋂
n∈N

]akn ; bkn ]. Hence lim
n→∞

µf (Fn) = 0 whence by 2.2.4 µf is a pre-measure on F . By µf (]−n;n])

= f (n) − f (−n) it is σ-finite such that according to Hahn’s extension theorem 3.5 there is a
uniquely determined extension to a measure µf on σ (F) = B (R) according to 1.4.

Conversely for a given measure µ ∈ M
(
B (R) ;R+) the obviously nondecreasing distribution

function fµ as defined above must be the right continuous for x ≥ 0 since the continuity from
above 2.2.3 of µ implies lim

n→∞
fµ
(
x+ 1

n

)
= lim

n→∞
µ
(]

0;x+ 1
n

])
= µ

(⋂
n≥1

]
0;x+ 1

n

])
= µ (]0;x]) =

f (x) and also for x < 0 since owing to the continuity from below 2.2.4 we have lim
n→∞

fµ
(
x+ 1

n

)
= − lim

n→∞
µ
(]
x+ 1

n ; 0
])

= −µ
(⋃

n≥1

]
x+ 1

n ; 0
])

= −µ (]x; 0]) = f (x). For every x ≥ 0 must exist

a left limit since the continuity from below implies lim
n→∞

fµ
(
x− 1

n

)
= lim

n→∞
µ
(]

0;x− 1
n

])
=

µ
(⋃

n≥1

]
0;x− 1

n

])
= µ (]0;x[) ∈ R and likewise for x < 0 since by the continuity from above we

have lim
n→∞

fµ
(
x− 1

n

)
= − lim

n→∞
µ
(]
x− 1

n ; 0
])

= −µ
(⋂

n≥1

]
x− 1

n ; 0
])

= −µ (x; 0) ∈ R.

3.8 Continuous Lebesgue-Stieltjes measures

Continuous distribution functions f ∈ C (R;R) imply µf ({x}) = µf
(⋂

n≥1

]
x− 1

n ;x+ 1
n

])
=

lim
n→∞

µ
(]
x− 1

n ;x+ 1
n

])
= lim

n→∞
f
(
x+ 1

n

)
− f

(
x+ 1

n

)
= 0 whence µf (]a; b]) = µf ([a; b]) = µf ([a; b[)

= µf (]a; b[) = f (b) − f (a) for a ≤ b ∈ R. Thus every countable union of single points is a µf -
null set, in particular the rational numbers: µf (Q) = 0. The Cantor set T := g

[
{0; 2}N

]
with

g (x) = ∑
n≥1

xn
3n for any sequence x = (xn)n≥1 with xn ∈ {0; 2} (cf. [13, p. 2.10] is a λ-null set

since T = ⋂
n∈N Tn with T0 = [0; 1] and Tn+1 is a union of 2n+1 disjoint and closed intervals with

length resp. measure 1
3n+1 obtained by removing the middle third from the 2n closed intervals Tn

with length 1
3n such that λ (Tn) = 2n

3n and λ (T ) = lim
n∈N

λ (Tn) = 0 due to the continuity from above
(2.2.3). The Gδ-set U = ⋂

n≥1 Un with dense open sets Un = ⋃
i≥1Bn−1·2−i−1 (qi) based on the

enumeration Q = (qi)i≥1 includes Q and hence is dense in R. Again due to 2.2.3 and since λ (Un) ≤ 1
n

it also is a λ-null set: λ (U) = 0. The complements R \ Un are closed and nowhere dense in R
but with measure λ (R \ Un) = ∞ and R \ U is an example for a set of first category with measure
λ (R \ U) = ∞. (cf. [13, th. 16.1])
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3.9 Complete measures

A measure µ is complete iff every subset of a µ-null set is measurable.
1. A σ-algebra A can be completed to a σ-Algebra A0 = {A ∪M : A ∈ A ∧M ⊂ N ∈ A : µ(N) = 0}

by simply adding the requested subset of null sets to the given measurable sets: For A,B ∈ A
resp. MA ⊂ NA, MB ⊂ NB and µ (NA) = µ (NB) = 0 we have (A ∪MA) \ (B ∪MB) =
A \ (B ∪MB) ∪MA \ (B ∪MB) = (A \B) ∩ (A \NB) ∪ (NB \MB) ∪MA \ (B ∪MB) ∈ A0 since
(A \B) ∩ (A \NB) ∈ A and (NB \MB) ∪ MA \ (B ∪MB) ⊂ NA ∪ NB with µ (NA ∪NB) = 0.
The σ-additivity is obvious.

2. A set E is A0-measurable iff there are A,B ∈ A with A ⊂ E ⊂ B and µ (B \A) = 0: One
the one hand for any E = A ∪ M with M ⊂ N ∈ A and µ (N) = 0 the measurable sets A and
B := A ∪N satisfy the criterion. On the other hand for any E and measurable A,B according
to the criterion we have E = A ∪ (B \A ∩ E) with B \A ∩ E ⊂ B \A and hence E ∈ A0.

3. The corresponding extension µ0 ⊃ µ with µ0(A∪N) := µ(A) for A ∈ A and N ⊂ M : µ(M) = 0
obviously is a complete measure. Thus the Lebesgue-Borel measure λ on the σ-algebra B of
the Borel sets is extended to the Lebesgue measure λ0 on the completed σ-algebra B0 of
the Lebesgue sets. In the following section the index is usually omitted such that the complete
Lebesgue space is still denoted as (X; B;λ).

3.10 Almost everywhere existing properties

In probability theory the completion is seldom used since it is not generated by the open sets
any more and hence restricts the choice of possible measures resp. distributions without granting
any gain in information. In analysis it is widely adopted though not always necessarily so since a
σ-algebra is a family e.g. larger by far than the topology on R such that it is not a trivial exercise
to find non measurable sets at all. In any case we speak of a property E(x) being satisfied µ-almost
everywhere (µ-a.e.) iff it is satsfied everywhere with the exception of µ-null sets, i.e. iff µ (¬E) = 0.

3.11 Vitali’s theorem on non-measurable sets

There is a set K ⊂ R which is not Lebesgue measurable.
Proof : The equivalence relation defined by xRY ⇔ x − y ∈ Q generates a disjoint cover of R
by equivalence classes with the class 0 = Q and all other classes represented by irrational numbers.
Since Q is dense in R every class has representants x ∈ [0; 1] and the axiom of choice [11, p. 14.2.1]
permits us to choose exactly one of those for every equivalence class and thus define a set
K ⊂ [0; 1] such that we obtain a disjoint and countable cover R = ⋃̊

q∈Q (q +K) which due to
the σ-additivity and the translation invariance must satisfy ∞ = λ (R) = ∑

q∈Q λ (K) and hence
λ (K) > 0. On the other hand we have ⋃̊q∈Q∩[0;1] (q +K)⊂ [0; 2] and due to the monotonicity of the
measure ∑q∈Q λ (K) ≤ λ ([0; 2]) = 2 hence λ (K) = 0. From this contradiction we must infer that K
is not measurable.

4 Measurable functions

4.1 Measurable functions

A mapping f : (X; A) → (Y ; B) between measurable spaces is measurable iff every inverse image
f−1 (B) of a measurable set B ∈ B is again measurable in (X; A), i.e. f−1 (B) ∈ A. Since all necessary
set operations transfer to inverse images (cf. [11, p. 9.2]) it is sufficient that the inverse images of
basis sets are measurable in X (cf. [13, p. 3.1]). In analysis the usual basis is the topology O on
Y and the function is Borel measurable iff it is measurable with reference to B = σ (O). Hence a
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function f : (X; A) → (Y ; d) into a metric space is Borel measurable iff f−1 [Bϵ (y)] ∈ A for every
ϵ > 0 and y ∈ Y .

4.2 Real valued Borel measurable functions

According to 2.1 a function f : X → R is measurable iff the sets {f ≥ a} := f−1 [ [a; ∞[ ] or the
analogously defined {f > a}, {f ≤ a} resp. {f < a} are measurable in X. In particular for a Borel
measurable f : X → R the positive part f+ := max {f ; 0}, the negative part f− := min {f ; 0} are
Borel measurable. Since Q is countable and dense in R the sets {f > g} = ⋃

a∈Q ({f > a} ∩ {a > g})
and {f ≥ g} = X \ {f < g} are measurable. Hence the maximum max {f ; g} and the minimum
min {f ; g} are Borel measurable for any for measurable f, g : X → R. In the expression for the
measure µ of the set of all x ∈ X for which A (f (x)) is true we will often omit not only the argument
but also the curly brackets: µ (A (f)) = µ ({A (f)}) = µ ({x ∈ X : A (f (x))}) as e.g. in µ (|f | < ϵ) =
µ ({|f | < ϵ}).

4.3 The image of a measure space

The image f (A) :=
{
B ⊂ Y : f−1 [B] ∈ A

}
of a σ-algebra A onX under f : X → Y is a σ-algebra on Y

and the largest σ-algebra such that f is measurable. The image of the measure f◦µ : f (A) → [0; ∞]
with (f ◦ µ) (B) := µ

(
f−1 [B]

)
resp. (f ◦ µ) (f [B]) := µ (B) is a measure on f (A) and transitive

with regard to composition: g ◦ f ◦ µ : g ◦ f (A) → [0; ∞] obviously is again a measure. E.g. the
Lebesgue measure λ is invariant under the translation Tc(x) = x + c with (Tc ◦ f) ([a; b[) =
λ
(
T−1
c [[a; b[]

)
= λ ([a− c; b− c[) = λ ([a; b[) but not under dilation g(x) = mx since (g ◦ λ) ([a; b[) =

λ
(
g−1 [[a; b[]

)
= λ

([
a
m ; b

m

[)
= 1

mλ ([a; b[).

4.4 The inverse image of a measurable space

The inverse image σ
(
f−1 (E)

)
= f−1 (σ (E)) of the σ-algebra σ (E) on Y induced by E ⊂ P (Y )

under f : X → Y is the smallest σ-algebra such that f is measurable. The inclusion ⊂ holds since
f−1 (σ (E)) is a σ-algebra containing f−1 (E). The inclusion ⊃ follows from 4.3 since f

(
σ
(
f−1 (E)

))
is a σ-algebra on Y including E and hence σ (E).

4.5 Continuous functions

On account of 4.4 a function f : (X; A) → (Y ;σ (OY )) into a topological space (Y ; OY ) is Borel
measurable iff the inverse image of every open set in measurable in (X; A): f−1 (OY ) ⊂ A ⇒
f−1 (σ (OY )) = σ

(
f−1 (OY )

)
⊂ A. In the case of A = σ (OX) also being induced by a topology OX

on X every continuous function is Borel measurable. A real function f : X → R on a topological
space (X; O) is lower resp. upper semicontinuous iff f−1 [ ]a; ∞[ ] ∈ O resp. f−1 [ ]−∞; b[ ] ∈ O for
∀a, b ∈ R. (cf. [13, p. 3.3]) According to 1.4 resp. 4.1 these functions are again Borel measurable.

4.6 Compositions

The composition h = g ◦ f : X → Z is measurable iff f : X → Y and g : Y → Z are measurable.
Due to [13, 3.1, 4.2.3 and 10.7]

• the projections πj : ∏i∈I Xi → Xj on a product space
∏
i∈I Xi,

• the metric d : X2 → [0; ∞[ on a metric space (X; d),

• the norm || : X → [0; ∞[, the multiple α· : X → X for fixed α ∈ C and the addition
+ : X2 → X on a Banach space (X; ||) (cf. [13, p. 21.9]) ,
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• the multiplication · : X2 → X on a Banach algebra (X; ||) (cf. [13, p. 18.9]) and

• the multiple x 7→ α ·x resp. the powers x 7→ xα for α ∈ C as well as in particular the reciprocal
x 7→ 1

x on a field like R or C

are continuous and hence Borel measurable. Hence for Borel measurable f, g : X → C the real
part Ref , imaginary part Imf and absolute value |f | are Borel measurable mappings X → R;
likewise the complex conjugate f as well as α · f , fα, 1

f , f + g and f · g are Borel measurable
mappings X → C.

4.7 Measurable functions into product spaces

A Borel measurable function f : (X; A) → (∏i∈I Yi;σ (⊗i∈I Oi)) has Borel measurable components
fi := πi ◦ f . Since the cylinder sets

⋂
i∈J π

−1
i [Oi] with Oi open in Yi and finite J ⊂ I form a basis

for the product topology
⊗

i∈I Oi (cf. [13, p. 4.2]) the converse is true if this basis is countable (i.e.
the product topology is first countable, cf. [13, p. 2.6]) such that the inverse image of every open set
in ∏i∈I Yi is the countable union of inverse images of cylinder sets and hence contained in the σ-algebra
A on X. This condition is satisfied for every finite product

n∏
i=1

Yi of first countable components
Yi and in particular Cn. Note that the countability condition is not needed for the corresponding
statement on continuous functions since a topology O on X includes arbitrary unions of cylinder
sets. Hence f : X → Cn is Borel measurable iff every component fi is Borel measurable.

4.8 Vector spaces of measurable functions

The product Y 2 of two Banach spaces (Y ; ||) is first countable if Y itself is the finite product of
first countable spaces, e.g. Cn or separable, e.g. the space C∞

c (C) of infinitely derivable functions
f : C → C with compact support. In these cases the ordered pair (f, g) : X → Y 2 is Borel measurable
if each f, g : X → Y is Borel measurable and so is their sum f + g such that the Borel measurable
functions f : X → Y into finite dimensional or separable Banach spaces Y themselves form a
vector space.

4.9 Pointwise limits of measurable functions

The pointwise limit f = lim
n→∞

fn of a sequence (fn)n≥1 of Borel measurable functions fn : X → Y

from a measurable space (X; A) into a metric space (Y, d) is again Borel measurable.

Proof: For any open U ⊂ Y and f (x) ∈ U there is an m ∈ N with fk (x) ∈ U for all k ≥ m and
hence f−1 [U ] ⊂

∞⋃
m=1

∞⋂
k=m

f−1
k [U ] ⊂

∞⋂
m=1

∞⋃
k=m

f−1
k [U ]. On the other hand every closed A ⊂ Y containing

infinitely many fk (x) must contain the limit f (x), i.e.
∞⋂
m=1

∞⋃
k=m

f−1
k [A] ⊂ f−1 [A]. For the open sets

Vn =
{
x ∈ U : d (x;X \ U) < 1

n

}
we have U =

∞⋃
n=1

Vn =
∞⋃
n=1

Vn and hence
∞⋃
n=1

∞⋂
m=1

∞⋃
k=m

f−1
k

[
Vn
]

⊂
∞⋃
n=1

f−1
[
Vn
]

= f−1 [U ] =
∞⋃
n=1

f−1 [Vn] ⊂
∞⋃
n=1

∞⋂
m=1

∞⋃
k=m

f−1
k [Vn] whence follows equality since Vn ⊂ Vn.

4.10 Convergence in measure and µ-almost everywhere

A sequence (fn)n≥1 of Borel measurable functions fn : X → Y from a measure space (X; A;µ) into
a Banach space (Y, ||) converges to a Borel measurable f : X → Y :

1. µ-almost everywhere (µ-a.e.) iff one of the following equivalent conditions is satisfied:

a) µ
(
X \

{
lim
n→∞

|fn − f | = 0
})

= 0
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b) lim
k→∞

µ

(
sup
n≥k

|fn − f | ≥ ϵ

)
= lim

k→∞
µ
(⋃

n≥k {|fn − f | ≥ ϵ}
)

= 0 for every ϵ > 0
∗⇒ µ

(⋂
k≥1

⋃
n≥k {|fn − f | ≥ ϵ}

)
= 0 for every ϵ > 0

c) lim
k→∞

µ

(
sup
n≥k

|fn − f | ≥ 1
k

)
= lim

k→∞
µ
(⋃

n≥k

{
|fn − f | ≥ 1

k

})
= 0

∗⇒ µ
(⋂

k≥1
⋃
n≥k

{
|fn − f | ≥ 1

k

})
= 0.

2. in measure µ iff for every A ∈ A with µ (A) < ∞ one of the following equivalent conditions is
satisfied

a) lim
n→∞

µ|A (|fn − f | ≥ ϵ) = 0 for every ϵ > 0 ⇔

b) For every k ∈ N there is an nk ∈ N such that µ|A
(
|fnk

− f | ≥ 2−k
)
< 2−k.

Notes:

1. The preceding definition is also known as local convergence in measure as opposed to the
stronger global convergence in measure without the restriction to sets with finite measure
µ (A) < ∞. For an apriori finite measure with µ (X) < ∞ the two definitions obviously
coincide. In the case of a probability measure the convergence in measure is called stochastic
convergence.

2. The inclusions ∗⇒ become equivalences if we can presume the continuity from above 2.2.3,
i.e. µ (X) < ∞ or at least the existence of a k ∈ N such that µ

(⋃
n≥k

{
|fn − f | ≥ 1

k

})
<

∞. Many of the subsequent convergence theorems also depend heavily on 2.2.3 and hence are
restricted to finite measure spaces resp. to local convergence in measure. In partucular
for the Lebesgue measure λ they do not extend to global convergence.

3. Both convergence criterions imply that the limit function f as well as finally (i.e. all except for
a finite number) all fn are µ-a.e. finite.

4.11 Lebesgue’s convergence theorem

A sequence (fn)n≥1 of Borel measurable functions fn : X → Y from a measure space (X; A;µ) into
a Banach space (Y, ||) converging µ-a.e. to a Borel measurable function f : X → Y also converges
in measure to f .

Proof: For every A ∈ A with µ (A) < ∞ and ϵ > 0 we have inf
k≥1

sup
n≥k

µ|A ({|fn − f | ≥ ϵ}) 2.2.2=

inf
k≥1

µ|A
(⋃

n≥k {|fn − f | ≥ ϵ}
) 2.2.3= µ|A

(⋂
k≥1

⋃
n≥k {|fn − f | ≥ ϵ}

)
= 0.

Example: The Lebesgue measure λ is not continuous from above, e.g. λ (⋂n∈NR \Bn (0)) =
λ (∅) = 0 but inf

n∈N
λ (R \Bn (0)) = ∞ since λ (R \Bn (0)) = ∞ for every n ∈ N. Hence in the case

of fn (x) = x2

n we observe pointwise convergence and particularly λ-a.e. convergence as well
as compact convergence to f (x) = 0 hence local convergence in measure but not global
convergence in measure since λ (|x| ≥ ϵ) = λ (|fn − f | ≥

√
nϵ) = ∞ for every n ∈ N and ϵ > 0.

4.12 The Borel-Cantelli lemma

For every sequence (An)n≥1 of measurable sets An ∈ A on a measure space (X; A;µ) we have∑
n≥1 µ (An) < ∞ ⇒ µ

(⋂
k≥1

⋃
n≥k An

)
= 0 and in the case of a probability measure and pairwise

independent An, i.e. µ (Ak ∩Al) = µ (Ak)·µ (Al) for k ̸= l the converse is also true:
∑
n≥1 µ (An) =

∞ ⇒ µ
(
X \

⋂
k≥1

⋃
n≥k An

)
= 0.
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Proof: In the first case for every ϵ > 0 there is a kϵ ≥ 1 with ∑
n≥kϵ

µ (An) < ϵ such that
µ
(⋂

k≥1
⋃
n≥k An

)
≤ µ

(⋃
n≥kϵ

An
)

≤
∑
n≥kϵ

µ (An) < ϵ and hence the assertion. In the second
case with µ (X) = 1 and the continuity of the exponential function we have µ

(⋂
k≥1

⋃
n≥k An

)
=

1−µ
(⋃

k≥1
⋂
n≥kX \An

) 2.2.2= 1−sup
k≥1

µ
(⋂

n≥kX \Ai
) 2.2.3= 1−sup

k≥1
inf
n≥k

µ

(
n⋂
i=k

X \Ai
)

= 1−sup
k≥1

inf
n≥k

n∏
i=k

(1 − µ (Ai)) ≥ 1 − sup
k≥1

inf
n≥k

n∏
i=k

exp (−µ (Ai)) = 1 − sup
k≥1

inf
n≥k

exp
(
−
∑
n≥i≥k µ (Ai)

)
= 1.

4.13 Completeness and µ-a.e. convergent subsequence for convergence in measure

For a sequence (fn)n≥1 of Borel measurable functions fn : X → Y from a measure space (X; A;µ)
into a Banach space (Y, ||) the following statements are equivalent::

1. (fn)n≥1 is a Cauchy sequence in measure, i.e. lim
k≥1

sup
n≥k

µ|A (|fn − fk| > ϵ) = 0 for every A ∈ A

with µ (A) < ∞ and ϵ > 0.

2. (fn)n≥1 converges in measure to a Borel measurable function f : X → Y .

3. Riesz convergence theorem: Every subsequence of (fn)n≥1 has another subsequence
converging µ-a.e. to the same Borel measurable function f : X → Y

Proof: Let A ∈ A with µ (A) < ∞.

1. ⇒ 2. : Due to the hypothesis for every k ≥ 1 there is an nk ≥ 1 with µ|A
(
|fn − fnk

| > 2−k
)
< 2−k

for all n ≥ nk. Hence we have a partial sequence (fnk
)k≥1with w.l.o.g. nk+1 > nk and Bk ={∣∣fnk+1 − fnk

∣∣ > 2−k
}

such that∑k≥1 µ|A (Bk) < ∞. According to 4.12 we obtain µ|A
(⋂

m≥1
⋃
k≥m (Bk)

)
= µ (X \B) = 0 for B = ⋃

m≥1
⋂
k≥m (X \Bk). Hence for every x ∈ B there is an m ≥ 1 such that

sup
k≥m

|fnk
(x) − fnm (x)| ≤

∑
k≥m

∣∣fnk+1 (x) − fnk
(x)
∣∣ ≤

∑
k≥m 2−k = 2−m+1. Thus we have a µ-a.e.

Cauchy sequence (fnk
)k≥1 which due to the completeness of Y and according to 4.7 converges

µ-a.e. to a measurable f : B → Y . Due to µ (A) < ∞ we can apply 4.11 to find for every ϵ > 0
an mϵ ≥ 1 such that µ|A

(
|fnm − f | > ϵ

2
)
< ϵ

2 for every m ≥ mϵ. Hence for every n ≥ nm with m ≥
max (mϵ; k) and 2−k < ϵ

2 we obtain µ|A (|fn − f | > ϵ) ≤ µ|A
({

|fn − fnm | > ϵ
2
}

∪
{
|fnm − f | > ϵ

2
})

≤
µ|A

(
|fm − fnm | > ϵ

2
)

+ µ|A
(
|fnm − f | > ϵ

2
)

< ϵ. This converse-triangle-inequality argument will be
repeatedly used in the subsequent proofs.

2. ⇒ 3. : Due to 4.10.2 b) for every k ≥ 1 there is an nk ≥ 1 such that µ (Bk) < 2−k for Bk ={
|fnk

− f | ≥ 1
k

}
whence µ|A

(⋃
k≥mBk

)
≤ 2−m+1 due to the subadditivity 2.2.1 and µ|A

(⋂
m≥1

⋃
k≥mBk

)
=

0 due to the continuity from above 2.2.3. Both properties require µ (A) < ∞ . The assertion then
follows from 4.10.1 c).

3. ⇒ 1. : Suppose there is an ϵ > 0 such that ∀nk ≥ 1 ∃nk+1 ≥ nk with µ|A
(∣∣fnk+1 − fnk

∣∣ > ϵ
)

> ϵ. As above we get µ|A
(
fnk

− f > ϵ
2
)

+ µ|A
(∣∣fnk+1 − f

∣∣ > ϵ
2
)

≥ µ|A
(∣∣fnk

− fnk+1

∣∣ > ϵ
)

> ϵ, i.e.
either µ|A

(
|fnk

− f | > ϵ
2
)

≥ ϵ
2 or µ|A

(∣∣fnk+1 − f
∣∣ > ϵ

2
)

≥ ϵ
2 . For each k ∈ N we choose the fnk

with respectively larger probability µ (. . .) of deviation and thus obtain a subsequence
(
f ′
nk

)
k≥1

with

µ|A
(∣∣∣f ′

nk
− f

∣∣∣ > ϵ
2

)
≥ ϵ

2 for all k ≥ 1 such that no part of this subsequence can possibly converge in
measure to f and according to 4.11 with µ (A) < ∞ this behaviour transfers to µ-a.e. convergence.
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4.14 Completeness of µ-a.e. convergence

A sequence (fn)n≥1 of Borel measurable functions fn : X → Y from a measure space (X; A;µ) into a

Banach space (Y, ||) converges µ-a.e. to a Borel measurable f : X → Y iff lim
k→∞

µ|A

(
sup
n≥k

|fk − fn| > ϵ

)
=

0 for every ϵ > 0.

Proof:

⇒: Applying the converse-triangle-inequality argument to suprema we obtain

µ|A

(
sup
n≥k

|fk − fn| > ϵ

)
≤ µ|A

(
|fk − f | > ϵ

2

)
+ µ|A

(
sup
n≥k

|f − fn| > ϵ

2

)

The assertion follows from the convergence in measure due to 4.11 presuming µ (A) < ∞ resp. the
µ-a.e. convergence due to 4.10.1 b).

⇐: Due to the continuity from below 2.2.2 we obtain

sup
n≥k

µ|A (|fk − fn| > ϵ) ≤ µ|A

⋃
n≥k

|fk − fn| > ϵ

 = µ|A

(
sup
n≥k

|fk − fn| > ϵ

)
,

i.e. (fn)n≥1 converges in measure to f . Using again the converse-triangle-inequality we get

µ|A

(
sup
n≥k

|f − fn| > ϵ

)
≤ µ|A

(
|f − fk| >

ϵ

2

)
+ µ|A

(
sup
n≥k

|fk − fn| > ϵ

2

)

and hence the µ-a.e. convergence to f due to 4.10.1 b).

4.15 Egorov’s convergence theorem

For every sequence (fn)n≥1 of Borel measurable functions fn : X → Y from a finite measure space
(X; A;µ) into a Banach space (Y, ||) converging µ-a.e. to a Borel measurable f : X → Y and
every ϵ > 0 there is a set Aϵ ∈ A with µ (Aϵ) < ϵ such that (fn)n≥1 uniformly converges to f on
X \Aϵ.

Proof: Follows directly from 4.10.1 b) since for ϵ > 0 there is a kϵ ≥ 1 such that we have µ (Aϵ) < ϵ

for Aϵ := ⋃
n≥kϵ

{
|fn (x) − f(x)| ≥ 1

n

}
and (fn)n≥1 obviously converges uniformly to f on X \Aϵ.

4.16 Examples

1. The function sequence (fn)n≥1 with fn = χ[ j

2k ; j+1
2k

] for n = 2k + j, 0 ≤ j < 2k and k ≥ 1

on
(
[0; 1] ; B[0;1];λ[0;1]

)
converges globally in measure λ to f = 0 but the point sequences

(fn (x))n≥1 converge for no x ∈ [0; 1] hence (fn)n≥1 converges not λ-a.e.

2. The function sequence (fn)n≥1 with fn = χ[n;n+1] for n ≥ 1 on (R; B;λ) converges for every
x ∈ R hence λ-a.e. to f = 0 and hence locally in measure but not globally so since for
ϵ < 1 there is no k ≥ 1 such that λ

(⋃
n≥k {|fn − f | ≥ ϵ}

)
< ∞: The continuity from above

2.2.3 resp. theorem 4.12 do not apply.
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5 Integration

Throughout this section and if not specified otherwise any function from X to Y is Borel measurable
from a measure space (X; A;µ) with positive measure µ : A → [0; ∞] into a Banach space (Y, ||)
over a field K.

5.1 Step functions

The characteristic functions χA : X → {0; 1} for a measurable support A ∈ A with χA(x) ={
1, x ∈ A
0, x /∈ A

are the most simple measurable functions on a measurable space (X; A). They are

identical with the Dirac measure δx from 2.3.1 albeit with interchanged roles for x and A. The
family S(X;Y ) denotes the step functions of the form

m∑
i=0

yiχAi with m ∈ N such that
m⋃
i=0

Ai = X

with values yi ∈ Y and µ (Ai) < ∞ for 1 ≤ i ≤ m but vanishing outside of these sets, i.e. α0 = 0. The
step functions form a vector space of Borel measurable functions and according to 4.9 their closure
S(X;Y ) with regard to pointwise convergence includes Borel measurable maps with separable range
and vanishing outside of a countable union of sets with finite measure. Countable unions
of sets with finite measure are called σ-finite with the most prominent example represented by Cn
which is also separable. The following theorem shows that under these two conditions S(X;Y ) already
contains all Borel measurable functions modulo null sets, i.e. S(X;Y ) is dense in the quotient space
of the Borel measurable functions with regard to the equivalence relation f ∼ g ⇔ f = g µ-a.e.

5.2 Limits of step functions

For every Borel measurable function f : X → Y from a σ-finite measure space (X; A;µ) into a
separable Banach space (Y, ||) there is a sequence (φn)n∈N ⊂ S(X;Y ) of step functions converging
µ-a.e. to f . Also for every set A of finite measure µ (A) < ∞ and ϵ > 0 there is a set Zϵ ⊂ X with
measure µ (Zϵ) < ϵ such that (φn)n∈N converges uniformly on A \ Zϵ.

Note: With 4.9 we obtain a necessary and sufficient condition for measurability: A function f :
X → Y from a σ-finite measure space (X; A;µ) into a separable Banach space (Y, ||) is Borel
measurable iff there is a sequence (φn)n∈N ⊂ S(X;Y ) of step functions converging µ-a.e. to f .

Proof: The image f [A] of a set with finite measure µ (A) < ∞ includes a dense subset (yl)l≥1 such

that for every n ≥ 1 we have f [A] ⊂
∞⋃
l=1

B1/n (yl) resp. A ⊂
∞⋃
l=1

Cl,n with Cl,n = f−1
[
B1/n (yl)

]
and

consequently there is an Ln ∈ N with µ

(
A\

Ln⋃
l=1

Cl,n

)
< 2−n .

Then the step functions φn =
Ln∑
l=1

ylχDl
with Dl = Cl,n\

l−1⋃
i=1

Ci,n converge to f

• uniformly on every A∩
Ln⋃
l=1

Cl,n with µ (Zn) < 2−n for Zn = A\
Ln⋃
l=1

Cl,n and n ≥ 1

• pointwise on A∩
∞⋃
n=1

Ln⋃
l=1

Cl,n with µ (Z) = 0 for Z = A\
∞⋃
n=1

Ln⋃
l=1

Cl,n.

For X =
∞⋃
k=1

Ak with w.l.o.g. pairwise disjoint Ak and µ (Ak) < ∞ for every k ≥ 1 there is a sequence

(φk;j)j≥1 of step functions converging to f

• uniformly on Ak \ Zk,n with µ (Zk,n) ≤ 2−n.

• pointwise on Ak \ Zk with µ (Zk) = 0.
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Then for every setA ⊂
m⋃
k=1

Ak withm ≥ 1 the step functions ψn(x) =

 φk;n (x) ifx ∈ Ak; 1 ≤ k ≤ n

0 ifx ∈ X\
n⋃
k=1

Ak

converges to f

• uniformly on A\
∞⋃
k=1

Zk,n+m with µ

( ∞⋃
k=1

Zk,n+m

)
< 2−m and

• pointwise on X\
∞⋃
k=1

Zk with µ

( ∞⋃
k=1

Zk

)
= 0.

5.3 The integral for step functions

For any step function φ = ∑
0≤i≤m yiχAi with yi ∈ Y and Ai ∈ A the integral is defined byr

φdµ := ∑
0≤i≤m yiµ (Ai). Uniqueness and linearity

r
(αφ+ βψ) dµ = α

r
φdµ + β

r
ψdµ for

α, β ∈ K are obvious if we consider representations with common and pairwise disjoint supports
Ai ∩ Bj for two elementary functions f und g as in 5.1 and observe the additivity 2.2.1 of the
measure. Also we define integrals on measurable subsets as

r
A φdµ :=

r
φ|Adµ. On account

of φ|A∪̊B = φ|A + φ|B we have
r
A∪̊B φdµ =

r
A φdµ +

r
B φdµ. For positive integrands φ with

φ [X] ⊂ [0; ∞[ we have monotonicity in the form φ < ψ ⇒
r
φdµ <

r
ψdµ. In general Banach spaces

we still have
∣∣r
A φdµ

∣∣ ≤
r
A |φ| dµ ≤ ∥φ∥∞ µ (A) with the supremum norm ∥φ∥∞ = sup

x∈X
|φ (x)|. The

expression ∥φ∥1 :=
r

|φ| dµ defines the L1- seminorm (c.f. [13, p. 1.3]) on S(X;Y ) with obvious
linearity ∥αφ+ βψ∥1 = |α| · ∥φ∥1 + |β| · ∥ψ∥1 and the triangle inequality ∥φ+ ψ∥1 ≤ ∥φ∥1 + ∥ψ∥1.
The latter follows from an application of the triangle inequality |yφ + yψ|K ≤ |xφ|K+|yψ|K on the field
K to representations with common as well as pairwise disjoint supports Ai∩Bj and invoking the
monotonicity of the integral for the positive integrand |φ|. A sequence (φn)n∈N of step functions
converges in mean or with respect to L1 to a step function φ iff lim

n→∞
∥φn − φ∥1 = 0.

5.4 Convergence of step functions

For any L1- Cauchy sequence (φn)n∈N of step functions φn : X → Y there exists a subsequence
(φnk

)k∈N and for every ϵ > 0 a set Zϵ ⊂ X with measure µ (Zϵ) < ϵ such that (φnk
)k∈N converges

absolutely and uniformly on X \ Zϵ as well as µ-a.e. on X.
Proof: For every k ≥ 1 there is an nk ≥ nk−1 ∈ N such that ∥φn − φnk

∥1 ≤ 1
22k for every n ≥ nk. Then

for Yk =
{

|ψk+1 − ψk| ≥ 1
2k

}
with ψk := φnk

we have 1
2kµ (Yk) =

∫
Yn

1
2k dµ ≤

∫
X |ψk+1 − ψk| dµ ≤ 1

22k

whence µ (Yk) ≤ 1
2k . Hence µ (Zm) ≤ 1

2m−1 for Zm =
∞⋃
k=m

Yk and |ψk+1 (x) − ψk (x)| < 1
2k for every

x ∈ X \Zm resp. k ≥ m such that
∞∑
k=m

(ψk+1 − ψk) converges absolutely and uniformly on X \Zm.

Hence (φnk
)k≥m converges absolutely and uniformly on X \ Zm resp. pointwise on X\

∞⋂
m=1

Zm.

Due to the continuity from above 2.2.3 we have µ
( ∞⋂
m=1

Zm

)
= 0.

5.5 The Bochner integral

The Bochner integral
∫
fdµ := lim

n→∞

∫
φndµ < ∞ is well defined and finite for every function

f : X → Y with an approximating sequence (φn)n∈N, i.e. an L1-Cauchy sequence of step
functions converging µ-a.e. to f . The vector space B (X;Y ) of these integrable functions is the
Bochner space whereas L1 (X;Y ) = {f : X → Y : ∥f∥1 < ∞} ⊂ B (X;Y ) of Lebesgue integrable
functions is called the Lebesgue space. Hence the integral is a linear functional I : B → K.
According to 4.9 every integrable f : X → Y from a σ-finite measure space (X; A;µ) into a
separable Banach space (Y, ||) is measurable.
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In order to prove that the definition is independent of the approximating sequence we show: For
two L1- Cauchy sequences (φn)n∈N and (ψn)n∈N of step functions converging µ-a.e. to the same
function f : X → Y we have lim

n→∞

∫
φndµ = lim

n→∞

∫
ψndµ < ∞ as well as lim

n→∞
∥φn − ψn∥1 = 0.

Proof : The existence of the limits is a consequence of the completeness of Y since |
∫

(φn − φm) dµ| ≤
∥φn − φm∥1 such that (

∫
φndµ)n∈N and likewise (

∫
ψndµ)n∈N are again Cauchy sequences in Y . The

differences γn = φn − ψn also are L1-Cauchy and converge µ-a.e. to 0 such that for every ϵ > 0 there
is an N ∈ Nwith ∥γm − γn∥1 < ϵ for all m,n ≥ N . According to definition 5.1 there is a set A with
µ (A) < ∞ and X \ A ⊂ {γN = 0} such that

r
X\A |γn| dµ =

r
X\A |γn − γN | dµ ≤ ∥γn − γN∥1 < ϵ.

By the preceding lemma 5.4 there exists a subset Z ⊂ A with µ (Z) < ϵ
1+∥fN ∥∞

and a subsequence
converging to 0 uniformly on A \Z such that there is an M ≥ N with

r
A\Z |γn| dµ < ϵ for all n ≥ M .

Finally for n ≥ N we have
r
Z |γn| dµ ≤

r
Z |γn − γN | dµ+

r
Z |γN | dµ ≤ ∥γn − γN∥1+∥fN∥∞ ·µ (Z) < 2ϵ.

In sum we arrive at
r
X\A |γn| dµ+

r
A\Z |γn| dµ+

r
Z |γn| dµ < 4ϵ which proves the assertion.

5.6 µ-a.e. properties of integrable functions

1. Due to 5.1 integrable functions with approximating sequence (φn)n∈N vanish outside of the
σ-finite set

⋃
n∈N {φn ̸= 0}.

2. According to 5.4 the integrable functions are µ-a.e. finite and bounded outside of a set of
finite measure: Since the φn converge uniformly outside of a set Zϵ with µ (Zϵ) < ϵ for any c ≥ 0
there is an n ∈ N such that {|f | ≥ c}\Ze ⊂

{
|φn| ≥ c

2
}

and hence µ (|f | ≥ c) < µ
(
|φn| ≥ c

2
)
< ∞.

3. In the case of positive integrands we have
∫
fdµ = 0 ⇒ f = 0 µ-a.e. since for An = {f > 0}

the estimate 1
nµ (An) ≤

∫
An
fdµ ≤

∫
fdµ = 0 yields µ (f > 0) = µ (⋃n∈NAn) = 0 on account of

the continuity form above 2.2.3. In particular for positive integrable f, g ∈ L1 (X;R) with
f ≤ g we have

∫
fdµ =

∫
gdµ ⇒ f = g µ-a.e.

5.7 Special cases

For every integrable f with approximating sequence (φn)n∈N the restriction f |A on any measurable
subset is again integrable with the approximating sequence (φn|A)n∈N. Hence we can define the
integral on measurable subsets

∫
A fdµ :=

∫
f |Adµ with additivity extending to domains by∫

A∪̊B fdµ =
∫
f |A∪̊Bdµ =

∫
(f |A + f |B) dµ =

∫
A fdµ+

∫
B fdµ. Likewise the components of functions

in finite dimensional Banach spaces can be integrated separately since for every continuous
g : Y → Z into another Banach space Z we have an approximating sequence (g ◦ φn)n∈N for g ◦f with
lim
n→∞

(g ◦ φn) = g ◦ lim
n→∞

φn and in the case of continuous and linear g we even have
∫
g ◦ fdµ =

g ◦
∫
fdµ. For Y = Y1 × Y2 and the continuous as well as linear projections g = π1 : Y → Y1

resp. g = π2 : Y → Y2 we obtain
∫

(f1, f2) dµ = (
∫
f1dµ,

∫
f2dµ). In particular f is integrable

iff each of its components is integrable or in the case of Y = C iff Ref and Imf are integrable
with

∫
(Ref + iImf) dµ =

∫
Refdµ + i

∫
Imfdµ. For Z = R and the continuous but not linear

Banach norm g = || we see that for every f ∈ B (X;Y ) its Banach norm |f | ∈ L1 (X;R) is also
integrable with approximating sequence (|φn|)n∈N. Note that in particular (|φn|)n∈N is L1-Cauchy
since ∥|φn| − |φm|∥1 ≤ ∥φn − φm∥1. The converse statement |f | ∈ L1 (X;R) ⇒ f ∈ L1 (X;Y )
is only true for σ-finite (X; A;µ) and separable (Y, ||). (cf. 5.16). The well ordering of the
real numbers provides the space L1 (X;R) with additional properties: For f, g ∈ L1 (X;R) we have
sup {f ; g} = 1

2 (f + g + |f − g|) ∈ L1 (X;R) and inf {f ; g} = 1
2 (f + g − |f − g|) ∈ L1 (X;R). f =

f+ − f− ∈ L1 (X;R) iff its positive part f+ = sup {f ; 0} ∈ L1 (X;R) and its negative part
f− = inf {f ; 0} ∈ L1 (X;R). Also for real valued functions the integral is monotone, i.e. f ≤ g ⇒∫
fdµ ≤

∫
gdµ which for positive integrands f ≥ 0 extends to the domain in the form A ⊂ B ⇒∫

A fdµ ≤
∫
B fdµ.
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5.8 The integral transformation formula

For every Borel measurable T : X → Y from a measure space (X; A;µ) into a into a separable
Banach space (Y, ||Y ) and every Borel measurable f : Y → Z into a further separable Banach
space (Z, ||Z) the composition f ◦ T : X → Z is µ-integrable iff f is (T ◦ µ)-integrable and in that
case we have

∫
fd (T ◦ µ) =

∫
(f ◦ T ) dµ.

Proof : For an approximating sequence (φn)n∈N ∈ S (Y ;Z) of f with φn =
kn∑
i=1

zn;iχBn;iwe have

(T ◦ µ)-a.e. lim
n→∞

φn = f

⇔ µ
(
T−1

(
lim
n→∞

φn ̸= f
))

= 0

⇔ µ

(
T−1

(
lim
n→∞

∣∣∣∣∣ kn∑
i=1

zn;iχBn;i − f

∣∣∣∣∣ > ϵ

))
= 0 ∀ϵ > 0

4.10.1.c)⇔ µ

(
T−1

(
∞⋂
k=1

∞⋃
n=k

kn⋃
i=1

{y ∈ Bn;i : |zn;i − f (y)| ≥ ϵ}
))

= 0 ∀ϵ > 0

⇔ µ

(
∞⋂
k=1

∞⋃
n=k

kn⋃
i=1

{
x ∈ T−1 [Bn;i] : |zn;i − f (T (x))| ≥ ϵ

})
= 0 ∀ϵ > 0

⇔ µ

(
∞⋂
k=1

∞⋃
n=k

∣∣∣∣∣ kn∑
i=1

zn;iχT−1[Bn;i] − f ◦ T
∣∣∣∣∣ > ϵ

)
= 0 ∀ϵ > 0

⇔ µ
(

lim
n→∞

φn ◦ T ̸= f ◦ T
)

= 0

⇔µ-a.e. lim
n→∞

φn ◦ T = f ◦ T

and also

0 = lim
n→∞

sup
m≥n

∫
|φn − φm| d (T ◦ µ)

= lim
n→∞

sup
m≥n

∫ ∣∣∣∣∣∣
kn∑
i=1

zn;iχBn;i−
km∑
j=1

zm;jχBm;j

∣∣∣∣∣∣ d (T ◦ µ)

= lim
n→∞

sup
m≥n

kn∑
i=1

km∑
j=1

|zn;i − zm;j |µ
(
T−1 [Bn;i ∩Bm;j ]

)

= lim
n→∞

sup
m≥n

kn∑
i=1

km∑
j=1

|zn;i − zm;j |µ
(
T−1 [Bn;i] ∩ T−1 [Bm;j ]

)

= lim
n→∞

sup
m≥n

∫ ∣∣∣∣∣∣
kn∑
i=1

zn;iχT−1[Bn;i]−
km∑
j=1

zm;jχT−1[Bm;j ]

∣∣∣∣∣∣ dµ
= lim

n→∞
sup
m≥n

∫
|φn ◦ T − φm ◦ T | dµ

whence (φn ◦ T ) is an approximating sequence of f ◦ T . Hence
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∫
fd (T ◦ µ) = lim

n→∞

∫
φnd (T ◦ µ)

= lim
n→∞

∫ kn∑
i=1

zn;iχBn;id (T ◦ µ)

= lim
n→∞

kn∑
i=1

zn;iµ
(
T−1 [Bn;i]

)

= lim
n→∞

∫ kn∑
i=1

zn;iχT−1[Bn;i]dµ

= lim
n→∞

∫
(φn ◦ T ) dµ

=
∫

(f ◦ T ) dµ.

5.9 The seminorm for Lebesgue integrable functions

According to 5.7 for every f ∈ L1 (X;Y ) the integral ∥f∥1 :=
∫

|f | dµ = lim
n→∞

∥φn∥1 is well defined and
a pseudonorm on L1 (X;Y ): For f, g ∈ L1 (X;Y ) with approximating sequences (φn)n∈N , (ψn)n∈N ∈
S (X;Y ) we have |f + g| ∈ L1 (X;Y ) with approximating sequence (|φn + ψn|)n∈N and by continuity
of the addition we obtain ∥f + g∥1 = lim

n→∞
∥φn + ψn∥1 ≤ lim

n→∞
(∥φn∥1 + ∥ψn∥1) = lim

n→∞
∥φn∥1 +

lim
n→∞

∥ψn∥1 = ∥f∥1 + ∥g∥1, i.e. the triangle inequality. Likewise the continuity of the absolute

value extends the continuity of the integral from S (X;Y ) to L1 (X;Y ): |
∫
fdµ| =

∣∣∣ lim
n→∞

∫
φndµ

∣∣∣ =
lim
n→∞

|
∫
φndµ| ≤ lim

n→∞

∫
|φn| dµ =

∫
|f | dµ = ∥f∥1.

5.10 Completeness of L1

The space
(
L1 (X;Y ) ; ∥∥1

)
of Lebesgue integrable functions is complete.

Proof : For an L1-Cauchy sequence (fn)n∈N ⊂ L1 (X;Y ) there is a φn ∈ S (X;Y ) with ∥fn − φn∥1 <
1
n . Hence for every ϵ > 0 there is an N ∈ N such that for every n,m ≥ N we have ∥fn − fm∥1 <

ϵ
3

and consequently ∥φn − φm∥1 ≤ ∥φn − fn∥1 + ∥fn − fm∥1 + ∥fm − φm∥1 ≤ 1
n + ϵ

3 + 1
m ≤ ϵ for n,m ≥

max
{
N ; 3

ϵ

}
, i.e. (φn)n∈N is L1-Cauchy. Due to the 5.4 a subsequence (φnk

)k∈N converges µ-a.e. to
an f ∈ L1 (X;Y ), whence 5.5 yields

∫
fdµ = lim

k→∞

∫
φnk

dµ and furthermore ∥f∥1 = lim
l→∞

∥φnl
∥1 and

particularly ∥f − φnk
∥1 = lim

l→∞
∥φnl

− φnk
∥1 for every k ∈ N with 5.7. Since (φk)k∈N is L1-Cauchy

for every ϵ > 0 there is an k ∈ N with nk ≥ 3
ϵ such that on the one hand ∥φnl

− φnk
∥1 <

ϵ
3 and on

the other hand
∣∣∥f − φnk

∥1 − ∥φnl
− φnk

∥1
∣∣ < ϵ

3 for every l ≥ k whence ∥f − fnk
∥1 ≤ ∥f − φnk

∥1 +
∥φnk

− fnk
∥1 ≤ ∥φnl

− φnk
∥1 + ϵ

3 + 1
nk

≤ ϵ. Hence (φnk
)k∈N is L1-convergent to f and due to its

L1-Cauchy property the convergence extends to the complete sequence (φn)n∈N.

5.11 Convergence in mean and µ-a.e

For any L1-Cauchy sequence (fn)n∈N ⊂ L1 (X;Y ) of Lebesgue integrable functions fn : X → Y
there exists a subsequence (fnk

)k∈N and for every ϵ > 0 a set Zϵ ⊂ X with measure µ (Zϵ) < ϵ such
that (fnk

)k∈N converges absolutely and uniformly on X \ Zϵ as well as µ-a.e. and in mean on X
to an integrable f ∈ L1 (X;Y ).

Proof: According to the preceding theorem (fn)n∈N converges in mean to an f ∈ L1 (X;Y ) such that
for every k ≥ 1 there is an nk ≥ nk−1 ∈ N with ∥f − fnk

∥1 ≤ 1
22k . Then for Yk =

{
|f − fnk

| ≥ 1
2k

}
we have 1

2kµ (Yk) =
∫
Yn

1
2k dµ ≤

∫
X |f − fnk

| dµ ≤ 1
22k whence µ (Yk) ≤ 1

2k . Hence µ (Zm) ≤ 1
2m−1 for
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Zm =
∞⋃
k=m

Yk and |f (x) − fnk
(x)| < 1

2k for every x ∈ X \ Zm resp. k ≥ m, i.e. (fnk
)k≥m converges to

f absolutely and uniformly on X \Zm as well as pointwise on X\
∞⋂
m=1

Zm with µ
( ∞⋂
m=1

Zm

)
= 0.

5.12 The norm for Lebesgue integrable functions

Lebesgue integrable functions with common approximatig sequences are µ-a.e. equal and partition
L1 (X;Y ) into equivalence classes (c.f. 5.1). The corresponding quotient space is equally called
a Lebesgue space and denoted as L1 (X;Y ). On this quotient space ∥f∥1 is positive definite and
hence a norm, since for ∥f∥1 = 0 the null sequence (0)n∈Nconverges in mean to f and due to the
preceding paragraph it also converges µ-a.e. to f whence µ-a.e. f = 0. Note that

(
L1 (X;Y ) ; ∥∥1

)
is

a Banach space, but there is no topology on L1 (X;Y ) corresponding to µ-a.e. convergence. (cf.
[6])

5.13 Levi’s monotone convergence theorem

For every monotone sequence (fn)n∈N ∈ L1 (X;R) of real valued fn : X → R we have
r

lim
n∈N

fndµ =
lim
n∈N

r
fndµ. In the case of lim

n∈N

∣∣r fndµ∣∣ < ∞ the sequence converges both in mean and µ-a.e. to
f = lim

n∈N
fn ∈ L1 (X;R).

Proof: Due to the monotonicity of the integral 5.7 in the case of an increasing sequence we have
sup
n∈N

r
fndµ ≤

r
sup
n∈N

fndµ which proves the assertion in the case of sup
n∈N

r
fndµ = ∞. For sup

n∈N

r
fndµ < ∞

and n ≥ m we have ∥fn − fm∥1 =
∫

(fn − fm) dµ =
∫
fndµ−

∫
fmdµ whence follows that (fn)n∈N is L1-

Cauchy. According to 5.11 a subsequence converges µ-a.e. and in mean to an f = lim
n∈N

fn ∈ L1 (X;R)
and due to the increasing character this must be true for the complete sequence. Finally for every ϵ > 0
there is an n ∈ N with

∫
(f − fn) dµ < ϵ and hence

r
fdµ =

∫
(f − fn) dµ+

∫
fndµ = ϵ+

∫
fndµ which

proves
r

sup
n∈N

fndµ = sup
n∈N

r
fndµ. In the case of a decreasing sequence apply the proof to (−fn)n∈N.

5.14 Fatou’s lemma

For every sequence (fn)n∈N ∈ L1
(
X;R+

0

)
of positive Borel measurable functions with lim

k→∞
inf
k≤n

∫
fndµ <

∞ we have f = lim
k→∞

inf
k≤n

fn ∈ L1
(
X;R+

0

)
with

∫
lim
k→∞

inf
k≤n

fndµ ≤ lim
k→∞

inf
k≤n

∫
fndµ.

Proof: For every k ∈ N the decreasing sequence
(

inf
k≤n≤m

fn

)
m∈N

converges µ-a.e. to inf
k≤n

fn such

that due to the preceding theorem we have
∫

inf
k≤n

fndµ = lim
m→∞

∫
inf

k≤n≤m
fndµ ≤ lim

m→∞
inf

k≤n≤m

∫
fndµ =

inf
k≤n

∫
fndµ ≤ lim

k→∞
inf
k≤n

∫
fndµ. Now we apply the monotone convergence theorem a second time to the

increasing sequence
(

inf
k≤n

fn

)
k∈N

and obtain
∫

lim
k→∞

inf
k≤n

fndµ = lim
k→∞

∫
inf
k≤n

fndµ ≤ lim
k→∞

inf
k≤n

∫
fndµ.

5.15 Lebesgue’s dominated convergence theorem

A sequence (fn)n∈N ⊂ L1 (X;Y ) converging µ-a. e. to some f converges in mean to f with
f ∈ L1 (X;Y ) iff there is an Lebesgue integrable majorant g ∈ L1(X;R+

0 ) such that for every
n ∈ N and µ-a.e. we have |fn| ≤ g .
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Proof: For every K ∈ N the increasing sequence
(

sup
k≤m;n≤l

|fn − fm|
)
l>k

is µ-a.e. bounded by

|fn − fm| ≤ 2g and hence has bounded integrals
∫ (

sup
k≤m;n≤l

|fn − fm|
)
dµ ≤ 2

∫
gdµ. According to

the monotone convergence theorem 5.13 we conclude
∫ (

sup
k≤m;n

|fn − fm|
)
dµ ≤ 2

∫
gdµ for every

k ∈ N. Hence we can apply the monotone convergence theorem a second time to the decreasing

sequence
(

sup
k≤m;n

|fn − fm|
)
k≥1

converging µ-a.e. to 0 to obtain lim
k→∞

∫ (
sup
k≤m;n

|fn − fm|
)
dµ = 0.

Hence (fn)n∈N is L1-Cauchy and due to the completeness 5.10 of L1 (X;Y ) it converges in mean
to an f# ∈ L1 (X;Y ) coninciding µ-a.e. with f according to 5.11.

5.16 The absolute value of integrable functions

A Borel measurable function f : X → Y from a σ-finite measure space (X; A;µ) into a separable
Banach space (Y, ||) is integrable with

∫
fdµ ≤

∫
|f | dµ ≤

∫
gdµ if there is a g ∈ L1 (X;R) with

µ-a.e. |f | ≤ g. In particular f is integrable if its absolute value |f | is integrable. The inequality
is a trivial consequence of the continuity of the integral according to 5.9. The converse is true
for the subset of the Lebesgue-integrable functions but neither for the Bochner integral nor for
the improper Riemann integral which is not included in the Lebesgue integral (cf. 5.26). E.g.
f (x) = sin(x)

x is integrable with Bochner and Riemann but not with Lebesgue.

Proof : According to 5.2 there is a sequence (φn)n∈N ⊂ S (X;Y ) of step functions converging µ-a.e.
to f . Due to 5.5 the function g is Borel measurable. Hence the sets {|φn| ≤ 2g} are measurable and by

ψn(x) =
{
φn (x) if |φn (x)| ≤ 2g (x)
0 if |φn (x)| > 2g (x) we have a sequence of integrable step functions bounded

by g and converging µ-a.e. to f . Due to 5.15 the convergence is also in mean and f is integrable.

5.17 Dominated convergence for series

For a sequence (fn)n∈N of functions fn : X → Y from a σ-finite measure space (X; A;µ) into a
separable Banach space (Y, ||) with ∑

n∈N

∫
|fn| dµ < ∞ the series ∑

n∈N
fn := f converges µ-a.e. as

well as in mean:
∑
n∈N

∫
fndµ =

∫
fdµ.

Proof: Since |
∫
fdµ|

5.8
≤
∫ ∣∣∣∣∣ ∑n∈N

fn

∣∣∣∣∣ dµ 5.15
≤
∫ ∑
n∈N

|fn| dµ 5.12= ∑
n∈N

∫
|fn| dµ < ∞ the limit f ∈ L1 (X;Y )

is Lebesgue integrable and also µ-a.e. finite resp. convergent due to monotone convergence
5.13. The convergence in mean follows by 5.15 with the majorant g := ∑

n∈N
|fn|.

5.18 Sequences with bounded norms

For the µ-a. e. limit f : X → Y of a sequence (fn)n∈N ⊂ L1 (X;Y ) of Lebesgue integrable
functions from a σ-finite measure space (X; A;µ) into a separable Banach space (Y, ||) with
bounded norms ∥fn∥1 ≤ C for some C ≥ 0 and every n ∈ N we have ∥f∥1 ≤ C and in particular
f ∈ L1 (X;Y ).

Proof : The fn are measurable due to 5.5 and so is f according to 4.9. Because of lim
n→∞

|fn| = |f | we
can apply first Fatou’s lemma 5.14 to obtain ∥f∥1 ≤ C and then 5.16 to infer f ∈ L1 (X;Y ).

Note: Due to the missing bound for the absolute values |fn| we can not assert convergence in
mean. E.g. for the sequence (φn)n≥1 with φn = n · χ[0; 1

n ] we have lim
n→∞

|φn| = 0 but lim
n→∞

∥φn∥1 = 1.
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5.19 Products of Lebesgue integrable and bounded functions

For σ-finite measure space (X; A;µ) and a separable Banach space (Y, ||) the product fg of an
(Lebesgue) integrable f : X → Y and a bounded measurable g : X → K into the normed,
complete and separable field K is (Lebesgue) integrable.

Proof : Due to 5.2, 5.5 and 5.10 there are sequences (φn)n∈N ⊂ S (X;Y ) and (ψn)n∈N ⊂ S (X;K) of
step functions with (φn)n∈N converging both in mean and µ-a.e. to f and (ψn)n∈N converging µ-a.e.
to g. Then (φn · ψn)n∈N ⊂ S (X;Y ) is a L1-Cauchy sequence converging µ-a.e. and according to 5.4
also in mean to fg which is hence integrable with |fg| ≤ |f | · ∥g∥∞ < ∞. In the case of f ∈ L1 (X;Y )
we have |f | ∈ L1 (X;Y ) whence |f | · ∥g∥∞ ∈ L1 (X;Y ) and hence |fg| ∈ L1 (X;Y ) due to 5.16.

5.20 The mean value theorem for integration

For every integrable f ∈ B (X;Y ) from a σ-finite measure space (X; A;µ) into a separable
Banach space (Y, ||) with the mean value 1

µ(A)
∫
A fdµ ∈ S for some closed subset S ⊂ Y and every

A ∈ A with 0 < µ(A) < ∞ we have µ (f /∈ S) = 0.

S f

A

x
0

µ (A)

y

1
µ(A)

∫
A
fdµ ∫

A
fdµ

Proof: In the case of µ (X) < ∞ for any closed disk Br(z) ⊂ Y \ S
with µ (A) > 0 for A = f−1

[
Br(z)

]
we have

∣∣∣ 1
µ(A)

∫
A fdµ− z

∣∣∣ =∣∣∣ 1
µ(A)

∫
A (f − z) dµ

∣∣∣ ≤ 1
µ(A)

∫
A |f − z| dµ ≤ r contrary to 1

µ(A)
∫
A fdµ ∈

S. Therefore we must assume µ
(
f ∈ Br(z)

)
= 0 and since Y \ S is

a countable union of such disks the assertion follows from the σ-
additivity of µ. Hence if we assume the hypothesis for every A ∩Xn

with A ∈ A, µ (Xn) < ∞ and X = ⋃
n∈NXn we obtain f(x) ∈ S for

every x ∈ Xn \ Zn with µ (Zn) = 0 and hence for X \
⋃
n∈N Zn with

µ (⋃n∈N Zn) = 0.

The following theorem asserts that step functions on arbitrary measurable sets can be approximated
by step functions on an algebra of sets with finite measures, e.g. the algebra F of figures in Rn.
This step is necessary to identify the Lebesgue integral as special case of the Bochner integral.
The theorem will be prepared by two lemmata:

5.21 L1-limits of sets of finite measure

For every algebra F ⊂ A of sets of finite measure in a measure space (X; A;µ) and every F ∈ F we
consider the vector space S (FF ;R) of step functions on the trace algebra FF of the form

m∑
i=0

yiχFi

with m ∈ N on sets F0 = X \ F resp. Fi ∈ FF with
m⋃
i=1

Fi = F and with values y0 = 0 resp. yi ∈ R

for 1 ≤ i ≤ m. Then for every F ∈ F the family NF =
{
A ∈ AF : χA ∈ (S (FF ;R) ; ∥∥1)

}
⊂ AF is a

σ-algebra on the set F .

Proof : Note that every A ∈ NF must be of finite measure but not necessarily be an element of
the algebra FF . Since for φ,ψ ∈ S (FF ;R) we obviously have sup {φ;ψ} , inf {φ;ψ} ∈ S (FF ;R) the
closure (S (FF ;R) ; ∥∥1) is again a vector space closed with respect to sup and inf. NF is an algebra
since obviously ∅ ∈ NF and for every A,B ∈ NF the characteristic functions χA∪B = sup {χA;χB},
χA∩B = inf {χA;χB} as well as χA\B = χA − χB are all in (S (FF ;R) ; ∥∥1)and consequently their
supports A∪B , A∩B resp. A \B are in NF . It is a σ-algebra since F ∈ NF and for every paiwise
disjoint sequence (An)n∈N ⊂ NF with union A = ⋃̊

n∈NAn and every ϵ > 0 due to the continuity
from below 2.2.2 we have an N ∈ N with µ (⋃k>N Ak) < ϵ and approximating step functions
(φn)n∈N ⊂ S (FF ;R) such that ∥χAn − φn∥1 <

ϵ
2n for n ∈ N whence
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∥∥∥∥∥χA−
n∑
k=0

φn

∥∥∥∥∥
1

≤
∥∥∥∥χA − χ⋃

0≤k≤n
Ak

∥∥∥∥
1

+
∥∥∥∥∥χ⋃0≤k≤n

Ak
−

n∑
k=0

φn

∥∥∥∥∥
1

=
∥∥∥χ⋃

k>N
Ak

∥∥∥
1

+
∥∥∥∥∥
n∑
k=0

χAk
−

n∑
k=0

φn

∥∥∥∥∥
1

≤ µ

 ⋃
k>N

Ak

+
n∑
k=0

∥χAn − φn∥1

< 2ϵ.

5.22 Coverings of L1-limits of sets of finite measure

For an algebra F ⊂ A of sets with finite measure in a measure space (X; A;µ) and Fn∈N ∈ F with
X = ⋃

n∈N Fn with σ-algebrae Nn ⊂ AFn according to 5.21 the family N = {A ⊂ X : A ∩ Fn ∈ Nn∀n ∈ N}
is a σ-algebra on X.
Proof : For every A ∈ N we have X \A ∩ Fn ∈ Nn whence X \A ∈ N . For every A,B ∈ N we have
(A ∩B) ∩ Fn = (A ∩ Fn) ∩ (B ∩ Fn) ∈ Nnwhence A∩B ∈ N . Finally for (Am)m∈N ⊂ N the equality
(⋃m∈NAm) ∩ Fn = ⋃̊

m∈N (Am ∩ Fn) shows that ⋃m∈NAm ∈ N .

5.23 L1-limits of step functions

For every algebra F ⊂ A of sets with finite measure generating A = σ (F) on a σ-finite measure
space (X;A;µ) we have (S (F ;Y ) ; ∥∥1) = B (X;Y ).
Proof :
According to the hypothesis there is a sequence (Fn)n≥1 ⊂ F of w.l.o.g. pairwise disjoint sets with
finite measure µ (Fn) < ∞ and ⋃̊

n≥1Fn = X. By lemma 5.21 NFn ⊂ AF is a σ-algebra and by
lemma 5.22 the family N is a σ-algebra containing F and hence A = σ (F) such that for every
measurable set A ∈ A with finite measure µ (A) < ∞ we have A ∩ Fn ∈ NFn , i.e. for every ϵ > 0
there is a φn ∈ S (FFn ;R) with ∥χA∩Fn − φn∥1 <

ϵ
2n . Due to the continuity from above 2.2.3 there

is an N ∈ N such that
∥∥∥∥∥χA−

N∑
n=1

χA∩Fn

∥∥∥∥∥
1

= µ

(
A−

N⋃
n=1

(A ∩ Fn)
)
< ϵ whence

∥∥∥∥∥χA−
N∑
n=1

φn

∥∥∥∥∥
1

≤∥∥∥∥∥χA−
N∑
n=1

χA∩Fn

∥∥∥∥∥
1

+
∥∥∥∥∥ N∑
n=1

χA∩Fn−
N∑
n=1

φn

∥∥∥∥∥
1
< 2ϵ. Thus for every step map ψ =

m∑
i=0

yiχAi ∈ S (A;Y )

with m ∈ N such that
m⋃
i=0

Ai = X with values yi ∈ Y and µ (Ai) < ∞ for 1 ≤ i ≤ m and α0 = 0 there

are step maps φi =
N∑
n=1

φi,n ∈ S (F ;R) with ∥χAi − φi∥1 <
ϵ

m·|yi| such that
∥∥∥∥ m∑
i=0

yiχAi−
m∑
i=0

yiφi

∥∥∥∥
1

=

∥ψ − φ∥1 < ϵ with φ =
m∑
i=0

yiφi ∈ S (F ;Y ). The assertion now follows from the definition 5.5 of

integrable functions since (S (A;Y ) ; ∥∥1) = B (X;Y ).

5.24 Uniqueness of integrable functions

For every algebra F ⊂ A of sets with finite measure generating A = σ (F) on a σ-finite measure
space (X;A;µ) and every integrable f ∈ B (X;Y ) into a separable Banach space (Y, ||) the
following propositions hold:

1. If
∫
F fdµ = 0 for every F ∈ F then f = 0 µ-a.e.

2. If
∫
fφdµ = 0 for every φ ∈ S (F ;R) then f = 0 µ-a.e.

3. If
∫
F fdµ ≤ c · µ (F ) for some c ≥ 0 and every F ∈ F with µ (F ) > 0 then |f | ≤ c µ-a.e.
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Proof : According to 5.5 and 5.23 f or every measurable set A ∈ A with finite measure µ (A) < ∞
there exists a sequence (φn)n∈N ⊂ S (F ;Y ) converging in mean as well as µ-a.e. to χA. Taking
sup {φn; 0} resp. inf {φn; 1} we can w.l.o.g. assume 0 ≤ φn ≤ 1. Then we have |φnf | ≤ |f | for
every n ∈ N and (φnf)n∈N converges µ-a.e. to χAf . By dominated convergence 5.15 and since∫
φnfdµ = 0 we conclude

∫
χAfdµ = 0. Now every measurable set is a countable union of w.l.o.g.

pairwise disjoint sets of finite measure such that a second instance of dominated convergence
yields

∫
χAfdµ = 0 for every measurable A ∈ A. Proposition 1. now follows from the mean

value theorem for integrals 5.20 applied to S = {0}. Proposition 2. is obtained from 1. by taking
φ = χF . Finally we derive Proposition 3. from 5.20 applied to Sn = Bc+1/n (0) for n ≥ 1 and
considering {|f | ≤ c} = ⋂

n∈N {f ∈ Sn}.

5.25 Characterization of integrable functions

A function f : X → Y from a σ-finite measure space (X;A;µ) into a separable Banach space
(Y, ||) is integrable iff there is an increasing sequence (An)n∈N ⊂ A with ⋃

n∈NAn = X and
lim
n→∞

∫
An
fdµ ∈ Y exists. In that case we have

∫
fdµ = lim

n→∞

∫
An
fdµ.

Proof : ⇒: Take An = X for n ∈ N. ⇐: Due to the hypothesis for every m ≥ 1 there is
an n (m) ∈ N such that

∣∣∣S −
∫
An(m)

fdµ
∣∣∣ < 1

2m with S = lim
n→∞

∫
An
fdµ. Also due to 5.4 there

is a φn(m) ∈ S (X;Y ) with
∫ ∣∣∣f · χAn(m) − φn(m)

∣∣∣ dµ < 1
2m and

∣∣∣f (x) − φn(m) (x)
∣∣∣ < 1

m for every
x ∈ An(m) \ Zn(m) with µ

(
Zn(m)

)
< 1

m . Hence we have
∣∣∣S −

∫
φn(m)dµ

∣∣∣ ≤
∣∣∣S −

∫
An(m)

fdµ
∣∣∣ +∣∣∣∫An(m)

fdµ−
∫
φn(m)dµ

∣∣∣ ≤ 1
2m +

∫ ∣∣∣f · χAn(m) − φn(m)

∣∣∣ dµ < 1
m . Furthermore lim

m→∞

(
φn(m)(x)

)
=

f (x) for every x ∈
⋃
m≥1

(
An(m) \ Zn(m)

)
= ⋃

m≥1An(m) \
⋂
m≥1 Zn(m) = X \

⋂
m≥1 Zn(m) with

µ
(⋂

m≥1 Zn(m)
)

= 0. Hence
(
φn(m)

)
m≥1

⊂ S (X;Y ) is an approximating sequence for f and we
have S = lim

n→∞

∫
An
fdµ = lim

m→∞

∫
φn(m)dµ =

∫
fdµ.

5.26 Comparison with the Riemann integral

1. Every Riemann integrable function f : [a; b] → R is integrable and the two integrals are
equal:

∫ b
a f(x)dx =

∫
[a;b] fdλ.

2. f : R → R is integrable on R iff the improper Riemann integral exists and in this case the
two integrals again coincide: lim

n∈N

∫ n
−n f(x)dx =

∫
R fdλ.

Proofs:

1. For every partition zn := (a = a0 ≤ a1 ≤ ... ≤ an = b) of the interval [a; b] we can compare the
lower Darboux sum Lzn :=

n∑
i=0

γi (ai − ai−1) ≤
∫

[a;b] lzndλ with γi := inf f [[ai−1; ai]] resp. the

upper Darboux sum Uzn :=
n∑
i=0

Γi (ai − ai−1) ≥
∫

[a;b] uzndλ with Γi := sup f [[ai−1; ai]] to the

integrals of the corresponding step functions lzn :=
n∑
i=0

γiχ[ai−1;ai[ with γi := inf f [[ai−1; ai[] ≥

γi resp. uzn :=
n∑
i=0

Γiχ[ai−1;ai[ with Γi := sup f [[ai−1; ai[] ≤ Γi. According to the hypothesis

there are sequences (zn)n∈N of partitions such that zn+1 is a refinement of zn such that due to
the monotonicity of the integral 5.7 we obtain

∫ b
a f(x)dx = lim

n→∞
Lzn ≤ lim

n→∞

∫
[a;b] lzndλ ≤

lim
n→∞

∫
[a;b] uzndλ ≤ lim

n→∞
Uzn =

∫ b
a f(x)dx whence

∫ b
a f(x)dx = lim

n→∞

∫
[a;b] lzndλ = lim

n→∞

∫
[a;b] uzndλ.

Since (uzn)n∈N decreases, (lzn)n∈N increases, (uzn − lzn)n∈N is a decreasing sequence bounded
below by 0 such that due to the completeness of the real numbers there must be a limit
lim
n∈N

(uzn − lzn) ≥ 0. According to 4.9 this limit function is measurable and from 5.14 follows
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0 ≤
∫

lim
n∈N

(uzn − lzn) ≤ lim inf
n∈N

(Uzn − Lzn) = 0 whence λ-a.e. lim
n∈N

(uzn − lzn) = 0 due to 5.6.3.
Since λ-a.e. lzn ≤ f ≤ uzn we infer that λ-a.e. lim

n∈N
lzn = f . By dominated convergence 5.15

with majorant uz0 we obtain
∫ b
a f(x)dx = lim

n∈N

∫
[a;b] lzndλ =

∫
[a;b]

(
lim
n∈N

lzn

)
dλ =

∫
[a;b] fdλ.

2. Follows directly from the preceding theorem 5.25.

Note: In essential, 5.13, 5.14 and 5.15 assert the continuity of the Bochner and Lebesgue
integrals regarding pointwise esp. µ-a.e. convergence whereas the Riemann integral is only
continuous with reference to uniform convergence (cf.[8, Th 7.16]).

The classical definition of the Lebesgue integral is restricted to positive functions such that the
Lebesgue integral of real functions requires separate computing of positive and negative parts
entailing the failure of this method in the case of certain integrands with alternating signs like e.g.∫ sin(x)

x dx = lim
n→∞

∫ n
−n

sin(x)
x dx = π. (cf. [9, p. 3.7.1]). Theorem 5.25 does not work with the Lebesgue

integral.

6 Lebesgue spaces

6.1 Convex functions

A real function f : R → R is convex on the open interval ]a; b[ iff f(s) ≤ f(r) + (s − r) · f(t)−f(r)
t−r =

f(t) − (t − s) · f(t)−f(r)
t−r resp. f(t)−f(s)

t−s ≥ f(t)−f(r)
t−r ≥ f(s)−f(r)

s−r for every a < r < s < t < b. Every
convex function is continuous and in particular Borel-measurable since for s ∈]a; b[ and w.l.o.g.
min {1; b− s} > ϵ > 0 we have |f(r) − f(s)| < |r − s| · |f(s+ϵ)−f(s)|

ϵ < ϵ for every |r − s| < δ :=
ϵ2

max{1;|f(s+ϵ)−f(s)|} .

6.2 Jensen’s inequality

For every integrable g : A →]a; b[⊂ R with A ⊂ X and µ (A) < ∞ on a measure space (X; A, µ) and
every convex f :]a; b[→ R we have f

(
1

µ(A)
∫
A gdµ

)
≤ 1

µ(A)
∫
A (f ◦ g) dµ.

Proof: For s := 1
µ(A)

∫
A gdµ we have a < s < b and due to 6.1 also β := sup

a<r<s

f(s)−f(r)
s−r ≤ f(t)−f(s)

t−s for
all s < t < b, hence f(s) + β(t− s) ≤ f(t) resp. f(s) + β(g(x) − s) ≤ f (g(x)). All summands of this
inequality are integrable over A such that on account of the monotonicity of the integral we can infer
µ(A) · f(s) ≤

∫
A (f ◦ g) dµ and hence the assertion.

6.3 Applications

Choosing A = {p1; ...; pn} ⊂ [0; ∞[ and µ ({pi}) = αi with µ (A) =
n∑
i=1

αi = 1 as well as g(pi) = ln (xi)

and f(x) = exp(x) Jensen’s inequality yields the following very useful special cases:

1. xα1
1 · ... · xαn

n ≤ α1x1 + ...+ αnxn

2. (x1 · ... · xn)
1
n ≤ 1

n (x1 + ...+ xn) (geometric and arithmetic mean for αi := 1
n)

3. F ·G ≤ 1
pF

p+ 1
qG

q for 1
p+ 1

q = 1 with equality iff F p = Gq for α1 = 1
p ;α2 = 1

q ;x1 = F p;x2 = Gq.

6.4 Hölder and Minkowski inequalities

For any positive Borel measurable f, g : X → Y from a measure space (X; A, µ) into a Banach space
(Y ; | |) and 1

p + 1
q = 1 resp. p+ q = p · q with ∥f∥p := (

∫
|f |p dµ)

1
p we have
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1. ∥fg∥ ≤ ∥f∥p · ∥g∥q (Hölder resp. Schwarz for p = q = 2) with equality iff µ-a.e. f(x)
∥f∥p

= g(x)
∥g∥q

.

2. ∥f + g∥ ≤ ∥f∥p + ∥g∥p (Minkowski) with equality iff µ-a.e. f(x)
∥f∥p

= g(x)
∥g∥p

= f(x)+g(x)
∥f+g∥p

.

Proof: The integrand is measurable on account of 4.6. For one of the integrals disappearing 5.12 tells
us that the integrands f · g, f + g, f and g will disappear µ-a.e. too such that we have equality in this
case. Therefore we can assume all integrals > 0 in the following proof.

1. With F := |f |
∥f∥p

resp. G := |g|
∥g∥q

in 6.3.3 an integration yields
∫

(F ·G) dµ ≤ 1
p + 1

q = 1 and
hence the assertion. In particular f · g is integrable if fp and gq are integrable.

2. Applying 1. twice to (f + g)p = f ·(f + g)p−1+g ·(f + g)p−1 and observing q(p−1) = p we obtain
∥f + g∥pp ≤ ∥f∥p ·

∥∥∥(f + g)p−1
∥∥∥
q

+ ∥g∥p ·
∥∥∥(f + g)p−1

∥∥∥
q

=
(
∥f∥p + ∥g∥p

)
· ∥f + g∥

q
p
p . Substituting

p− p
q = 1 yields the assertion. The convexity of tp provides the inequality

(
f+g

2

)p
≤ fp+gp

2 , i.e.
the integrability of fp and gp entails the integrability of (f + g)p.

6.5 Lp-spaces

For 1 ≤ p < ∞ and any f : X → Y from a measure space (X; A;µ) into a Banach space (Y ; | |) the
expressions ∥f∥p := (

∫
|f |pdµ)

1
p resp. ∥f∥∞ := inf {0 < α < ∞ : µ (|f | > α) = 0} define a seminorm

(cf. [13, p. 21.1]) on the vector space Lp(µ) :=
{
f : X → Y : ∥f∥p :< ∞

}
. The absolute homo-

geneity follows from the linearity 5.5 whereas the triangle inequation is provided by the Hölder
inequality 6.4.2. L1(µ) contains the Lebesgue integrable functions and L∞(µ) is the set of all
µ-a.e. bounded and measurable functions furnished with the supremum norm ∥∥∞. Analogously
to 5.1 resp. 5.12 the contraction to the quotient space Lp(µ) := Lp/ ∼ defined by the equivalence
relation f ∼ g ⇔ µ (f ̸= g) = 0 makes ∥∥p a norm. Convergence with respect to ∥∥p is called in the
p-th mean. On account of 5.6 all f ∈ Lp are µ-a.e. finite for 1 ≤ p ≤ ∞.

6.6 Relations between Lp-spaces

For 1 ≤ p, q ≤ ∞ we have

1. For µ bounded above , i.e. µ(A) < α∀A ∈ A we have p < q ⇒ Lp ⊃ Lq.

2. For µ bounded below, i.e. µ(A) > α∀A ∈ A we have p < q ⇒ Lp ⊂ Lq.

Note : The Lebesgue measure µ = λn satisfies none of the above requested conditions such that
Lp (λn) cannot be linearly ordered by inclusion. E.g. owing to 5.26.2 on the one hand for gn(x) :=
min {1; |x|−n} we have gn ∈ Lp ⇔ n > 1

p but in the other hand fro hn(x) := max {1; |x|−n} the relation
gn ∈ Lp ⇔ n < 1

p holds.

Proof:

1. With p = r
s ≥ 1 , f = hs and g = 1 Hölder 6.4.1 yields

∫
|h|sdµ ≤ (

∫
|h|rdµ)

s
r · (

∫
1dµ)

s−s
r resp.

∥h∥s = (
∫

|h|sdµ)
1
s ≤ (

∫
|h|rdµ)

1
r · (µ (X))

1
s

− 1
r = ∥h∥r · (µ (X))

1
s

− 1
r and hence the assertion.

2. On account of Zorn’s lemma ([13, p. 14.2.4]) the set {|f | ≥ 1} possesses a maximal cover
of measurable sets referring to inclusion resp. refinement and since A is closed under inter-
section this mus be a partition. Due to

∫
|f |pdµ < ∞ we have µ (f ≥ 1) < ∞ and since

µ is bounded below this maximal partition consists of n := µ(f≥1)
α + 1 sets (Ai)1≤i≤n with

µ (Ai) > α. Owing to 5.3 for every ϵ > 0 there is an elementary function e =
n∑
i=1

αiχAi ≤ f

with
∫

{|f |≥1} edµ =
n∑
i=1

αiµ (Ai) ≥
∫

{|f |≥1} |f |pdµ − ϵ · α. Hence on the one hand for every

x ∈ Ai with 1 ≤ i ≤ n we have |f |p(x) ≥ αi ⇔ |f |q(x) ≥ α
q
p

i and on the other hand for every

29



1 ≤ i ≤ n there is an xi ∈ Ai with αi ≥ |fp(xi)| − ϵ ⇔ α
q
p

i ≥ (|fp(xi)| − ϵ)
q
p ≥ |f q(xxi)| − ϵ ·

q
p · (|fp(xi)| − ϵ)

q
p

−1 ≥ |f q(xi)| − ϵ · qp · |f q−p(xi)| since the tangent t(x + ϵ) = x
q
p + ϵ · qp · x

q
p

−1

on the convex function g(x) = x
q
p always runs below the curve, i.e. g(x + ϵ) = (x+ ϵ)

q
p .

Thus follows
∫

{|f |≥1} |f |qdµ <
n∑
i=1

(
α

q
p

i + ϵ · qp · |f q−p(xi)
)
χAi < ∞ and also on the whole set∫

|f |qdµ =
∫

{|f |<1} |f |qdµ+
∫

{|f |≥1} |f |qdµ ≤
∫

{|f |<1} |f |pdµ+
∫

{|f |≥1} |f |qdµ < ∞.

6.7 Completeness

Every Lp-Cauchy sequence(fn)n∈N ⊂ Lp (µ) with 1 ≤ p ≤ ∞ converges in the p-th mean to a
f ∈ Lp (µ). Hence Lp (µ) is a Banach space.

Proof: For a Cauchy sequence (fn)n∈N ⊂ Lp (µ) with p < ∞ exists a partial sequence (fni)i∈N with∥∥fni+1 − fni

∥∥
p
< 1

2i+1 which entails
∥∥∥∥∥ k∑
i=0

∣∣fni+1 − fni

∣∣∥∥∥∥∥
p

≤ 1 due to 6.4.2, hence
∥∥∥∥ ∞∑
i=0

∣∣fni+1 − fni

∣∣∥∥∥∥
p

≤ 1

owing to 5.13 and finally µ-a.e. g :=
∞∑
i=0

∣∣fni+1 − fni

∣∣ < ∞ according to 5.6.2. Since Y is complete

the sequence (fni)i∈N =
i∑

k=1

(
fnk

− fnk+1

)
µ-a.e. converges to an f = lim

i→∞
fni =

∞∑
i=0

(
fni+1 − fni

)
with

|f | < g. On account of the completeness of µ (cf. 3.10) we can define f(x) = 0 on the remaining null
set {|f | = ∞}. According to the hypothesis for every ϵ > 0 there is a j ∈ N with

∥∥∥fm − fnj

∥∥∥
p
< ϵ for

all m ≥ nj whence Fatou’s lemma 5.14 yields
(

lim inf
m≥nj

∣∣∣fm − fnj

∣∣∣)p = lim inf
m≥nj

∣∣∣fm − fnj

∣∣∣p ∈ L1 (X;R)

with
∫ (

lim inf
m≥nj

∣∣∣fm − fnj

∣∣∣p) dµ ≤ lim inf
m≥nj

∫ ∣∣∣fm − fnj

∣∣∣p dµ < ϵp Since µ-a.e. f = lim
i→∞

fni we have µ-a.e

lim inf
m≥nj

∣∣∣fm − fnj

∣∣∣ =
∣∣∣f − fnj

∣∣∣ so that
∥∥∥f − fnj

∥∥∥
p

=
∥∥∥∥lim inf
m≥nj

∣∣∣fm − fnj

∣∣∣∥∥∥∥
p

< ϵ, i.e. the subsequence

(fni)i∈N and hence the entire Cauchy sequence (fn)n∈N (cf. [13, p. 14.1.2]) converges in the p-th mean
to f . On account of ∥f∥p ≤ ∥f − fn∥p + ∥fn∥p < ∞ we have f ⊂ Lp (µ).

For p = ∞ let A := ⋃
m,n∈N ({|fm − fn| > ∥fm − fn∥∞} ∪ {|fm| > ∥fm∥∞}). Then we have µ (A) = 0

and (fn)n∈N is a Cauchy sequence on X \ A referring to the supremum norm. Due to the
completeness of Y it converges uniformly and in particular with reference to ∥∥∞ to a bounded
function |f | < lim

n→∞
∥fn∥∞. Again we define f(x) = 0 for x ∈ A and finally obtain f ⊂ L∞ (µ).

6.8 Special cases

1. The sequence (fn)n∈N ⊂ Lp (λ) with fn := χAn for An :=
[
n
2k ; n+1

2k

]
with k(n) = min

{
k : n < 2k

}
shows that in general the µ-a.e. convergence cannot be extended to the entire sequence::
lim
n→∞

∥fn∥p = lim
n→∞

(
λ
([

n
2k ; n+1

2k

])) 1
p = lim

n→∞
2− k(n)

p = lim
n→∞

1
n1/p = 0 but for every x ∈

[
1
2 ; 1
]

and k ≥ 1 there is an n ∈ N with x ∈
[
n
2k ; n+1

2k

]
such that (fn)n∈N does not converge for any

x ∈
[

1
2 ; 1
]

whereas the partial sequence (f2k)k∈N converges for every x ̸= 1
2 ..

2. L2 (µ) is a Hilbert space with the inner product ⟨f, g⟩ :=
∫
fgdµ and the norm ∥f∥ :=

⟨f, g⟩
1
2 :=

(∫
ffdµ

) 1
2 =

(∫
|f |2 dµ

) 1
2 .
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6.9 Convergence in the p-th mean, in measure and µ-a.e

Every sequence (fn)n∈N ⊂ Lp (µ) with 1 ≤ p < ∞ converging in the p-th mean to an f ∈ Lp (µ)
converges in measure to f . Also there exists a subsequence (fnk

)k∈N converging µ-a.e. to f and for
every ϵ > 0 there is a set Zϵ ⊂ X with measure µ (Zϵ) < ϵ such that (fnk

)k∈N converges absolutely
and uniformly on X \ Zϵ.

Proof: The convergence in measure follows at once from ϵ·µ (|f − fn| ≥ ϵ) = ϵp·µ (|f − fn|p ≥ ϵp) ≤∫
|f − fn|p dµ According to the hypothesis for every k ≥ 1 there is an nk ≥ nk−1 ∈ N such that

∥f − fnk
∥p ≤ 1

22k . Then for Yk =
{

|f − fnk
|p ≥ 1

2k

}
we have 1

2kµ (Yk) =
∫
Yn

1
2k dµ ≤

∫
X |f − fnk

|p dµ ≤
1

22k whence µ (Yk) ≤ 1
2k . Hence µ (Zm) ≤ 1

2m−1 for Zm =
∞⋃
k=m

Yk and |f (x) − fnk
(x)|p < 1

2k for every

x ∈ X \Zm resp. k ≥ m such that (fnk
)k≥m converges to f absolutely and uniformly on on X \Zm

as well as pointwise on X\
∞⋂
m=1

Zm with µ

( ∞⋂
m=1

Zm

)
= 0.

6.10 Lebesgue’s dominated convergence theorem for Lp-spaces

A sequence (fn)n∈N ⊂ Lp (X;Y ) converging µ-a. e. to some f converges in the p-th mean to
f ∈ Lp (X;Y ) iff there is an integrable majorant g ∈ Lp(X;R+

0 ) such that for every n ∈ N and
µ-a.e. we have |fn| ≤ g .

Proof: For everyK ∈ N the increasing sequence
(

sup
k≤m;n≤l

|fn − fm|p
)
l>k

is bounded by |fn − fm|p ≤

2pgp and hence has bounded integrals
∫ (

sup
k≤m;n≤l

|fn − fm|p
)
dµ ≤ 2p

∫
gpdµ = 2p ∥g∥pp. According

to the monotone convergence theorem 5.13 we conclude
∫ (

sup
k≤m;n

|fn − fm|p
)
dµ ≤ 2p

∫
gpdµ for

every k ∈ N. Hence we can apply the monotone convergence theorem a second time to the decreasing

sequence
(

sup
k≤m;n

|fn − fm|p
)
k≥1

converging µ-a.e. to 0 to obtain lim
k→∞

∫ (
sup
k≤m;n

|fn − fm|p
)
dµ = 0.

Hence (fn)n∈N is Lp-Cauchy and due to the completeness 6.7 of Lp (X;Y ) it converges in the p-th
mean to an f# ∈ Lp (X;Y ) coninciding µ-a.e. with f according to 5.11.

Note: The proofs of the preceding two theorems is completely analogous to those of the corresponding
statements 5.11 resp. 5.14 for L1 with the small but essential difference that the generalized theorems
6.9 resp. 6.10 require the completeness 6.7 of Lp which like the dominated convergence for L1 is based
in the completeness5.10 of L1. Alas the proof of this latter property depends on an elementary
approximation by step functions and cannot be duplicated for Lp.

6.11 Lp- and uniform limits of step functions

1. For 1 ≤ p < ∞ we have
(
S (A;Y ) ; ∥∥p

)
= Lp (X;Y )

2. For a finite measure space (X;A;µ) and a finite dimensional Banach space (Kn; | |) we have
(S (A;Kn) ; ∥∥∞) = L∞ (X;Kn).

Proof:

1. According to 5.5 for every f ∈ Lp (µ) resp. fp ∈ L1 (µ) and p < ∞ there is a sequence
(φn)n∈N ⊂ S (A;Y ) of step functions converging µ-a.e. to f . The truncated version ψn (x) ={

|φn(x)| for |φn(x)|≤2|f(x)|
0 else still converges µ-a-e- to f and satisfies the hypothesis for 6.10 with

the majorant 2 |f | ∈ Lp(X;R+
0 ) which yields the convergence in tne p-th mean and hence the

assertion.
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2. For|f | ≤ N ; M ≥ 1 and k = (k1; ...; kn) ∈ KM = [−NM ;NM [n ⊂ Zn we define φM =∑
k∈KM

k
MχAk,M

∈ S (A;Kn) with Ak,M = f−1
[
n∏
i=1

[
ki
M ; ki+1

M

[]
∈ A and µ (Ak,M ) such that

∥f − φM∥∞ ≤
√
n
M .

6.12 Continuity of the integral measure

For an integrable f ∈ Lp (X;Y ) and every ϵ > 0 there is a δ > 0 such that for every E ∈ A with
µ (E) < δ we have

∫
E |f | dµ < ϵ.

Proof: The sequence (φn)n≥1 with φn (x) =
{

|f(x)|, for |f(x)|≤n
n else satisfies the conditions for monotone

convergence 5.13 such that lim
n→∞

∫
φndµ =

∫
|f | dµ. Hence for ϵ > 0 there is an n0 ≥ 1 such that∫

(|f | − φn) dµ < ϵ
2 . Since for δ = ϵ

2n and every E ∈ A with µ (E) < δ we have
∫
E φndµ ≤ n·µ (E) = ϵ

2
it follows that

∫
E |f | dµ ≤

∫
E (|f | − φn) dµ+

∫
E φndµ ≤ ϵ.

6.13 Vitali’s convergence theorem

A sequence (fn)n≥1 ⊂ Lp (µ) converging µ-a.e. for 1 ≤ p < ∞ to some f also converges in the
p-th mean to f ∈ Lp (µ) iff for every ϵ > 0

1. there is an Aϵ ∈ A with µ (Aϵ) < ∞ and
∫
X\Aϵ

|fn|p dµ < ϵ for all n ≥ 1.

2. there is a δ > 0 such that for every E ∈ A with µ (E) < δ we have
∫
E |fn|p dµ < ϵ for all n ≥ 1.

Proof:

⇒: 1.: Due to the hypothesis for ϵ > 0 there is an n0 ≥ 1 such that
∫

|fn − f |p dµ < ϵ for all n ≥ n0.
Owing to 5.13 with |f |p = sup

m≥1
|f |p · χ{|f |p> 1

m } and f ∈ Lp (µ) there is an m0 ≥ 1 with
∫

|f |p ·

χ{|f |p≤ 1
m }dµ =

∫
|f |p dµ−

∫
|f |p · χ{|f |p> 1

m }dµ < ϵ and µ
(
|f |p ≤ 1

m

)
≤ µ

(
|f |p ≤ 1

m

)
≤
∫

|f |p dµ < ∞
for all m ≥ m0. For those fn with 1 ≤ n ≤ n0 we use the same reasoning as above to find an
m1 ≥ m0 such that the sets Bϵ =

{
|f |p > 1

m1

}
∈ A resp. Cϵ =

{
max

1≤n<n0
|fn|p > 1

m1

}
∈ A with

µ (X \Bϵ) , µ (X \ Cϵ) < ∞ satisfy
∫
X\Bϵ

|f |p dµ < ϵ resp.
∫
X\Cϵ

|fn|p dµ < ϵ for all 1 ≤ n < n0.

For Aϵ = Bϵ ∪Cϵ Minkowski’s inequality 6.4.2 yields
(∫
X\Aϵ

|fn|p dµ
) 1

p ≤
(∫
X\Aϵ

|fn − f |p dµ
) 1

p +(∫
X\Aϵ

|f |p dµ
) 1

p < ϵ
1
p + ϵ

1
p resp.

∫
X\Aϵ

|fn|p dµ < 2pϵ for all n ≥ 1.

2.: For a given ϵ > 0 choose n0 ≥ 1 as in 1. such that
∫

|fn − f |p dµ < ϵ for all n ≥ n0. According to
the preceding lemma 6.12 there is a δ > 0 such that for all E ∈ A with µ (E) < δ we have

∫
E |f |p dµ < ϵ

resp.
∫
E |fn|p dµ < ϵ for all 1 ≤ n < n0. As in 1. Minkowski’s inequality 6.4.2 yields the desired

estimate
∫
E |fn|p dµ < 2pϵ for the remaining n ≥ n0.

⇐: According to 1. for ϵ > 0 there is an Aϵ ∈ A with µ (Aϵ) < ∞ such that
∫
X\Aϵ

|fn|p dµ < ϵ for all
n ≥ 1 so thath with Fatou 5.14 we obtain

∫
X\Aϵ

|f |p dµ ≤ lim inf
n≥1

∫
X\Aϵ

|fn|p dµ < ϵ. As Minkowski

6.4.2 gives
(∫
X\Aϵ

|f − fn|p dµ
) 1

p ≤
(∫
X\Aϵ

|fn|p dµ
) 1

p +
(∫
X\Aϵ

|f |p dµ
) 1

p < 2ϵ
1
p . According to 2. resp.

Egorov 4.15 for every δ > 0 there is a Bδ ∈ A as well as an n0 ≥ 1 with µ (Bδ) < δ such that

|f (x) − fn (x)|p < ϵ for every x ∈ Aϵ \Bδ and hence
(∫
Aϵ\Bδ

|f − fn|p dµ
) 1

p < ϵ
1
p for every n ≥ n0. On

the set Bδ we follow the reasoning for X \ Aϵ from above to find
∫
Bδ

|f |p dµ ≤ lim inf
n≥1

∫
Bδ

|fn|p dµ < ϵ

with Fatou and finally
(∫
Bδ

|f − fn|p dµ
) 1

p ≤
(∫
Bδ

|fn|p dµ
) 1

p +
(∫
Bδ

|f |p dµ
) 1

p < 2ϵ
1
p . Combining our

results over X \Aϵ, Aϵ \Bδ and Bδ we obtain (
∫
X |f − fn|p dµ)

1
p < 5ϵ

1
p for n ≥ n0.
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7 Product spaces

7.1 The initial σ-algebra

The initial σ-algebra σ (fi : i ∈ I) := σ
(⋃

i∈I f
−1
i (Ai)

)
on a set X referring to the functions fi :

X → (Yi; Ai) with i ∈ I is the smallest σ-algebra on X such that all fi are measurable. This concept
is closely related to that of the initial topology, cf. [13].

7.2 The trace of a measure space

The trace σ-algebra AB = σ (i) on a subset B ⊂ X of a measure space (X; A;µ) ist the initial
σ-algebra with reference to the canonical injection i : B → X. On account of i−1 [A] = A∩B the
measurable sets in B simply are the intersections of the measurable sets in A in X with B. The
trace of the measure µ is its restriction µ|B.

7.3 The product-σ-algebra

The product-σ-algebra AI = ⊗
i∈I Ai = σ (πi : i ∈ I) on the product XI = ∏

i∈I Xi of the measur-
able spaces (Xi; Ai)i∈I is the initial σ-Algebra with reference to the projections πi : XI → Xi. A
mapping f : Y → XI is measurable iff the inverse images f−1

[
π−1
i [Ai]

]
= (πi ◦ f)−1 [Ai] of measur-

able sets in Xi are measurable in (Y ; A). Hence f is measurable iff every component πi◦f : (Y ; A) →
(Xi; Ai) is measurable. Due to 4.4 the product σ-algebra induced by the families Ei ⊂ P (Xi) with
i ∈ I is ⊗i∈I σ (Ei) = σ

(⋃
i∈I π

−1
i (σ (Ei))

)
= σ

(⋃
i∈I σ

(
π−1
i (Ei)

))
= σ

(⋃
i∈I π

−1
i (Ei)

)
.

7.4 Measurable rectangles and cylinder sets

1. The family SI =
{⋂

j∈J π
−1
j [Aj ] = ∏

j∈J Ai ×
∏
i∈I\J Xi : Aj ∈ Aj , j ∈ J ⊂ I ∧ J finite

}
of mea-

surable rectangles is closed under intersections and a basis for the product-σ-algebra
AI = σ (SI).

2. For J ⊂ K ⊂ I the projections πJK : (XJ ; AJ) → (XK ; AK) are measurable and for J ∩K = ∅
we have AJ∪K = AJ ⊗ AK .

3. The algebra ZI =
{
π−1
J [AJ ] = AJ ×

∏
i∈I\J Xi : AJ ∈ AJ , J ⊂ I ∧ J finite

}
of cylinder sets

also is a π-basis for the product-σ-algebra: AI = σ (ZI). The cylinder sets ZJ = σ (SJ)
themselves are σ-algebrae with ZJ ⊂ ZK for J ⊂ K.

4. The family AZ =
{
π−1
J [AJ ] = AJ ×

∏
i∈I\J Xi : AJ ∈ AJ , J ⊂ I ∧ J countable

}
of countable

cylinder sets is a σ-algebra and identical with the product-σ-algebra: AI = AZ . Every
measurable set A of a product-σ-algebra may depend from a countable set of coordinates in
contrast to the product topology whose open sets are defined by finitely many coordinates
(cf. [13, p. 4.2]).

Proof:

1. SI is closed under intersection since for finite J,K ⊂ I and Aj ∈ Aj with j ∈ J resp.
Bk ∈ Ak with k ∈ K we have

(⋂
j∈J π

−1
j [Aj ]

)
∩
(⋂

k∈K π
−1
k [Bk]

)
=
(⋂

j∈J\K π
−1
j [Aj ]

)
∩(⋂

l∈J∩K π
−1
l [Al ∩Bl]

)
∩
(⋂

k∈K\J π
−1
k [Bk]

)
∈ SI with Al ∩ Bl ∈ Al for l ∈ J ∩ K. Due to{

π−1
i [Ai] : A ∈ Ai, i ∈ I

}
⊂ SI we have AI = σ

({
π−1
i [Ai] : Ai ∈ Ai, i ∈ I

})
⊂ σ (SI) and on

account of SI ⊂ AI the converse follows: σ (SI) ⊂ AI .
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2. The projections are measurable since with ⋂k∈K

(
πKk

)−1
[Ak] ∈ SK for Ak ∈ Ak and k ∈ K we

have
(
πJK

)−1
(⋂

k∈K

(
πKk

)−1
[Ak]

)
= ⋂

k∈K

(
πJK

)−1
((
πKk

)−1
[Ak]

)
= ⋂

k∈K

(
πJk

)−1
[Ak] ∈ AJ

and hence with 1. follows the assertion. The measurability of πJ∪K
J resp. πJ∪K

K entails AJ∪K ⊃
AJ⊗AK and from 1. resp. SJ∪K ⊂ AJ⊗AK follows the converse AJ∪K = σ (SJ∪K) ⊂ AJ⊗AK .

3. ZI is an algebra since obviously ∅, X ∈ AZ and for π−1
J [AJ ] , π−1

K [AK ] ∈ ZI with AJ ∈
AJ , BK ∈ AK and finite J,K ⊂ I owing to 2. we have

(
πJ∪K
J

)−1
[AJ ],

(
πJ∪K
K

)−1
[BK ] ∈ AJ∪K .

Hence the intersection
(
π−1
J [AJ ]

)
∩
(
π−1
K [BK ]

)
= π−1

J∪K

(((
πJ∪K
J

)−1
[AJ ]

)
∩
(
πJ∪K
K

)−1
[BK ]

)
∈ ZI and likewise the union are contained in ZI . Concerning the complements we consult e.g.
[Vorwerg2022a] to obtain XI \π−1

J [AJ ] =
(
π−1
J [XJ ]

)
\
(
π−1
J [AJ ]

)
= π−1

J [XJ \AJ ] ∈ ZI since
XJ \ AJ∈ AJ . On the one hand we have σ (ZI) ⊂ AI since according to 2. we have ZI ⊂ AI .
On the other hand 1. yields AI = σ (SI) ⊂ σ (ZI) since SI ⊂ ZI . Again on account of 2. the
families ZJ = π−1

J (AJ) are σ-algebrae whereas the linear order by inclusion on the family of
cylinder sets follows from

(
πKJ

)−1
(AJ) ⊂ AK by application of π−1

K . Note: The properties of
a σ-algebra as well as the linear ordering by inclusion obviously extend to arbitrary index sets,
notable countable ones, as shown below:

4. The family AZ is again an algebra since the reasoning from 3. can be transferred to countable
index sets. It is a σ-algebra since ⋃n∈N π

−1
Jn

[AJn ] = π−1
J

(⋃
n∈N

((
πJJn

)−1
[AJn ]

))
∈ AZ with(

πJJn

)−1
[AJn ] ∈ AJ and countable J = ⋃

n∈N Jn. In particular we have AZ ⊂ σ (ZI) = AI .
Conversely from AZ ⊃ ZI and 3. follows the inclusion AZ ⊃ σ (ZI) = AI .

7.5 The product of Borel σ-algebrae and the Borel σ-algebra of a product

The product BI := ⊗
i∈I σ (Oi) of the Borel σ-algebrae Bi of the topological spaces (Xi; Oi)i∈I

is the smallest σ-Algebra on X = ∏
i∈I Xi or initial σ-algebra such that all projections πi :

(X; BI) → (XiBi) are measurable. The πi are continuous with reference to the product topol-
ogy O = ⊗

i∈I Oi (cf. [13, p. 4.2]) and hence due to 4.4 measurable with regard to the Borel
σ-algebra B = σ (⊗i∈I Oi), i.e. BI = ⊗

i∈I σ (Oi) ⊂ σ (⊗i∈I Oi) = B. For countable I and sec-
ond countable Oi the converse inclusion is also true since with countable bases Ei of Oi the basis
E =

{
π−1
i (Ei) : Ei ∈ Ei, i ∈ I

}
of the topology is again countable and hence also generates the Borel

σ-algebra B = σ (O (E)) = σ (E) due to 1.2 such that from E ⊂ BI follows B = σ (E) ⊂ BI . Especially
on polish spaces the two σ-algebrae coincide: B = BI . For Hausdorff components according to [13,
p. 7.10] the separation axiom T2 extends to the product space and owing to Tychonoff’s theorem
(cf. [13, p. 9.9]) any product of compact sets is again compact and hence Borel measurable due
to 1.2.

7.6 Finite products of σ-algebrae

If every basis Ej for 1 ≤ j ≤ m includes a countable cover (Ejn)n∈N ⊂ Ej with ⋃n∈NEjn = Xj the
product

m⊗
j=1

σ (Ej) is generated by the intersections
m⋂
j=1

π−1
j [Ej ] =

m∏
j=1

Ej for all possible Ej ∈ Ej :

m⊗
j=1

σ (Ej) = σ

(
m∏
j=1

Ej

)
. Due to 7.4.1 on the one hand we have σ

(
m∏
j=1

Ej

)
⊂

m⊗
j=1

σ (Ej) and on the

other hand π−1
i [Ei] = ⋃

n∈N

(
m∏
j=1

π−1
j [Ejn] ∩ π−1

i [Ei]
)

∈ σ

({
m⋂
j=1

π−1
j [Ej ] : Ej ∈ Ej

})
= σ

(
m∏
j=1

Ei

)

whence
m⊗
j=1

σ (Ej) ⊂ σ

(
m∏
j=1

Ej

)
on account of 4.1.
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7.7 Finite products of Borel σ-algebrae

x1

x2

J2

I1

I2

J1 × J2

I1 × I2

J1

Analogously to the one dimensional case dealt with in 1.4
and according to 7.5 the n-dimensional intervals In :={

n∏
i=1

]ai; bi] : ai ≤ bi ∈ R
}

⊂ Rn are Gδ and hence Bn-measurable.

Also on account of
(

n∏
i=1

Ii

)
∩
(

n∏
i=1

Ji

)
=

n∏
i=1

(Ii ∩ Ji) with inter-

vals Ii; Ji ⊂ R they are closed under intersection. Their finite
unions form the algebra Fn of the n-dimensional figures: For
F =

p⋃
k=1

n∏
i=1

Ik,i;G =
q⋃
l=1

n∏
i=1

Jl,i ∈ Fn we obviously have F ∪ G ∈ Fn;

F ∩G =
p⋃

k=1

q⋃
l=1

n∏
i=1

(Ik,i ∩ Jl,i) ∈ Fn and F \G =
p⋃

k=1

q⋃
l=1

n∏
i=1

(Ik,i \ Jl,i) ∈

Fn. On account of
n∏
i=1

]ai; bi[ = ⋃
k∈N

n∏
i=1

]
ai; bi − 1

k

]
both the intervals and the figures generate the

Borel σ-algebra: Bn :=
n⊗
i=1

Bi = σ (In) = σ (Fn) = σ

({
n∏
i=1

]ai; ∞[ : ai ∈ R
})

due to 1.1.2.

8 Product measure

8.1 Measurable cuts

For two measure spaces (Xi; Ai;µi) with i ∈ {1; 2}, every A ⊂ A1 ⊗ A2 and x1 ∈ X1, x2 ∈ X2 the
cuts Ax1 := {x2 ∈ X2 : (x1;x2) ∈ A} resp. Ax2 are measurable with respect to A2 resp. A1.

Proof: Due to (X \Q)x1
= X2 \ Qx1 and (⋃n∈NQn)x1

= ⋃
n∈N (Qn)x1

the family of all sets Q ⊂
X1 × X2 with measurable cuts Qx1 ∈ A2 is a σ-algebra containing all measurable rectangles
A1 × A2 with A1 ∈ A1 resp. A2 ∈ A2 since (A1 ×A2)x1

=
{
A2, x1∈A1
∅, x1 /∈A1

. Hence according to 7.4.3 it
includes the σ-algebra A1 ⊗ A2 generated by these sets.

8.2 Measurable measures of cuts

For two σ-finite measure spaces (Xi; Ai;µi) with i ∈ {1; 2} and every A ∈ A1 ⊗ A2 the mappings
s1A : X2 → [0; ∞] with s1A (x2) = µ1 (Ax2) resp. s2A : X1 → [0; ∞] with s2A (x1) = µ2 (Ax1) are
measurable.

Proof: Preliminarily so as to have access to complements we confine ourselves to s1nA (x2) :=
µ1|An (Ax2) with the restriction µ1|An on one of the µ1-finite sets A1n from the w.l.o.g. increasing
cover ⋃n∈NA1n = X1. The family D of subsets D ⊂ X1 × X2 with a measurable s1nD is a Dynkin
system since the constant function s1n∅ = 0 is measurable, for every measurable s1nA the com-
plement function s1n(X1×X2)\A (x2) = µ1|An

(
((X1 ×X2) \A)x2

)
= µ1|An

(
(X1 ×X2)x2

\Ax2

)
=

µ1|An

(
(X1 ×X2)x2

)
− µ1|An (Ax2) = µ1|An (X1) − s1nA (x2) is measurable and so is the summa-

tion function s1nŮDm
= ∑

m∈N s1nDm with (s1nDm)m∈N for pairwise disjoint sets (Dm)m∈Nowing
to 4.9. Furthermore s1n(A1×A2) (x2) = µ1|An

(
(A1 ×A2)x2

)
= µ1|An (A1) · χA2 (x2) is measurable

for every measurable rectangle A1 × A2 with A1 ∈ A1 resp. A2 ∈ A2. Hence the system
A1 × A2 of measurable rectangles is included in D and since it is closed under intersection
we can apply the Dynkin δ-π-theorem 1.6 resp. 7.4.3 to obtain σ (A1 × A2) = A1 ⊗ A2 ⊂ D.
According to the continuity from below 2.2.2 and 4.9 the measurability of the s1nA extends to
sup
n∈N

s1nA (x2) = sup
n∈N

µ1|An (Ax2) = sup
n∈N

µ1 (An ∩Ax2) = µ1 (⋃n∈NAn ∩Ax2) = µ1 (Ax2) = s1A (x2). The
proof for s2A is of course analogous.
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8.3 The product measure

On the product (X1 ×X2; A1 ⊗ A2) of two σ-finite measure spaces (Xi; Ai;µi) with i ∈ {1; 2}
the expression (µ1 ⊗ µ2) (A) :=

∫
µ1 (Ax2) dµ2 =

∫
µ2 (Ax1) dµ1 for A ∈ A1 ⊗ A2 defines a σ-finite

measure uniquely determined by its multiplicity (µ1 ⊗ µ2) (A1 ×A2) = µ1 (A1) ·µ2 (A2) for every
A1 ×A2 ∈ A1 × A2.
Proof: On account of µ1

(
(A1 ×A2)x2

)
= µ1 (A1) · χA2 (x2) and vice versa the two integrals co-

incide and the set function µ1 ⊗ µ2 is well defined and obviously uniquely determined by its
multiplicity on the family A1 × A2 of all cylinder sets. Due to 8.2 both integrals are well de-
fined on A1 ⊗ A2 = σ (A1 × A2). The first integral is σ-additive on A1 ⊗ A2 since for ev-
ery sequence (An)n∈N ⊂ A1 × A2 of pairwise disjoint measurable sets the σ-additivity of µ1 and

monotone convergence 5.13 applied to µ2 yield (µ1 ⊗ µ2)
(⋃̊

n∈NAn
)

=
∫
µ1

((⋃̊
n∈NAn

)
x2

)
dµ2 =∫ (∑

n∈N µ1 (An)x2

)
dµ2 = ∑

n∈N
∫
µ1 (Ax2) dµ2 = ∑

n∈N (µ1 ⊗ µ2) (An) in the case of the latter se-
ries converging to a finite limit. In the case of a diverging series ∑n∈N

∫
µ1 (Ax2) dµ2 = ∞ there

is an N ∈ N with
∫ ( N∑

n=0
µ1 (An)x2

)
dµ2 =

N∑
n=0

∫
µ1 (Ax2) dµ2 ≥ C for every C > 0 and hence

(µ1 ⊗ µ2)
(⋃̊

n∈NAn
)

= ∑
n∈N (µ1 ⊗ µ2) (An) = ∞. The same argument of course appplies to the sec-

ond integral such that both are measures on A1 ⊗ A2 coinciding on the π-basis A1 × A2 and hence
on all of A1 ⊗ A2 due to 3.4. µ1 ⊗ µ2 is σ-finite since for a cover (Ain)n∈N ⊂ Ai of µi-sets Ain with
i ∈ {1; 2} the sequence (A1n ×A2n)n∈N ⊂ A1 ⊗ A2 is a cover of X1 × X2 from µ1 ⊗ µ2-finite sets
A1n ×A2n.

8.4 Cuts of null sets

Almost all cuts Zx1 of a µ1 ⊗ µ2-null set Z ∈ A1 ⊗ A2 are µ2-null sets: (µ1 ⊗ µ2) (Z) = 0 ⇒
µ2 (Zx1) = 0 for every x1 ∈ X1 \ Z1 with µ1 (Z1) = 0 and analogously for Zx2 .
Proof : By the approximation property 3.6 for every ϵ > 0 there exists a sequence (An)n∈N ⊂
A1 × A2 of cylinder sets with Z ⊂

⋃
n∈NAn and ∑

n∈N (µ1 ⊗ µ2) (An) ≤ ϵ
n·2n . Hence Zx1 ⊂⋃

n∈NAn,x1 and for Tn =
{
x1 ∈ X1 : ∑n∈N µ2 (An,x1) ≥ 1

n

}
we have 1

nµ1 (Tn) ≤
∫ ∑

n∈N µ2 (An,x1) dµ1
5.12= ∑

n∈N
∫
µ2 (An,x1) dµ1

8.3= ∑
n∈N (µ1 ⊗ µ2) (An) ≤ ϵ

n·2n whence µ1 (⋃n∈N Tn) ≤
∑
n∈N µ1 (Tn) ≤

ϵ and finally µ1 (µ2 (Zx1) > 0) ≤ µ1 (µ2 (⋃n∈NAn,x1) > 0) < ϵ which proves the assertion for Z1 =
{x1 ∈ X1 : µ2 (⋃n∈NAn,x1) > 0}.

8.5 Fubini’s theorem

For two σ-finite measure spaces (Xi; Ai;µi) with i ∈ {1; 2} every A1 ⊗ A2-measurable function
f : X1 ×X2 → Y into a separable Banach space (Y ; | |) is µ1 ⊗µ2- integrable iff either fx1 : X2 → Y
with fx1 (x2) = f (x1;x2) is µ2 integrable for µ1-a.e. x1 ∈ X1 and

∫
(
∫
fx1dµ2) dµ1 < ∞ or vice versa

and in that case we have
∫
fd (µ1 ⊗ µ2) =

∫
(
∫
fx1dµ2) dµ1 =

∫
(
∫
fx2dµ1) dµ2.

Proof:

Step I: The function fx1 : X2 → Y with fx1 (x2) = f (x1;x2) is A2-measurable since due to 8.1 for
every Borel measurable set B ⊂ Y we have f−1

x1 [B] = {(x1; ξ2) : f (x1; ξ2) ∈ B} =
(
f−1 [B]

)
x1

∈ A2.

For step functions φ =
n∑
i=1

αiχF1,i×F2,i =
n∑
i=1

αiχF1,i ·χF2,i ∈ S (F1 × F2;Y ) with αi ∈ Y and w.l.o.g.

pairwise disjoint cylinder sets F1,i × F2,i ∈ F1 × F2 for the algebrae Fj of µj-finite sets such
that Aj = σ (Fj) with j ∈ {1; 2} the step function φx1 =

n∑
i=1

αiχF1,i (x1) · χF2,i ∈ S (F2;Y ) are
obviously A2-measurable. On account of 8.3 the integration formula holds for these step functions
since

∫
φd (µ1 ⊗ µ2) =

n∑
i=1

αi · µ1 (F1,i) · µ2 (F2,i) =
∫

(
∫
φx1dµ2) dµ1. Assuming f ∈ L1 (X1 ×X2;Y )
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by 7.7 resp. 5.23 there is a sequence (φn)n∈N ⊂ S (F1 × F2;Y ) with lim
n→∞

∫
|φn − f | d (µ1 ⊗ µ2) = 0

and in particular lim
n→∞

∫
(
∫
φn,x1dµ2) dµ1 = lim

n→∞

∫
φnd (µ1 ⊗ µ2) =

∫
fd (µ1 ⊗ µ2).

Step II: By 5.11 and w.l.o.g. transferring to a subsequence there is a µ1 ⊗ µ2-null set Z ∈ A1 ⊗ A2
with lim

n→∞
φn (x1;x2) = f (x1;x2) for every (x1;x2) ∈ (X1 ×X2) \ Z. Hence due to 8.4 we have

lim
n→∞

φn,x1 (x2) = fx1 (x2) for every x2 ∈ X2 \ Zx1 with µ2 (Zx1) = 0 and x1 ∈ X1 \ Z1 for a µ1-
null set Z1. The sequence (Φn)n∈N ⊂ S (X1; S (F2;Y )) with Φn (x1) = φn,x1 is L1 (µ1)-Cauchy since
∥Φn − Φm∥1 =

∫
|Φn − Φm| dµ1 =

∫
(
∫

|φn,x1 − φm,x1 | dµ2) dµ1 =
∫

|φn − φm| d (µ1 ⊗ µ2). By 5.11
and w.l.o.g. retreating to a subsequence there is a a Φ ∈ (S (X1; S (F2;Y )) ; ∥∥1) = L1 (X1; S (F2;Y ))
and a µ1-null set W1 such that lim

n→∞
∥Φn (x1) − Φ (x1)∥1 = 0 for every x1 ∈ X1 \ (Z1 ∪W1). In

particular ∥φn,x1∥1 = ∥Φn (x1)∥1 ≤ ∥Φn (x1) − Φ (x1)∥1 + ∥Φ (x1)∥1 ≤ 2 ∥Φ (x1)∥1 for n large enough
whence Φ (x1) ∈ L1 (X2;Y ) by 5.18. A third instance of 5.11 verifies that µ2-a.e. and for x1 ∈
X1 \ (Z1 ∪W1) we have Φ (x1) = fx1 , i.e. lim

n→∞
∥Φn (x1) − Φ (x1)∥1 = lim

n→∞

∫
|φn,x1 − fx1 | dµ2 = 0 and

hence lim
n→∞

∫
φn,x1dµ2 = lim

n→∞

∫
fx1dµ2.

Step III: Due to 4.9 the function x1 7→
∫
fx1dµ2 is A1-measurable. The step functions (Ψn)n∈N ⊂

S (X1;Y ) with Ψn (x1) =
∫
φn,x1dµ2 =

n∑
i=1

αiχF1,i (x1) · µ2 (F2,i) are again L1 (µ1)-Cauchy since

∥Ψn − Ψm∥1 =
∫

|Ψn − Ψm| dµ1 =
∫

(
∫

|φn,x1 − φm,x1 | dµ2) dµ1 =
∫

|φn − φm| d (µ1 ⊗ µ2). Since by
step II we have lim

n→∞
Ψn (x1) = lim

n→∞

∫
φn,x1dµ2 =

∫
fx1dµ2 for every x1 ∈ X1 \ (Z1 ∪W1) by 5.11 we

conclude lim
n→∞

∫
|
∫
φn,x1dµ2 −

∫
fx1dµ2| dµ1 = lim

n→∞
∥Ψn −

∫
fx1dµ2∥1 = 0. In particular by step I we

have shown that
∫

(
∫
fx1dµ2) dµ1 = lim

n→∞

∫
(
∫
φn,x1dµ2) dµ1 = lim

n→∞

∫
φnd (µ1 ⊗ µ2) =

∫
fd (µ1 ⊗ µ2).

Step IV: By 5.16 we may assume |f |x1
∈ L1

(
µ2;R+

0

)
for every x1 ∈ X1 \ V1 with µ1 (V1) = 0

resp.
∫ (∫

|f |x1
dµ2

)
dµ1 < ∞ and by steps I - III it suffices to show that |f | ∈ L1

(
µ1 ⊗ µ2;R+

0

)
.

Since |f | : X1 × X2 → R+
0 is measurable 5.6 provides an w.l.o.g. increasing sequence (φn)n∈N ⊂

S (X1 ×X2;R) converging outside of a µ1 ⊗ µ2-null set Z to f . As above resp. according to 8.4 we
have lim

n→∞
φn,x1 (x2) = |f |x1

(x2) for every x2 ∈ X2 \ Zx1 with µ2 (Zx1) = 0 and x1 ∈ X1 \ Z1 for
a µ1-null set Z1. Monotone convergence 5.13 then yields lim

n→∞

∫
φn,x1dµ2 =

∫
|f |x1

dµ2 for every
x1 ∈ X1 \ (Z1 ∪ V1). By definition 5.1 every step function φn ∈ L1 (X1 ×X2;R) is integrable so
that steps I - III yield

∫
φnd (µ1 ⊗ µ2) =

∫
(
∫
φn,x1dµ2) dµ1. Since the sequence (

∫
φn,x1dµ2)n∈N is

increasing we may invoke monotone convergence a second time to obtain lim
n→∞

∫
(
∫
φn,x1dµ2) dµ1 =∫ (∫

|f |x1
dµ2

)
dµ1. A third instance of the monotone convergence theorem applied to (φn)n∈N ⊂

L1 (X1 ×X2;R) delivers lim
n→∞

∫
φnd (µ1 ⊗ µ2) =

∫
|f | d (µ1 ⊗ µ2) and hence the assertion.

8.6 Finite products of measure spaces

On the finite product (∏i∈J Xi;
⊗

i∈J Ai) of the σ-finite measure spaces (Xi; Ai;µi) with a finite
index set J = {1, ..., n} the product measure

⊗
i∈J µi is uniquely determined by the multi-

plicity condition µ (∏i∈J Ai) = ∏
i∈J µi (Ai) and is constructed inductively according to 8.3 by

means of ⊗1≤j≤i µj :=
(⊗

1≤j<i µj
)

⊗ µi. The resulting product of measure spaces is denoted as⊗
i∈J (Xi; Ai;µi) := (∏i∈J Xi;

⊗
i∈J Ai;

⊗
i∈J µi). For a Borel measurable function f : ∏i∈J Xi → Y

with finite integrals
∫ (

...
(∫

fxj(2)...xj(n)dµj(1)
)
...
)
dµj(k) for every 1 ≤ k ≤ n and some permutation

j : J → J we have
∫
fdµ =

∫ (
...
(∫

fxj(2)...xj(n)dµj(1)
)
...
)
dµj(n) for every permutation. Hence

the convergence for one particular order of integration grants the integrability of all
permutations.
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8.7 Completion of λn

The product λn = ⊗
1≤i≤n λ of the complete Lebesgue measures λ on the product Bn = ⊗

1≤i≤n B
of the Lebesgue σ-algebrae B on R is not complete any more since for any λ-null set A ∈ B we have
λ2 (A× R) = 0 and for any non Lebesgue measurable B /∈ B (cf. 3.11) evidently A×B ⊂ A×R holds
but A × B /∈ B2. The completion of the product according to 3.9 will be included without change
of notation in the extension obtained by means of the Riesz representation theorem 10.13 to the
Lebesgue measure λn on the Lebesgue σ-algebra Bn.

8.8 Translation invariance of λn

The Lebesgue-Borel measure λn on the Borel σ-algebra Bn on Rn is uniquely determined by its
translation invariance on the π-basis of the n-dimensional intervals In : For every translation
Tc : Rn → Rn with Tc(x) = x + c for a c ∈ Rn and every interval [a; b[:=

n∏
i=1

]ai; bi] ∈ In with

ai ≤ bi ∈ R due to 4.3 and 8.3 we have Tc (λn) (]a; b]) = λn
(
T−1

c (]a; b])
)

= λn (]a − c; b − c]) =
λn (]a; b]) =

n∏
i=1

(bi − ai), i.e. the σ-finite measures Tc (λn) and λn coincide on the π-basis In and

hence on σ (In) = Bn due to 3.4.

8.9 The transformation formula

The image of the Lebesgue-Borel measure λn under a homomorphism T ∈ GL (n;R) is T ◦λn =
λn

|detT | such that λn (T [A]) = |detT | · λn (A) for every Borel-measurable A ∈ Bn.

Proof : According to the Gauss algorithm every automorphism resp. every invertible matrix
is the product of elementary transformations resp. elementary matrices of the two following
types:

1 · · · k · · · l · · · n

Ekl =



1
. . .

1 1
. . .

1
. . .

1



1
...
k
...
l
...
n

E23 =

 1 0 0
0 1 1
0 0 1


x3

x1
x2

E2;3 (H3)

1 · · · k · · · n

Ekα =



1
. . .

α
. . .

1



1
...
k
...
n

E22 =

 1 0 0
0 2 0
0 0 1


x3

x1
x2

E2;2 (H3)
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Multiplication with Ekl results in an addition of the l-th row to the k-th row, i.e. a shearing
so that the image of the unit cube Q := [0; 1[ generated by the basis vectors e1, ..., en with the
measure λn (Q) = (1 − 0)n = 1 is Ekl [Q] =

{∑
1≤i≤n xiei : 0 ≤ xi ≤ 1; i ̸= k ∧ xl ≤ xk < xl + 1

}
.

This parallelepiped can be split into two disjoint halves L = {x ∈ Ekl [Q] : xl ≤ xk < 1} and R =
{x ∈ Ekl [Q] : 1 ≤ xk < xl + 1} such that Ekl [Q] = L∪̊R but also Q = (R− ek) ∪̊L and due to the
translation invariance of λn we obtain λn (Ekl [Q]) = λn (K) + λn (L) = λn (K) + λn (L− ek) =
λn (Q) = 1 · λn (Q) = |detEkl| · λn (Q).

Multiplication with Ekα results in a multiplication of the k th row with the factor α ∈ R resulting in
the dilation Ekα [Q] =

{∑
1≤i≤n xiei : 0 ≤ xi < 1; i ̸= k ∧ 0 ≤ xk < α

}
with measure λn (Ekα (H)) =

(1 − 0)n−1 · (α− 0) = α = |detEkα| · λn (Q).

The assertion then follows from the multiplicity of the determinant: |det (A ·B)| = |det (A)| ·
|det (B)|:

8.10 Special cases of the transformation formula

1. A dilation along the axes by T (ei) = ri ·ei for ri ∈ R and 0 ≤ i ≤ n

results in λn (T (A)) =
∣∣∣∣ n∏
i=1

ri · λn (A)
∣∣∣∣ · λn (A) and particularly a

simple scaling of the set A by the scaling factor r ∈ R yields the
volume λn (rA) = |rn| · λn (A).

2. A rotation by an orthogonal matrix T ∈ O (n;R) leaves the
volume unacffected: λn (T [A]) = |detT | · λn (A) = λn (A).

3. In the three dimensions of R3 the homomorphism T may be
represented by a matrix with n linearly independent column vec-
tors xi =

n∑
k=1

xkiek ∈ Rn for 1 ≤ i ≤ n generating a paral-

lelepiped T [Q] =
{∑

1≤i≤n tixi : 0 ≤ xi < 1
}

which is the image
of the unit cube Q =

{∑
1≤k≤n tkek : 0 ≤ tk < 1

}
. Its volume is

λ3 (T [Q]) = |detT | · λ3 (Q) = det
(
(xki)1≤k,i≤n

)
· 1.

5. With the integral transformation formula 5.8 we obtain the linear form of the change-
of-variables theorem [9, th. 13.7] since

∫
T [A] f · 1

|detT |dλ
n =

∫
T [A] fd (T ◦ λn) =

∫
A (f ◦ T ) dλn

implies
∫
T [A] fdλ

n =
∫
A (f ◦ T ) · |detT | · dλn

8.11 Cavalieri’s principle

For a compact K ⊂ Rn and any cut Kt =
{
x ∈ Rn−1 : (x; t) ∈ K

}
with t ∈ R we have λn (K) =∫

R λ
n−1 (Kt) dt.

Proof : Due to Fubini’s theorem 8.5 we have λn (K) =
∫
Rn χK (x) dx =

∫
(
∫
Rn−1 χK (x; t) dx) dt =∫

(
∫
Rn−1 χKt (x) dx) dt =

∫
R λ

n−1 (Kt) dt.
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8.12 The cone

The cone Ch (B) = {((1 − λ) ξ, λh) ∈ Rn : ξ ∈ B; 0 ≤ λ ≤ 1} with
compact base B ⊂ Rn−1and height h > 0 has the volume
λn (Ch (B)) = h

n · λn−1 (B).
Proof : According to Cavalieri’s principle8.11 and by the condi-

tion λh = t we obtain the cuts Ch (B)t =
{(

1 − t
h

)
B for 0 ≤ t ≤ h

0 else
with λn−1 (Ch (B)t) =

(
1 − t

h

)n−1 · λn−1 (B) due to 8.9 whence
λn (Ch (B)) =

∫
R λ

n−1 (Ch (B)t) dt = λn−1 (B) ·
∫ h

0 =
(
1 − t

h

)n−1
dt =

h
n · λn−1 (B).

8.13 The unit simplex

The unit simplex Sn1 =
{

n∑
i=1

λiei :
n∑
i=1

λi = 1
}

⊂ Rn has the volume

λn (Sn1 ) = 1
n! .

Proof : By induction over n we start with λ1 (S1
1
)

= λ1 ([0; 1]) = 1
and proceed from n−1 to n by 8.12 with λn (Sn1 ) = 1

n ·λn−1
(
Sn−1

1

)
=

1
n · 1

(n−1)! = 1
n! .

8.14 The unit sphere

The unit sphere Bn
1 has the volume τn = λn (Bn

1 ) = πn/2

Γ( n
2 +1) .

Proof : As above we procced by induction over n starting with
λ1 (B1

1
)

= λ1 ([−1; 1]) = 2 and proceed from n − 1 to n by Cav-
alieri’s principle 8.11 with λn (Bn

1 ) =
∫
R λ

n−1
((
Bn−1

1

)
t

)
dt =∫

R λ
n−1

((
Bn−1√

1−t2

))
dt = λn−1

(
Bn−1

1

)
·
∫

[−1;1]
(
1 − t2

)(n−1)/2
dt =

λn−1
(
Bn−1

1

)
· cn. By substitution and integration by parts

we can simplify cn =
∫ 1

−1
(
1 − t2

)(n−1)/2
dt = 2

∫ π/2
0 sinn(α)dα =

2 (n− 1)
∫ π/2

0 cos2(α)·sin(n−2)(α)dα . By expanding this expression to
(1 − n)

∫ π/2
0

(
sin2(α) + cos2(α)

)
·sin(n−2)(α)da+n

∫ π/2
0 sinn(α)dα = 0

we can use Pythagoras to obtain

cn = 2 · n− 1
n

∫ π/2

0
sinn−2(α)dα

= 2 · n− 1
n

· n− 3
n− 2 · ... ·

1
2 ·
∫ π/2

0 1dα = π
4 for n even

2
3 ·
∫ π/2

0 sin(α)dα = 2
3 for n odd

= 2 ·
{
n−1
n · n−3

n−2 · ... · 3
4 · 1

2 · π2 for n even
n−1
n · n−3

n−2 · ... · 4
5 · 2

3 for n odd

Hence we have cn · cn−1 = 2π
n so that with λ2 (B2

1
)

= λ1 (B1
1
)

· c2 = π follows

λn (Bn
1 ) = 2π

n
· λn−2

(
Bn−2

1

)
=


2π
n · 2π

n−2 · ... · 2π
4 · π = π

n/2 · π
n/2−1 · ... · π2 · π1 for n even

2π
n · 2π

n−2 · ... · 2π
3 · 2 = π

n/2 · π
n/2−1 · ... · π

3/2 ·
√
π

1/2 · 1√
π

for n odd
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A comparison with the Gamma function (cf. [9, p. 2.1]) with the functional equation Γ (x+ 1) =
x · Γ (x) for 0 < x < ∞ and initial values Γ

(
1
2

)
=

√
π ⇒ Γ

(
3
2

)
= 1

2 ·
√
π ⇒ Γ

(
5
2

)
= 3

2 · 1
2 ·

√
π ⇒ ...

resp. Γ (1) = 1 ⇒ Γ (2) = 1 ⇒ Γ (3) = 1 · 2 ⇒ ... yields the desired formula.

8.15 Probability measures on function spaces

On the product (XI ; AI) of probability spaces (Xi; Ai;µi)i∈I with arbitrary index set I exists
a probability measure µI uniquely determined by its multiplicity µI |ZJ

= µJ := ⊗
∈J µi for

all finite J ⊂ I, i.e. on cylinder sets π−1
J (A) ∈ ZJ with A ∈ AJ = ⊗

i∈J Ai = πJ (AI) = πJ (ZJ)
(cf. 7.4.3) it coincides with the corresponding finite product measure µJ = ⊗

i∈J µi on the finite
product-σ-algebrae AJ . The elements xI ∈ XI with xI : I → XI are the sample paths or
realizations of the stochastic process (XI ; AI ;µI)

Proof: The function µI : SI → [0; 1] given by µI
(
π−1
J (∏i∈J Ai)

)
:= ∏

i∈J µi (Ai) for Aj ∈ Aj and
finite J ⊂ I is well defined and in particular independent of the representation of the measurable
rectangle S = ∏

l∈L Sl =
(
πLJ

)−1 (∏
j∈J Aj

)
=
(
πLK

)−1
(∏k∈K Bk) ∈ SL with Aj ∈ Aj , j ∈ J and

Bk ∈ Ak, k ∈ K for finite J,K,L ⊂ I with J ∪ K ⊂ L. By the equality of the two representations
we have Sj = Aj = Bj for j ∈ J ∩K, Zj = Aj = Xj for j ∈ J \K, Sj = Bj = Xj for j ∈ K \ J and
finally Sl = Xl for l ∈ L \ (J ∪K). Hence the multiplicity condition with µi (Xi) = 1 for all i ∈ I

yields µL (S) = µJ
(∏

j∈J Aj
)

= ∏
j∈J∩K µj (Aj) = ∏

j∈J∩K µj (Bj) = µK (∏k∈K Bk). According to
8.6 for every finite J ⊂ I there is a uniquely determined product measure µJ = ⊗

∈J µi on the
finite product-σ-algebra AJ with µI (∏i∈J Ai) := ∏

i∈J µi (Ai) for Aj ∈ Aj . Hence the extension
µI : ZI → [0; 1] given by µI (Z) := µJ (AJ) for Z = π−1

J (AJ) and AJ ∈ AJ with finite J ⊂ I on the
algebra ZI is well defined and in particular independent of the representation of the cylinder set
Z = π−1

J (AJ) = π−1
K (BK) with AJ ∈ AJ and BK ∈ AK for finite J,K ⊂ I. We now prove that µI is

∅-continuous on the algebra of cylinder sets.
To this end for a given path xJ ∈ XJ and a given K-cylinder set Z ∈ ZK with finite J ⊂ K ⊂ I

we examine the Z-extensions ZxJ =
{
ξI ∈ XI :

(
xJ ;πK\J (ξI)

)
∈ Z

}
= π−1

K\J (AxJ ) ∈ ZK for A =
πK (Z) ∈ AK = AJ ⊗AK\J and the cuts AxJ of A ∈ AK being AK\J -measurable due to 8.1. Hence he
family ZxJ consists of all measurable extensions ξI ∈ XI of the given path xJ with an arbitrary
course during J (!) and passing through Z during K \ J . (cf. the set of all paths passing a given
tree in [13, p. 15.5]). Owing to 8.3 we have µI (Z) = µI\K

(
πI\K (Z)

)
· µK (πK (Z)) = 1 · µK (A) =∫

µK\J (AxJ ) dµJ =
∫
µI (ZxJ ) dµJ .

Now let (Zn)n≥1 ⊂ ZI be a decreasing sequence of cylinder sets Zn = π−1
Jn

(An) with An ∈ AJn

for finite Jn+1 ⊃ Jn and Zn+1 ⊂ Zn as well as µI (Zn) ≥ α > 0 for n ≥ 1 such that inf
n≥1

µI (Zn) ≥ α.
In order to show the ∅-continuity we have to prove that ⋂n≥1 Zn ̸= ∅, i.e. we must find a path
x ∈

⋂
n≥1 Zn. We start on the interval J1 with a section xJ1 and proceed by induction to extend it

to
(
xJ1 ;xJ2\J1 ; ...

)
:

Due to 8.2 the mapping xJ1 7→ µI
(
Z
xJ1
n

)
= π−1

Jn\J1

(
(An)xJ1

)
is measurable and hence the set QJ1

n =(
xJ1 ∈ XJ1 : µI

(
Z
xJ1
n

)
≥ α

2

)
∈ AJ1 of all paths xJ1 ∈ XJ1 which can be extended with a probability

of at least α
2 on Zn is AJ1-measurable. According to the preceding paragraph we obtain the estimate

α ≤ µI (Zn) ≤
∫
Q

J1
n
µI
(
Z
xJ1
n

)
dµJ1 +

∫
XI\QJ1

n
µI
(
Z
xJ1
n

)
dµJ1 ≤ µJ1

(
QJ1
n

)
+α

2 and hence µJ1

(
QJ1
n

)
≥ α

2

for all n ≥ 1. Since µJ1 is continuous from above and QJ1
n+1 ⊂ QJ1

n for all n ≥ 1 there is an
xJ1 ∈

⋂
n≥1Q

J1
n ̸= ∅, i.e. µI

(
Z
xJ1
n

)
≥ α

2 for all n ≥ 1.

We now extend the path xJ1 inductively with Z
xJk
n taking the place of Zn: Assuming there is an

xJk
∈ XJk

with µI
(
Z
xJk
n

)
≥ α

2k for all n ≥ 1 we have

Q
Jk+1
n =

(
xJk+1\Jk

∈ XJk+1\Jk
: µI

((
Z
xJk
n

)xJk+1 \xJk

)
≥ α

2k+1

)
∈ AJk+1
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whence α

2k ≤ µI
(
Z
xJk
n

)
≤
∫
Q

Jk+1
n

µI

((
Z
xJk
n

)xJk+1 \xJk

)
dµJk+1 +

∫
XI\Q

Jk+1
n

µI

((
Z
xJk
n

)xJk+1 \xJk

)
dµJk+1

≤ µJk+1

(
Q
Jk+1
n

)
+ α

2k+1

such that µJk+1

(
Q
Jk+1
n

)
≥ α

2k+1 for all n ≥ 1. Consequently there must exist an extension xJk+1\Jk
∈⋂

n≥1Q
Jk+1
n ̸= ∅, i.e. µI

((
Z
xJk
n

)xJk+1 \xJk

)
≥ α

2k+1 for all n ≥ 1. If we add the new section to xJk
we

obtain xJk+1 :=
(
xJk

;xJk+1\Jk

)
∈ XJk+1 with Z

xJk+1
n =

(
Z
xJk
n

)xJk+1 \xJk , particularly π
Jk+1
Jk

(xk+1) =
xk and µI

(
Z
xJk+1
n

)
≥ α

2k+1 for all n ≥ 1. Thus we have found a path x′ =
(
xJ1 ;xJ2\J1 ; ...

)
∈

π⋃
n≥1 Jn

(⋂
n≥1 Zn

)
⊂ X⋃

n≥1 Jn
and by an arbitrary extension on the remaining time I \

⋃
n≥1 Jn we

get the desired x ∈
⋂
n≥1 Zn ̸= ∅ with π⋃

n≥1 Jn
(x) = x′.

Hence µI is ∅-continuous and since due to 8.6 it is finitely additive as well as bounded according
to 2.2.4 its σ-additivity follows. Due to the extension theorem 3.5 the pre-measure µI on the
algebra ZI of the cylinder sets can be extended in a unique way to a measure µI on the σ-algebra
σ (ZI) = AI . This completes the proof.

9 Measures with densities

9.1 Complex measure and total variation

A complex measure is a complex and σ-additive set function µ : A → C on a measurable space
(X; A). Contrary to the positive measure µ : A :→ [0; ∞] defined in 3.1 the complex measure
is finite. According to the theorem of Lévy und Steinitz ([10, th. 8.18]) the σ-additivity
µ
(⋃̊

n∈NAn
)

= ∑
n∈N µ (An) < ∞ resp. the interchangeability of the union imply the absolute

convergence of the series.

So its total variation |µ| : A :→ R with |µ| (A) := sup
{∑

n∈N |µ (An)| : (An)n∈N ⊂ A : ⋃̊n∈NAn = A
}

is well defined as well as σ-additive: On the one hand for every Am ∈ A and ϵ > 0 there is a partition
(Amn)n∈N ⊂ A with |µ| (Am) − ϵ · 2−m−1 <

∑
n∈N |µ (Amn)| ≤ |µ| (Am) such that ∑m∈N |µ| (Am) − ϵ <∑

m,n∈N |µ (Amn)| ≤
∑
m∈N |µ| (Am) and hence ∑m∈N |µ| (Am) ≤ |µ|

(⋃̊
m∈NAm

)
. On the other hand

for every partition (Bn)n∈N ⊂ A with ⋃̊n∈NBn = ⋃̊
m∈NAm the intersections (Bn ∩Am)n∈N partition

Am while the intersections (Bn ∩Am)m∈N partition Bn such that due to the σ-additivity of µ holds∑
n∈N |µ (Bn)| ≤

∑
m,n∈N |µ (Am ∩Bn)| ≤

∑
m∈N |µ| (Am). This estimate extends to the suprema such

that |µ|
(⋃̊

m∈NAm
)

≤
∑
m∈N |µ| (Am). Hence |µ| is a measure.

9.2 The minimal range of a set of complex numbers

For any n complex z1, ..., zn there is a subset S ⊂ {1; ...;n} with |
∑
k∈S zk| ≥ 1

π

n∑
i=1

|zi|.

Proof: For zi = |zi| ·eiαi and −π ≤ ϑ ≤ π let S (ϑ) := {1 ≤ k ≤ n : cos (αk − ϑ) > 0}. Then for every
such ϑ we have |

∑
k∈S zk| =

∣∣∣∑k∈S e
−iϑ · zk

∣∣∣ ≥ Re
(∑

k∈S e
−iϑ · zk

)
= ∑

k∈S |zk| · cos (αk − ϑ) ≥
n∑
i=1

|zi| · cos+ (αk − ϑ) and the maximal value of the sum on the right hand side attained for say ϑ = ϑ0 is
not less than the average 1

2π
∫ π

−π

(
n∑
i=1

|zi| · cos+ (αk − ϑ)
)
dϑ = 1

π

n∑
i=1

|zi| which proves the lemma for

S := S (ϑ0).

42



9.3 The total variation of complex measures

The total variation |µ| of a complex measure µ is finite.
Proof: Assuming |µ| (X) = ∞ there must be a partition (Ai)i∈N ⊂ A of X and an n ∈ N with
1
π

n∑
i=1

|µ (Ai)| > |µ (X)| + 1. Due to 9.2 there is a subset S ⊂ {1; ...;n} such that for B1 := ⋃
k∈S Ai

on the one hand |µ (B1)| = |
∑
k∈S µ (Ai)| > |µ (X)| + 1 ≥ 1 and on the other hand |µ (X \B1)| =

|µ (X) − µ (B1)| ≥ |µ (B1)| − |µ (X)| ≥ 1. According to the hypothesis we have either |µ| (B1) = ∞
or |µ| (X \B1) = ∞ and assuming this being the case for X \ B1 we can repeat the argument from
above to split off a subset B2 ⊂ X \ B1 with |µ| (X \ (B1 ∪B2)) = ∞ and |µ (B2)| ≥ 1. Hence by
induction we obtain a sequence (Bn)n∈N ⊂ A of paiwise disjoint sets Bn with |µ (Bn)| ≥ 1∀n ∈ N and
consequently

∣∣∣µ (⋃̊n∈NBn
)∣∣∣ = |

∑
n∈N µ (Bn)| = ∞ contrary tor the finite character of µ according to

definition 9.1.

9.4 The Banach space of complex measures

The set M (A,C) of complex measures on a measurable space (X; A) with the operations (λ+ µ) (A) :=
λ (A) + µ (A) resp. (c · λ) (A) := c · λ (A) for A ∈ A, c ∈ C, λ, µ ∈ M and the norm ∥µ∥ := |µ| (X) is
a Banach space.
Proof : The vector space axioms are clearly satisfied. The positive definiteness ∥µ∥ = 0 ⇒ µ = 0
follows from the monotonicity A ⊂ B ⇒ |µ| (A) ≤ |µ| (B) of the total variation. With regard
to the completeness for every Cauchy sequence (µn)n∈N ⊂ M (A,C) and every measurable set
A ∈ A we have |µn (A) − µm (A)| = |(µn − µm) (A)| ≤ |µn − µm| (A) ≤ |µn − µm| (X) = ∥µn − µm∥
such that the corresponding Cauchy sequence (µn (A))n∈N ⊂ C converges to a complex number
µ (A) hence defining a complex set function µ : A → C. For a sequence of disjoint measurable
sets (Ak)k∈N ⊂ A and every k ∈ N there is an nk ∈ N with |µn (Ak) − µ (Ak)| ≤ ϵ2−k for ev-

ery n ≥ nk such that for every N ≥ max {nk : k ≤ m} and
m∑
k=0

µN (Ak) = µN

(
m⋃
k=0

Ak

)
we have∣∣∣∣ m∑

k=0
µ (Ak) − µ

(
m⋃
k=0

Ak

)∣∣∣∣ =
∣∣∣∣ m∑
k=0

µ (Ak) −
m∑
k=0

µN (Ak) + µN

(
m⋃
k=0

Ak

)
− µ

(
m⋃
k=0

Ak

)∣∣∣∣ ≤ ϵ2−m+1 +∣∣∣∣µN ( m⋃
k=0

Ak

)
− µ

(
m⋃
k=0

Ak

)∣∣∣∣ ≤ ϵ2−m+2 for a suitably large N . Since ϵ and m are arbitrary we

have shown the σ-additivity
∞∑
k=0

µ (Ak) = µ

( ∞⋃
k=0

Ak

)
, i.e. µ ∈ M. Assuming there is an ϵ > 0 with

∥µ− µn∥ = sup
{∑

k∈N |(µ− µn) (Ak)| : (Ak)k∈N ⊂ A : ⋃̊k∈NAk = X
}

≤ ϵ for every n ∈ N we find an

Bn =
Kn⋃
k=0

Ak ∈ A with |(µ− µn) (Bn)| ≥ ϵ
2 whence |(µ− µn) (B)| ≥ ϵ

2 for B = ⋃
n∈NBn and every

n ∈ N contrary to (µn (B)) converging to µ (B). Hence lim
n→∞

∥µ− µn∥ = 0

9.5 Continuous and singular measures

A complex or positive measure µ is λ-absolutely continuous with respect to the positive measure
λ on the same measurable space (X,A) with the notation µ ⋖ λ iff λ (A) = 0 ⇒ µ (A) = 0 ∀A ∈ A.
The measure µ is concentrated on the set A ∈ A iff λ (B) = µ (B ∩A) ∀B ∈ A resp. µ (B) = 0 ⇔
A ∩ B = ∅. The measures µ and λ are mutually singular with the notation µ ⊥ λ iff µ and λ are
concentrated on two disjoint sets. These relations have the following properties:

1. If µ is concentrated on A the so is |µ| since for every partition (Em)m∈N of the set E ∈ A with
E ∩A = ∅ we have µ (Em) = 0 ∀m ∈ N.

2. µ ⊥ λ ⇒ |µ| ⊥ |λ| due to 1.
3. µ⋖λ ⇒ |µ|⋖λ since from λ (A) = 0 for every partition (Am)m∈N of A follows µ (Am) = λ (Am) =

0 ∀m ∈ N.
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4. µ ⊥ λ ∧ µ⋖ λ ⇒ µ = 0 is obvious.

5. µ1 ⊥ λ ∧ µ2 ⊥ λ ⇒ µ1 + µ2 ⊥ λ since if µ1, µ2 and λ are concentrated on A1, A2 resp. B with
A1 ∩B = A2 ∩B = ∅ the measure µ1 + µ2 is concentrated on A1 ∪A2 with (A1 ∪A2) ∩B = ∅.

6. µ1 ⋖ λ ∧ µ2 ⋖ λ ⇒ µ1 + µ2 ⋖ λ is obvious.

7. µ1 ⊥ λ ∧ µ2 ⋖ λ ⇒ µ1 ⊥ µ2 since if µ1 is concentrated on A we have µ1 (A) ̸= 0 and hence
µ2 (A) = λ (A) = 0, i.e. µ2 is concentrated on X \A.

9.6 ϵ-δ-definition of absolute contiuity

A complex measure µ is absolutely continuous with respect to the positive measure λ iff for
every ϵ > 0 exists a δ > 0 such that for every A ∈ A holds: λ (A) < δ ⇒ |µ| (A) < ϵ.

Proof:

⇒: Assuming an ϵ > 0 and a sequence (An)n∈N ⊂ A with λ (An) < 2−n but |µ (An)| ≥ ϵ then
(Bm)m∈N ⊂ A with Bm = ⋃

n≥mAn is a decreasing sequence of measurable sets with λ (Bm) < 2−m+1

and λ (⋂m∈NBm) = 0 on account of the continuity from above 2.2.3. But the measure |µ| is also
continuous from above such that |µ| (⋂m∈NBm) = lim

m→∞
|µ| (Bm) ≥ inf

m∈N
|µ| (Am) ≥ ϵ contrary to the

hypothesis |µ| ⋖ λ resp. 9.5.3.

⇐: λ (A) = 0 ⇒ |µ| (A) < ϵ∀ϵ > 0 ⇒ |µ (A)| ≤ |µ| (A) = 0.

9.7 The Jordan decomposition of signed measures

The real and complex parts of complex measures are finite and are called signed measures to
distinguish them from the positive measures. The Jordan decomposition µ = µ+ − µ− resp.
|µ| = µ+ + µ− of a signed measure µ splits it into its positive and negative variations µ+ =
1
2 (|µ| + µ) resp. µ− = 1

2 (|µ| − µ) both being finite and positive. On account of the σ-additivity
the total variation of a positive signed measure coincides with the measure itself:

∣∣µ+∣∣ = µ+

bzw. |µ−| = µ−.

9.8 The theorem of Lebesgue Radon-Nikodym

For a positive, σ-finite measure λ : A → [0; ∞] and a complex measure µ : A → C on a common
measurable space (X; A) exist:

1. a uniquely determined Lebesgue decomposition of µ = µa + µs with respect to λ into two
complex measures µa and µs such that µa ⋖ λ and µs ⊥ λ.

2. a uniquely determined Radon-Nikodym density or derivative dµa

dλ ∈ L1 (λ) with µa (A) =∫
A
dµa

dλ dλ for every A ∈ A.

Proof: The Lebesgue decomposition is uniquely determined since for every other decomposition
µ′
a and µ′

s we have µ′
a − µa

9.4.6
⋖

∑
λ bzw. µs − µ′

s

9.4.5
⊥ λ and hence µ′

a − µa
9.4.4= µs − µ′

s = 0. The
uniqueness of the Radon-Nikodym density follows from 5.6.3 resp. 9.6.

We start the construction of the decomposition with w = ∑
n∈N

χAn
2n+1·(1+λ(An)) : X →]0; 1[ for a

countable cover (An)n∈N ⊂ A of X with λ (An) < ∞∀n ∈ N such that the measure ν with ν (A) :=∫
Aw dλ is finite and due to w > 0 possesses the same null sets as λ. Then φ = |µ| + ν is again a

positive and finite measure with
∫
f dφ =

∫
f d|µ|+

∫
fw dλ for every step function f and due to 5.4

for positive measurable f . Applying 9.5.1, the Schwarz inequality 6.4.1 and the finite character
of φ for every f ∈ L2 (φ) we obtain |

∫
f d|µ|| ≤

∫
|f | dµ ≤

∫
|f | dφ ≤

(∫
|f |2 dφ

) 1
2 · (φ (X))

1
2 < ∞.

In particular for every null sequence (fn) ⊂ L2 (φ) with (∥fn∥2)n → 0 we have (|
∫
fn d|µ||)n → 0,
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i.e. the linear functional Iµ : L2 (φ) → [0; ∞[ with Iµf =
∫
f d|µ| is continuous at the origin.

According to [13, p. 20.11] it is also bounded resp. uniformly continuous and hence a member
of the dual space

(
L2 (φ)

)∗. Due to [7, p 308 Th 12.5] Iµ possesses a φ-a.e. uniquely determined
representant g ∈ L2 (φ) with respect to the inner product

∫
f d|µ| = Iµf = ⟨f, g⟩ =

∫
fg dφ resp.∫

(1−g)f d|µ| =
∫
fgw dλ for every positive measurable f . We keep this result in mind as equation (X).

Choosing f = χA for every A ∈ A with φ(A) > 0 we obtain 0 ≤
∫
A g dφ = |µ| (A) ≤ φ (A) and hence φ-

a.e. 0 ≤ g ≤ 1. The Lebesgue decomposition of the total variation |µ| = µa+µs can now be given
by µa = |µ|{g<1} and µs = |µ|{g=1}: Substituting f = χ{g=1} in equation (X) yields 0 =

∫
{g=1}w dλ

such that on account of w(x) > 0 follows λ ({g = 1}) = 0 and hence µs ⊥ λ. The Radon-Nikodym
density is dµa

dλ = w
∞∑
n=1

gn such that dµa

dλ (x) = w(x)·g(x)
1−g(x) in the case of g(x) < 1 and dµa

dλ (x) = ∞

else: Substituting f = χA·
m∑
n=0

gn in equation (X) we obtain
∫
A

(
1 − gm+1) d|µ| =

∫
Aw·

m+1∑
n=1

gn dλ

and taking recourse to monotone convergence 5.13 for m → ∞ leads to µa (A) =
∫
A
dµa

dλ dλ which
also yields µa ⋖ λ. The boundedness of |µ| transfers to µa such that dµa

dλ ∈ L1 (λ). The Lebesgue
decomposition for the complex measure µ = Reµ+ iImµ = (Reµ)+ − (Reµ)− + i

(
(Imµ)+ − (Imµ)−

)
is accomplished by applying the above construction four times to the positive resp. negative variation
of the rea resp. imaginary part of µ.

9.9 Polar representation of complex measures

For every complex measure µ exists a measurable complex function dµ
d|µ| : X → C with

∣∣∣ dµd|µ|

∣∣∣ = 1 and
dµ = dµ

d|µ| d|µ|.

Proof: According to the Lebesgue-Radon-Nikodym theorem9.8 and on account of µ⋖ |µ| there
is a dµ

d|µ| ∈ L1 with dµ = dµ
d|µ| d|µ| which only has to be adapted to the absolute value

∣∣∣ dµd|µ|

∣∣∣ = 1: For a
partition (An)n∈N of the set A =

{∣∣∣ dµd|µ|

∣∣∣ < r
}

holds |µ| (A) ≤
∑
n∈N |µ (An)| = ∑

n∈N

∣∣∣∫An

dµ
d|µ| d|µ|

∣∣∣ ≤∑
n∈N r · |µ| (An) = r · |µ| (A), i.e. for r < 1 we have |µ| (A) = 0 resp. µ-a.e.

∣∣∣ dµd|µ|

∣∣∣ ≥ 1. On the other
hand for every A ∈ A with |µ| (A) > 0 holds

∣∣∣ 1
|µ|(A)

∫
A

dµ
d|µ| d|µ|

∣∣∣ = |µ(A)|
|µ|(A) ≤ 1 so that we can apply the

mean value theorem 5.20 with S = B1(0) to obtain µ-a.e.
∣∣∣ dµd|µ|

∣∣∣ ≤ 1. Hence the assertion holds
µ-a.e. and by redefining dµ

d|µ| := 1 on the µ-null set
{
dµ
d|µ| ̸= 1

}
we obtain the desired absolute value for

every x ∈ X.

9.10 The density of the total variation

For a positive measure λ and h ∈ L1 (λ) with dµ = dµ
dλ dλ we have d|µ| =

∣∣∣dµdλ ∣∣∣ dλ.

Proof: Owing to 9.9 there is a dµ
d|µ| with

∣∣∣ dµd|µ|

∣∣∣ = 1 so that dµ = dµ
d|µ| d|µ| and hence dµ

d|µ| d|µ| = dµ
dλ dλ

resp. d |µ| = dµ
d|µ|

dµ
dλ dλ. From |µ| ≥ 0 and λ ≥ 0 follows λ-a.e. dµ

d|µ|
dµ
dλ ≥ 0 and hence dµ

d|µ|
dµ
dλ =

∣∣∣dµdλ ∣∣∣.
9.11 Decomposition of complex measures

Every complex measure µ can be decomposed into four positive and finite measures according to
µ = Reµ+ − Reµ− + i

(
Imµ+ − Imµ−).

Proof : Owing to 9.9 and the additivity of the integral for every measurable A we have µ (A) =∫
χA (Reh)+ d|µ| −

∫
χA (Reh)− d|µ| + i

(∫
χA (Imh)+ d|µ| −

∫
χA (Imh)− d|µ|

)
. Each of the four

summands is a positive and finite measure with the σ-additivity resulting from the monotone con-
vergence 5.13 in the form of µ

(⋃̊
n∈NAn

)
=
∫

(∑n∈N χA) gd|µ| = ∑
n∈N

∫
χAgd|µ| = ∑

n∈N µ (An) for
every positive and real measurable g.
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9.12 The Hahn decomposition for signed measures

The Jordan decomposition of a signed measure µ = µ+ − µ− extends to the measure space
(X; A;µ): There is a Hahn decomposition of X into two disjoint subsets M+ ∪ M− = X with
M+ ∩M− = ∅ and µ+ (A) = µ

(
A ∩M+) resp. µ− (A) = µ (A ∩M−) for every A ∈ A.

Proof: Due to 9.10 there is a measurable dµ
d|µ| : X → {−1; 1} with dµ = dµ

d|µ| d|µ| such that M+ :={
dµ
d|µ| = 1

}
and M− :=

{
dµ
d|µ| = −1

}
are measurable . On account of 1

2

(
1 + dµ

d|µ|

)
= χM+ follows

µ+ (A) = 1
2 (|µ| (A) + µ (A)) =

∫
A

1
2

(
1 + dµ

d|µ|

)
d|µ| = µ

(
A ∩M+) resp. µ− (A) = µ (A ∩M−).

9.13 The dual space of Lp (λ)

For every σ-finite and positive measure λ and 1 < p < ∞ the bounded linear functional M :
Lp (λ) → C can be expressed uniquely as an integral Mf =

∫
f dµdλ dλ for f ∈ Lp (λ) with the Radon-

Nikodym density of the measure µ defined by µ (A) = MχA with respect to λ. Furthermore we
have dµ

dλ ∈ Lq (λ) for 1
p + 1

q = 1 and the norm ∥M∥∗ = sup
{∣∣∣∣M (

f
∥f∥p

)∣∣∣∣ : f ∈ Lp (λ)
}

of the linear

functional satisfies ∥M∥∗ =
∥∥∥dµdλ∥∥∥q, i.e. the dual space (Lp (λ))∗ is isometric and hence isomorphic

to Lq (λ).

Proof: The λ-a.e. uniqueness of the representant dµ
dλ = g follows from the comparison of two

possible candidates g and g′ with f1 = χ{g<g′} resp. f2 = χ{g>g′} by means of
∫
f1g

′ dλ =
∫
f1g dλ

and
∫
f2g

′ dλ =
∫
f2g dλ from 5.6.3.

Before we can use 9.8 we have to show that µ is a complex measure and absolutely continuous with
respect to λ. Since we need the continuity from above 2.2.3 in this first part of the proof we have
to restrict our reasoning to the case λ (X) < ∞. In a second part we will adapt the case λ (X) = ∞
to the first part making use of the σ-finiteness of λ:

For a sequence (Ak)k∈N ⊂ A of pairwise disjoint measurable sets with Bn = ⋃̊
0≤k≤nAk and B =⋃̊

k∈NAk the continuity from above 2.2.3 of the measure λ yields lim
n→∞

∥χB − χBn∥p = lim
n→∞

∥∥∥χB\Bn

∥∥∥
p

= lim
n→∞

(λ (B \Bn))
1
p = 0 whence from the continuity of the functional M follows lim

n→∞
µ (Bn) =

µ (B). Hence µ is σ-additive and thus a complex measure. For a λ-null set E we have ∥χE∥p = 0
and since M0 = 0 the continuity of M implies µ (E) = 0, i.e. µ ⋖ λ. Hence 9.8 provides dµ

dλ ∈ L1 (λ)
with MχA =

∫
χA

dµ
dλ dλ for all A ∈ A. The linearity of M guarantees Mφ =

∫
φdµdλ dλ for step

functions φ ∈ S (X;C). According to 6.11 the step functions S (X;C) are dense in Lp (λ) for every
1 ≤ p ≤ ∞ and λ (X) < ∞. For now we apply only the case p = ∞, i.e. we extend the proposition to
f ∈ L∞ (λ): On the left hand side a λ-a.e. bounded f ∈ L∞ (λ) is a limit of a uniformly convergent
sequence (φn)n∈N ⊂ S(X) converging also in the p-th mean on account of ∥f∥p ≤ ∥f∥∞ · (λ (X))

1
p

whence follows the convergence of (Mφn)n∈N. On the right hand side the uniform convergence directly
entails the convergence of the integral on L∞ (λ) due to

∣∣∣∫ f dµdλ dλ∣∣∣ ≤ ∥f∥∞ · ∥g∥1. In order to extend
the validity of the proposition to f ∈ Lp (λ) we show that g := dµ

dλ ∈ Lq (λ): Let En = {|g| ≥ n} for
n ∈ N and f = |g|q

g ·χEn ∈ L∞ (λ) for n ∈ N such that |f |p ·χE = |g|(q−1)p ·χE = |g|q ·χE = fg. Hence

we have
∫
En

|g|q dλ =
∫
fg dλ = Λ(f) ≤ ∥Λ∥∗ · ∥f∥p = ∥Λ∥∗ ·

(∫
En

|g|q dλ
) 1

p ⇔
(∫
En

|g|q dλ
)1− 1

p ≤
∥Λ∥∗ ⇔

∫
En

|g|q dλ ≤ ∥Λ∥∗q such that with monotone convergence 5.13 we obtain ∥g∥q ≤ ∥Λ∥∗ < ∞
and in particular g = dµ

dλ ∈ Lq (λ). The Hölder inequality 6.4.1 combined with
∥∥∥dµdλ∥∥∥q < ∞ asserts

the continuity of the mapping f 7→
∫
f dµdλ dλ on Lp (λ) and since it coincides on the dense subset

E (X) ⊂ Lp (λ) with the continuous mapping M the assertion follows for λ(X) < ∞. Another look at
Hölder yields ∥M∥∗ ≤

∥∥∥dµdλ∥∥∥q and hence the second assertion ∥M∥∗ =
∥∥∥dµdλ∥∥∥q.
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In the case of λ (X) = ∞ as in the proof of 9.8 we define w = ∑
n∈N

χAn
2n·(1+λ(An)) : X →]0; 1[ for

a countable cover (An)n∈N ⊂ A of X with λ (An) < ∞ ∀n ∈ N such that the measure ν with
ν (A) :=

∫
Aw dλ is finite and on account of w > 0 has the same null sets as λ. Then the bijection

ωp : Lp (λ) → Lp (ν) with ωp (f) = w
− 1

p · f is a linear isometry and M ◦ ω−1
p : Lp (ν) → C

is a bounded linear functional with
∥∥∥M ◦ ω−1

p

∥∥∥∗
= sup

{∣∣∣∣∣M
(

w
1
p ·ωp(f)

(
∫

|ω(f)|pp·wdλ)
1
p

)∣∣∣∣∣ : ωp(f) ∈ Lp (ν)
}

=

sup
{∣∣∣∣∣M

(
f

(
∫

|f |pdλ)
1
p

)∣∣∣∣∣ : f ∈ Lp (λ)
}

= ∥M∥∗. According to the first part of the proof there is

an ωq
(
dµ
dλ

)
∈ Lq (ν) with

(
M ◦ ω−1

p

)
(ωp (f)) =

∫
ωp (f) · ωq

(
dµ
dλ

)
wdλ for all ωp (f) ∈ Lp (ν) resp.

Mf =
∫
fg dλ for all f ∈ Lp (λ).

9.14 The case p = q = 2

The special case of the Hilbert space with p = q = 2 is the central argument in the proof of
the Lebesgue-Radon-Nikodym theorem 9.8 where [7, p 308 Th 12.5] is used to find a uniquely
determined representant g ∈ L2 (φ) with Mf = ⟨f, g⟩ =

∫
fg dφ for the bounded functional M ∈(

L2 (φ)
)∗ with Mf =

∫
f d|λ|. Alas the isometry of the two spaces is not an issue in this proof.

9.15 Scheffé’s theorem

For bounded positive measures µn resp. µ on a common measurable space (X; A) with µn (X) =
µ (X) < ∞ for n ≥ 1 and λ-a.e. converging densities lim

n→∞
dµn

dλ = dµ
dλ we have lim

n→∞
|µ (A) − µn (A)| =

0 for every measurable A ∈ A.

Proof : By the hypothesis we have lim
n→∞

∫
gndµ = 0 for gn = dµ

dλ − dµn

dλ . Furthermore we have the
integrable majorant dµ

dλ ≥ g+
n ≥ 0 for the positive part whence lim

n→∞

∫
g+
n dµ = 0 by the domi-

nated convergence theorem 5.15 and consequently lim
n→∞

∫
g−
n dµ = lim

n→∞

∫ (
gn − g+

n

)
dµ = 0. Hence

lim
n→∞

|µ (A) − µn (A)| = lim
n→∞

∫
|gn| dµ = lim

n→∞

(∫
g+
n dµ−

∫
g−
n dµ

)
= lim

n→∞

∫
g+
n dµ− lim

n→∞

∫
g−
n dµ = 0.

10 Measures on locally compact spaces

In this section X will always be a locally compact space furnished with the Borel σ-algebra
B (X) = σ (O) induced by its topology O.

10.1 Linear functionals on locally compact spaces

1. The dual space (Cc (X,C))∗ of the complex linear functionals Λ : Cc (X,C) → C on the
Banach space Cc (X,C) of complex continuous functions f : X → C with compact
support under the supremum norm ∥∥ is furnished with the dual norm ∥ ∥∗ defined by
∥Λ∥∗ = sup

{∣∣∣Λ ( f
∥f∥∞

)∣∣∣ : f ∈ Cc (X,C)
}

= sup {|Λf | : f ∈ Cc (X, [0; 1])} according to 9.13 and
considering f ∈ Cc (X,C) ⇒ |f |

∥f∥∞
∈ Cc (X, [0; 1]). According to [10, th. 1.10] every complex

functional Λ is bounded and in particular uniformly continuous with regard to this norm
whence due to [10, th. 1.10] the vector space (Cc (X,C))∗ is a Banach space.

2. The C-linearity of a complex functional Λ implies Λ (Ref + iImf) = ΛRef+iΛImf = ReΛRef−
ImΛImf + iReΛImf + iImΛRef such that it suffices to examine complex linear functionals
Λ : Cc (X,R) → C with real valued arguments as e.g. in the case of Λf =

∫
fd (Reµ) +

i
∫
fd (Imµ) =

∫
fdµ with a complex measure µ = Reµ+ iImµ according to 9.11. A complex

linear functional Λ : Cc (X,C) → C is positive resp. Λ ∈ (Cc (X,C))∗
+ iff for positive f
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the value Λf also is positive, i.e. positive real part ReΛ ∈ (Cc (X,R))∗
+ and vanishing

imaginary part ImΛ = 0, the directly available example being the integral Λf =
∫
fdλ with a

positive measure λ ∈ M
(
B (X) ;R+).

3. Due to their positive character the two classes (Cc (X,C))∗
+ and M

(
B (X) ;R+) are not

vector spaces any more but since we still have have αΓ + βΛ ∈ (Cc (X,C))∗ for every Γ; Λ ∈
(Cc (X,C))∗ and α;β ≥ 0 they are convex cones. The Riesz representation theorem 10.13
resp. 10.14 states that in fact every positive resp. complex functional can be represented as
an integral with regard to a measure with corresponding properties:

10.2 Measures on locally compact spaces

A positive Borel measure µ is outer regular iff µ (A) = inf {µ (O) : A ⊂ O open} and inner
regular iff µ (A) = sup {µ (K) : compact K ⊂ A} respectively for every measurable A ∈ B (X). It
is regular iff both conditions hold for every measurable set A and σ-regular if the latter condition
holds for measurable sets which are either open or σ-finite. A set is σ-finite iff it is a countable
union of sets with finite measure. Hence every inner regular measure is σ-regular and on a σ-finite
space X every σ-regular measure is already regular. A complex Borel measure is regular iff its
variation |µ| is regular.

Examples:

1. On a Hausdorff space X the Dirac measure ϵx (A) = χA (x) for any point x ∈ X and a
Borel set A ∈ B (X) is regular.

2. The measure µ (A) :=
{

0 for A countable
∞ else

defined in 2.3.2 on the σ-algebra B (X) = σ (O) =

O = P (X) of a discrete space X is a locally finite and outer regular Borel measure. It is
inner regular iff X is countable.

3. The Lebesgue measure λn := ⊗
1≤i≤n λ on the Borel σ-algebra Bn of Rn is a σ-finite Borel

measure owing to 7.7 resp. the Heine-Borel theorem [13, p. 9.10]. Its regularity is a con-
sequence of the locally compact character of Rn and follows from the Riesz representation
theorem 10.13 applied to the positive functional Λ with Λf =

∫
fdλn for f ∈ Cc (Rn,R).

10.3 Separation properties on locally compact spaces

X

R

χV

χK

f

For real f ∈ Cc (X,R), open V ⊂ X and compact K ⊂ X
we write K ≺ f iff χK ≤ f ≤ 1 and f ≺ V iff 0 ≤
f ≤ χV . In these terms the separation property [13, th.
10.5] for locally compact spaces states that for every com-
pact K and open V ⊃ K there is an f ∈ Cc (X,R) with
K ≺ f ≺ V resp. µ (K) ≤

∫
fdµ ≤ µ (V ). Since in

a locally compact space the compact neighbourhoods form a
neighbourhood basis we can strengthen this proposition to
χV = sup {f ∈ Cc (X,R) : f ≺ V }.

10.4 The ∥ ∥p-closure of Cc (X,C)

For every positive σ-regular Borel measure λ and 1 ≤ p < ∞ we have Cc (X,C) = Lp (λ) with
regard to ∥ ∥p.

Proof : According to 6.11.1 it suffices to find for every A ∈ B (X) with λ (A) < ∞ a function
g ∈ Cc (X,R) such that ∥χA − g∥p = ∥iχA − ig∥p < ϵ. Since λ is σ-regular and λ (A) < ∞ there is
a compact K and an open V with K ⊂ A ⊂ V and λ (K) < λ (V ) + ϵ as well as a g ∈ Cc (X,R)
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with K ≺ g ≺ V such that λ (K) ≤
∫
gdλ≤λ (V ) whence ∥χA − g∥p ≤ ∥χA − χK∥p + ∥χK − g∥p <

ϵ1/p + ϵ1/p.

10.5 The ∥ ∥∞ closure of Cc (X,C)

The closure C0 (X,C) = Cc (X,C) ⊂ C0 (X,C) with regard to the supremum norm ∥ ∥∞ is the vector
space of the continuous functions vanishing at infinity. These functions can be characterized by
the following three equivalent conditions for every bounded continuous f ∈ C0 (X,C):

1. f ∈ C0 (X,C).

2. f ∈ C (X,C) and the sets {|f | ≥ ϵ} are compact for every ϵ > 0.

3. The extension f : X → C on the Alexandrov-compactification X = X ∪ {∞} defined by
f |X = f and f (∞) = 0 is uniformly continuous.

Proof :

1. ⇒ 2.: For the given ϵ > 0 exists a g ∈ Cc (X,C) with ∥f − g∥ < ϵ
2 whence the closed set {|f | ≥ ϵ}

⊂
{
|g| ≥ ϵ

2
}

⊂ suppg is compact owing to [13, th. 9.4].

2. ⇒ 3.: f is continuous in x = ∞ since according to [13, th. 10.2] the open sets
{∣∣∣f ∣∣∣ < ϵ

}
=

X \ {|f | ≥ ϵ} are contained in the neighbouhood basis of ∞.

3. ⇒ 1.: For every ϵ > 0 exists a compact K ⊂ X with |f (x)| =
∣∣∣f (x) − f (∞)

∣∣∣ ≤ ϵ for every
x ∈ X \K and due to 10.3 there is a g ∈ Cc (X,C) with K ≺ g ≺ X. Then we have f · g ∈ Cc (X,C)
with |f (x) · g (x) − f (x)| = |f (x)| · (1 − g (x)) ≤ ϵ for all x ∈ X, i.e. ∥f · g − f∥ ≤ ϵ which proves the
assertion.

10.6 Lusin’s Theorem

For every positive σ-regular Borel measure λ and f : X → C with λ (f ̸= 0) < ∞ for every ϵ > 0
exists a g ∈ Cc (X,C) such that λ (f ̸= g) < ϵ and ∥g∥ ≤ ∥f∥.

Proof : Due to ⋂
n≥1 {|f | ≥ n} = ∅ and the continuity of λ from above there is an nϵ ∈ N

with λ (A1) < ϵ
4 for A1 = {|f | ≥ nϵ} and hence f ∈ L1 (λ′) with λ′ = λ|X\A1 . According to 10.4

there is a sequence (fn)n∈N ⊂ Cc (X \A1;C) converging in mean to f and according to 5.11 we
have a subsequence uniformly converging on X \ (A1 ∪A2) with λ (A2) < ϵ

4 to f and consequently
f ∈ C (X \ (A1 ∪A2) ;C). By the σ-regularity we find a compact K ⊂ {f ̸= 0} \ (A1 ∪A2) with
λ (A3) < ϵ

4 for A3 = {f ̸= 0} \ (K ∪A1 ∪A2) and f ∈ C (K,C). Since in a locally compact space the
compact neighbourhoods form a neighbourhood basis we find an open set V ⊂ K with compact
closure V which due to the outer regularity of λ we can choose such that w.l.o.g. λ (A4) < ϵ

4
for A4 = V \ K. The compact set V is also normal such that we can apply Tietze’s extension
theorem [13, p. 8.5] to find Reg∗ resp. Img∗ ∈ C

(
V ,R

)
coinciding with Ref resp. Imf on K and

vanishing on the closed boundary V \ V . Extending g∗ = Reg∗ + iImg∗ to X by assigning the value 0
outside V we obtain a g ∈ Cc (X,C) coinciding with f on X \Aϵ ⊂ K ∪X \ (A1 ∪A2 ∪ {f ̸= 0} ∪ V )
with Aϵ = A1 ∪A2 ∪A3 ∪A4 and λ (Aϵ) < ϵ. In order to scale g according to ∥g∥ ≤ ∥f∥ we define a
continuous h : C → C by h (z) = z if |z| ≤ ∥f∥ and h (z) = ∥f∥ · z

|z| otherwise such that ∥h ◦ g∥ ≤ ∥f∥.

10.7 The Vitali-Carathéodory theorem

For every Lebesgue integrable f ∈ L1 (X;R)with positive σ-regular Borel measure λ and ϵ > 0
there are bounded and upper resp. lower semicontinuous (cf. [13, p. 3.3]) functions u; v : X → R
such that u ≤ f ≤ v and

∫
(v − u) dλ < ϵ.
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Proof : We start with f ≥ 0 which due to 5.4 has an approximating sequence (φn)n∈N ⊂ S
(
X;R+

0

)
of step functions such that for every k ≥ 1 there is an nk ≥ 1 with |φnk

(x) − f (x)| < 1
k

for every
x ∈ Zk ⊂ X with µ (Zk) < 1

k such that the sequence sup
k≤m

(
φnk

· χZk
− 2

k

)
m∈N

⊂ S
(
X;R+

0

)
is

increasing and µ-a.e. converges to f . Hence we have measurable sets (Ai)i∈N ⊂ B (X) and positive
ci > 0 such that f = ∑

i≥1 ciχAiand ∑i≥1 ci · λ (Ai) =
∫
fdλ < ∞. Due to the regularity of λ there

are compact Ki and open Vi with Ki ⊂ Ai ⊂ Vi and λ (Vi \Ki) < ϵ
ci·2i+1 . Then u =

N∑
i=1

ciχKi with∑
i≥N ci·λ (Ai) < ϵ

2 is upper semicontinuous, v = ∑
i≥1 ciχVi is lower semicontinuous , u ≤ f ≤ v

and
∫

(v − u) dλ =
N∑
i=1

ci · λ (Vi \Ki) +∑
i≥N ciλ (Vi) ≤

∑
i≥1 ci · λ (Vi \Ki) +∑

i≥N ciλ (Ai) < ϵ
2 + ϵ

2 .

In the general case we apply the first step to the positive and negative parts of f = f+ − f− to find
corresponding u+ ≤ f+ ≤ v+ resp. u− ≤ f− ≤ v− such that u = u+−v− ≤ f is upper semicontinuous,
v = v+ − u− ≥ f is lower semicontinuous and

∫
(v − u) dλ =

∫ (
v+ − u+) dλ−

∫
(v− − u−) dλ < ϵ.

10.8 Positive functionals are bounded on compact sets

Every positive Λ : Cc (X,C) → C is bounded on CK (X,C) for every compact K.

Proof : Due to the separation property [13, p. 10.5] of locally compact spaces already cited in 10.1
there is a continuous g : X → [0; 1] with g−1 ({1}) = K and compact support. Then for f ∈ CK (X,C)
we have ∥Ref∥·g±Ref ≥ 0 whence Λ (∥Ref∥ · g)±Λ (Ref) = ∥Ref∥·Λg±Λ (Ref) ≥ 0, i.e. Λ

(
Ref
∥f∥

)
≤

Λ
(

Ref
∥Ref∥

)
≤ Λg and since the same is true for Imf we obtain

∣∣∣Λ ( f
∥f∥

)∣∣∣ =
∣∣∣Λ (Ref

∥f∥

)
+ iΛ

(
Imf
∥f∥

)∣∣∣ ≤
√

2 · Λg < ∞.

10.9 Decomposition of complex and bounded real functionals

1. Every bounded real functional Λ ∈ (Cc (X,R))∗ has a decomposition Λ = Λ+ − Λ− with
positive real and bounded Λ+; Λ− ∈ (Cc (X,R))∗.

2. Every complex functional Λ ∈ (Cc (X,R))∗ allows the decomposition into four positive real
and bounded functionals ReΛ+; ReΛ−; ImΛ+; ImΛ− ∈ (Cc (X,R))∗ such that Λf = ReΛ+f −
ReΛ−f + i

(
ImΛ+f + ImΛ−f

)
.

Note: Recall that according to the definition in 10.1 a positive complex linear functional Λ :
Cc (X,C) → C has a positive real part ReΛ ∈ (Cc (X,R))∗

+ and a vanishing imaginary part
ImΛ = 0 whence the decompostion from 2. extends to positive functionals Λ : Cc (X,C) → C as in
the following theorem:

Proof :

1. For positive f ∈ Cc (X,R) define Λ+f := sup {Λg : g ∈ Cc (X,R) ; 0 ≤ g ≤ f} such that 0 ≤
Λ+f ≤ ∥Λ∥∗ ∥f∥, i.e. Λ+is positive and bounded. For positive c ∈ R we have g ≤
cf ⇔ g = cg′ : g′ ≤ f for any positive g; g′ ∈ Cc (X,R) such that Λ+ (cf) = cΛ+f thus es-
tablishing conformity with scalar muplitplication. With regard to additivity we take any
positive f1; f2; g1; g2; g ∈ Cc (X,R) with g1 ≤ f1, g2 ≤ f2 resp. g ≤ f1 + f2 in order to
note that Λ+f1 + Λ+f2 = sup Λ+g1 + sup Λ+g2 = sup

(
Λ+g1 + Λ+g2

)
= sup Λ+ (g1 + g2) ≤

sup Λ+g = Λ+ (f1 + f2) and conversely inf (g; f1) ≤ f1 resp. g − inf (g; f1) ≤ f2 hence Λ+g ≤
Λ+f1+Λ+f2,i.e. Λ+ (f1 + f2) = sup Λ+g ≤ Λ+f1+Λ+f2 thus demonstrating additivity. We ex-
tend Λ+ to real f ∈ Cc (X,R) with decomposition f = f+ −f−with positive f+; f− ∈ Cc (X,R)
by means of Λ+f := Λ+f+ − Λ+f− being independent of the choice of the decomposition and
hence well defined as well as linear on account of the linearity of the components. The same
is true for Λ− := Λ − Λ+which completes the proof.

2. directly follows from 1.
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10.10 The outer measure of a positive functional

For every positive functional Λ : Cc (X,C) → C the set function µ : P (X) → [0; ∞] defined by µ (V )
= sup {Λg : g ≺ V } for open V ⊂ X and µ (A) = inf {µ (V ) : A ⊂ V open} for arbitrary A ⊂ X is an
outer measure according to 10.1 with the additional regularity property µ (K) ≤ Λg ≤ µ (V )
for any compact K, open V and g ∈ Cc (X,R) with K ≺ g ≺ V .
Proof : Obviously we have µ (∅) = 0 and µ (A) ≤ µ (B) if A ⊂ B. The subadditivity requires
more attention. We start with µ (U ∪ V ) ≤ µ (U) + µ (V ) for open U and V : Let f ≺ U ∪ V and
Φ = {sup (g;h) : g ≺ U ;h ≺ V } and Φf =

{
inf
(
f ; f

)
: f ∈ Φ

}
. Then f = supΦf ≤ supΦ = χU∪V

such that on account of Dini’s theorem [13, p. 9.12] and the continuity of Λ we have
Λf = Λ supΦf

= sup ΛΦf
= sup {Λ (inf (f ; sup (g;h))) : g ≺ U ;h ≺ V }
≤ sup {Λ (inf (f ; g) + inf (f ;h)) : g ≺ U ;h ≺ V }
≤ sup {Λ (g + h) : g ≺ U ;h ≺ V } ≤ µ (U) + µ (V ) .

Since this estimate holds for every f ≺ U∪V we obtain the subadditivity for open sets. In order to show
the σ-subadditivity 3.2.3 we take a sequence (An)n∈N of arbitrary subsets with A = ⋃

n∈NAn, open
sets Vn with An ⊂ Vn and µ (An) ≤ µ (Vn) + ϵ2−n such that A ⊂ V = ⋃

n∈N Vn. Since any g ≺ V has a
compact support there is an n ∈ N with g ≺

⋃
k≤n V and hence Λg ≤ µ

(⋃
k≤n Vn

)
≤
∑
k≤n µ (Vn) due

to the subadditivity inductively extended to finite unions. Again we use the validity of this estimate
for every g ≺ V to infer µ (A) ≤ µ (V ) ≤

∑
n∈N µ (An) + ϵ thus proving the main assertion.

X

R χK
f

g

χ{g>1−ϵ}

Concerning the additional regularity property we only have to
show the left inequality: For any ϵ > 0 we have K ⊂ {g > 1 − ϵ}
and hence a f ∈ Cc (X) with on the one hand K ≺ f ≺ {g > 1 − ϵ}
such that (1 − ϵ) f ≤ g, i.e. (1 − ϵ) Λf ≤ Λg and on the other hand
Λf ≥ µ ({g > 1 − ϵ})−ϵ ≥ µ (K)−ϵ whence (µ (K) − ϵ) (1 − ϵ) ≤ Λg
which proves the assertion.

10.11 σ-Additivity of the outer measure on sets of finite measure
The outer measure µ determined by Λ according to the preceding lemma 10.10 is σ-
additive and hence a pre-measure on the algebra A (X) of all sets A ⊂ X with µ (A) =
sup {µ (K) : A ⊃ K compact} < ∞. Furthermore A (X) contains all open sets.
Proof : For brevity in this proof we omit the argument and write A for A (X).
Step I. Every compact set K has a finite measure and hence belongs to A: There is an open
V ⊂ K with compact closure V such that the separation property of locally compact spaces ensures
the existence of f, g ∈ Cc (X) with K ≺ f ≺ V resp. V ≺ g ≺ X hence g − f ≥ 0 ⇒ Λ (g − f) ≥ 0 ⇒
Λf ≤ Λg < ∞ due to the positiv and linear character of Λ. Furthermore we can choose f such that
µ (V ) ≤ Λf + ϵ whence µ (K) ≤ µ (V ) ≤ Λf + ϵ ≤ Λg + ϵ < ∞.
Step II. A contains every open set V : In the case of µ (V ) = 0 the definition of µ immediately yields
µ (K) = inf {µ (V ) : K ⊂ V open} = 0 for every compact K ⊂ V . Hence we can assume µ (V ) > 0
and for every ϵ > 0 the existence of an f ≺ V with µ (V ) − ϵ < Λf < µ (V ) and compact support
K = {f > 0}. For every open W ⊃ K we have f ≺ W and hence Λf ≤ µ (K) and consequently
µ (V ) − ϵ < Λf ≤ µ (K) < µ (V ) < ∞ on account of K ⊂ V and 10.10.
Step III. µ is finitely additive for compact sets: For disjoint and compact sets K,L and ϵ > 0
according to the separation property [13, p. 10.5] of locally compact spaces choose disjoint and
open U ⊃ K, V ⊃ L and an open W ⊃ K ∪ L with µ (W ) < µ (K ∪ L) + ϵ as well as f ≺ U ∩ W
resp. g ≺ V ∩W with Λf > µ (U ∩W ) − ϵ resp. Λg > µ (V ∩W ) − ϵ. We then have µ (K) + µ (L) ≤
µ (W ∩ U) + µ (W ∩ V ) ≤ Λf + Λg + 2ϵ = Λ (f + g) + 2ϵ ≤ µ (W ) + 2ϵ ≤ µ (K ∪ L) + 3ϵ. Since the
reverse inequality follows from the montonicity of µ we have proved the asssertion.
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Step IV. µ is σ-additive on A: For a sequence (An)n∈N ⊂ A with A = ⋃
n∈NAn there are compact

Kn ⊂ An with µ (An) ≤ µ (Kn)+ϵ2−n whence
n∑
k=1

µ (Ak) ≤
n∑
k=1

µ (Kk)+ϵ = µ

(
n⋃
k=1

Kk

)
+ϵ ≤ µ (A)+ϵ.

Since this estimate remains valid for n → ∞ and ϵ → 0 we obtain ∑n∈N µ (An) ≤ µ (A) and with the
reverse inequality following from property 3.2.3 of the outer measure we have proved the assertion.
Furthermore we note that for every sequence (An)n∈N ⊂ A the union A = ⋃

n∈NAn also belongs to
A if it has finite measure, i.e. for finite µ the algebra A is a σ-algebra. This will be used of in the
subsequent lemma to construct the actual σ-algebra M carrying the measure µ determined by Λ.

A
K L

B VU

Step V. A is an algebra: Clearly ∅ ∈ A. For A,B ∈ A we
can find compact K,L and open U, V such that K ⊂ A ⊂ V
resp. L ⊂ B ⊂ V and µ (K) ≤ µ (A) ≤ µ (U) < µ (K) + ϵ resp.
µ (L) ≤ µ (B) ≤ µ (V ) < µ (L) + ϵ. By the finite additivity of µ
follows µ (U \K) , µ (V \ L) < ϵ and with (U ∪ V ) \ (K ∪ L) ⊂
(U \K) ∪ (V \ L) we get µ (A ∪B) < µ (K ∪ L) + 2ϵ and hence
A ∪ B ∈ A. Regarding the intersection we note that K \ V ⊂
A \ B ⊂ V \ L and the two outer sets are open with (V \ L) \
(K \ V ) ⊂ (U \K) ∪ (V \ L) so that A \ B ∈ A and finally
A ∩B = B \ (B \A) ∈ A.

10.12 σ-Additivity of the outer measure on L (X)

The outer measure µ determined by Λ according to lemma 10.10 is σ-additive and hence a measure
on the Lebesgue σ-algebra L (X) = ⋂

K compact
LK (X) with LK (X) = {A ⊂ X : A ∩K ∈ A (X)}

including the Borel σ-algebra B (X) as well as the algebra A (X) of sets of finite measure introduced
in the preceding lemma 10.11. A (X) consists precisely of all sets of finite measure in L (X). In
particular µ is complete, outer regular and σ-regular on L (X).

Proof : Again we abbreviate A = A (X) etc. Obviously we have A ⊂ L. According to the step IV of
the proof of the preceding lemma the families LK are σ-algebrae and so is L. Every LK contains all
closed sets (cf. [13, p. 9.4] and hence B (X) ⊂ L. Every µ-null set A ⊂ X with µ (A) = 0 is either
empty or contains a point x ∈ A ⊂ X and hence a compact set {x} ⊂ A which must have the measure
µ ({x}) = 0 due to the monotonicity of µ. Hence A ∈ L and in particular µ is complete.

For A ∈ L with µ (A) < ∞ there is an open V ⊃ A with µ (V ) < ∞. Furthermore according
to step II in the proof of 10.11 we can find a compact K ⊂ V such that µ (V ) < µ (K) + ϵ.
Since A ∩ K ∈ A there is a compact KA ⊂ A ∩ K such that µ (A ∩K) < µ (KA) + ϵ. With
A ⊂ (A ∩K)∪V \K we obtain µ (A) ≤ µ (A ∩K)+µ (V \K) ≤ µ (KA)+2ϵ and since ϵ was arbitrary
we have µ (A) = sup {µ (K) : A ⊃ K compact} whence follows A ∈ A. Finally the σ-additivity of
µ extends from A to L since for a disjoint sequence (An)n∈N ⊂ L with µ (An) < ∞ for all n ∈ N
we have (An)n∈N ⊂ A such that the preceding lemma applies. In the case of µ (An) = ∞ for an
n ∈ N the σ-additivity follows from the monotonicity of µ. Due to its definition in 10.10 µ is outer
regular on L. According to 10.11 it is inner regular for all sets open or with finite measure.
For ϵ > 0 and a σ-finite set A = ⋃

n∈NAn with µ (An) < ∞ and w.l.o.g An ⊂ An+1 for n ∈ N we
find compact Kn ⊂ An with µ (Kn) ≥ µ (An) − ϵ

2 for n ∈ N. In the case of µ (A) < ∞ there is an
m ∈ N with µ (Am) ≥ µ (A) − ϵ

2 and hence µ (Km) ≥ µ (A) − ϵ. In the case of µ (A) < ∞ for every
N ∈ N there is an m ∈ N with µ (Am) ≥ N + ϵ

2 and hence µ (Km) ≥ N . Hence we have shown that
µ (A) = sup {µ (K) : K compact with K ⊂ A}.
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10.13 The Riesz representation theorem for positive functionals

The normed, complete and closed convex cone (Cc (X,C))∗
+ of the positive functionals on

Cc (X,C) with the norm ∥∥∗defined by ∥Λ∥∗ = sup
{∣∣∣Λ ( f

∥f∥∞

)∣∣∣ : f ∈ Cc
(
X,R+)} is positively iso-

metric and isomorphic to the normed, complete and convex cone Mσ0
(
L (X) ;R+) of the

complete, outer and σ-regular positive Borel measures on a σ-algebra L (X) including the Borel
σ-algebra B (X) ⊂ L (X) under the norm ∥∥ with ∥µ∥ = µ (X) by µ ≃ Λ iff Λf =

∫
fdµ for every f ∈

Cc (X,C).
Notes:

1. Corresponding to the restriction of the algebraic closure to positive scalars in a convex cone
as given in 10.1 we define a positive vector isomorphism between convex cones C∗ and M
as a bijection µ : C∗ → M with µαΛ+βΓ = αµΛ + βµΓ for every Γ; Λ ∈ C∗ and α;β ≥ 0.

2. The norm ∥∥ on Mσ0
(
L (X) ;R+) induces a subclass of the weak topology which will be

examined in 11.8.
3. Apart from above used outer or principal measure defined in 10.10 by µ (V ) = sup {Λg : g ≺ V }

for open V ⊂ X and µ (A) = inf {µ (V ) : A ⊂ V open} for arbitrary A ⊂ X there are other
representation measures, among them the inner or essential measure defined in 11.1 by µ̊ (K)
= inf {Λg : K ≺ g} for compact K ⊂ X resp. µ̊ (A) = sup {µ̊ (K) : compactK ⊂ A} for ar-
bitrary A ⊂ X. The inner measure is not necessarily complete but obviously finite on
compact sets and inner regular, i.e. a Radon measure according to the definition in 10.1.
Furthermore it is uniquely defined by these properties whence we have a second variation of
the Riesz representation theorem: The convex cone (Cc (X,C))∗

+ of the positive function-
als on Cc (X,C) is positively isometric and isomorphic to the convex cone Mc

i0
(
B (X) ;R+)

of the Radon measures on B (X) with µ ≃ Λ iff Λf =
∫
fdµ for every f ∈ Cc (X,C). According

to 11.1 the outer and the inner measure coincide on σ-compact spaces.
Proof :
Step I. Uniqueness: Assuming that there are two σ-regular and complete positive Borel measures
µ1 and µ2 such that

∫
fdµ1 =

∫
fdµ2 for all f ∈ Cc (X,C) for every ϵ> 0, compact K ⊂ X open

V ⊃ K with µ2 (V ) < µ2 (K) + ϵ and f ∈ Cc (X,R) with K ≺ f ≺ V , i.e. χK ≤ f ≤ χV follows
µ1 (K) ≤

∫
fdµ1 =

∫
fdµ2 ≤ µ2 (V ) ≤ µ2 (K) + ϵ. and vice versa. Hence the two measures coincide

on the compact sets and due to their σ-regularity this identity extends first to the open sets and
by the uniqueness theorem 3.4 to all measurable sets.
Step II. Existence: Since the f ∈ Cc (X,C) are continuous and in particular Borel measurable
we can restrict the measure µ determined by Λ according to lemma 10.10 on the σ-algebra L (X) from
10.12 to the Borel σ-algebra B (X) ⊂ L (X). On account of ReΛf = ΛRef resp. ImΛf = ΛImf for
positive functionals it suffices to show the equation for real f . Since f ∈ Cc (X) ⇔ −f ∈ Cc (X) we
only have to show Λf ≤

∫
fdµ for every f ∈ Cc (X,R). Since the step functions defining the integral

are not continuous we have to take recourse to a corresponding partition of unity consisting of
continuous functions of compact support being amenable to Λ and providing a result which can be
compared to the integral. Furthermore the general case only provides for pointwise convergence
so that we need the compactness of the support K = {f ̸= 0} in order to find elementary functions
uniformly converging to f : For ϵ > 0 let Ak = {kϵ ≤ f < (k + 1) ϵ} with −n ≤ k ≤ n =

[
∥f∥
ϵ

]
such that (Ak)|k|≤n is a partition of the compact support K =

n⋃
k=−n

Ak and e =
n∑

k=−n
kϵχAk

∈ S (X)

according to 5.2 and 5.4 such that e ≤ f ≤ e + ϵ whence
∫
edµ≤

∫
fdµ ≤

∫
edµ + ϵ · µ (K) . Due to

10.10 for every |k| ≤ n there is an open Vk with Ak ⊂ Vk ⊂ {f < e+ ϵ} and µ (Vk) ≤ µ (Ak) + ϵ
n∥f∥ .

On account of [13, 8.9, 9.5 and 10.5] we can find a partition of unity (hk)|k|≤n ⊂ Cc (X,R) subordinate

to (Vk)|k|≤n with fhk ≺ Vk and fhk ≤ (k + 1) ϵhk as well as K ≺
n∑

k=−n
hk such that µ (K) ≤

n∑
k=−n

Λhk.

Thus we have
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Λf =
n∑

k=−n
Λfhk

≤
n∑

k=−n
(k + 1) ϵΛhk

=
n∑

k=−n
(kϵ+ ϵ+ ∥f∥) Λhk − ∥f∥

n∑
k=−n

Λhk

≤
n∑

k=−n
(kϵ+ ϵ+ ∥f∥)µ (Vk) − ∥f∥µ (K)

≤
n∑

k=−n
(kϵ+ ϵ+ ∥f∥)

(
µ (Ak) + ϵ

n ∥f∥

)
− ∥f∥µ (K)

≤
∫
edµ+ ϵµ (K) + ∥f∥µ (K) + 2 (n (n+ 1) ϵ+ 2n ∥f∥) ϵ

n ∥f∥
− ∥f∥µ (K)

=
∫
edµ+ ϵµ (K) + 2 (n+ 1) ϵ2

∥f∥
+ 2ϵ

≤
∫
fdµ+ ϵµ (K) + 6ϵ.

Step III. The map µ 7→ Λ is isometric: In the case of µ (X) < ∞ on the one hand we have ∥Λ∥∗

= sup
{∣∣∣∣∫ fdµsup|f |

∣∣∣∣ : f ∈ Cc (X,R)
}

= sup
{
|
∫
fdµ| : f ∈ Cc

(
X,R+) , sup f = 1

}
≤ µ (X) = ∥µ∥. On the

other hand according to Lusin’s theorem 10.6 for every ϵ > 0 there exists a g ∈ Cc (X,C) such that
µ (g ̸= 1) < ϵ and ∥g∥ ≤ 1. This implies ∥Λ∥∗ ≥ |

∫
X gdµ| ≥ |µ (X \ {g ̸= 1}) − µ (g ̸= 1)| ≥ µ (X) − 2ϵ

whence ∥Λ∥∗ ≥ ∥µ∥. Hence in the finite case we conclude that ∥Λ∥∗ = ∥µ∥ and the estimates also
show that ∥Λ∥∗ < ∞ iff µ (X) < ∞.

Step IV. The convex cone (Cc (X,C))∗
+ is normed, complete and closed: For every Λ ∈

(Cc (X,C))∗ \(Cc (X,C))∗
+ there is an f ∈ Cc (X, [0; 1]) and an ϵ > 0 such that Λf < −ϵ. Due to [10, th.

1.10] the bounded functional Λ is uniformly continuous such that there is a δ > 0 with Λ [Bδ (f)] ⊂

Bϵ/2 (Λf) ⊂ R. Then for every Γ ∈ Bϵ·∥f∥ (Λ) =
{

Γ ∈ (Cc (X,C))∗ : ∥Γ∥∗ = sup
∥g∥≤1

Γg < ϵ · ∥f∥
}

we

have Γ
(

f
∥f∥

)
< ϵ, i.e. Bϵ·∥f∥ (Λ) ⊂ (Cc (X,C))∗ \ (Cc (X,C))∗

+. Hence (Cc (X,C))∗
+ is a closed sub-

set of the vector space (Cc (X,C))∗ and since according to [10, th. 7.1] the set (Cc (X,C))∗
+ is a

Banach space the completeness follows from [13, th. 14.2.2]. The corresponding properties of
Mσ0

(
L (X) ;R+) are a consequence of the isometry between the two spaces.

10.14 The Riesz representation theorem for complex functionals

The Banach space (Cc (X,C))∗ with the norm ∥∥∗defined by ∥Λ∥∗ = sup
{∣∣∣Λ ( f

∥f∥∞

)∣∣∣ : f ∈ Cc
(
X,R+)}

is isometric and isomorphic to the Banach space M0 (B (X) ;C) of complex regular Borel
measures on B (X) under the norm ∥∥ with ∥µ∥ = |µ| (X) defined in 9.1 with µ ≃ Λ iff Λf =∫
fdµ =

∫
f dµ
d|µ|d|µ| for every f ∈ Cc (X,C) (cf. 9.8).

Note: According to [10, th. 7.1] the completeness of the dual space (Cc (X,C))∗ follows from
the completeness of C while the corresponding property of the space M0 (B (X) ;C) is a consequence
of the isometry with (Cc (X,C))∗. The topology on Mσ0

(
L (X) ;R+) induced a norm ∥∥ will be

examined in 11.8.

Proof : According to [13, th. 20.6.6] and 9.4 the closed vector subspace M0 (L (X) ;C) of the Banach
space M (L (X) ;C) is again a Banach space.

The map µ 7→ Λ is well defined and C-linear: The complete and regular complex measure
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µ = Reµ+ − Reµ− + i
(
Imµ+ − Imµ−) with

µ (A) =
∫
χAReh+d|µ| −

∫
χAReh−d|µ| + i

(∫
χAImh+d|µ| −

∫
χAImh−d|µ|

)
represented by four complete and regular positive measures according to 9.11 is mapped to the
complex functional Λ with

Λf =
∫
fdµ =

∫
fReh+d|µ| −

∫
fReh−d|µ| + i

(∫
fImh+d|µ| −

∫
fImh−d|µ|

)
constructed of four positive bounded functionals matching the four summands in the decomposi-
tion of Λ in 10.9.2. Since the range of µ resp. Λ has been extended to C the map is now completely
C-linear.

The map µ 7→ Λ is surjective: For every complex functional Λ = ReΛ+ − ReΛ− + i
(
ImΛ+ + ImΛ−)

each positive bounded functional of the decomposition according to 10.9.2 is represented by an
integral, e.g. ReΛ+f =

∫
fd
(
Reµ+) for every f ∈ Cc (X,C) resp. a complete and σ-regular positive

Borel measure Reµ+ etc. due to the preceding version 10.13 of the Riesz representation theorem
such that µ = Reµ+ − Reµ− + i

(
Imµ+ − Imµ−) is the uniquely determined complete and σ-regular

complex Borel measure with Λf =
∫
fdµ for every f ∈ Cc (X,C). For any complete and σ-regular

positive Borel measure λ determined by a positive bounded functional Γ, every compact K and
f ∈ Cc (X, [0; 1]) with K ≺ f according to 10.13 we have λ (K) ≤

∫
fdλ

11.9= Γf
11.1
≤ ∥Γ∥∗ · ∥f∥ = ∥Γ∥∗

and on account of the regularity condition follows ∥λ∥ = µ (X) = sup {λ (K) : K compact} ≤ ∥Γ∥∗.
Hence every component of µ is finite and since this condition transfers to µ itself it is also regular.

The map µ 7→ Λ is injective: Assuming Λ = 0, i.e. Λf =
∫
fhd|µ| = 0 for every f ∈ Cc (X,C). Since

according to 10.4 the space Cc (X,C) is dense in L1 (|µ|) this implies
∫
χAhd|µ| =

∫
A hd|µ| = 0 for

every measurable A and hence |µ|-a.e. h = 0. But on the other hand we have |h| = 1 which only
leaves |µ| (X) = 0, i.e. µ = 0. Thus the kernel of the isomorphism µ 7→ Λ contains only the trivial
element 0 which implies the assertion.

The map µ 7→ Λ is isometric: On the one hand we have ∥Λ∥∗ = sup
{∣∣∣∣∫ fhd|µ|

sup|f |

∣∣∣∣ : f ∈ Cc (X,R)
}

=
sup

{
|
∫
fhd|µ|| : f ∈ Cc

(
X,R+) , sup f = 1

}
≤ |µ| (X) = ∥µ∥. On the other hand according to Lusin’s

theorem 10.6 for every ϵ > 0 there exists a g ∈ Cc (X,C) such that |µ|
(
h ̸= g

)
< ϵ and ∥g∥ ≤ 1. This

implies ∥Λ∥∗ ≥
∫
X ghd|µ| ≥ |µ|

(
X \

{
h ̸= g

})
− |µ|

(
h ̸= g

)
≥ |µ| (X) − 2ϵ whence ∥Λ∥∗ ≥ ∥µ∥.

11 Vague convergence on locally compact spaces

11.1 The inner measure of a positive functional

On a locally compact space X for every positive functional Λ : Cc (X,C) → C the inner measure
µ̊ : P (X) → [0; ∞] defined by

1. µ̊ (K) = inf {Λg : K ≺ g} for compact K ⊂ X resp. µ̊ (A) = sup {µ̊ (K) : compactK ⊂ A}
for arbitrary A ⊂ X

coincides with the outer measure µ defined in 10.10 by

2. µ (O) = sup {Λg : g ≺ O} for open O ⊂ X resp. µ (A) = inf {µ (O) : A ⊂ O open} for arbitrary
A ⊂ X

on Borel sets of finite outer measure : µ̊ (A) = µ (A) ∀A ∈ B (X) with µ (A) < ∞.

In particular the inner and the outer measure coincide on the Borel σ-algebra B (X) of every
locally and σ-compact space X.
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Proof : Due to 10.3 for every compact K and open O with K ⊂ O there
is g ∈ Cc (X,R) with K ≺ g ≺ O.

Step I: µ̊ (O) = µ (O) for every open O ⊂ X since obviously µ̊ (O)
= sup {inf {Λg : K ≺ g} : compactK ⊂ O} ≤ sup {Λg : g ≺ O} = µ (O).
Conversely the assumption µ̊ (O)< µ (O) implies the existence of a g ≺ O
such that for every compact K ⊂ O there is an K ≺ f with Λf < Λg.
Since one of these f must coincide with g we have a contradiction whence
follows the equality.

Step II: µ̊ (K) = µ (K) for every compact K ⊂ X since obviously µ̊ (K)
= inf {Λg : K ≺ g} ≤ inf {sup {Λg : g ≺ O} : K ⊂ O open} = µ (K). Con-
versely the assumption µ̊ (K)< µ (K) implies the existence of a K ≺ g such
that for every open O ⊃ K there is an f ≺ O with Λg < Λf . Since one
of these f must coincide with g we have a contradiction whence follows the equality.

Step III: µ̊ (A) = µ (A) for arbitrary A ∈ B (X) since the assumption µ̊ (A) > µ (A) implied the
existence of compact K and open O with K ⊂ A ⊂ O and µ̊ (K)> µ (O) whence from step II
followed µ (K) = µ̊ (K)> µ (O) in contradiction to the monotonicity of µ. Conversely for every
ϵ > 0 there is an open U ⊃ A with µ (U \A) = µ (U) − µ (A) < ϵ

2 and due to step I resp. step
II there is a compact L ⊂ U with µ (U \ L) = µ (U) − µ (L) = µ̊ (U) − µ̊ (L) < ϵ

2 . Hence we have
µ (Q) < ϵ for Q = (U \A)∪(U \ L) = U \(A ∩ L) and according to the definition of the outer measure
an open G ⊃ Q with µ (G) < ϵ. Then K = L \ G ⊂ A is compact with A \ K ⊂ G such that
µ (A) − µ (K) = µ (A \K) ≤ µ (G) < ϵ whence µ (A) < µ (K) + ϵ = µ̊ (K) + ϵ ≤ µ̊ (A) + ϵ.

11.2 Radon measures

On a locally and σ-compact space X every Radon measure µ ∈ Mc
i0
(
B (X) ;R+) defined as an

inner regular positive Borel measure µ on B (X) with µ (K) < ∞ for every compact K ⊂ X is
σ-finite and regular.

Note: According to 10.2 on a locally and σ-compact space X the Radon measures Mc
i0
(
B (X) ;R+)

coincide with the normed, complete and convex cone of the positive regular measures M0
(
B (X) ;R+)

under the norm ∥∥ with ∥µ∥ = µ (X). The corresponding norm topology will be examined in 11.8.

Proof : Since X is σ-compact and µ (K) < ∞ for every compact K ⊂ X the measure µ is σ-finite.
The regularity is a direct consequence of the preceding theorem 11.1 and the Riesz representation
theorem for positive functionals 10.13.

11.3 The Lebesgue measure

Since Rn is σ-compact we can apply the preceding theorem to the Lebesgue-Borel measure λn and
obtain its σ-finite, regular and complete extension, the Lebesgue measure λn on the extended
σ-algebra L (Rn) of the Lebesgue measurable sets. A set A is Lebesgue measurable iff there
are an Fσ-set F and a Gδ-set G such that F ⊂ A ⊂ G and λn (G \ F ) = 0. This follows from 10.11
resp. 10.12 and the σ-compactness of Rn together with the observation that for any σ-compact set
A with A = ⋃

n∈NKn for a sequence of compact Kn and any other given compact K the intersection
A ∩ K ∈ A (X) since λn (A ∩K) = sup {λn (Kn ∩K)} < ∞. Consequently every Lebesgue set is
the union of a Borel measurable Gδ-set and a λn-null set. Thus every Lebesgue measurable
function f coincides λn-a.e. with a Borel measurable function f0 and identical integral

∫
A fd =

∫
A f0d

for every Lebesgue measurable A. The translation invariance 8.8 as well as the transformation
formula 8.9 extend from B (X) to L (X)due to the regularity of λn.
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11.4 The vague topology

For a topological space X the vague topology is the initial topology on the family of positive
Borel measures M

(
B (X) ;R+) with regard to the maps {µ 7→

∫
fdµ : f ∈ Cc (X;R)}, i.e. it is the

weakest or smallest topology on M
(
B (X) ;R+) such that these maps are continuous.

In the case of a locally compact space X according to the Riesz representation theorem for pos-
itive functionals 10.13 these maps are isometric isomorphisms on Mσ0

(
L (X) ;R+) with regard

to the much stronger and larger topology of uniform convergence induced by the supremum
norm.

The vague topology on the convex cone of the Radon measures Mc
i0
(
B (X) ;R+) on a locally

compact space X is generated by the subbasis

S =
{
Vf ;ϵ (µ) : ν ∈ Mc

i0

(
B (X) ;R+

)
; f ∈ Cc (X;R) ; ϵ > 0

}
formed by the neighbourhoods

Vf ;ϵ =
{
µ; ν ∈ Mc

i0

(
B (X) ;R+

)
:
∣∣∣∣∫ fdµ−

∫
fdν

∣∣∣∣ < ϵ

}
.

On a locally compact space X a sequence (µn)n≥1 ⊂ Mc
i0
(
B (X) ;R+) ⊂ Mσ0

(
L (X) ;R+) of

Radon measures vaguely converges to a µ ∈ Mc
i0
(
B (X) ;R+) iff one of the following two equiv-

alent conditions holds:

1. lim
n→∞

∫
fdµn =

∫
fdµ for every f ∈ Cc (X;R).

2. lim sup
n→∞

µn (K) ≤ µ (K) for every compact K ⊂ X and lim inf
n→∞

µn (G) ≥ µ (G) for every open
G ⊂ X.

Examples:

3. Since X is a Hausdorff space and [13, th. 9.4] for every convergent sequence (xn)n≥1 ⊂ X
with lim

n→∞
xn = x ∈ X the sequence (δxn)n≥1 vaguely converges to δx. Obviously we have

lim
n→∞

δxn (A) = 1 ̸= 0 = δx (A) for every open A ⊂ X with x ∈ δA.

4. For every sequence (xn)n≥1 ⊂ X without accumulation points (cf. [13, th. 2.7]) in X every
compact K contains only finitely many xj (cf. [13, th. 9.2.3]) such that the sequence (δxn)n≥1
vaguely converges to the null measure 0.

Proof :

1. ⇒ 2. : According to 10.1 for every compact K there is an f ∈ Cc (X,R) with K ≺ f whence follows
lim sup
n→∞

µn (K) ≤ lim
n→∞

∫
fdµn =

∫
fdµ . Due to 11.1.1 and the Riesz representation theorem 10.13

we have µ (K) = inf {
∫
fdµ : K ≺ f} and consequently lim sup

n→∞
µn (K) ≤ µ (K). According to 10.1 for

every open V ⊃ K there is an f ∈ Cc (X,R) with f ≺ V whence follows
∫
fdµ = lim

n→∞

∫
fdµn ≤

lim inf
n→∞

µn (V ). Due to 11.1.2 and 10.13 we have µ (V ) = sup {
∫
fdµ : f ≺ V open} and consequently

µ (V ) ≤ lim inf
n→∞

µn (V ).

2. ⇒ 1. :By the decomposition f = f+ − f− with f+; f− ∈ Cc
(
X;R+) w.l.o.g. we assume f ∈

Cc
(
X;R+). For every m ≥ 1 we consider the compact sets K0 = {f ≥ 0} = suppf , Ki ={

f ≥ i
m ∥f∥

}
and Ai = Ki−1 \ Ki resp. the open sets G0 = {f > 0} = K̊0, Gi =

{
f > i

m ∥f∥
}

and Bi = Gi−1 \ Gi for 1 ≤ i ≤ m + 1. Note that Km+1 = Gm = Gm+1 = ∅. On account

of
m+1∑
i=1

i−1
m ∥f∥χAi ≤ f <

m+1∑
i=1

i
m ∥f∥χAi resp.

m∑
i=1

i−1
m ∥f∥χBi < f ≤

m∑
i=1

i
m ∥f∥χBi for every

Radon measure ν ∈ Mc
0
(
B (X) ;R+) follows

m+1∑
i=1

i−1
m ∥f∥ ν (Ai) ≤

∫
fdν <

m+1∑
i=1

i
m ∥f∥ ν (Ai) resp.
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m∑
i=1

i−1
m ∥f∥ ν (Bi) <

∫
fdν ≤

m∑
i=1

i
m ∥f∥ ν (Bi). For 1 ≤ i ≤ m + 1 we have ν (Ai) = ν (Ki−1) − ν (Ki)

resp. ν (Bi) = ν (Gi−1) − ν (Gi) whence 1
m

m+1∑
i=0

ν (Ki) − 1
mν (K0) = 1

m

m+1∑
i=1

ν (Ki) ≤
∫
fdν <

1
m

m+1∑
i=0

ν (Ki) resp. 1
m

m∑
i=0

ν (Gi) − 1
mν (G0) = 1

m

m∑
i=1

ν (Gi) <
∫
fdν ≤ 1

m

m∑
i=0

ν (Gi). For ν = µn

the right resp. left hand sides yield
∫
fdµn < 1

m

m+1∑
i=0

ν (Ki) resp. 1
m

m∑
i=1

ν (Gi) <
∫
fdµn for every

n ≥ 1 whence 1
m

m∑
i=1

ν (Gi) ≤ lim inf
n→∞

∫
fdµn ≤ lim sup

n→∞

∫
fdµn< 1

m

m+1∑
i=0

ν (Ki). For ν = µ the left

resp. right hand sides yield 1
m

m+1∑
i=0

ν (Ki) ≤
∫
fdµ+ 1

mν (K0) resp.
∫
fdµ− 1

mν (G0) ≤ 1
m

m∑
i=1

ν (Gi).

By combining these four estimates we obtain
∫
fdµ − 1

mν (G0) ≤ lim inf
n→∞

∫
fdµn ≤ lim sup

n→∞

∫
fdµn ≤∫

fdµ+ 1
mν (K0) for every m ≥ 1 whence follows the assertion.

11.5 Vague convergence on continuous functions vanishing at infinity

On a locally compact space X for every sequence (µn)n≥1 ⊂ Mc
i0
(
B (X) ;R+) of Radon measures

vaguely converging to a µ ∈ Mc
i0
(
B (X) ;R+) with sup

n≥1
∥µn∥ < ∞ we have lim

n→∞

∫
fdµn =

∫
fdµ for

every continuous f ∈ C0 (X;R) vanishing at infinity.
Proof : Due to 11.4.2 we have ∥µ∥ ≤ α = sup

n≥1
∥µn∥ < ∞ which implies µ ∈ Mb

i0
(
B (X) ;R+).

According to 10.5 every f ∈ C0 (X;R) and ϵ > 0 exists a g ∈ Cc (X;R) with ∥f − g∥ ≤ ϵ which implies
|
∫
fdµn −

∫
gdµn| ≤ α · ϵ and also |

∫
fdµ−

∫
gdµ| ≤ α · ϵ. Owing to 11.4.1 exists an N ∈ Nwith

|
∫
gdµ−

∫
gdµn| ≤ α · ϵ for all n ≥ N .By the triangle equation we obtain |

∫
fdµn −

∫
fdµ| ≤

|
∫
fdµn −

∫
gdµn| + |

∫
gdµn −

∫
gdµ| + |

∫
gdµ−

∫
fdµ| ≤ 3αϵ whence follows the assertion.

11.6 Vague approximation of the Dirac measure

For every ψn ∈ L1 with
∫
ψn (x) dx = 1 like e.g. the characteristic function of the unit cube

ψn = χ[0;1] and ψn;k (x) = kn (kx) we have lim
k→∞

∫
f · ψn;kdλ = f (0) for every f ∈ Cc (Rn;R), i.e. the

sequence (ψn;k ◦ λ)k≥1 vaguely converges to the Dirac measure δ0.

Note: Similar to the approximate identities ψn ∈ L1 with
∫
ψn (x) dx = 1 and ψn;k (x) = knψn (kx)

such that lim
k→∞

∥f − f ∗ ψn;k∥1 = 0 for every f ∈ L1 defined in [9, th. 7.13] used in the Fourier
inversion formula [9, th. 7.14].

Proof : For every f ∈ Cc (Rn;R) and k ≥ 1 holds
∣∣∣f ( 1

kx
)

· ψ (x)
∣∣∣ ≤ ∥f∥∞ · K (x) such that by a

change of variable [9, th. 3.7] y = kx with
∣∣∣det

(
dy
dx

)∣∣∣ = kn resp. dominated convergence 5.15
yields lim

k→∞

∫
f ·ψn;kdλ = lim

k→∞

∫
f (x) ·knψn (kx) dx = lim

k→∞

∫
f
(

1
kkx

)
·ψn (kx) d (kx) = lim

k→∞

∫
f
(

1
ky
)

·

ψn (y) dy =
∫

lim
k→∞

f
(

1
ky
)

· ψn (y) dy =
∫
f (0) · ψn (y) dy = f (0).

11.7 Vague limits of discrete Radon measures

On a locally compact space X the linear combinations δ =
k∑
i=1

αiδxi of Dirac measures δxi on
xi ∈ X with αi ≥ 0 for 1 ≤ i ≤ k and some k ≥ 1 are called discrete Radon measures. Then with
regard to vague convergence

1. the family of all discrete Radon measures is dense in Mc
i0
(
B (X) ;R+)

2. the family of all discrete probability measures is dense in Mc
i0 (B (X) ; [0; 1])
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Proof :

1. According to [13, th. 10.3 and 13.5] the locally compact space X is uniformizable whence
due to to Heine’s theorem [13, th. 12.9] every f ∈ Cc (X;R) is uniformly continuous
on its compact support K = suppf . Thus for every ϵ > 0 exists a finite cover of rela-
tively compact neighbourhoods B (xi) with xi ∈ K for 1 ≤ i ≤ k and K ⊂

⋃
1≤i≤k B (xi).

Hence the disjoint sets Aj = K ∩B (xj) \
⋃

1≤i<j B (xj) still cover K and are relatively com-
pact. Then for every µ ∈ Mc

0
(
B (X) ;R+) and any collection (yj)1≤j≤k ⊂ K with yj ∈ Aj

for 1 ≤ j ≤ k the discrete Radon measure δ = ∑
1≤j≤k µ (Aj) · δyj satisfies |

∫
fdµ−

∫
fdδ| =∣∣∣∑1≤j≤k

(∫
Aj
fdµ− µ (Aj) · f (yj)

)∣∣∣ =
∣∣∣∑1≤j≤k

∫
Aj

(f − f (yj)) dµ
∣∣∣ ≤

∑
1≤j≤k

∫
Aj

|f − f (yj)| dµ
≤ ϵ

∑
1≤j≤k µ (Aj) = ϵ · µ (K) ≤ ϵ which proves the assertion.

2. Follows from 1. with δ0 = µ (X \K) · δy0 + ∑
1≤j≤k µ (Aj) · δyj for some y0 ∈ X \ K since∑

1≤j≤k µ (Aj) = µ (K) ≤ 1.

11.8 The weak topology

On a topological space X the weak topology is defined as the initial topology on the family of
positive Borel measures M

(
B (X) ;R+) with regard to the maps {µ 7→

∫
fdµ : f ∈ Cb (X;R)}.

On a locally compact space X the weak topology on the convex cone of bounded Radon
measures Mb

i0
(
B (X) ;R+) ⊂ Mσ0

(
L (X) ;R+) is generated by the subbasis

S =
{
Wf ;ϵ (µ) : ν ∈ Mc

i0

(
B (X) ;R+

)
; f ∈ Cb (X;R) ; ϵ > 0

}
of the neighbourhoods

Wf ;ϵ =
{
µ; ν ∈ Mc

i0

(
B (X) ;R+

)
:
∣∣∣∣∫ fdµ−

∫
fdν

∣∣∣∣ < ϵ

}
Due to Cc (X;R) ⊂ Cb (X;R) resp. 1 ∈ Cb (X;R) the weak topology is both stronger than the
vague topology defined in 11.4 and the topology of the norm ∥ ∥ given by ∥µ∥ = µ (X) =

∫
1dµ

in the Riesz representation theorem 10.13.2 on the subset of the bounded Radon measures
Mb

i0
(
B (X) ;R+) ⊂ Mi0

(
B (X) ;R+). The following theorem in essential states that on the convex

cone of the bounded Radon measures the union of these two topologies generates the
weak topology.

On a locally compact space X a sequence (µn)n≥1 ⊂ Mb
i0
(
B (X) ;R+) of bounded Radon mea-

sures weakly converges to a µ ∈ Mb
i0
(
B (X) ;R+) iff one of the following equivalent conditions is

satisfied:

1. lim
n→∞

∫
fdµn =

∫
fdµ for every f ∈ Cb (X;R)

2. lim
n→∞

∫
fdµn =

∫
fdµ for every f ∈ Cc (X;R) and lim

n→∞
∥µn∥ = ∥µ∥.

Proof :

1. ⇒ 2.: Due to Cc (X;R) ⊂ Cb (X;R) the first part is obvious and the second part follows from 11.1.2
since ∥µ∥ = µ (X) = sup {

∫
fdµ : f ≺ X} = sup {

∫
fdµ : f ∈ Cc (X;R)}.

2. ⇒ 1.: According to 11.1.2 for every ϵ > 0 there is an g ∈ Cc (X; [0; 1]) with µ (X) −
∫
gdµ =∫

(1 − g) dµ < ϵ. Hence for every f ∈ Cb (X;R) holds |
∫
f · (1 − g) dµ| ≤ ∥f∥ ·

∫
(1 − g) dµ ≤ ∥f∥ · ϵ.

The hypothesis implies lim
n→∞

∫
gdµn =

∫
gdµ and lim

n→∞

∫
1dµn =

∫
1dµ such that there isn an m ≥ 1

with
∫

(1 − g) dµ < ϵ for every n ≥ m. For these n and every f ∈ Cb (X;R) follows |
∫
f · (1 − g) dµn|

≤ ∥f∥ ·
∫

(1 − g) dµn ≤ ∥f∥ · ϵ such that by the triangle equation we obtain |
∫
fdµn −

∫
fdµ| ≤

2 ∥f∥ · ϵ+ |
∫
gdµn −

∫
gdµ| whence follows the assertion.
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11.9 The Portmanteau theorem for locally compact spaces

On a locally compact space X a sequence (Pn)n≥1 ⊂ Mi0 (X; [0; 1]) of inner regular probability
measures weakly converges to an inner regular probability measure P ∈ Mi0 (X; [0; 1]) iff one of
the following equivalent conditions is satisfied:

1. lim
n→∞

∫
fdPn =

∫
fdP for every f ∈ Cb (X;R).

2. lim
n→∞

∫
fdPn =

∫
fdP for every f ∈ Cc (X;R).

3. lim sup
n→∞

Pn (K) ≤ P (K) for every closed K ⊂ X.

4. lim inf
n→∞

Pn (O) ≥ P (O) for every open O ⊂ X.

5. lim
n→∞

∫
fdPn =

∫
fdP for every Borel measurable, bounded and µ-a.e. continuous f : X →

R.
Note: Condition 5. implies the condition lim

n→∞
Pn (A) = P (A) for every P -continuous A ⊂ X with

P (δA) = 0 corresponding to 12.6.5 in the Portmanteau theorem for metric spaces.
Proof :
1. ⇒ 2.: obvious since Cc (X;R) ⊂ Cb (X;R)
2. ⇒ 3.: follows from 11.4.2
3. ⇒ 4.: obvious since µ (O) = µ (X) − µ (X \O) = 1 − µ (X \O)

x

y

α

β

X

X0 X0 X0

Vx1

K K K

h

g

fVx2

Vx3

Vx4

Vx5

Vx6

Ux1 ∪Ux2 Ux3 ∪Ux4 Ux5 ∪Ux6

4. ⇒ 5.: Due to the hypothesis there is a set X0 ⊂ X
with f ∈ Cb (X0;R) and µ (X \X0) = 0. Since µ is in-
ner regular for every ϵ > 0 exists a compact K ⊂ X0
with µ (X0 \K) < ϵ. Then for every x ∈ K there is an
open neighbourhood Ux with |f (y1) − f (y2)| < ϵ for all
y1; y2 ∈ Ux and a compact x ∈ Vx ⊂ Ux. According
to 10.3 for the finite cover (Vxi)1≤i≤n of K ⊂

⋃
1≤i≤n Vxi

exist f̊i ∈ Cb (X0;R) with Vxi ≺ f̊i ≺ X \
⋃

1≤i≤n Uxi . By
gi (x) = αi ·f̊i+α resp. hi (x) = βi ·f̊i+β with α = inf f [X];
b = sup f [X]; αi = inf f [Uxi ]; βi = sup f [Uxi ] we ob-
tain gi;hi ∈ Cb (X0;R) with α ≤ gi ≤ αi ≤ f ≤ βi ≤
hi ≤ β and finally g = min

1≤i≤n
gi resp. h = max

1≤i≤n
hi

with α ≤ gi (y) ≤ g (y) ≤ f (y) ≤ hi (y) ≤ h (y) ≤ β
for every y ∈ Vxi . In particular we have h − g ≤ ϵ
such that

∫
(h− g) dµ =

∫
K (h− g) dµ +

∫
X\K (h− g) dµ

≤ ϵ · µ (K) + (β − α)µ (X \K) ≤ ϵ · (µ (X) + β − α).
Also on the one hand we have

∫
gdµ = lim

n→∞

∫
gdµn ≤ lim inf

n→∞

∫
fdµn ≤ lim sup

n→∞

∫
fdµn ≤ lim

n→∞

∫
hdµn =∫

hdµ while on the other hand holds
∫
gdµ≤

∫
gdµ≤

∫
hdµ such that

{
lim inf
n→∞

∫
fdµn;

∫
gdµ; lim sup

n→∞

∫
fdµn

}
⊂

[
∫
gdµ;

∫
gdµ+ ϵ · (µ (X) + β − α)] whence follows the assertion.

5. ⇒ 1.: obvious.

11.10 Vaguely compact sets

On a locally compact space X every family H ⊂ Mc
i0
(
X;R+) of Radon measures is relatively

compact with regard to the vague topology iff it is vaguely bounded with sup
µ∈H

|
∫
fdµ| < ∞ for

every f ∈ Cc (X;R).
Note: According to [13, def. 9.1] a set A is relatively compact iff its closure A is compact.
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Proof :

⇒: Due to the Heine-Borel theorem [13, th. 9.10] for every f ∈ Cc (X;R) the image {
∫
fdµ : µ ∈ H}

⊂ R of a relatively compact H ⊂ Mc
i0
(
X;R+) under the continuous map µ 7→

∫
fdµ is again

relatively compact and in particular bounded which implies the assertion.

⇐:

Step I. The set Mc
i0
(
X;R+) is homeomorphic to Φ

[
Mc

i0
(
X;R+)] ⊂ J : According to Ty-

chonov’s theorem [13, th. 9.9] the product J = ∏
f∈Cc(X;R) Jf ⊂ RCc(X;R) of the compact in-

tervals Jf = [−αf ;αf ] for αf = sup
µ∈H

|
∫
fdµ| is again compact. By Riesz’ representation theo-

rem for positive functionals 10.13 the map Φ : H → J = ∏
f∈Cc(X;R) Jf ⊂ RCc(X;R) defined by

Φ (µ) = (
∫
fdµ)f∈Cc(X;R) is injective and due to the continuity of ist components Φf : µ 7→

∫
fdµ and

[13, th. 4.2] it is also continuous. Its is also open since for every µ ∈ Mc
i0
(
X;R+); f ∈ Cc (X;R);

δ > 0 and 0 < η < δ there is a νη =
∫
fdµ+η∫
fdµ

µ ∈ Mc
i0
(
X;R+) with

∫
fdνη =

∫
fdµ + η such

that every neighbourhood Bδ (µ) =
{
ν ∈ Mc

i0
(
X;R+) : |

∫
fdµ−

∫
fdν| < δ

}
has an open image

Φ [Bδ (µ)] = π−1
f [Bδ (

∫
fdµ)] ⊂ J with the component Bδ (

∫
fdµ) ⊂ Jf = πf [Pc] in the product

topology of J ⊂ RCc(X;R).

Step II. Φ
[
H
]

⊂ J : For every µ ∈ H with regard to the vague topology holds |
∫
fdµ| ≤ αf since

for every f ∈ Cc (X;R) and ϵ > 0 there is a ν ∈ Mc
i0
(
X;R+) with |

∫
fdµ−

∫
fdν| < ϵ whence follows

|
∫
fdµ| ≤ |

∫ ∫
fdν| + |

∫
fdµ−

∫
fdν| < αf + ϵ such that |

∫
fdµ| ≤ αf . Hence for every f ∈ Cc (X;R)

we have (πf ◦ Φ)
[
H
]

⊂ Jf whence follows the proposition.

Step III. Φ
[
Mc

i0
(
X;R+)] is closed in RCc(X;R): For every element I ∈ Φ [Mc

i0 (X;R+)] ⊂ RCc(X;R)

being regarded as a map I : Cc (X;R) → R defined by If = πf (I), every f ; g ∈ Cc (X;R) and
every ϵ > 0 the set π−1

f [Bϵ (I)] ∩ π−1
g [Bϵ (I)] ∩ π−1

f+g [Bϵ (I)] is a neighbourhood of I ∈ RCc(X;R). It
therefore contains an I ′ ⊂ Φ

[
Mc

i0
(
X;R+)] whence |I (f + g) − If − Ig| ≤ |I (f + g) − I ′ (f + g)| +

|I ′f − If | + |I ′g − Ig| < 3ϵ and consequently I (f + g) = If + Ig . Similarly for α ∈ R there is
an I ′ ∈ π−1

f [Bϵ (I)] ∩ π−1
αf [Bϵ (I)] ∩ Φ

[
Mc

i0
(
X;R+)] whence |I (αf) − αIf | ≤ |I (αf) − I ′ (αf)| +

|I ′ (αf) − αI ′f | + |αI ′f − αIf | < ϵ+ 2 · |α| · ϵ. Hence we have proved that I ∈ (Cc (X;R))∗ is a linear
functional. A third application of this argument delivers If ≥ 0 for every f ≥ 0 whence follows
I ⊂ Φ

[
Mc

i0
(
X;R+)].

Step IV. Due to steps I and II the homeomorphic image Φ
[
H
]

is closed in Φ
[
Mc

i0
(
X;R+)]. By

step III Φ
[
H
]

is a closed subset of the compact set J ⊂ RCc(X;R) and hence compact.

11.11 Vague compactness of open balls

For every ϵ > 0 the open ball Bϵ (0) =
{
µ ∈ Mi0

(
X;R+) : |µ (X)| ≤ ϵ

}
of bounded Radon mea-

sures is vaguely compact.

Proof : Owing to |
∫
fdµ| ≤

∫
|f | dµ ≤ ϵ · ∥f∥ for every f ∈ Cc (X;R) and µ ∈ Bϵ (0) the set Bϵ (0) is

vaguely bounded whence by the preceding theorem 11.10 follows its vague relative compactness.
According to the Riesz representation theorem for positive functionals 10.13 we have Bϵ (0)
=
{
µ ∈ Mi0

(
X;R+) :

∫
fdµ ≤ ϵ∀f ∈ Cc (X; [0; 1])

}
= ⋂

f∈Cc(X;[0;1])Mf ;ϵ with vaguely closed Mf ;ϵ
=
{
µ ∈ Mi0

(
X;R+) :

∫
fdµ ≤ ϵ

}
whence Bϵ (0) is vaguely closed and hence compact.

11.12 Separability of Cc (X;R)

A locally compact space X is second countable iff Cc (X;R) is separable with regard to uniform
convergence.
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Proof :
⇒: For the countable basis G of the topology on X and every n ≥ 1 the products U1 × ...×Un ⊂ Xn

with Ui ∈ G and I1×...×In ⊂ Rn with Ii ∈ R = {]a; b[ ⊂ R : a < b ∈ Q} for 1 ≤ i ≤ n are compatible
iff there is at least one compatibility function f ∈ Cc (X;R) with f [Ui] ⊂ Ii and suppf ⊂

⋃
1≤i≤n Uj .

For every compatible product U1 × ...×Un × I1 × ...× In we choose one possible compatible function
such that the resulting set F of these functions is countable. For every g ∈ Cc (X;R) with compact
K = suppg ; x ∈ K and ϵ > 0 exists an open neighbourhood x ∈ Ux ∈ G with g [Ux] ⊂ Bϵ (g (x))
and a finite subcover (Uxi)1≤i≤n with K ⊂

⋃
1≤i≤n Uxi . Also there are Ii = ]ai; bi[ ∈ R with length

bi − ai < 3ϵ with g (Uxi) ⊂ Ii for 1 ≤ i ≤ n. Hence g is a compatible function and there exists an
f ∈ F for the same compatible product Ux1 × ...×Uxn × I1 × ...× In with |f (x) − g (x)| ≤ λ (Ii) < 3ϵ
for every x ∈

⋃
1≤i≤n Uj and f (x) = g (x) = 0 for x ∈ X \

⋃
1≤i≤n Uj . Hence F is dense in Cc (X;R).

⇐: For a countable dense subset F ⊂ Cc (X;R) the countable family G =
{{
f > 1

2

}
: f ∈ F

}
is

a basis for the topology on X since according to 10.3 for every open U and every x ∈ U exists a
g ∈ Cc (X;R) with {x} ≺ g ≺ U and due to the hypothesis an f ∈ F with ∥f − g∥ < 1

2 such that
x ∈

{
f > 1

2

}
⊂ {g > 0} ⊂ suppg ⊂ U .

11.13 Embedding of X into Mc
i0 (X;R+)

Every locally compact space X by φ : X → Mc
i0
(
X;R+) with φ(x) = δx is homeomorphic to the

family of all Dirac measures φ [X] = {δx : x ∈ X} ⊂ Mc
i0
(
X;R+).

Proof : φ obviously is injective and also continuous since due to
∫
fdδx = f (x) for every subbasis

set Vf ;ϵ (δx) = {δy ∈ φ [X] : |f (x) − f (y)| < ϵ} ∈ S ∩ φ [X] with x ∈ X; f ∈ Cc (X;R) and ϵ > 0
according to 11.4 the inverse image φ−1 [Vf ;ϵ (δx)] = f−1 [Bϵ (f (x))] is open in X. Furthermore φ is
open since owing to 10.3 for every x ∈ X and every open neighbourhood x ∈ U exists a f ∈ Cc (X;R)
with {x} ≺ f ≺ U such that Vf ;1/2 (δx) =

{
δy ∈ φ [X] : f (y) > 1

2

}
⊂ {δy ∈ φ [X] : y ∈ U} = φ [U ].

11.14 Metrizability and completeness of Mc
i0 (X;R+)

A locally compact space X is polish iff the convex cone of the Radon measures Mc
i0
(
X;R+)

is polish with regard to the vague topology.
Note:
Due to [13, th. 15.2] a locally compact space X is polish iff it is second countable and according
to Urysohns metrization theorem [13, th. 11.14.3] it is σ-compact such that in this case every
Radon measure is complete and regular: Mc

i0
(
B (X) ;R+) = Mσ0

(
B (X) ;R+).

Proof :
⇒:
Step I. Definition of the metric: According to 11.12 exists a countable dense set D ⊂ Cc (X;R).
Owing to [13, th. 10.6] the space X is σ-compact so that we have an increasing sequence (Ln)n∈N of
compact Ln with ⋃n∈N Ln = X and 10.3 yields another countable set E ⊂ Cc (X; [0; 1]) containing
for each Ln exactly one en with Ln ≺ en ≺ B1 (Ln) = {x ∈ X : d (x;Ln) < 1}. The set of products
D · E = {d · en : d ∈ D; en ∈ E} is still countable. The map ρ : Mc

i0
(
X;R+)× Mc

i0
(
X;R+) → [0; 1]

defined by ρ (µ; ν) = ∑
n≥1 2−n · min {1; |

∫
dndµ−

∫
dndν|} with dn ∈ D ∪ E ∪ D · E obviously is

symmetric and satisfies the triangle inequality. Concerning the positive definiteness for every
f ∈ Cc (X;R) and ϵ > 0 there is a k ≥ 1 with suppf ⊂ Lk whence f = ek · f and a d ∈ D
with ∥f − d∥ ≤ ϵ. Hence we have |

∫
fdµ−

∫
d · ekdµ| ≤

∫
|f − d · ek| dµ ≤ ϵ

∫
ekdµ and analogously

|
∫
fdν −

∫
d · ekdν| ≤ ϵ

∫
ekdν. The hypothesis ρ (µ; ν) = 0 implies

∫
d · ekdµ −

∫
d · ekdν for every

n ≥ 1 whence follows |
∫
fdµ−

∫
fdν| ≤ 2ϵ

∫
ekdµ. This estimate holds for every ϵ > 0 and every

f ∈ Cc (X;R) whence the Riesz representation theorem for positive functionals 10.13 implies
µ = ν.

62



Step II. The metric determines the vague topology: According to the definition of the vague
topology in 11.4 for every ϵ > 0 exists an m ≥ − ln e

ln 2 such that ∑n>m 2−n < ϵ
2 and consequently⋂

1≤n≤m Vdn;ϵ/2 (µ) =
{
ν ∈ Mc

i0
(
X;R+) : |

∫
dndµ−

∫
dndν| < ϵ

2∀n ≤ m
}

⊂ Bϵ (µ). Conversely for ev-
ery f ∈ Cc (X;R), µ ∈ Mc

i0
(
X;R+) and ϵ > 0 exists a k ≥ 1 with suppf ⊂ Lk and a d ∈ D such that

∥f − d∥ < δ = ϵ
2+2

∫
ekdµ

< 1 whence |f − d · ek| ≤ δ · ek. As above we obtain |
∫
fdµ−

∫
d · ekdµ| ≤

δ
∫
ekdµ but also |

∫
fdν −

∫
d · ekdν| ≤ δ

∫
ekdν for every other ν ∈ Mc

i0
(
X;R+). For m ≥ 1 large

enough so that {d · ek; ek} ⊂ {d1; ...; dm}, ν ∈ Bη (µ) with η = δ · 2−m and every j ≤ m follows 2−j ·
min {1; |

∫
djdµ−

∫
djdν|} ≤ ρ (µ; ν) < η ≤ δ ·2−j and consequently |

∫
djdµ−

∫
djdν| < δ which implies

|
∫
d · ekdµ−

∫
d · ekdν| < δ. The triangle equation yields |

∫
fdµ−

∫
fdν| ≤ δ (1 +

∫
ekdµ+

∫
ekdν)

and since the choice of m ≥ 1 also implies |
∫
ekdµ−

∫
ekdν| < δ resp.

∫
ekdν < δ +

∫
ekdµ we finally

obtain |
∫
fdµ−

∫
fdν| ≤ δ2 + δ (1 + 2

∫
ekdµ) ≤ δ (2 + 2

∫
ekdµ) = ϵ . Hence we have shown that

Bη (µ) ⊂ Vf ;ϵ (µ).
Step III. The metric space

(
Mc

i0
(
X;R+) ; ρ

)
is complete: For every f ∈ Cc (X;R) and every

0 < δ < 1 exits a k ≥ 1 with suppf ⊂ Lk and a d ∈ D such that ∥f − d∥ < δ. As above we
choose an m ≥ 1 such that {d · ek; ek} ⊂ {d1; ...; dm}, ν ∈ Bη (µ) and define η = δ · 2−m. Then
for a ρ-Cauchy sequence (µn)n≥1 ⊂ Mc

i0
(
X;R+) exists an N ≥ 1 such that ρ (µr;µs) < η for every

r; s ≥ N . Following step II again we conclude |
∫
djdµr −

∫
djdµs| < δ for every r; s ≥ N and j ≤ m

whence |
∫
d · ekdµr −

∫
d · ekdµs| < δ. As above we arrive at |

∫
fdµr −

∫
fdµs| ≤ δ2 +δ (1 + 2

∫
ekdµ).

The estimate |
∫
ekdµr −

∫
ekdµs| < δ for every r; s ≥ N implies the existence of an M < ∞ such

that
∫
ekdµn < M for n ≥ 1 whence |

∫
fdµr −

∫
fdµs| ≤ δ2 + δ (1 + 2M). Since M depends only

on the choice of f and (µn)n≥1 for every ϵ > 0 we find a δ = ϵ
2+2M < 1 such that |

∫
fdµr −

∫
fdµs|

< ϵ for every r; s ≥ N . Hence (µn)n≥1 ⊂ Mc
i0
(
X;R+) is a Cauchy sequence with regard to the

vague topology whence the Riesz representation theorem for positive functionals 10.13 resp. the
completeness of Mc

i0
(
X;R+) = Mσ0

(
X;R+) (see Note) imply the vague convergence of (µn)n≥1

to a uniquely determined limit µ ∈ Mσ0
(
X;R+).

Step IV. The metric space
(
Mc

i0
(
X;R+) ; ρ

)
is second countable: According to 11.7.1 for every

f ∈ Cc (X;R), µ ∈ Mc
i0
(
X;R+) and ϵ > 0 esists a discrete Radon measure δ = ∑

1≤i≤k αiδxi

with xi ∈ X and αi ≥ 0 for 1 ≤ i ≤ k such that |
∫
fdµ−

∫
fdδ| =

∣∣∣∫ fdµ−
∑

1≤i≤k αif (xi)
∣∣∣ < ϵ

3 .
For 1 ≤ i ≤ k we choose βi ∈ Q with |αi − βi| < ϵ

3k∥f∥ . According to [13, th. 2.8] the second
countable set X is separable with a countable dense subset Y ⊂ X such that we can find yi ∈ Y
with |f (xi) − f (yi)| < ϵ

3kβi
. Hence we obtain a new discrete Radon measure γ = ∑

1≤i≤k βiδyi with∣∣∣∣∫ fdµ−
∫
fdγ

∣∣∣∣ ≤
∣∣∣∣∫ fdµ−

∫
fdγ

∣∣∣∣+ ∣∣∣∣∫ fdδ −
∫
fdγ

∣∣∣∣
≤ ϵ

3 +

∣∣∣∣∣∣
∑

1≤i≤k
αif (xi) − βif (xi) + βif (xi) − βif (yi)

∣∣∣∣∣∣
≤ ϵ

3 +
∑

1≤i≤k
|αi − βi| · ∥f∥ +

∑
1≤i≤k

|βi| · |f (xi) − f (yi)|

≤ ϵ

3 + ϵ

3 + ϵ

3
= ϵ

Hence the countable set D =
{∑

1≤i≤k βiδyi : βi ∈ Q; yi ∈ Y ; 1 ≤ i ≤ k; k ≥ 1
}

of discrete Radon
measures with rational coefficients on points of the dense countable subset Y ⊂ X is dense
in Mc

i0
(
X;R+) with regard to the vague topology whence again due to [13, th. 2.8] follows that

Mc
i0
(
X;R+) is second countable.

⇐: Directly follows from the preceding theorem 11.13.

11.15 Convergence of sequences in vaguely bounded sets

Every vaguely bounded sequence (µn)n≥1 ⊂ Mc
i0
(
X;R+) of Radon measures on a polish space

X has a vaguely convergent subsequence.
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Proof : Follows directly from 11.10, 11.14 and the Bolzano-Weierstrass theorem [13, th. 10.12].

11.16 Metrizability and completeness of C (R+; X)

For every polish space X the vector space of the continuous paths C
(
R+;X

)
is polish with regard

to the compact open topology.

Note: Every metric ρ : X × X → R+ can be shrinked to the range [0; 1] by transition e.g. to
ρ′ = min {1; ρ} or ρ′′ = ρ

1+ρ .

Proof : The function d : C
(
R+;X

)
× C

(
R+;X

)
→ [0; 1] defined by d (f ; g) = ∑

n≥1 2−ndn (f ; g) with
dn (f ; g) = sup {ρ (f (x) ; g (x)) : x ∈ [0;n]}and the metric ρ : X × X → [0; 1] obviously is again a
metric with 2−ndn (f ; g) ≤ d (f ; g) ≤

∑
1≤i≤n 2−idn (f ; g) + ∑

i>n 2−i ≤ dn (f ; g) + 2−n. Hence the
metric d induces the compact open topology of the space C

(
R+;X

)
which is complete according

to [13, p. 18.7.3]. Analogously to the proof of 11.12 we show that C
(
R+;X

)
has a countable basis:

According to [13, th. 2.8] the second countable set X is separable with a countable dense
subset Y ⊂ X so that G = {Br (y) : r ∈ Q; y ∈ Y } is a countable basis of the open sets in X. For
every n ≥ 1 the products G1 × ... × Gn ⊂ Xn with Gi ∈ G and I1 × ... × In ⊂ Rn with Ii ∈ R ={
]a; b[ ⊂ R+ : 0 < a < b ∈ Q

}
for 1 ≤ i ≤ n are compatible iff there is at least one compatibility

function f ∈ C
(
R+;X

)
with f [Ii] ⊂ Gi. For every compatible product G1 × ...×Gn× I1 × ...× In we

choose one possible compatible function such that the resulting set F of these functions is countable.
For every g ∈ C

(
R+;X

)
; N ≥ 1, 0 < ϵ ∈ Q and x ∈ [0;N ] exists an open neighbourhood x ∈ Ux ∈ R

with g [Ux] ⊂ Bϵ (g (x)) and a finite subcover (Uxi)1≤i≤n with [0;N ] ⊂
⋃

1≤i≤n Uxi . Then for
1 ≤ i ≤ n we have Gi = B2ϵ (yi) ∈ G with some yi ∈ Y ∩Bϵ (g (xi)) such that for every x ∈ Uxi follows
ρ (g (x) ; yi) ≤ ρ (g (x) ; g (xi)) + ρ (g (xi) ; yi) < 2ϵ whence g [Uxi ] ⊂ Gi. Hence g is a compatible
function and there exists an f ∈ F for the same compatible product G1 × ... × Gn × I1 × ... × In
with f [Uxi ] ⊂ Gi for 1 ≤ i ≤ n whence ρ (f (x) ; g (x)) < 4ϵ for every x ∈ [0;N ]. Hence F is dense in
Cc (X;R).

12 Probability measures on metric spaces

In this chapter without further notice P ∈ M (X; [0; 1]) will always be a probability measures on
the Borel-σ-algebra B (X) of a metric space (X; d).

12.1 Discontinuities of functions between metric spaces

The set Df = {x ∈ X : ∃ϵ > 0 : ∀δ > 0 ∃y; z ∈ Bδ (x) : D (f (y) ; f (z)) ≥ ϵ} of discontinuities of the
(not necessarily measurable) function f : (X; d) → (Y ;D) lies in B (X).

Notes:

1. In [12, th. 3.1] it is shown that for every monotone f : ]a; b[ → R the set Df of discon-
tinuities is countable and all discontinuities c ∈ Df are simple, i.e. −∞ < sup

a<x<c
f (x) =

lim
n→∞

f
(
c− 1

n

)
< lim

n→∞
f
(
c+ 1

n

)
= inf

c<x<b
f (x) < ∞.

2. In [9, th. 1.2] it is proved that for every real f : R → R the set of jump and vertex points
with existing but differing Dini derivatives

{
D+f = D+f = D+

+f ̸= D−
−f = D−f = D−f

}
is countable.

Proof : The sets Aϵ;δ = {x ∈ X : ∃y; z ∈ Bδ (x) : D (f (y) ; f (z)) ≥ ϵ} are open because x ∈ Bδ (y) ∩
Bδ (y) whence Df = ⋃

ϵ∈Q+

⋂
δ∈Q+

Aϵ;δ ∈ B (X).
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12.2 Regularity on metric spaces

Every probability measure P ∈ M (X; [0; 1]) on a metric space (X; d) is weakly regular, i.e.
for every measurable set A ∈ B (X) there is a closed K and an open O such that K ⊂ A ⊂ O and
P (O \K) < ϵ.

Proof : The family A of alls sets A ∈ B (X) satisfying the hypothesis is a σ-algebra since for every
sequence (An)n≥1 ⊂ A and ϵ > 0 due to the hypothesis we have closed Kn with open On such that
Kn ⊂ An ⊂ On and P (On \Kn) < ϵ

2n+1 and owing to the continuity from below 2.2.2 there is an

m ∈ N with P

( ⋃
n≥1

Kn\
m⋃
n=1

Kn

)
< ϵ

2 whence
m⋃
n=1

Kn ⊂
⋃
n≥1

An ⊂
⋃
n≥1

On and P

( ⋃
n≥1

On\
m⋃
n=1

Kn

)

< P

( ⋃
n≥1

On \
⋃
n≥1

Kn

)
+ P

( ⋃
n≥1

Kn\
m⋃
n=1

Kn

)
≤ P

( ⋃
n≥1

(On \Kn)
)

+ ϵ
2 < ϵ. The closedness under

complementation is obvious. Due to the continuity from above A includes every closed set A
with a suitable δ-neighbourhood Aδ = {x ∈ X : d (x;A) < δ} hence every open set whence follows
σ (O) = B (X) ⊂ A and the theorem is proved.

12.3 Regularity on Polish spaces

Every probability measure P ∈ M (X; [0; 1]) on a polish space (X; d) is regular, i.e. for every
measurable set A ∈ B (X) there is a compact K and an open O such that K ⊂ A ⊂ O and
P (O \K) < ϵ.

Proof : Since Ω is separable there is a countable and dense subset (ωn)n≥1 and for every k ≥ 1
a sequence (Bki

)ki≥1 of open balls Bki
= B 1

k
(ωki

) covering Ω. Owing to the continuity from

below 2 there is an nk ≥ 1 such that P
(⋃

i≤nk
Bki

)
> 1 − ϵ

2k . Since Ω is complete the closure
K = ⋂

k≥1
⋃
i≤nk

Bki
due to [13, p. 10.12] is compact: For any sequence (xj)j≥1 ⊂ K and every

k ≥ 1 exists an open ball Bki
containing infinitely many elements of (xj)j≥1 such that the resulting

subsequence is Cauchy and due to the completeness converges to an x ∈ K. Since P (K) > 1 − ϵ
and every intersection between a compact and a closed set is compact again we have shown that every
closed set A for every ϵ > 0 contains a compact set K ⊂ A with P(A \K) < ϵ.

Since every closed set A = ⋂
n≥1O1/n is the intersection of open O1/n =

{
ω ∈ Ω : d (ω;A) < 1

n

}
and

P is continuous from above we have shown that P is regular on all closed sets A ⊂ Ω: For any
ϵ > 0 there are compact K resp. open O with K ⊂ A ⊂ O and P (O \K) < ϵ. Since B (Ω) is
generated by the closed sets it remains to prove that the family R ⊂ P (Ω) of all sets which satisfy
the regularity property is a σ-algebra. To this end for ϵ > 0 and any given sequence (An)n≥1 ⊂ R
we choose compact Kn and open On with Kn ⊂ An ⊂ On and P(On \Kn) ≤ ϵ

2n+1 . Then we find an
nϵ ≥ 1 such that with P

(⋃
n≥1Kn \K

)
< ϵ

2 for K =
nϵ⋃
n=1

Kn whence K ⊂
⋃
n≥1An ⊂ O = ⋃

n≥1On

with P (O \K) < ϵ. Hence R is closed under countable unions. Since it is obviously closed under
intersection and complementation the proof is complete.

12.4 Characterization by bounded continuous functions

Two probability measures P,Q : B (X) → [0; 1] on a metric space (X; d) coincide iff
∫
fdP =∫

fdQ for every bounded and uniformly continuous f : X → R.

Proof : For every closed A ⊂ X the functions fn : X → [0; 1] with fn (x) = (1 − n · d (x;A))+ are
bounded and uniformly continuous since |f (x) − f (y)| < n · d (x; y). Since we have pointwise
everywhere χA = lim

n→∞
fn the dominated convergence theorem 5.15 yields P (A) =

∫
χAdP =∫

lim
n→∞

fndP = lim
n→∞

∫
fndP = lim

n→∞

∫
fndQ =

∫
lim
n→∞

fndQ = Q (A). Since the closed sets are a π

-basis for B (X) the assertion follows from the uniqueness theorem 3.4.
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12.5 Tightness on complete and separable metric spaces

Every probability measure P ∈ M (X; [0; 1]) on a complete and separable metric space (X; d)
is tight, i.e. for every ϵ > 0 exists a compact K ⊂ X with P (K) > 1 − ϵ.

Proof : According to the separable character for every n ≥ 1 there is a sequence (xk)k≥1 ⊂ X

with ⋃
k≥1

B1/n (xk) = X and in particular an nk ≥ 1 such that P
(
nk⋃
k=1

B1/n (xk)
)
> 1 − ϵ

2n . The

set B = ⋂
n≥1

nk⋃
k=1

B1/n (xk) is precompact resp. totally bounded whence due to the complete

character and [13, th. 17.2] it has a compact closure K = B with P (K) > 1 − ϵ.

12.6 The Portmanteau theorem for metric spaces

A sequence (Pn)n≥1 ⊂ M (X; [0; 1]) of probability measures weakly converges to a probability
measure P ∈ M (X; [0; 1]) iff one of the following equivalent conditions is satisfied:

1. lim
n→∞

∫
fdPn =

∫
fdP for every bounded, continuous f : X → R.

2. lim
n→∞

∫
fdPn =

∫
fdP for every bounded, uniformly continuous f : X → R.

3. lim sup
n→∞

Pn (K) ≤ P (K) for every closed K ⊂ X.

4. lim inf
n→∞

Pn (O) ≥ P (O) for every open O ⊂ X.

5. lim
n→∞

Pn (A) = P (A) for every P -continuous A ⊂ X with P (δA) = 0.

In a separable metric space (X; d) we have the additional equivalent property:

6. There is a convergence-determining π-system A such that for every x ∈ X and ϵ > 0 the
subfamily δAx;ϵ =

{
A ∈ A : x ∈ Å ⊂ A ⊂ Bϵ (x)

}
contains a P -null set A ∈ δAx;ϵ ⊂ A with

P (A) = 0 and lim
n→∞

Pn (A) = P (A) for every A ∈ A. Due to 2.2 the former condition is satisfied
if δAx;ϵ contains uncountably many disjoint sets.

Note: The Helly-Bray theorem [12, th. 3.8] is a corollary to the Portmanteau theorem for the
case X = R with an application to distribution functions.

Proof :

1. ⇒ 2.: trivial

2. ⇒ 3.: The separation function K ≺ f ≺ Kϵ defined in the proof of 12.4 by f (x) =
(
1 − d(K;x)

ϵ

)+

is uniformly continuous with lim sup
n→∞

Pn (K) ≤ lim sup
n→∞

∫
fdPn =

∫
fdP ≤ P (Kϵ) for every ϵ > 0.

3. ⇒ 4.: lim inf
n→∞

Pn (O) = lim inf
n→∞

(1 − P (X \O)) = 1 − lim sup
n→∞

Pn (X \O) ≥ 1 − P (X \O) = P (O).

3.&4. ⇒ 5.: According to the hypothesis P
(
Å
)

≤ lim inf
n→∞

Pn
(
Å
)

≤ lim inf
n→∞

Pn (A) ≤ lim sup
n→∞

Pn (A) ≤

lim sup
n→∞

Pn
(
A
)

≤ P
(
A
)

and in the case of P
(
A
)

− P
(
Å
)

= P (δA) = 0 all terms coincide.

5. ⇒ 1.: By the decomposition f = f+−f− resp. the bounded character of f and the linearity of the
integral it suffices to examine the case f : X → [0; 1]. The continuity of f implies δ {f > t} ⊂ {f = t}
for every t ≥ 0. According to 2.1 we have P (f = t) > 0 for at most countably many t whence the
sets {f > t} are λ-almost everywhere P -continuous. By [12, th. 1.5] and the dominated con-
vergence theorem 5.15 we conclude lim

n→∞

∫
fdPn

1.5= lim
n→∞

∫
Pn (f > t) dt 5.15=

∫
lim
n→∞

Pn (f > t) dt 5.=∫
P (f > t) dt =

∫
fdP .

5. ⇒ 6.: According to 12.2 every open set is P -continuous. Since the topology O is a π-system
and every δOx;ϵ contains uncountably many disjoint sets we chan choose A = O.
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6. ⇒ 4.: Since δ (A ∪B) ⊂ δA ∪ δB the class AP of all P -continuous sets inA is a π-system. Since
each δAx;ϵ contains a P -null set Ax ∈ AP with x ∈ Åx ⊂ Ax ⊂ Bϵ (x) and X is separable for every
open O ⊂ X exists a sequence (Axi)i≥1 ⊂ AP with ⋃

i≥1
Axi = O. Hence for every η > 0 there is an

r ∈ N such that P
(

r⋃
i=1

Axi

)
> P (O) − η. The hypothesis implies that

lim
n→∞

Pn

(
r⋃
i=1

Axi

)
= lim

n→∞

r∑
i=1

Pn (Axi) − lim
n→∞

r∑
i;j=1

Pn
(
Axi ∩Axj

)
+ lim
n→∞

r∑
i;j;k=1

Pn
(
Axi ∩Axj ∩Axk

)
− ...

=
r∑
i=1

P (Axi) −
r∑

i;j=1
P
(
Axi ∩Axj

)
+

r∑
i;j;k=1

P
(
Axi ∩Axj ∩Axk

)
− ...

P

(
r⋃
i=1

Axi

)

whence follows P (O) − η < P

(
r⋃
i=1

Axi

)
= lim

n→∞
Pn

(
r⋃
i=1

Axi

)
≤ lim inf

n→∞
Pn (O).

12.7 Weak convergence on product spaces

A sequence (Pn ⊗Qn)n≥1 ⊂ M (X × Y ; [0; 1]) on the product of separable metric spaces (X; d) and
(Y ; e) weakly converges to a P⊗Q ∈ M (X × Y ; [0; 1]) iff lim

n→∞
(Pn ⊗Qn) (A×B) = (P ⊗Q) (A×B)

for every P -continuous A ⊂ X and Q-continuous B ⊂ Y .

Proof : The family A = {A×B ∈ B (X × Y ) = B (X) ⊗ B (Y ) : P (δA) = Q (δB) = 0} (cf. [13, th.
4.2] and 7.7) is a π-system since (A×B)∩(C ×D) = (A ∩ C)×(B ∩D) and δ (A ∩ C) ⊂ δA∪δC. It is
P ⊗Q-continuous since δ (A×B) ⊂ ((δA) × Y )∪(X × (δB)). If we choose the metric ∆ : X×Y →
R+ defined by ∆ ((x; y) ; (u; v)) = max {d (x;u) ; e (y; v)} (cf. [13, th. 1.8.3]) the balls B∆<ϵ ((x; y)) =
Bd<ϵ (x)×Be<ϵ (y) have boundaries of the form δ (B∆<ϵ ((x; y))) ⊂ δ (Bd<ϵ (x))×Y ∪X×δ (Be<ϵ (y)).
Hence they all are P ⊗ Q-null sets and lie in δA(x;y);ϵ ⊂ A so that we can apply 12.6.6 and the
theorem is proved.

12.8 The mapping theorem

For every B (X) - B (Y ) measurable, P -a.e. continuous f : (X; d) → (Y ;D) and a sequence
(Pn)n≥1 ⊂ M (X; [0; 1]) weakly converging to P ∈ M (X; [0; 1]) the images (f ◦ Pn)n≥1 ⊂ M (Y ; [0; 1])
weakly converge to f ◦ P ∈ M (Y ; [0; 1]).

Proof : For every closed K ∈ B (Y ) and x ∈ f−1 [K] \Df with the set Df ∈ B (X) of the disconti-
nuities of f according to 12.1 there is a sequence (xn)n≥1 ⊂ X with lim

n→∞
xn = x and (f (xn))n≥1 ⊂ K

whence follows f (x) ∈ K since f is continuous in x and K is closed. Therefore f−1 [K] \ Df ⊂
f−1 [K] and from the hypothesis P (Df ) = 0 follows lim sup

n→∞
(f ◦ Pn) (K) = lim sup

n→∞
Pn
(
f−1 [K]

)
=

lim sup
n→∞

Pn
(
f−1 [K]

)
≤ P

(
f−1 [K]

)
= P

(
f−1 [K] \Df

)
≤ P

(
f−1 [K]

)
= (f ◦ P ) (K) which by3 proves

the theorem.

12.9 The diagonal principle

For every real double sequence (xi,j)i,j≥1 ⊂ R with bounded rows (xi,j)j≥1 there is a sequence
(ik)k≥1 such that in each row i ≥ 1 the limit lim

k→∞
xi,jk ∈ R exists.

Proof : According to the Heine-Borel theorem [13, p. 9.10] we can find a subsequence (j1,n)n≥1 ⊂ N
such that lim

n→∞
x1,j1,n ∈ R exists. Given a subsequence (jk,n)n≥1 such that lim

n→∞
xk,jk,n

∈ R exists we
change into the next row and by the same argument from the preceding subsequence choose a further
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subsequence (jk+1,n)n≥1 ⊂ (jk,n)n≥1 such that lim
n→∞

xk+1,jk+1,n
∈ R exists. Since the subsequences(

(jk,n)n≥1

)
k≥1

form a decreasing family of sets with lim
n→∞

xk,jk,n
∈ R for every row k ≥ 1 the

diagonal sequence (jk)k≥1 with jk = jk,k is increasing and lim
k→∞

xi,jk ∈ R for every row i ≥ 1.

12.10 Tight families of measures and distribution functions

Weak limits P = lim
n→∞

Pn of probability measures Pn on measurable spaces (Ω; A) may exist in the
form of finite measures µ ∈ M0

(
A;R+) but in order to guarantee the condition µ (Ω) = 1 resp.

lim
m→∞

F (m) = 1 and lim
m→∞

F (−m) = 0 in terms of the distribution function F : R → [0; 1] defined
by F (x) = P (]−∞;x]) in the case of Ω = R we have to avoid the “loss of mass” as in the two
following examples:

1. The sequence (Xn)n≥1 with Xn = n resp. PXn = δn and Fn = χ[n;∞[ has lim
n→∞

Fn = 0 since the
mass “escapes to infinity” .

2. The sequence (Yn)n≥1 with P (|Yn| ≤ n) = 1
2nλ such that Fn (t) =

(
1
2 + t

n

)
.χ[−n;n] again has

lim
n→∞

Fn = 0 since in this case the uniformly over the interval [−n;n] distributed part of the mass
“evaporates” .

Thus we define that the family Π of probability measures on the Borel σ-algebra B (X) of a metric
space (X; d) is tight iff for every ϵ > 0 exists a compact Ke ⊂ X such that P (Kϵ) > 1 − ϵ for every
p ∈ Π. In the case of X = R this definition extends to the corresponding family Φ = {FP : P ∈ Π} of
distribution functions which is tight iff for every ϵ > 0 exist real numbers aϵ < bϵ ∈ R such that
P ([a; b]) ≥ P (]a; b]) = FP (b) − FP (a) ≥ P ([a+ ϵ; b]) > 1 − ϵ for every P ∈ Π.

12.11 Prohorov’s theorem

Every family Π of probability measures on the Borel σ-algebra B (X) of a separable and complete
metric space (X; d) is tight iff it is sequentially compact with regard to weak convergence.

Notes:

1. The set P of all probability measures on a separable and complete metric space (X; B (X))
according to [2, th. 6.8] by the Skorohod metric π becomes itself a separable and complete
metric space with pointwise π-convergence being equivalent to weak convergence. Hence
due to [13, th. 10.12] the spaces X resp. P are second countable whence the properties of
being compact, countably compact and sequentially compact are equivalent.

2. Helly’s selection theorem [12, th. 3.9] is a corollary to Prohorov’s theorem for the case
X = R and applied to distribution functions.

Proof :

⇒: Since X is second countable there is an increasing sequence of open sets Gn with ⋃n≥1Gn = X.
Then for every ϵ > 0 there is an n ≥ 1 such that P (Gn) > 1 − ϵ for every P ∈ Π since otherwise we
had a sequence (Pn)n≥1 ⊂ Π with Pn (Gn) < 1 − ϵ and by the hypothesis a subsequence (Pnk

)k≥1 with
a weak limit P = lim

k→∞
Pnk

∈ Π whence 12.6.4 implied P (Gn) ≤ lim inf
k→∞

Pnk
(Gn) ≤ lim inf

k→∞
Pnk

(Gnk
) ≤

1 − ϵ and by 2.2.2 followed P (X) = lim
n→∞

P (Gn) ≤ 1 − ϵ. With this result we can proceed as in the
proof of 12.5: According to the separable character for every n ≥ 1 there is a sequence (xk)k≥1 ⊂ X

with ⋃
k≥1

B1/n (xk) = X and an nk ≥ 1 such that P
(
nk⋃
k=1

B1/n (xk)
)
> 1 − ϵ

2n for all P ∈ Π. The

set B = ⋂
n≥1

nk⋃
k=1

B1/n (xk) is precompact resp. totally bounded whence due to the complete

character and [13, th. 17.2] it has a compact closure K = B with P (K) > 1 − ϵ for all P ∈ Π.
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⇐: According to the hypothesis for any given sequence (Pn)n≥1 ⊂ Π there is an increasing sequence
K = (Ku)u≥1of compact sets such that Pn (Ku) ≥ 1 − 1

u for all n;u ≥ 1. Since K = ⋃
u≥1Ku is

separable there exists a countable family B = Bk;n =
(
B1/n (xk)

)
k;n≥1

such that for every open

O ⊂ X and x ∈ O ∩ K there is an Bk;n ∈ B with x ∈ Bk;n ⊂ Bk;n ⊂ O. Let H be the countable
class containing ∅ and every finite union of sets Bk;n ∩ Ku with Bk;n ∈ B and Ku ∈ K. According
to the diagonal principle 12.9 there is a subsequence (Pni)i≥1 such that for every H ∈ H exists the
limit α (H) = lim

i→∞
Pni (H). It is monotone with α (H1) ≤ α (H2) if H1 ⊂ H2, subadditive with

α (H1 ∪H2) ≤ α (H1) +α (H2) with equality if H1 ∩H2 = ∅ and obviously α (∅) = 0. The set function
β : O → [0; 1] defined by β (O) = sup

H⊂O
α (H) for every open O ∈ O is still monotone and satisfies

β (∅) = 0. In the following six steps we show that γ : P (X) → [0; 1] defined by γ (A) = inf
A⊂O

β (O) for
every A ⊂ X is an outer measure:

Step I: For every closed K ⊂ O ∩ H with O ∈ O and H ∈ H exists a H0 ∈ H with K ⊂ H0 ⊂ O:
Due to Heine-Borel [13, th. 9.10] the set K ⊂ H is compact whence there is an u ≥ 1 with K ⊂ Ku

and a finite subcover (Bxi)1≤i≤k ⊂ B with Bxi ⊂ O ∀1 ≤ i ≤ k and K ⊂
⋃

1≤i≤k Bxi such that we
can choose H0 = ⋃

1≤i≤k Bxi ∩Ku.

O1 O2
K1

K1 K2

Step II: β is subadditive on the open sets with β (O1 ∪O2) ≤ β (O1) +
β (O2) for every O1;O2 ∈ O: For every H ∈ H and open O1;O2 with
H ⊂ O1 ∪ O2 define K1 = {x ∈ H : d (x;X \O1) ≥ d (x;X \O2)} and
K2 = {x ∈ H : d (x;X \O2) ≥ d (x;X \O1)}. Since X \ O2 is closed for
every x ∈ K1 ∩ X \ O1 follows the contradiction d (x;X \O1) = 0 <
d (x;X \O2) so that we infer K1 ⊂ O1and analogously K2 ⊂ O2. Since
K1 ⊂ H ∈ H by step I exist H1;H2 ∈ H with K1 ⊂ H1 ⊂ O1 resp.
K2 ⊂ H2 ⊂ O2. By the monotonicity resp. subadditivity of α follows α (H) ≤ α (H1 ∪H2) ≤
α (H1) + α (H2) ≤ β (O1) + β (O2). Since we can find an increasing sequence (Hj)j≥1 ⊂ H with⋃
j≥1Hj = O1 ∪O2 the assertion follows.

Step III: β is σ-subadditive on the open sets with β
(⋃

n≥1On
)

≤
∑
n≥1 β (On) for every sequence

(On)n≥1 ⊂ O: For every H ∈ H with H ⊂
⋃
n≥1On its compact character implies the existence of an

m ≥ 1 with H ⊂
⋃

1≤n≤mOn and by step II we have α (H) ≤ β
(⋃

1≤n≤mOn
)

≤
∑

1≤n≤m β (On) ≤∑
n≥1 β (On). Since this estimate holds for every H ⊂

⋃
n≥1On we can infer its validity for the

supremum of all such H whence follows the proposition.

Step IV: γ is an outer measure: Since γ is obviously monotone with γ (∅) = 0 we only have to prove
the σ-subadditivity: For every ϵ > 0 and a sequence (An)n≥1 of arbitrary subsets An ⊂ X there
are open On ⊃ An with β (On) < γ (An)+ ϵ

2n and by step III follows γ
(⋃

n≥1An
)

≤ β
(⋃

n≥1An
)

≤∑
n≥1 β (An) ≤

∑
n≥1 γ (An) + ϵ whence γ

(⋃
n≥1An

)
≤
∑
n≥1 γ (An) since ϵ was arbitrary.

K

O

H1 H0

Step V: For every closed K ⊂ X and open O ⊂ X holds β (O) ≥
γ (O ∩K)+γ (O \K): For every ϵ > 0 there is an H1 ∈ H with H1 ⊂ O\K
and α (H1) > β (O \K) − ϵ. Now choose an H0 ∈ H with H0 ⊂ O \ H1
and α (H0) > β (O \H1) − ϵ. Since H0 ∩ H1 = ∅ and H0 ∪ H1 ⊂ O by
the additivity of α follows β (O) ≥ α (H0 ∪H1) = α (H0) + α (H1) >
β (O \H1) + β (O \K) − 2ϵ ≥ γ (O \K) + γ (O \K) − 2ϵ.

Step VI: Every closed set K is γ-measurable: For every arbitrary
A ⊂ X and open O ⊃ A step V and the montonicity of γ imply
β (O) ≥ γ (O ∩K) + γ (O \K) ≥ γ (A ∩K) + γ (A \K). Taking the infimum over all such A we
obtain γ (A) ≥ γ (A ∩K)+γ (A \K) and the subadditivity of γ yields the desired equality according
to the definition 3.2.4.

According to Carathéodory’s theorem 3.3 the restriction P = γ|A of the outer measure γ to
the σ-algebra A of all γ-measurable sets is a measure and since every closed set is γ-measurable
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we have B (X) ⊂ A and in particular X ∈ A. For every open set O ∈ O ⊂ B (X) ⊂ A follows
P (O) = γ (O) = β (O). Owing to their compact character all Ku lie in H such that 1 ≥ P (X) =
β (X) ≥ sup

u≥1
α (Ku) ≥ sup

u≥1
1− 1

u = 1 whence P is a probability measure. For everyH ∈ H withH ⊂ O

follows α (H) = lim
i→∞

Pni (H) ≤ lim inf
i→∞

Pni (O) and in particular P (O) = γ (O) = α(O) ≤ lim inf
i→∞

Pni (O)
which by the Portmanteau theorem 12.6.4 completes the proof.
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complex conjugate, 14
complex measure, 42
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convex, 28
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Dini derivatives, 64
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integrable functions, 19
integral transformation formula, 39
invariant, 13
inverse image of a σ-algebra, 13
invertible matrix, 38
isometric, 53, 54
isometry, 47
isomorphism, 53

Jensen’s inequality, 28
Jordan decomposition, 44, 46
jump, 64

Lebesgue integrable, 19, 49
Lebesgue integral, 25
Lebesgue measurable, 56
Lebesgue measurable function, 56
Lebesgue measure, 12, 15, 38, 48, 56
Lebesgue Radon-Nikodym theorem, 44
Lebesgue sets, 12
Lebesgue σ-algebra, 38, 52
Lebesgue space, 19
Lebesgue’s convergence theorem, 15
Lebesgue’s dominated convergence theorem, 23
Lebesgue’s dominated convergence theorem:, 31
Lebesgue-Borel measure, 10, 12
Lebesgue-integrable, 24
Lebesgue-Radon-Nikodym theorem, 47
Lebesgue-Stieltjes measure, 10
left limits, 10
left-open interval, 6, 10, 11
Levi’s monotone convergence theorem, 23
linear functional, 45, 47
linearity, 29
local convergence in measure, 15
locally compact, 6
lower semicontinuous, 49
Lusin’s Theorem, 49
Lusin’s theorem, 54, 55
Lévy und Steinitz, theorem of, 42

Fσ-set, 6
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Gδ-set, 35
Gδ-set, 6
maximum, 13
mean value theorem, 45
mean value theorem for integration, 25, 27
measurable function, 12
measurable rectangle, 33, 35, 41
measurable set, 9
measurable space, 6, 12
measure, 9
measure space, 9
metric, 13
metric space, 13, 65, 68
minimum, 13
Minkowski inequality, 28
Minkowski’s inequality, 32
monotone, 69
Monotone class theorem, 7
Monotone convergence, 37
monotone convergence, 24, 31, 32, 36, 45
monotone convergence theorem, 46
monotone function, 64
monotonicity, 19, 43
monotonicity of a pre-measure, 7
monotonicity of the integral, 20, 23
µ-absolutely continuous measure, 43
mulitplicity of the determinant, 39
multiple, 13, 14
multiplication, 14
multiplicity, 37, 41
multiplicity of a measure, 36
mutually singular measures, 43

n-dimensional figure, 35
n-dimensional interval, 35, 38
negative part, 13, 20
neighbourhoods, 57, 59
Non measurable sets, 12
norm, 13, 29, 30, 43, 46, 59
nowhere dense, 11
null set, 11, 12

open, 12
open map, 62
open set, 6, 13
orthogonal matrix, 39
outer measure, 9, 51, 53, 55, 69
outer measure, 10
outer regular, 48

parallelepiped, 39
partition, 29
partition of unity, 53
path, 41

paths, 41
permutation, 37
π -basis, 65
π-basis, 38
π-basis, 9
π-system, 7, 66
pointwise convergence, 15
polar representation of complex measures, 45
polish space, 34, 62, 64, 65
Portmanteau theorem, 60, 66, 70
Portmanteau theorem for metric spaces, 60
positive definiteness, 23, 43, 62
positive functional, 47, 50
positive measure, 42
positive part, 13, 20
positive und negative variations, 44
positive vector isomorphism, 53
powers, 14
pre-measure, 8, 42, 51
precompact, 66, 68
principal measure, 53
probability measure, 15, 41, 64, 65
probability measures, 9
probability space, 9, 41
probability theory, 12
product measure, 36
product space, 13
product topology, 14, 33, 34
product-σ-algebra, 33
projection, 13, 33, 34
projections, 20
pseudonorm, 22
Pythagoras, 40

quotient space, 18, 23, 29

Radon measure, 53, 56
Radon measures, 57, 58, 62
Radon-Nikodym density, 44, 46
Radon-Nikodym derivative, 44
range, 7
rational numbers, 11
ray, 6
real numbers, 8, 27
real part, 14
realization, 41
reciprocal, 14
regular, 48, 56, 65
relatively compact, 60
restriction, 20
restriction of a measure, 33
Riemann integrable, 27
Riemann integral, 27
Riesz convergence theorem, 16
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Riesz representation theorem, 38, 48, 53, 54, 57,
59

Riesz representation theorem for positive func-
tionals, 57, 61, 62

right continuous, 10
right-open intervals, 7
rotation, 39

sample path, 41
scaling, 39
Scheffé’s theorem, 47
Schwarz inequality, 44
second countable, 6, 34, 61, 62, 68
semicontinuous, 13
seminorm, 19, 29
separable, 14, 18, 19, 24–27, 61, 63–65
separation axiom, 34
separation property, 51
sequentially compact, 68
shearing, 39
σ-additive, 8, 51, 52
σ-additivity, 42
σ-algebra, 6
σ-compact, 56, 62
σ-finite, 18, 38, 48, 56
σ-finite, 9
σ-finite measure, 46
σ-regular, 48
signed measure, 44
simple discontinuity, 64
simplex, 40
Skorohod metric, 68
step function, 18, 19, 36, 44, 46, 53
step functions, 31, 46
stochastic convergence, 15
stochastic process, 41
subadditive, 69
subadditivity, 7, 16, 51
subbasis, 57, 59
support, 18
supports, 19
supremum norm, 19, 29, 47
supremum property, 8, 11

three dimensions, 39
Tight families, 68
tight measure, 66
topogical basis, 6
topological space, 6, 13
total variation, 42
totally bounded, 66, 68
trace algebra, 25
trace σ-algebra, 6, 33
trace topology, 6

transformation formula, 38, 56
translation, 13
translation invariance, 56
translation invariant, 38
tree, 41
triangle inequality, 19, 62
triangle inequation, 29
Tychonoff’s theorem, 34
Tychonov’s theorem, 61

uniform convergence, 17, 28
uniformizable, 59
uniformly continuous, 45, 59, 65
uniformly continuous faunctional, 47
uniqueness theorem, 9, 53, 65
unit cube, 39
unit sphere, 40
upper semicontinuous, 49

vague convergergence, 57
vague topology, 57, 59, 60
vaguely bounded, 60
vanishing at infinity, 49, 58
variation of a measure, 48
vector space, 29
vertex, 64
Vitali, 12
Vitali’s convergence theorem, 32
Vitali-Carathéodory theorem, 49
volume, 40

weak convergence, 59, 60, 66
Weak limits, 68
weak topology, 53, 59
weakl convergence, 67
weakly regular measure, 65
well ordering, 20

Zorn’s lemma, 6, 29
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