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1 Random variables

1.1 Independence

A family (Ai)i∈I ⊂ A of measurable sets on a probability space (Ω; A;P ) is independent, if
P (⋂i∈F Ai) = ∏

i∈F P (Ai) for every finite subset F ⊂ I. A family (Ei)i∈I of set systems Ei ⊂ A
with i ∈ I is independent if the families

(
Aif

)
if ∈F

are independent with Aif
∈ Eif

for if ∈ F and
every nonempty and finite subset F ⊂ I. For two independent systems E ,D ⊂ A on a probability
space(Ω; A;P ) the corresponding Dynkin-systems δ (E) and δ (D) are independent too since the
family I (D) := {A ∈ A : P (A ∩D) = P (A) · P (D) ∀D ∈ D} already is a Dynkin-system: Obviously
we have Ω ∈ I (D) and for A ∈ I (D) and D ∈ D we have P ((Ω \A) ∩D) = P (D \ (A ∩D)) =
P (D)−P (A ∩D) = P (D)−P (A) ·P (D) = P (D) ·(1 − P (A)) = P (X \A) ·P (D) such that X \A ∈
I (D). For pairwise disjoint (An)n∈N ⊂ I (D) we have P

((⋃̊
n∈NAn

)
∩D

)
= P

(⋃̊
n∈N (An ∩D)

)
=∑

n∈N P (An ∩D) = ∑
n∈N P (An) · P (D) = P (D) ·

∑
n∈N P (An) = P (D) · P

(⋃̊
n∈NAn

)
and hence⋃̊

n∈NAn ⊂ I (D). On account of E ⊂ I (D) follows δ (E) ⊂ I (D) and hence the assertion. Since
independence refers to finite subfamilies this property extends to arbitrary independent families (Ei)i∈I

and their Dynkin-systems (δ (Ei))i∈I and with [4, p. 1.6] even to their σ-algebrae (σ (Ei))i∈I =
(δ (Ei))i∈I if the (Ei)i∈I are closed with respect to intersections. Applying this property to the σ-
algebrae σ ({A}) = {∅;A; Ω \A; Ω} resp. σ ({B}) generated by two independents sets A and B shows
the independence of the complements.

1.2 Borel’s zero-one-law

For an independent sequence (An)n≥1 of measurable sets An ∈ A on a probability space (Ω; A;P )
we have P

(⋂
n≥1

⋃
k≥nAk

)
∈ {0; 1}.

Proof : Due to 1.1 for every n ≥ 1 the σ-algebrae Tn+1 = σ

({
j⋂

m=0
Akm : km ≥ n+ 1; 0 ≤ m ≤ j ∈ N

})

and An = σ

({
j⋂

m=0
Akm : km ≤ n; 0 ≤ m ≤ j ∈ N

})
are independent. Also for every n ≥ 1 we have

T = ⋂
n≥1

⋃
k≥nAk ∈ Tn and hence An ∈ I (T ) := {A ∈ A : P (A ∩ T ) = P (A) · P (T )} as well as

Tn ∈ σ (A) with A = ⋃
n≥1 An. Since I (T ) is a Dynkin-system including the π-system A and

consequently σ (A) = δ (A) ⊂ I (T ) follows T ∈ I (T ), i.e. T is independent of itself and hence
P (T ) = P (T ∩ T ) = P (T ) · P (T ) ∈ {0; 1}.

1.3 Random variables

Measurable mappings X : Ω → Y on probability spaces (Ω; A;P ) are called random variables with
their expectation E (X) :=

∫
XdP and probability distribution PX := X (P ). The random vari-

ables (Xi)i∈I with Xi : (Ω; A;P ) → (Yi; Ai) are independent if the σ-algebrae
(
X−1

i (Ai)
)

i∈I
with

X−1
i (Ai) ⊂ A are independent, i.e. for i, j ∈ I andAi ∈ Ai, Aj ∈ Aj holds P

(
X−1

i [Ai] ∩X−1
j [Aj ]

)
=

PXi (Ai) · PXj (Aj). In the case of a finite J = {1; ...;n} we have P
(

n⋂
i=1

{Xi ∈ Ai}
)

=
n∏

i=1
P (Xi ∈ Ai)

such that according to [4, th. 8.15] the common distribution is given by the product mea-
sure P(X1;...;Xn) =

n⊗
i=1

PXi on the product σ-algebra
⊗

i∈I Ai whence from [2, th. 7.3] follows

that the distribution of the sum Sn = sn (X1; ...;Xn) = X1 + ... + Xn coincides with the con-
volution PSn = sn ◦ P(X1;...;Xn) = PX1 ∗ ... ∗ PXn(cf. 3.14.4). For real-valued random variables
X : Ω → R we have 0 ≤ E

(
(X − E (X))2

)
= E

(
X2) − (E (X))2 and hence E

(
X2) ≥ (E (X))2.

The variance V AR (X) = E
(
(X − E (X))2

)
= E

(
X2) − E2 (X) resp. the standard deviation
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σ (X) := ∥X − E (X)∥2 =
√
V AR (X) = σ (X − E (X)) are independent of the expected value and

hence are preserved if we examine the centered random variable X − E (X).

1.4 Chebyshev’s inequality

For every random variable X : Ω → R+ on a probability space (Ω; A;P ) and every t > 0 we have
t · P (X ≥ t) ≤

∫
XdP .

Proof: α · P ({X ≥ α}) ≤
∫

{X≥α}XdP ≤
∫
XdP .

.

1.5 Expectations of products of independent random variables

For independent and real random variables X,Y ∈ B (Ω;R) we have E(X · Y ) = E (X) · E (Y ).

Proof: On account of E (χA · χB) = E (χA∩B) = P (A ∩B) = P (A) · P (B) = E (χA) · E (χB) the
proposition holds for characteristic functions and due to the linearity of the integral also for step
functions φ,ψ ∈ S (Ω;R). For integrable functions X,Y ∈ B (Ω;R) with P -a.e. X = lim

n→∞
Xn resp.

Y = lim
n→∞

Yn for sequences (Xn)n∈N , (Yn)n∈N ⊂ S (Ω;R) according to [4, p. 5.5] we have P -a.e. X ·Y =
lim

n→∞
(Xn · Yn). According to the hypothesis E (Xn · Yn) = E (Xn) ·E (Yn) ≤ 2E (X) ·E (Y ) < ∞ holds

for n ≥ N and some N ∈ N so that we can apply monotone convergence [4, p. 5.12] to obtain
E (X · Y ) = lim

n→∞
E (Xn · Yn) = lim

n→∞
(E (Xn) · E (Yn)) = lim

n→∞
E (Xn) · lim

n→∞
E (Yn) = E (X) · E (Y ).

1.6 The median

The real number m (X) is a median of the random variable X : Ω → R iff P (X ≤ m (X)) ≥ 1
2 ≤

P (X ≥ m (X)). Obviously for two medians m1 (X) < m2 (X) every intermediate value m1 (X) <
α < m2 (X) is a median too. The minimal median is mmin (X) = inf

{
λ ∈ R : P (X ≤ λ) ≥ 1

2

}
=

inf
{
λ ∈ R : P (X > λ) ≤ 1

2

}
since due to the continuity from above[4, p. 2.2.3] on the one hand we

have P (X ≤ mmin (X)) = P
(⋂

n≥1

{
X ≤ mmin (X) + 1

n

})
= inf

n≥1
P
(
X ≤ mmin (X) + 1

n

)
≥ 1

2 and on

the other hand P (X ≥ mmin (X)) = P
(⋂

n≥1

{
X ≥ mmin (X) − 1

n

})
= inf

n≥1
P
(
X ≥ mmin (X) − 1

n

)
= 1−sup

n≥1
P
(
X < mmin (X) − 1

n

)
≥ 1

2 , i.e. mmin (X) is itself a median and since for every ϵ > 0 holds

P (X ≤ mmin (X) − ϵ) < 1
2 it is the minimal median. Correspondingly the maximal median is

mmax (X) = sup
{
λ ∈ R : P (X ≥ λ) ≥ 1

2

}
= sup

{
λ ∈ R : P (X < λ) ≤ 1

2

}
. The relation mmin (X) ≤

mmax (X) holds since otherwise we had sup
n≥1

P
(
X ≥ mmax (X) + 1

n

)
= P

(⋃
n≥1

{
X ≥ mmax (X) + 1

n

})
= P (X > mmax (X)) > 1

2 , i.e. there existed a λ = mmax (X) + 1
n with P (X ≥ λ) ≥ 1

2 contrary to
the definition of mmax (X). Obviously we have linearity in the form c · m (X) = m (c ·X) and
m (X) + c = m (X + c) for every c ∈ R.

1.7 Lévy’s inequality

For independent and real random variables Xi : (Ω, A, P ) → R, 1 ≤ i ≤ n with sums Sm :=
m∑

i=1
Xi

and every ϵ > 0 we have µ
(

max
1≤i≤n

|Si +m (Sn − Si)| ≥ ϵ

)
≤ 2P (|Sn| ≥ ϵ).

Note: This inequality allows us to obtain an estimate for the maximal deviation |Si +m (Sn − Si)|
of all partial sums Si given the measure of the deviation |Sn| of the single sum Sn.
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Proof: For S0 := 0 and T = min
1≤i≤m

{|Si +m (Sn − Si)| ≥ ϵ} if such an i exists and T := n + 1
otherwise the pairwise disjoint sets Ai := {T = i} ∈ σ (X1, ..., Xi) are independent of Bi =
{Sn − Si ≥ m (Sn − Si)} ∈ σ (Xi, ..., Xn). Hence from P (Bi) ≥ 1

2 follows P (Sn ≥ ϵ) ≥ P

(
n⋃

i=1
Ai ∩Bi

)
=

n∑
i=1

P (Ai ∩Bi) =
n∑

i=1
P (Ai) ·P (Bi) ≥ 1

2P (1 ≤ T ≤ n) = 1
2µ

(
max

1≤i≤n
Si +m (Sn − Si) ≥ ϵ

)
. Since the

same inequality holds for −Xi resp. −Si with m (−Sn + Si) = −m (Sn − Si) and all corresponding
sets are disjoint we can use the additivity of P and simply add the two inequalities to obtain the
assertion.

1.8 Lévy’s convergence theorem

For the sequence (Sn)n≥1 of the sums Sn :=
n∑

i=1
Xi of real and independent random variables (Xi)i≥1

the P -a-e- convergence is equivalent to the convergence in measure.
Proof :
⇒: Lebesgue’s convergence theorem[4, p. 4.11].
⇐: Riesz’ convergence theorem[4, p. 4.13.3] provides for every 1

4 > ϵ > 0 an nϵ ≥ 1 with
P (|Sn − Sm| ≥ ϵ) < ϵ for all n > m ≥ nϵ. In particular we have P (|Sn − Sm| ≥ ϵ) < 1

2 and hence

|m (Sn − Sm)| ≤ ϵ for n > m ≥ nϵ. The preceding inequality yields P
(

max
m<i≤n

|Si − Sm| ≥ 2ϵ
)

≤

2P (|Sn − Sm| ≥ ϵ) < 2ϵ. For n → ∞ follows P
(

sup
m<i

|Si − Sm| ≥ 2ϵ
)

≤ 2ϵ and due to the complete-

ness [4, p. 4.14] of the P -a-e- convergence we obtain the assertion.

1.9 Abel’s partial summation

1. For two real sequences (ai)i≥0 , (bi)i≥0 ⊂ R and An =
n∑

i=0
ai we have

n∑
i=1

aibi = Anbn −A0b1−
n−1∑
i=1

Ai (bi+1 − bi) for n ≥ 1.

2. If also lim
n→∞

An = A∗
0 < ∞ with A∗

n = ∑
i>n ai holds we have

n∑
i=1

aibi = A∗
0b1 −A∗

nbn+
n−1∑
i=1

A∗
i (bi+1 − bi) für n ≥ 1.

3. If additionally ai ≥ 0 and bi+1 ≥ bi ≥ 0 for all i ≥ 0 is satisfied we have
n∑

i=1
aibi = A∗

0b1+
n−1∑
i=1

A∗
i (bi+1 − bi) for n ≥ 1.

Proof:

1.
n∑

i=1
aibi =

n−1∑
i=0

(Ai+1 −Ai) bi+1 = Anbn−
n−1∑
i=1

Ai (bi+1 − bi) −A0b1.

2. Follows from 1. with a0 = −
∞∑

i=1
ai = −A∗

0.

3. In the case of lim
n→∞

A∗
nbn > 0 with ∑i>n aibi ≥ A∗

nbn and 2. we have A∗
0b1 +∑i≥1A

∗
i (bi+1 − bi) ≥∑

i>1 aibi = ∞ and hence the assertion. For lim
n→∞

A∗
nbn = 0 it directly follows from 2. with

n → ∞.

1.10 Kronecker’s lemma

For a positive real and increasing sequence (bi)i≥1 with lim
i→∞

1
bi

= 0 and a further real sequence

(ai)i≥1 with ∑i≥1
ai
bi
< ∞ we have lim

n→∞
1

bn

n∑
i=1

ai = 0.
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Proof: From 1.9.2 with ci = ai
bi

and lim
n→∞

Cn = C∗
0 = ∑

i≥1
ai
bi
< ∞ resp. lim

n→∞
C∗

n = 0 we have the

decomposition 1
bn

n∑
i=1

ai = 1
bn

n∑
i=1

cibi = 1
bn
C∗

0b1 + C∗
n + 1

bn

n−1∑
i=1

C∗
i (bi+1 − bi). For n → ∞ the first

two summands converge to zero. This also holds for the third summand since for every ϵ > 0 there
is an m ≥ 1 with |C∗

i | < ϵ for all i ≥ m such that on the one hand
∣∣∣∣ 1

bn

n−1∑
i=m

C∗
i (bi+1 − bi)

∣∣∣∣ < ϵ 1
bn

n−1∑
i=m

(bi+1 − bi) = ϵ
(
1 − bm

bn

)
< ϵ and on the other hand

∣∣∣∣ 1
bn

m−1∑
i=1

C∗
i (bi+1 − bi)

∣∣∣∣ < ϵ for a sufficiently large
n ≥ 1.

1.11 The Khintchin-Kolmogorov convergence theorem

For every sequence (Xn)n≥1 of independent and centered random variables Xn ∈ L2 (P ) with∑
n≥1E

(
X2

n

)
< ∞ the sums Sm :=

m∑
n=1

Xn converge P -a.e. and in quadratic mean to a S =

lim
m→∞

Sm ∈ L2 (P ) with E (S)2 = ∑
n≥1E

(
X2

n

)
.

Proof : Owing to 1.5, E (Xn) = 0 for all n≥ 1 and by the hypothesis we have lim
k→∞

sup
m≥k

E (Sm − Sk)2 =

lim
k→∞

sup
m≥k

m∑
i=k

E
(
X2

i

)
= 0 such that due to[4, p. 6.7] there is an S = lim

k→∞
Sm(k) ∈ L2 (P ) with a µ-

a.e. convergent partial sequence
(
Sm(k)

)
k≥1

as well as convergence of the complete sequence in
the quadratic mean: lim

m→∞
E (S − Sm)2 = 0. Owing to[4, p. 6.9] we can infer the convergence in

measure and due to Lévy’s theorem 1.8 µ-a.e. convergence of the complete series. Due to 1.5
and E (Xn) = 0 we also obtain E (S)2 = lim

m→∞
E (Sm)2 = ∑

n≥1E
(
X2

n

)
.

1.12 Kolmogorov’s strong law of large numbers

The mean values 1
nSn = 1

n

n∑
k=1

Xk of every sequence (Xk)k≥1 of independent, identically dis-

tributed and integrable random variables P -almost sure converge to the common expec-
tation : lim

n→∞
1
nSn = E (X1).

Note: The strong law of large numbers provides a mathematical basis for the principle of learning
from experience and every statistical method in science. From the mean results 1

nSn of independent
trials executed under similar conditions in the past we infer the expected outcome E (X1) in the
future.

Proof : At first we prove the proposition for truncated random variables Yk = 1
k ·Xk · χ{|Xk|≤k}:

With the sets An = {n− 1 < |X1| ≤ n} we obtain ∑k≥1E
(
|Yk|2

)
= ∑

k≥1
∑

k≥n≥1 n
−2 ∫

An
|X1|2 dP

= ∑
n≥1

∑
k≥n n

−2 ∫
Am

|X1|2 dP ≤
∑

n≥1
2
n

∫
Am

|X1|2 dP ≤ 2∑n≥1
∫

An
|X1| dP ≤ 2E (|Xk|) < ∞ so

that due to Khintchin - Kolmogorov 1.11 we have P -a.s. ∑k≥1 (Yk − E (Yk)) < ∞.

The deviations have the measure∑k≥1 P
(

1
kXk ̸= Yk

)
=∑

k≥1 P (|X1| > k) ≤
∑

k≥1
∑

n≥k P (n+ 1 ≥ |X1| > n)
≤
∑

n≥1
∑

n≥k≥1 P (n+ 1 ≥ |X1| > n) =∑
k≥1 (k + 1)·P (n+ 1 ≥ |X1| > n) ≤ E (|X1|) < ∞ such that

according to Borel-Cantelli [4, th. 4.12] follows P
(⋂

n≥1
⋃

k≥n

{
1
kXk ̸= Yk

})
= 0 and with the first

estimate above we obtain P -a.e. ∑k≥1
1
k (Xk − E (k · Yk)) = ∑

k≥1

(
1
k ·Xk − E (Yk)

)
< ∞. On ac-

count of lim
n→∞

1
n

n∑
k=1

E (k · Yk) = lim
n→∞

1
n

n∑
k=1

E
(
X1 · χ{|X1|≤k}

)
= lim

n→∞
E
(
X1 · χ{|X1|≤k}

)
= E (X1) and

Kronecker 1.10 follows lim
n→∞

1
nSn − E (X1) = lim

n→∞
1
n

n∑
k=1

(Xk − E (k · Yk)) = 0.
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2 Stochastic processes

2.1 Definition of the bold game strategy

A gambler enters the casino with capital C0 > 0 and takes independently and identically dis-
tributed bets with P (Yk = 1) = p resp. P (Yk = −1) = 1 − p = q for k ≥ 1 until his fortune C0 + Sn

with Sn =
n∑

k=1
Yk reaches either in the case SC0,n = {C0 + Sn = c} ∩

n−1⋂
k=1

{0 < C0 + Sn < c} of success

the goal c or in the case RC0,n = {C0 + Sn = 0} ∩
n−1⋂
k=1

{0 < C0 + Sn < c} of ruin the value 0. The

probability of ultimate success is sc (C0) = P
(⋃

n≥1 SC0,n

)
= ∑

n≥1 P (SC0,n) and correspond-
ingly the probability of ultimate ruin is rc (C0) = P

(⋃
n≥1RC0,n

)
= ∑

n≥1 P (RC0,n). The cases
SC0,0 = S0,n = Sc,n = ∅ for C0 < c resp. Sc,0 = Ω yield the boundary conditions sc (0) = 0 and
sc (c) = 1. Similarly RC0,0 = R0,n = Rc,n = ∅ for C0 < c resp. R0,0 = Ω give rc (0) = 1 and rc (c) = 0.
Since the bets are independently and identically distributed we have the recursive formulae

sc (C0) = p · sc (C0 + 1) + q · sc (C0 − 1) resp. rc (C0) = q · rc (C0 + 1) + p · rc (C0 − 1) .

In general these recursions have the explicit solutions

sc (C0) =
{
A+B · ρC0 if p ̸= q

A+B · a if p = q
for ρ = q

p
.

The boundary conditions result in

sc (C0) =


ρC0 −1
ρc−1 if p ̸= q

C0
c if p = q

resp. rc (C0) =


ρC0−c−1

ρ−c−1 if p ̸= q
c−C0

c if p = q

Hence sc (C0) + rc (C0) = 1, i.e. the game will P -almost sure not continue forever.
In the n-th game the wager Wn (C0;Y1; ...;Yn−1) ≥ 0 results in the win WnYn and the capital
Cn = Cn−1 +WnYn. The random variables (Yk)k≥1 generate an increasing filtration (Fn)n≥1 with
Fn = σ (Y1; ...;Yn) representing the knowledge up to the n-th game. Since the σ-algebrae σ (Yn)
are independent of the Fn−1 = σ (Y1; ...;Yn−1) due to 1.5 we have E (Yn ·Wn) = E (Yn) · E (Wn) =
(p− q) · E (Wn). Consequently in the subfair case with p < q the sequence (E (Cn))n≥1 of expected
capital is decreasing.
The stopping time τ : R × Ω → N denotes the number τ (C0;ω) of trials the gambler plays before
he decides to stop. This decision depends only in the knowledge gathered up to τ , i.e. {τ = n} ∈ Fn.
Also we assume that P (τ < ∞) = 1. The capital then is

C∗
n =

{
Cn if τ ≥ n

Cτ if τ ≤ n
with the wager W ∗

n =
{
Wn if τ ≥ n

0 if τ ≤ n
= Wnχ{τ≥n}

so that we arrive at the recursive formula C∗
n = C∗

n−1 +W ∗
n · Yn. Since {τ ≥ n} = Ω \ {τ < n} ∈ Fn−1

the random variables C∗
n resp. W ∗

n are Fn−1- measurable whence the argument from above applies
whence the sequence (E (C∗

n))n≥1 of expected capital still is decreasing. If we assume a finite line
of credit of the gambler as well as a finite capital of the bank, i.e. −M ≤ C∗

n ≤ M for an M > 0
and every n ≥ 1 and consider that P -a.s. lim

n→∞
C∗

n = Cτ the dominated convergence theorem[4,
p. 5.14] yields lim

n→∞
E (C∗

n) = E (Cτ ) and in particular E (Cτ ) ≤ E (Cn) ≤ E (C1) ≤ C0: No gambling
system may reverse the odds of a subfair game.
Nonetheless it is possible to optimize the (still unfavourable) success probability in a subfair game
in a striking way leading to a P -a.e. differentiable function with fractal character and outside
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the domain of the fundamental theorem of calculus. To this end we scale the initial fortune
to 0 ≤ C0 ≤ 1and the goal to c = 1. The bold game strategy is defined by

Wn =
{
Cn−1 if 0 ≤ Cn−1 ≤ 1

2
1 − Cn−1 if 1

2 ≤ Cn−1 ≤ 1
and τ (C0;ω) = n iff Cn ∈ {0; 1} .

Under the condition that the play has not terminated at time k − 1 it will continue beyond k iff
either Yk = 1 in the case of Ck−1 ≤ 1

2 orYk = −1 in the case of Ck−1 ≥ 1
2 . Hence we have

P (τ ≥ k + 1|τ ≥ k) ≤ m = max {p; q} whence P (τ ≥ k + 1) ≤ mn and consequently P (τ = ∞) = 0.
Thus the game will terminate P -a.s. The mapping Cτ : Ω → {0; 1} is a ⋃n∈N Fn-measurable ran-
dom variable since {Cτ = y} = ⋃

n∈N ({τ = n} ∩ {Cn = y}) for y ∈ {0; 1}. We now examine the
success probability of the initial capital 0 ≤ x ≤ 1 expressed by the function F : [0; 1] → [0; 1] with
F (x) = P (Cτ = 1) for C0 = x.

2.2 Properties of the bold game strategy

1. In the subfair case p ≤ q of a sequence of trials with independently and identically dis-
tributed outcomes Yi : Ω → {−1; 1} and P (Yi = 1) = p resp. P (Yi = −1) = q for every
0 ≤ x ≤ 1 the success probability F of the bold game strategy as described above satisfies the

functional equation F (x) =
{
p · F (2x) if 0 ≤ x ≤ 1

2
p+ q · F (2x− 1) if 1

2 ≤ x ≤ 1
.

2. It is also the distribution function F (x) = P (X ≥ x) of the random variable X = ∑
i≥1

Xi
2i :

Ω → [0; 1] with independently and identically distributed coefficients Xi : Ω → {0; 1}
and P (Xi = 1) = p resp. P (Xi = 0) = q.

3. The function F : [0; 1] → [0; 1] is continuous, increasing and P -a.e. differentiable with
P -a.e. dF

dx (x) = 0 for p < q.

Note: The functional equation expresses the fractal character of the distribution function F in
terms of self-similarity: The values F (y) ∈ [0; 1] on the whole domain y ∈ [0; 1] are replicated in the
lower part F

(
1
2y
)

= 1
pF (y) ∈ [0; p] and the values F (y) ∈ [p; 1] in the upper part are also repeated

in the interval F
(

1
2(y + 1)

)
= 1

q (F (y) − p) ∈
[
0; 1

q

]
.

0 ≤ x ≤ 1
2

p q

F (2x)

success fail

1 − F (2x)

fail

1
2 ≤ x ≤ 1

p q

F (1 − 2x)

success success

1 − F (1 − 2x)

fail

2x 0

1 − 2x1

Proof : The functional equation follows from the event tree at
the right hand side based on the independently and identically dis-
tributed probabilities of the separate trials. Applying it we obtain

F (1) = P (1.0)2 = 1;

F
(

1
2

)
= P (0.1)2 = p;

F
(

1
4

)
= F (0.01)2 = P (1; 1) = p2;

F
(

3
4

)
= F (0.11)2 = P (1 ∨ 0; 1) = p+ qp;

F
(

1
8

)
= F (0.001)2 = P (1; 1; 1) = p3;

F
(

3
8

)
= F (0.011)2 = P (1; 1 ∨ 1; 0; 1) = p2 + pqp;

F
(

5
8

)
= F (0.101)2 = P (1 ∨ 0; 1; 1) = p+ qpp;

F
(

7
8

)
= F (0.111)2 = P (1 ∨ 0; 1 ∨ 0; 0; 1) = p+ qp+ qqp
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In general for a dyadic number x =
n∑

i=1
xi
2i = (0.x1...xn)2 of rank n ≥ 1 we have

• either (0.x1...xn)2 + 1
2n ≤ 1

2 hence x1 = 0 and F (x) = p · F (2x) so that F
(
(0.x1...xn)2 + 1

2n

)
−

F (0.x1...xn)2 = p
(
F
(
(0.x2...xn)2 + 1

2n−1

)
− F (0.x2...xn)2

)
• or (0.x1...xn)2 + 1

2n ≥ 1
2 hence x1 = 1 and F (x) = p + q · F (2x− 1) so that due

to 2 ·
(
(0.x1...xn)2 + 1

2n

)
− 1 = (1.x2...xn)2 + 1

2n−1 − 1 = (0.x2...xn)2 + 1
2n−1 we have

F
(
(0.x1...xn)2 + 1

2n

)
− F (0.x1...xn)2 = q

(
F
(
(0.x2...xn)2 + 1

2n−1

)
− F (0.x2...xn)2

)
.

Subsuming both cases and skewing the outcomes Yi slightily so that
they fit as coefficients Xi = 1 − 1

2 (1 − Yi) such that P (Xi = 1) = P (Yi = 1) = p resp. P (Xi = 0) =
P (Yi = −1) = q we obtain

F

(
(0.x1...xn)2 + 1

2n

)
− F (0.x1...xn)2 = p (x1)

(
F

(
(0.x2...xn)2 + 1

2n−1

)
− F (0.x2...xn)2

)
...
= P (X1 = x1) · ... · P (Xn = xn) · (F (1) − F (0))
= P (X1 = x1) · ... · P (Xn = xn)
= P ((X1, ..., Xk) = (x1, ..., xk))
≤ mn but also
> 0

whence immediately follow the increasing character as well as the continuity of F . Also we can

compute the explicit formula using the Kronecker symbol δx1 =
{

1 if x = 1
0 if x ̸= 1

to exclude the

cases xk = 0 resp. F (0.x1...xk)2 = F (0.x1...xk−1)2 so that

F (0.x1...xn)2

= F

(
0.x1...xn−1 + 1

2n

)
2

= P (X1 = x1) · ... · P (Xn = xn) · δxn1 + F (0.x1...xn−1)2
= P (X1 = x1) · ... · P (Xn = xn) · δxn1 + P (X1 = x1) · ... · P (Xn−1 = xn−1) · δxn−11 + ...+ P (X1 = x1) · δx11

=
n∑

k=1
P (X1 = x1) · ... · P (Xk = xk) · δxk1

=
n∑

k=1
P ((X1, ..., Xk) = (x1, ..., xk))

= P

(
:

k∑
i=1

Xi

2i
≤

n∑
i=1

xi

2i
; k ≤ n

)

Hence for every dyadic number x =
n∑

i=1
xi
2i of rank n ≥ 1 we have F (x) = P (X ≤ x) for the

random variable X =
n∑

i=1
Xi
2i . Since the dyadic numbers of finite rank are dense in [0; 1] and F is

continuous this formula extends to every real x ∈ [0; 1], i.e. F is the distribution function for the
random variable X = ∑

i≥1
Xi
2i .
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In order to compute the derivative for a given x ∈ ]0; 1[ (conve-
niently excluding the λ-null set {0; 1}) and every n ≥ 1 we choose
0 ≤ kn ≤ 2n − 1 such that x ∈ In =

]
kn
2n ; kn+1

2n

[
. According to

Lebesgue’s differentiation theorem [4, p. 12.4] the derivative
dF
dλ (x) = lim

n→∞
F( kn

2n + 1
2n )−F( kn

2n )
2n = lim

n→∞
P (X∈In)

2n exists λ-a.e. on [0; 1].
If we assume dF

dλ (x) > 0 it follows that P (X ∈ In) > 0 and from
lim

n→∞
P (X∈In+1)

2n+1 = lim
n→∞

P (X∈In)
2n we infer lim

n→∞
P (X∈In+1)

P (X∈In) = 1
2 . From

kn
2n = (0.x1...xn)2 follows kn+1

2n = (0.x1...xnxn+1)2 with xn+1 = 0
iff In+1 ⊂ In lies in the left half of In and xn+1 = 0 iff it is the
right half of In. Due to the explicit formula shown above we infer
P (X∈In+1)

P (X∈In) = P (X1=x1)·...·P (Xn=xn+1)
P (X1=x1)·...·P (Xn=xn) = P (Xn = xn+1) ∈ {p; q} con-

trary to the assumption p < q. Hence the proof is complete.

2.3 Convexity of the success probability

In the subfair case p ≤ q for every 0 ≤ x− t ≤ x ≤ x+ t ≤ 1 we have F (x) ≥ p ·F (x+ t)+q ·F (x− t).
Proof : We prove the inequality ∆ (r, s) = F (a)−pF (s)−qF (r) ≥ 0 by induction over n for dyadic
numbers 0 ≤ r ≤ s ≤ 1 of rank n and mean a = 1

2 (r + s) of rank n + 1. By the continuity of F
this result then extends to real arguments. We assume that the inequality holds for r, s of rank n ≥ 1.
There are four cases to consider:
Case I: s ≥ 1

2 . The first part of the functional equation gives ∆ (r, s) = p∆ (2r, 2s). Since 2r, 2s are
of rank n the induction hypothesis implies that ∆ (2r, 2s) ≥ 0.
Case II: 1

2 ≤ r. By the second part of the functional equation we have ∆ (r, s) = q∆ (2r − 1, 2s− 1) ≥
0.
Case III: r ≤ a ≤ 1

2 ≤ 2. The functional equation delivers ∆ (r, s) = pF (2a) − p (p+ qF (2s− 1)) −
q (pF (2r)). From 1

2 ≤ s ≤ r + s = 2a ≤ 1 follows F (2a) = p + qF (4a− 1) and from 0 ≤ 2a −
1
2 ≤ 1

2 follows F
(
2a− 1

2

)
= pF (4a− 1). Therefore pF (2a) = p2 + qF

(
2a− 1

2

)
whence ∆ (r, s) =

q
(
F
(
2a− 1

2

)
− pF (2s− 1) − pF (2r)

)
. Since p ≤ qthe right side does not increase if either of the

two p is changed to q. Hence ∆ (r, s) ≥ qmax {∆ (2r, 2s− 1) ,∆ (2s− 1, 2r)}. Since we may apply the
induction hypothesis either to 2r ≤ 2s− 1 or to 2s− 1 ≤ 2r at least one of the two ∆ on the right is
nonnegative.
Case IV: r ≤ 1

2 ≤ a ≤ s. The functional equation gives ∆ (r, s) = pq + qF (2a− 1) − pqF (2s− 1) −
pqF (2r). From 0 ≤ 2a− 1 = r + 2 − 1 ≤ 1

2 follows F (2a− 1) = pF (4a− 2) and from 1
2 ≤ 2a− 1

2 =
r+s− 1

2 ≤ 1 follows F
(
2a− 1

2 = p+ qF (4a− 2)
)
. Therefore qF (2a− 1) = pF

(
2a− 1

2

)
and it follows

that ∆ (r, s) = p
(
q − p+ F

(
2a− 1

2

)
− qF (2s− 1) − qF (2r)

)
. On the one hand if 2s − 1 ≤ 2r the

right side becomes p ((q − p) (1 − F (2r)) + ∆ (2s− 1, 2r)) ≥ 0. On the other hand if 2r ≤ 2s− 1 it is
p ((q − p) (1 − F (2s− 1)) + ∆ (2r, 2s− 1)) ≥ 0. This completes the proof.

2.4 The Dubins-Savage Theorem

The bold play strategy is the optimal strategy in the subfair case p ≤ q, i.e. for every other strategy
π and every initial capital 0 ≤ x ≤ 1 we have Fπ (x) ≤ F (x) .

Proof : We consider the conditional chance F
(
C∗

π,n

)
of success if the strategy π is replaced by

bold game after the n-th trial and the capital C∗
π,n (C0, Y1, ..., Yn) depending on the initial capital

0 ≤ C0 ≤ 1 and the independently as well as identically distributed outcomes Yi ∈ {−1, 1} in the
trials 1 ≤ i ≤ n. We abbreviate C∗

π,n−1 = x and W ∗
π,n = t so that we can write C∗

π,n = x + tYn

and F
(
C∗

π,n

)
= ∑

x,t χ{C∗
π,n−1=x,W ∗

π,n=t}F (x+ tYn) where x resp. t vary over the finite ranges of
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C∗
π,n−1 resp. W ∗

π,n. Since C∗
π,n−1 and W ∗

π,n are σ (Y1, ..., Yn−1)-measurable and F (x+ tYn) is σ (Yn)-
measurable for the now fixed (!) s and t in the sum by independence we obtain E

(
F
(
C∗

π,n

))
=∑

x,t P
(
C∗

π,n−1 = x,W ∗
π,n = t

)
· E (F (x+ tYn)). According to the preceding lemma 2.3 we have

E (F (x+ tYn)) ≤ F (x)if 0 ≤ x− t ≤ x ≤ x+ t ≤ 1. We assume that the alternative strategy π keeps
to the same capital limits as the bold game, i.e. W ∗

π,n ≤ min
{
C∗

π,n−1, 1 − C∗
π,n−1

}
and consequently

C∗
π,n ∈ [0; 1] whence E

(
F
(
C∗

π,n

))
≤
∑

x,t P
(
C∗

π,n−1 = x,W ∗
π,n = t

)
· F (x) = ∑

x P
(
C∗

π,n−1 = x
)

·

F (x) = E
(
F
(
C∗

π,n−1

))
. This inequality already implies that every trial the gambler waits before

changing to bold play diminishes his expected chance of success in the overall game played
in the first n trials in some arbitrary alternative strategy and from the n + 1 th game on with bold
play. But we can sharpen this statement considerably: Since the estimate is true for each n ≥ 1 and

F
(
C∗

π,τπ

)
= F

(
C∗

π,n

)
=
{

1 if C∗
π,τπ

= 1
0 if C∗

π,τπ
̸= 1

for n ≥ τπ with P (τp < ∞) guaranteed by the alternative

strategy π (cf. 2.1) we obtain E
(
F
(
C∗

π,τπ

))
= E

(
F
(
C∗

π,n

))
≤ E

(
F
(
C∗

π,0

))
= E (F (C0)) = F (C0).

Since Fπ (C0) = 1 · P
(
C∗

π,τπ
= 1

)
= F

(
C∗

π,τπ
= 1

)
· P

(
C∗

π,τπ
= 1

)
≤ E (F (Cτ )) ≤ F (C0) we have

proven the assertion.

3 Weak convergence

3.1 Simple discontinuities of monotone functions

Every monotone function f : ]a; b[ → R is continuous except at a countable set of points and the
discontinuity at each of such point c ∈ ]a; b[ is simple, i.e.

−∞ < sup
a<x<c

f (x) = lim
n→∞

f

(
c− 1

n

)
< lim

n→∞
f

(
c+ 1

n

)
= inf

c<x<b
f (x) < ∞

.

Notes:

1. In [4, th. 11.1] it is shown that for every (not necessarily measurable) f : (X; d) → (Y ;D)
between metric spaces the set of discontinuities

Df = {x ∈ X : ∃ϵ > 0 : ∀δ > 0 ∃y; z ∈ Bδ (x) : D (f (y) ; f (z)) ≥ ϵ}

is B (X)-measurable.

2. In [2, th. 1.2] it is proved that for every real f : R → R the set of jump and vertex points
with existing but differing Dini derivatives{

D+f = D+f = D+
+f ̸= D−

−f = D−f = D−f
}

is countable.

Proof : W.l.o.g. we assume f to be nondecreasing whence a < x < c < y < b implies −∞ <
f (x) < f (c) < f (y) < ∞ and consequently −∞ < α = sup

a<x<c
f (x) ≤ f (c) ≤ inf

c<x<b
f (x) = β < ∞. In

order to prove that α = f (c−) = lim
n→∞

f
(
c− 1

n

)
resp. β = f (c+) = lim

n→∞
f
(
c+ 1

n

)
we observe that

the nondecreasing character of f implies that for every ϵ > 0 there is an m ≥ 1 such that for every
n ≥ m holds α − ϵ < f

(
c− 1

n

)
≤ α whence follows f (c−) = α and analogously f (c+) = β. Also

we remark that a < c < x < d < b implies f (c+) ≤ f (x) ≤ f (d−). Hence for every c; d ∈ Df =
{x ∈ ]a; b[ : f (x−) < f (x+)} there are rational f (c−) < rc < f (c+) < f (d−) < rd < f (d+), i.e.
the map r : D → Q defined by r (c) = rcis injective.
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3.2 Distribution functions

= P (X = x)

X (ω)

∫ x

−∞ fdP = F (x)

δ
δxF (x) = f (x)

P/dP
dx

x

Ω

= P (X ≤ x)

Every random variable X : Ω → R on a probabil-
ity space (Ω; A;P ) determines a probability measure
PX = X ◦ P on (R; B (R)) and according to [4, th.
3.7] a nondecreasing and right continuous dis-
tribution function FX : R → [0; 1] with existing
left limits such that FX (x) = (X ◦ P ) (]−∞;x]) =
P (X ≤ x). According to the preceding theorem 3.1
every distribution function has at most a countable
number of simple discontinuities. Conversely ev-
ery such distribution function F : R → [0; 1] de-
termines a unique probability measure PF on
(R; B (R)) and many possible probability spaces
(Ω; A;P ) with corresponding random variables X :
Ω → R such that F (x) = P (X ≤ x) = P (]−∞;x]),
among them the trivial random variable X = id :
R → R. E.g. the binomial distribution b3;0,5 with
b3;0,5 (0) = b3;0,5 (3) = 1

8 resp. b3;0,5 (1) = b3;0,5 (2) = 3
8

may be realized by three tosses of a coin as well as by
the single throw of an octagonal die with correspond-
ing labels.

3.3 Expectations and distribution functions

For every random variable X : Ω → R on a probability space (Ω; A;P ) we have

1. E (X) =
∫∞

0 P (X ≥ x) dx−
∫ 0

−∞ P (X ≤ x) dx.

In the case of a continuous distribution function F : R → [0; 1] with F (x) = P (X ≤ x) holds

2. E (X) =
∫∞

0 (1 − F (x)) dx−
∫ 0

−∞ F (x) dx.

Proof: By Fubini [4, th. 8.9] we have the expectation of the positive part E
(
X+) =

∫
X+dP

=
∫
tdPX+ (t) =

∫ ∫
χ[0≤x≤t] (x) dxdPX (t) =

∫ ∫
χ[0≤x≤t] (t) dPX (t) dx =

∫∞
0 P (X ≥ x) dx and in

the case of a continuous distribution function F : R → [0; 1] with P (X = x) = PX ({x}) =
PX

(⋂
n≥1

]
x− 1

n ;x+ 1
n

])
= lim

n→∞

(
F
(
x+ 1

n

)
− F

(
x+ 1

n

))
= lim

n→∞
F
(
x+ 1

n

)
− lim

n→∞
F
(
x+ 1

n

)
=

F (x)−F (x) = 0 follows E
(
X+) =

∫∞
0 P (X > x) dx =

∫∞
0 (1 − F (x)) dx. The negative part is com-

puted by E (X−) =
∫
X−dP =

∫
tdPX− (t) =

∫ ∫
χ[t≤x≤0] (x) dxdPX (t) =

∫ ∫
χ[t≤x≤0] (t) dPX (t) dx

=
∫ 0

−∞ P (X ≤ x) dx =
∫ 0

−∞ F (x) dx whence by E (X) = E
(
X+ −X−) = E

(
X+)− E (X−) follows

the assertion.

3.4 The primitive of a distribution function

The distribution PX : B (R) → [0; 1] of a random variable X : Ω → R on a probability space (Ω; A;P )
is λ-absolutely continuous iff its distribution function F : R → [0; 1] is absolutely continuous
and in this case there is a probability density function f = dF

dλ : R → R+
0 which is the primitive

of F with P (X ≤ x) = F (x) =
∫ x

−∞ fdλ.

Proof :

⇒: According to [4, def. 9.6] for every ϵ > 0 there is a δ > 0 such that for any disjoint collection
(]αi;βi[)1≤i≤n of segments with overall length

n∑
i=1

(βi − αi) =
n∑

i=1
λ (]βi − αi]) = λ

(
n⋃

i=1
]βi − αi]

)
< δ

holds
n∑

i=1
|F (βi) − F (αi)| =

n∑
i=1

PX (]βi − αi]) = PX

(
n⋃

i=1
]βi − αi]

)
< ϵ whence from [2, def. 2.7]
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follows the absolute continuity of F . The existence of the probability density function then is
a consequence of the fundamental theorem of calculus [2, th. 12.10].

⇐: Follows at once from the fundamental theorem of calculus [2, th. 12.10] and the definition [4,
def. 9.5] of absolute continuity with regard to λ.

3.5 Skorohod’s representation theorem

For every sequence (Xn)n≥1 of random variables Xn : Ω → R on a probability space (Ω; A;P )
converging in measure to a random variable X : Ω → R there is a sequence (φn)n≥1 of random
variables φn : ]0; 1[ → R on the probability space (]0; 1[ ; B (]0; 1[) ;λ) with identical distributions
φn ◦ λ = Xn ◦ P with regard to the Lebesgue measure λ converging pointwise everywhere to a
random variable φ : ]0; 1[ → R with φ ◦ λ = X ◦ P .

x

y = F (x)

φ (u) φ (v)

u

v

y

x = φ (y)

Proof : With the distribution functions Fn;F : R → [0; 1] de-
fined by Fn (x) = Pn (Xn ≤ x) resp. F (x) = P (X ≤ x) we define
the quantile function φn (y) = inf {x ∈ R : y ≤ Fn (x)} resp. φ (y) =
inf {x ∈ R : y ≤ F (x)} such that due to the nondecreasing character and
the right continuity of F we have φ (y) ≤ x ⇔ ∀ϵ > 0 : y ≤ F (x+ ϵ) ⇔
y ≤ F (x) = P (X ≤ x) whence λ (φ ≤ x) = F (x), i.e. X ◦ P = φ ◦ λ
and likewise λ (φn ≤ x) = Fn (x), i.e. Xn ◦ P = Xn ◦ λ. In particu-
lar φ (y) is the smallest x such that y ≤ F (x) whence (φ ◦ F ) (x) ≤ x
with equality in the case of F strictly increasing in x. Conversely
y ≤ (F ◦ φ) (y) with equality in the case of F being left continuous in
φ (y), i.e. P ({φ (y)}) = 0: The quantile function φ is again nondecreasing and right continuous;
in the strictly increasing and continuous case it is the inverse of the distribution function F . It
remains to show that lim

n→∞
φn (y) = φ (y) for every y ∈ ]0; 1[:

According to the note in[4, th. 2.2] there are at most countably many x ∈ R with P (X = x) > 0 such
that every interval ]a− ϵ; a[ contains an x with P (X = x) = 0.

Consequently for every ϵ > 0 there is an x with P (X = x) = 0 and φ (y) − ϵ < x < φ (y) such
that F (x) < y. Since F is continuous in x we have lim

n→∞
Fn (x) = F (x) so that for n large enough

Fn (x) < y holds whence φ (y) − ϵ < x < φn (y) and consequently lim inf
n→∞

φn (y) ≥ φ (y).

Analogously for every y′ > y exists an x with P (X = x) = 0 and φ (y′) < x < φ (y′) + ϵ so that
y < y′ ≤ (F ◦ φ) (y′) ≤ F (x). Since F is continuous in x we have lim

n→∞
Fn (x) = F (x) so that for n

large enough y ≤ Fn (x) holds whence φn (y) ≤ x < φ (y′) + ϵ and consequently lim sup
n→∞

φn (y) ≤ φ (y′)
for y < y′. Hence lim

n→∞
φn (y) = φ (y) if φ is continuous at y. Since φ is nondecreasing on ]0; 1[ it has

at most countably many points yk with lim
n→∞

φ
(
yk − 1

n

)
< φ (yk) and we may simply define φ (yk) =

φ (yk) = 0 to obtain lim
n→∞

φn (y) = φ (y) for every y ∈ ]0; 1[ without changing their distribution.

3.6 Convergence in measure and in distribution

A sequence (Xn)n≥1 of random variables Xn : Ω → R on a measure space (Ω; A;P ) converging
in measure to a random variable X : Ω → R also converges in distribution to X, i.e. at every
point of continuity t the distribution functions Fn defined by Fn (t) = P (Xn ≤ x) converge to
F defined by F (x) = P (X ≤ x): lim

n→∞
Fn (x) = F (x).
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Proof : For every ϵ > 0 we have lim
n→∞

P (|Xn −X| > ϵ) = 0 and
also for every n ≥ 1 the inequality P (X ≤ x− ϵ) −P (|X −Xn| ≥ ϵ)
≤ P (Xn ≤ x) ≤ P (X ≤ x+ ϵ) + P (|Xn −X| ≥ ϵ). For n →
∞ and then ϵ → 0 we obtain P (X < x) ≤lim inf

n→∞
P (Xn ≤ x)

≤ lim sup
n→∞

P (Xn ≤ x) ≤ P (X ≤ x). Hence for every point x ∈

R of (left) continuity with PX ({x}) = PX

(⋂
n≥1

]
x− 1

n ;x
])

2.2.3= lim
n→∞

PX

(]
x− 1

n ;x
])

= lim
n→∞

(
F (x) − F

(
x− 1

n

))
= 0 we have

lim
n→∞

Fn (x) = lim
n→∞

P (Xn ≤ x) = P (X ≤ x) = F (x).

3.7 The weak law of large numbers

For the mean values 1
nSn = 1

n

n∑
k=1

Xk of every sequence (Xk)k≥1 of independent, identically dis-

tributed and integrable random variables with expectations µ = E (X1) the following statements
concerning their asymptotic behaviour hold:

1. P -almost sure convergence: lim
n→∞

1
nSn = µ

due to the strong law of large numbers 1.12.

2. Convergence in measure: lim
n→∞

P
(∣∣∣ 1

nSn − µ
∣∣∣ ≤ ϵ

)
= 0 for every ϵ > 0

due to Lebesgue’s convergence theorem [4, th. 4.11]

3. Weak convergence: lim
n→∞

Fn (x) = lim
n→∞

P
(

1
nSn ≤ t

)
=
{

1 for x > µ

0 for x < µ
= P

(
lim

n→∞
1
nSn ≤ t

)
=

F (x) for every point of continuity x ̸= µ
due to the preceding theorem 3.6.

Note: Concerning the asymptotic behavoiur at the point of discontinuity x = µ the strong
law of large numbers asserts that P -a.e. lim

n→∞
1
nSn = µ whence P

(
lim

n→∞
1
nSn ≤ µ

)
= 1. Choosing a

symmetric distribution e.g. P (Xk = 0) = P (Xk = 2µ) = 1
2 we obtain P (Xk ≤ µ) = P (Xk ≥ µ) = 1

2
whence P

(
lim

n→∞
1
nSn ≤ µ

)
= 1

2 for every n ≥ 1 such that Fn (µ) does not converge to F (µ) .

3.8 The Helly-Bray theorem

For probability measures Pn;P : B (R) → [0; 1] with distribution functions Fn;F : R → [0; 1]
defined by Fn (x) = Pn (]−∞;x]) resp. F (x) = P (]−∞;x]) and the linear functionals Λn; Λ ∈
C∗

b (R;R) defined in [3, def. 5.8] by Λnf =
∫
fdPn resp. Λf =

∫
fdP for f ∈ Cb (R;R) the following

three conditions are equivalent:

1. (Pn)n≥1 converges in distribution to P , i.e.
lim

n→∞
Fn (x) = F (x) at every continuity point x ∈ R of F .

2. (Pn)n≥1 weakly converges to P , i.e.
lim

n→∞

∫
fdPn =

∫
fdP for every bounded and continuous f ∈ Cb (R;R).

3. (Λn)n≥1 weakly* converges to Λ.

4. lim
n→∞

Pn (A) = P (A) for every λ-continuity set A ∈ B (R) with λ (δA) = 0.

Note: The parts 2. - 4. are a corollary to the Portmanteau theorem [4, th. 11.5].
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Proof :

1. ⇒ 2. : According to Skorohod’s theorem 3.5 for the quantile functions φn;φ : ]0; 1[ → R with
Pn = φn ◦ λ resp. P = φ ◦ λ and every 0 < y < 1 holds lim

n→∞
(f ◦ φn) (y) = (f ◦ φ) (y) whence by the

mapping theorem [4, th. 11.7] follows lim
n→∞

(f ◦ φn) (y) = (f ◦ φ) (y) at every point of continuity
y ∈ ]0; 1[, hence λ-a.e. Excluding the countable λ-null set of discontinuities according to 3.1 we
infer λ-a.e. lim

n→∞
f ◦φn = f ◦φ whence by the dominated convergence theorem [4, th. 5.14] follows

lim
n→∞

∫
fdPn = lim

n→∞

∫
fdλφn = lim

n→∞

∫
(f ◦ φn) dλ = lim

n→∞

∫
(f ◦ φ) dλ = lim

n→∞

∫
fdλφ =

∫
fdP .

2. ⇒ 1. : For x < y consider the function f : R → [0; 1] defined by

f (t) =


1 for t ≤ x
y−t
y−x for x ≤ t ≤ y

0 for y ≤ t

Since χ]−∞;x] ≤ f ≤ χ]−∞;y] we have lim sup
n→∞

Fn (x) = lim sup
n→∞

∫
χ]−∞;x]dPn ≤ lim

n→∞

∫
fdPn =

∫
fdP =∫

χ]−∞;y]dP = F (y) and since this is true for every y > x we obtain lim sup
n→∞

Fn (x) ≤ F (x). Similarly

for y < x holds F (y) ≤ lim inf
n→∞

Fn (x) and hence lim
n→∞

F
(
x− 1

n

)
≤ lim inf

n→∞
Fn (x), i.e. convergence at

every point of continuity.

1. ⇔ 3. : Follows directly from the definition of weak* convergence in [3, def. 5.8].

1. ⇒ 4. : Follows directly from [4, th. 11.7] since according to the hypothesis f = χA is λ-a.e.
continuous.

4. ⇒ 1. : Obvious since δ (] − ∞; t]) = {t}.

3.9 Helly’s selection theorem

Every tight sequence (Pn)n∈N of probability measures on the real numbers Pn : B (R) → [0; 1]
includes a subsequence weakly converging to a probability measure P : B (R) → [0; 1] iff it is
tight, i.e. for every ϵ > 0 exists numbers aϵ < bϵ ∈ R such that Pn (]aϵ; bϵ]) = Fn (bϵ) −Fn (aϵ) > 1 − ϵ
for every n ∈ N.

Note: This is a corollary to Prohorov’s theorem [4, th. 11.10].

Proof : With the distribution functions Fn : R → [0; 1] defined as usual by Fn (x) = Pn (]−∞;x])
according to the diagonal principle [4, th. 11.8] there is a sequence (nk)k∈N such that the limit
G (r) = lim

k→∞
Fnk

(r) exists for every rational r ∈ Q. Then F : R → [0; 1] with F (x) = inf {G (r) : r > x}
is nondecreasing and obviously right continuous. If F is continuous at x ∈ R for every ϵ > 0 there
is an y < x such that F (y) > F (x) − ϵ. Furthermore there are rational r, s ∈ Q with y < r < x < s
such that F (x) − ϵ < F (r) ≤ F (x) ≤ F (s) < F (x) + ϵ whence F (x) − ϵ

2 < Fnk
(r) ≤ Fnk

(x) ≤
Fnk

(s) ≤ F (x) + ϵ
2 for every k ≥ K and some K ∈ N. Thus F (x) = lim

k→∞
Fnk

(x) at every point x of
continuity of F . Due to the tightness hypothesis for every ϵ > 0 we can find continuity points
a < b such that F (b) − F (a) = lim

n→∞
(Fn (b) − Fn (a)) ≥ 1 − ϵ. On account of the nondecreasing

character of F follows lim
m→∞

(F (m)) − F (−m) ≥ 1 and since 0 ≤ F (x) ≤ 1 for all x ∈ R we arrive at
lim

m→∞
F (m) = 1 resp. lim

M→∞
F (−m) = 0.
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3.10 Approximation of the Binomial distribution
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The random variable Sn : Ω → N denotes the number
of red balls when n ≥1 balls are drawn without re-
placement from an urn containing M red balls and
N −M black ones. Its distribution is hypergeomet-
ric with

P (Sn = k)
= Hn,M,N (k)

=

(
M
k

)
·
(
N −M
n− k

)
(
N
n

)

=
(
n
k

)
· M · ... · (M −K)
N · ... · (N −K)︸ ︷︷ ︸

→pk

· (N −M) · ... · (N −M − n− k + 1)
(N −K − 1) · ... · (N − n+ 1)︸ ︷︷ ︸

→(1−p)n−k

and for large N the replacement becomes irrelevant such that the hypergeoemtric distribution con-
verges in to the Binomial distribution: lim

N→∞
Hn,M,N (k) = Bn,p (k) with p = M

N .

3.11 Approximation of the Poisson distribution
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For identically and independently distributed random vari-
ables Xi : Ω → {0; 1} with P (Xi = 1) and P (Xi = 0) =
1 −p and Sn =

n∑
i=1

Xi we have the Binomial distribution

P (Sn = k) = Bn,k (k) =
(
n
k

)
pk (1 − p)n−k

. For λ = n · p and fixed k the limit

lim
n→∞

Bn,k (k) = lim
n→∞

(
n
k

)(
λ

n

)k (
1 − λ

n

)n−k

= lim
n→∞

λk

k!

(
1 − λ

n

)n

· 1(
1 − λ

n

)k
·

k−1∏
i=0

(
1 − i

n

)

= λk · eλ

k! · lim
n→∞

k−1∏
i=0

1 − i
n

1 − λ
n

= λk · eλ

k!
= Pλ (k)

is the Poisson distribution. By Scheffés theorem [4, p. 9.15] the limit extends to every measurable
set whence we obtain convergence in distribution.
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3.12 The exponential distribution
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We define the independently and identically dis-
tributed random variables Xt : Ω → {0; 1} by Xt (ω) = 1
if an event (e.g. the arrival of a customer at a queue
or the call at a telephone exchange) occurs at time t >
0 with P (Xt = 1) = α. For reasons of compatibility
we assume that P -a.s. no event occurs at the start:
P (X0 = 0) = 1. Also the number of events in a finite
time interval shall always be finite: ∀ω ∈ Ω ∀t > 0 :
card {0 ≤ τ ≤ t : Xt (ω) = 1} < ∞. Hence we can define
the sample pathNt : Ω → N by the finite sumNt (ω) =

t∑
τ=0

Xτ . The waiting times ∆Tn : Ω → R+
0 between the n− 1

th and the n th event are ∆Tn = Tn − Tn−1 for n ≥ 1 with
the arrival times Tn = inf {τ ≥ 0 : Nτ = n} resp. T0 = 0 are also identically dristributed since
P (∆Tn > s) = P

(⋂
Tn−1≤τ≤Tn−1+s {Xτ = 0}

)
= P

(⋂
0≤τ≤s {Xτ = 0}

)
= P (∆T1 > s). Since the

events {∆Tn > s} = ⋂
Tn−1≤τ≤Tn−1+s {Xτ = 0} and ⋂Tn−1+s<τ≤Tn−1+s+t {Xτ = 0} are independent

and P (X0 = 0) = 1 there is no memory effect, i.e.

P (∆Tn > s+ t) = P

 ⋂
0≤τ≤s+t

{Xτ = 0}


= P

⋂
τ≤s

{Xτ = 0}

 ∩

 ⋂
s<τ≤s+t

{Xτ = 0}


= P

⋂
τ≤s

{Xτ = 0}

 · P

 ⋂
s<τ≤s+t

{Xτ = 0}


= P

⋂
τ≤s

{Xτ = 0}

 · P

 ⋂
0<τ≤t

{Xτ = 0}


= P

⋂
τ≤s

{Xτ = 0}

 · P

 ⋂
0≤τ≤t

{Xτ = 0}


= P (∆Tn > s) · P (∆Tn > t)

This is the functional equation of the exponential function and since 0 ≤ P ≤ 1 with scal-
ing factor P (∆Tn > 0) = P (∆T1 > 0) = P (X0 = 0) = 1 the exponent must be negative whence
P (∆Tn > t) = e−αt. Also we have lim

t→0
1
tP
(⋃

τ≤t {Xt = 1}
)

= lim
t→0

1
tP (∆Tn ≤ t) = lim

t→0
1
t

(
1 − e−αt

)
=

dF
dt (0) = α. Note that the probability of an event occurring at a fixed time is P (Xt = 1) = 0.
The distribution function F : R+

0 → [0; 1] for the waiting times satisfies the functional equation
1 − F (s+ t) = (1 − F (s)) · (1 − F (t)) with the explicit formula

F (t) = P (∆Tn ≤ t) =
{

0 if t ≤ 0
1 − e−αt if t > 0

and mean waiting time

E (∆T ) =
∫

Ω
∆TdP =

∫
[0;∞[

tdF (t) =
∫

[0;∞[
t · dF
dλ

dλ (t) =
∫

[0;∞[
αt · e−αtdt = 1

α
.
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3.13 The Poisson process

T0

1
2

3

4

S0 = 0

T1 T2 T3

S1 = 1

S2 = 2
S3 = 3

t

n

Every stochastic process N : R+
0 × Ω → N defined by the mea-

surable number NI (ω) ∈ N of events or increments occurring in
the time intervall I ⊂ R+

0 and in particular Nt = N[0;t] with ar-
rival times Tn (ω) = inf {τ ≥ 0 : Nτ (ω) = n} and waiting times
∆Tn = Tn − Tn−1 satisfying the following conditions:

1. start N0 (ω) = 0 for every ω ∈ Ω

2. nondecreasing càdlàg sample paths t 7→ Nt (ω) for every
ω ∈ Ω

3. P -a.s. single events: P
(
Nt − sup

s<t
Ns ≤ 1

)
= 1

4. P -a.s. no accumulations: P (Nt −Ns < ∞) = 1 for every
s < t

5. independent occurrence P (NI∪J = 0) = P (NI = 0)·P (NJ = 0)
for any disjoint intervals I, J ⊂ R+

0

6. identically distributed occurrence P (NI = 0) = P (NJ = 0)
for any disjoint intervals I, J ⊂ R+

0 of equal length

has

1. Poisson distributed increments with P (Nt = n) = e−αt · (αt)n

n! and

2. Exponentially distributed waiting times with P (∆Tn > t) = e−αt.

Proof : Note that we assume the existence and measurability of the random variables Nt on a
suitable measure space

(
R+

0 × Ω; F ;P
)
. The construction of the corresponding σ-algebra F requires

Kolmogorov’s existence theorem and is not the subject of this proof.

Proof of 1.: Let p (t) = P (Nt ≥ 1), q (t) = 1 − p (t) and q = q (1). From 4. and 5. follows
q
(

k
n

)
= qk/n for every rational k

n > 0. Due to 2. this relation extends to real t > 0 since q (t) =

P (Nt = 0) = P (Nt < 1) = P

(
inf

k/n>t
Nk/n < 1

)
= P

(⋃
k/n>t

{
Nk/n < 1

})
= sup

k/n>t
P
(
Nk/n < 1

)
=

sup
k/n>t

qk/n = qt. On account of 5. we have P
(
N]s;s+t[ = 0

)
= qt with q > 0 since otherwise we had

P
(
N]s;s+t[ ≥ 1

)
= 1 for every t > 0 whence P

(
N]s;s+t[ = ∞

)
= 1 contrary to 4. Hence we obtain

P (∆Tn > t) = P
(
N]s;s+t[ = 0

)
= e−αt with α = − ln (q).

Proof of 2.: Let Nn,t (ω) =
n∑

i=1
χNIi

≥1 the number of intervals Ii =
]

t(i−1)
n ; ti

n

]
with length t

n and

P (NIi ≥ 1) = 1 − e− αt
n in a disjoint partition of ]0; 1] with at least an occurrence. Owing to 5. and 6.

we have P (Nn,t = k) =
(
n
k

)(
1 − e− αt

n

)k
·
(
e− αt

n

)n−k
whence the Poisson approximation 3.11

yields lim
n→∞

P (Nn,t = k) = lim
n→∞

(
n
k

)(
1 − e−α t

n

)k
·
(
e−α t

n

)n−k
= lim

n→∞

(
n
k

)(
αt
n

)k (1 − αt
n

)n−k =

Pαt (k). According to 4. for every t > 0 there is an n ≥ 1 such that the probability for the event
Dt,n = ⋂

∆Tk≤t

{
∆Tk >

t
n

}
of every waiting time between two events in the interval ]0; t] exceeding

t
n is P (Dt,n) = 1. Hence the sequence (Dt,n)n≥1 of cases Dt,n = ⋂

∆Tk≤t

{
∆Tk >

t
n

}
⊂ Ω is increas-

ing with lim
n→∞

P (Dt,n) = P
(⋃

n≥1Dt,n

)
= 1. Since Nn,t (ω) = Nt (ω) for every ω ∈ Dt,n we have

P (Nn,t ̸= Nt) = 1 −P (Dn,t) whence P -a.e. lim
n→∞

Nn,t = Nt. By Lebesgue’s convergence theorem
[4, p. 4.11], theorem 3.6 and Helly-Bray 3.8.2 we infer P (Nt = k) = lim

n→∞
P (Nn,t = k) = Pαt (k).
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3.14 Characteristic functions of independent random variables

The characteristic function of a real random variable X : Ω → R is the Fourier transform
φ̂X (ξ) = 1√

2π

∫
R φX (x) · e−ixξdx = 1√

2π

∫
e−ixξdPX = 1√

2π
E
(
e−iXξ

)
of its probability density

function φX = dPX
dλ according to [2, p. 3.6]. The properties of the Fourier transform translate into

the following equations for characteristic functions:

1. φ̂X/σ (ξ) = σ · φ̂X (σξ) from [2, p. 3.8.2]

2. φ̂X+µ (ξ) = e−iµt · φ̂X (ξ) from [2, p. 3.8.3]

3. (xn · φ)∧ (ξ) = in δnφ̂
δξn (ξ) for xnφ ∈ L1 from [2, p. 3.8.6]

For independent random variables X,Y the exponentials e−iXξ, e−iY ξ are again independent for
every ξ ∈ R such that from 1.5 and [2, p. 3.8.4] we obtain

4. φ̂X+Y (ξ) = 1√
2π
E
(
e−iXξ

)
· E

(
e−iY ξ

)
=

√
2π · φ̂X (ξ) · φ̂Y (ξ) = (φX ∗ φY )∧ (ξ) .

Due to 3.14.3 the n-th moments E (Xn) =
∫
xn · φ (x) dx are of prominent interest in the Taylor

expansion of probability density functions used in the proof of the central limit theorem 3.20.
Due to [4, p. 6.6.1] the k-th moments exist for all k ≤ n if the n-th absolute moment E (|X|n) < ∞
is finite. Obviously for the normal density all moments are finite so that integrating by parts we
obtain E (X) = 0, E

(
Xk
)

= 1√
2π

∫
xk · e−x2/2dx = k−1√

2π

∫
xk−2 · e−x2/2dx = (k − 1) ·E

(
Xk−2

)
for all

k ≥ 2 whence E
(
X2k

)
= 1 · 3 · ... · (2k − 1) and E

(
X2k+1

)
= 0.

3.15 Laplace transforms and moment generating functions

The moment generating function of a real random variable X : Ω → R is the Laplace
transform LφX : U → C of its probability density function φX = dPX

dλ defined by LφX (ξ) =∫
R φX (x) · exξdx =

∫
eXξdP = E

(
eXξ

)
for every ξ ∈ U ⊂ C provided that the integral is finite.

The Fourier transform is a special case of the Laplace transform with imaginary ξ ∈ iR. For
Reξ ≥ 0 we have

∫
R− φX (x) · exξdx < ∞ and for 0 < Reξ1 < Reξ2 holds

∣∣∣∫R+ φX (x) · exξ1dx
∣∣∣ <∣∣∣∫R+ φX (x) · exξ2

∣∣∣ dx whence LφX (ξ) < ∞ for 0 ≤ Reξ ≤ Reξ0 and since the analogous estimates
hold for Reξ ≤ 0 the integral converges for |Reξ| ≤ ξ0 for some ξ0 ≥ 0. As the discrete probability
measure P : P (Z) → [0; 1] with P (z) = π2

12z2 for z ̸= 0 and P (0) = 0 shows the area of convergence
may actually be restricted to the imaginary axis, i.e. the Fourier transform.

In the case of convergence in the strip {|Reξ| ≤ ξ0} for some ξ0 > 0 we have an PX -integrable majorant
exξ0 + e−xξ0 for every

∣∣∣Xk
∣∣∣ ≤

∑
k≥0

|ξ|k
k!

∣∣∣Xk
∣∣∣ = e|xξ|such that all moments E

(
Xk
)
< ∞ exist and the

dominated convergence theorem [4, p. 5.14] gives

LφX (ξ) =
∫
eXξdP =

∫ ∑
k≥0

(Xξ)k

k! dP =
∑
k≥0

E
(
Xk
)

k! ξk.

By the Taylor expansion [2, p. 1.13] we conclude that dkLφX

dξk (0) = E
(
Xk
)
. Furthermore the

measure PXξ
defined by P (Xξ < y) =

∫
{X<y}

eξX

LφX(ξ)dP =
∫ y

−∞
eξx·φX(x)

LφX(ξ) dx has the Laplace transform

LφXξ
(η) =

∫
eηx · eξx·φX(x)

LφX(ξ) dx = LφX(ξ+η)
LφX(ξ) whence 1

LφX(ξ) · dkLφX

dxk (ξ) =
dkLφXξ

dxk (0) = E
(
Xk

ξ

)
=∫ xk·eξx·φX(x)

LφX(ξ) dx. Thus we obtain

dkLφX

dxk
(ξ) =

∫
Xk · eξXdP =

∫
xk · eξx · φ (x) dx for |Reξ| ≤ ξ0.
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3.16 Moments and the characteristic function

For a real random variable X : Ω → R with k-th absolute moments E
(
|X|k

)
< ∞ and ξ ∈ R

we have

1.
∣∣∣∣φ̂X (ξ) −

n∑
k=0

E(Xk)
k! (iξ)k

∣∣∣∣ ≤ E
(
min

{
|ξX|n+1

(n+1)! ; 2|ξX|n
n!

})
.

2. dk

dxk φ̂X (ξ) = E
(
(iX)k · eiξX

)
, in particular dk

dxk φ̂X (0) = ikE
(
Xk
)

3. In the case of a finite Laplace transform LφX (r) = ∑
k≥0

E(Xk)
k! rk < ∞ for some r > 0 the

random variable X is uniquely determined by its moments E
(
Xk
)

for k ≥ 1.

Proof :

1.: An integration by parts [2, p. 1.5] of the remainder of the Taylor expansion [2, p. 2.2] for the
complex valued exponential function yields

eix =
n∑

k=0

(ix)k

k! + in+1

n!

∫ x

0
(x− t)n eitdt

=
n∑

k=0

(ix)k

k! + in

(n− 1)!

∫ x

0
(x− t)n−1

(
eit − 1

)
eitdt

whence∣∣∣∣eix−
n∑

k=0

(ix)k

k!

∣∣∣∣ ≤ E
(
min

{
|x|n+1

(n+1)! ;
2|x|n

n!

})
so that the assertion follows from the definition of the Fourier transform [2, p. 4.6].

2.: According to 1. and considering E (E (X)) = E (X) we have∣∣∣∣ φ̂X (ξ + h) − φ̂X (ξ)
h

− E
(
iXeiξX

)∣∣∣∣ =
∣∣∣∣1hE

(
eiξX ·

(
eihX − 1 − ihX

))∣∣∣∣
≤ 1

|h|
· E

(∣∣∣eihX − 1 − ihX
∣∣∣)

≤ 1
|h|
E

(
min

{
|hX|2

2 ; 2 |hX|
1

})

= E

(
min

{1
2 |h| · |X|2 ; 2 |X|

})
With the majorant 2 |X|for h → 0 by dominated convergence [4, p. 5.14] we obtain d

dξ φ̂X (ξ) =
E
(
iXeiξX

)
. Repeating this argument inductively proves the assertion for k ≤ n with E (Xn) < ∞.

3.: For any ξ < r there is a k0 ≥ 1 such that 2kξ2k−1 < r2k for k ≥ k0. Since |x|2k−1 ≤ 1 + |x|2k for
every x ∈ R we have

E
(
|X|2k−1

)
· ξ2k−1

(2k − 1)! ≤ ξ2k−1

(2k − 1)! +
E
(
|X|2k

)
· ξ2k

(2k − 1)! ≤ ξ2k−1

(2k − 1)! +
E
(
|X|2k

)
· r2k

(2k)!

such that because of ∑k≥0
E(Xk)

k! rk < ∞ follows lim
k→∞

E(|X|k)·ξk

k! ≤ lim
k→∞

E(Xk)·rk

k! = 0. As in the proof
of 1. from

∣∣∣∣∣eiηx

(
eiξx−

n∑
k=0

(iξx)k

k!

)∣∣∣∣∣ ≤ |ξx|n+1

(n+ 1)! and dk

dxk
φ̂X (ξ) = E

(
(iX)k · eiξX

)
for ξ, η ∈ R

we infer
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∣∣∣∣∣φ̂X (η + ξ) −
n∑

k=0

1
k! · dk

dxk
φ̂X (η) · ξk

∣∣∣∣∣ ≤
|ξ|n+1 · E

(
|X|n+1

)
(n+ 1)! for ξ, η ∈ R

whence

φ̂X (η + ξ) =
n∑

k=0

1
k! · dk

dxk
φ̂X (η) · ξk for |ξ| ≤ r and η ∈ R

Assuming a second random variable Y with equal moments by analogous arguments we obtain the
characteristic function

φ̂Y (η + ξ) =
∞∑

k=0

1
k! · dk

dxk
φ̂Y (η) · ξk for |ξ| ≤ r and η ∈ R

In order to show equality we apply a process of analytic continuation: According to 2. for η = 0 we
have dk

dxk φ̂X (0) = ikE
(
Xk
)

= dk

dxk φ̂Y (0) whence φ̂X (ξ) = φ̂Y (ξ) for |ξ| ≤ r − ϵ and any ϵ > 0. But
then dk

dxk φ̂X (± (r − ϵ)) = dk

dxk φ̂Y (± (r − ϵ)) and by expansion around ± (r − ϵ) we obtain equality for
|ξ| ≤ 2r − ϵ etc.., so that the assertion follows by the uniqueness of the Fourier transform [2, p. 4.13].

Note: The moments E
(
Xk
)
of a random variable X give an estimate for the probability of large

values resp. deviations from the mean E (X) resp. the weight of their tails. They also coincide
with the derivatives of the characteristic function, i.e. its smoothness and hence determine its
asymptotic behavior and thus its suitability for convergence. The more moments X has, the more
derivatives φX has. in particular 3 tranlsates into a completion of the Helly-Bray theorem 3.8:

3.17 The moment criterion for weak convergence

A sequence (Xn)n≥1 of real random variable X : Ω → R with k-th absolute moments E
(
|X|k

)
<

∞ and finite Laplace transform LφX (r) = ∑
k≥0

E(Xk)
k! rk < ∞ for some r > 0 converges in

distribution to a random variable X if all moments converge lim
n→∞

E
(
Xk

n

)
= E

(
Xk
)

for every
k ≥ 1.

3.18 Examples

1. A random variable X : Ω → R with distribution P (X ≤ x) = Φµ,σ (x) =
∫ x

−∞ ϕµ,σ (t) dt for
the normal density function ϕµ;σ (t) = 1

σ
√

2π
exp

(
− (t−µ)2

2σ2

)
is normally distributed and a

short calculation involving change of variables as well as integration by parts according to
the definitions in 1.3 yield the expectation E (X) = µ and the variance V AR (X) = σ2. The
moment generating function is Mφ (s) = 1√

2π

∫
esξ · e−ξ2/2dξ = 1√

2π
e−s2/2 ∫ e−(ξ−s)2/2dξ =

e−s2/2 = ∑
k≥0

1
k!

(
s2

2

)k
= ∑

k≥0
1·3·...·(2k−1)

(2k)! · s2k whence we obtain the moments E
(
X2k

)
=

1 · 3 · ... · (2k − 1) resp. E
(
X2k+1

)
= 0 for k ≥ 0.

2. For the exponential distribution from 3.12 for Res < α we have the moment generating
function Mp (s) =

∫∞
0 esξ · αe−αξdξ = α

α−s = ∑
k≥0

sk

αk whence E
(
Xk
)

= k!
αk , in particular

expectation E (X) = 1
α and variance V AR (X) = 1

α2 .
3. For the Poisson distribution from 3.13 the moment generating function is Mλ (s) =∑

k≥0 e
ks · e−λ λk

k! = eλ(es−1) whence dM
dξ (s) = λes · M (s) and d2M

dξ2 (s) =
(
λ2e2s + λ · es

)
· M (s)

whence dM
dξ (0) = λ and d2M

dξ2 (0) =
(
λ2 + λ

)
; in particular the expectation resp. the variance

are both E (X) = V AR (X) = λ.
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4. For independent random variables X, Y with moment generating functions M (X), M (Y )
in {|Res| ≤ s0} the exponents esX , esY are stilll independent such that theorem 1.5 gives

M (X + Y ) = E
(
es(X+Y )

)
= E

(
esX · esY

)
= E

(
esX

)
· E

(
esX

)
= M (X) ·M (Y )

3.19 Approximation of complex products

For complex numbers z1; ...; zn;w1; ...;wn ∈ B1 (0) we have
∣∣∣∣ n∏
k=1

zk−
n∏

k=1
wk

∣∣∣∣ ≤
n∑

k=1
|zk − wk|.

Proof : By induction with
0∏

j=1
wj =

n∏
i=n+1

zi = 1 from

n∏
k=1

zk−
n∏

k=1
wk = (z1 − w1) ·

n∏
i=2

zi + w1 ·
(

n∏
i=2

zi−
n∏

i=2
wi

)

= (z1 − w1) ·
n∏

i=2
zi + w1 · (z2 − w2) ·

n∏
i=3

zi + w1 · w2 ·
(

n∏
i=3

zi−
n∏

i=3
wi

)
...

=
n∑

k=1

k−1∏
j=1

wj · (zk − wk) ·
n∏

i=k+1
zi

3.20 The central limit theorem
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For a triangular array
(
(Xn;k)k≤kn

)
n≥1

of independent
families Xn;1; ...;Xn;kn : Ωn → R of random variables with

• sums Sn =
kn∑

k=1
Xn;k

• expectations ηn;k = E (Xn;k) < ∞

• variances σ2
n;k = E

(
X2

n;k

)
− E2 (Xn;k) < ∞

• sum variances sn = E
(
S2

n

)
− E2 (Sn) =

kn∑
k=1

σ2
n;k

the normalized sums Sn =
kn∑

k=1
Xn;k of Xn;k = Xn;k−ηn;k

sn

with

• expectations E
(
Sn

)
= E

(
Xn;k

)
= 0

• variances σ2
n;k = E

(
X

2
n;k

)
= σ2

n;k
s2

n

• sum variances E
(
S

2
n

)
=

kn∑
k=1

σ2
n;k = 1

satisfying the Lindeberg condition

lim
n→∞

kn∑
k=1

∫
|Xn;k|≥ϵ

X
2
n;kdP = 0 for every ϵ > 0

converge weakly to the Normal distribution: lim
n→∞

P
(
Sn ≤ x

)
= N0;1 (]−∞;x]) =

∫ x
−∞ ϕ0;1 (ξ) dξ.
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Proof : The Lindeberg condition yields lim
n→∞

max
1≤k≤kn

σ2
n;k ≤ lim

n→∞
max

1≤k≤kn

(
ϵ2 +

∫
|Xn;k|≥ϵX

2
n;kdP

)
= 0

such that for every ξ ∈ R there is an nξ ≥ 1 with 1
2σ

2
n;kξ

2 ≤ 1. Hence we can apply

• the lemma 3.19 to both of the product differences in the second line

• the estimate 3.16.1 to both of the quadratic order Taylor approxiations of φ̂Xn;k
(ξ) and

e−ξ2σ2
n;k/2 in the third line

of the following estimate for fixed ξ ∈ R and every ϵ > 0:∣∣∣φ̂Sn
(ξ) − ϕ̂ (ξ)

∣∣∣ =

∣∣∣∣∣∣
kn∏

k=1
φ̂Xn;k

(ξ) −
kn∏

k=1
e−ξ2σ2

n;k/2

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
kn∏

k=1
φ̂Xn;k

(ξ) −
kn∏

k=1

(
1 − 1

2σ
2
n;kξ

2
)∣∣∣∣∣∣+

∣∣∣∣∣∣
kn∏

k=1
e−ξ2σ2

n;k/2−
kn∏

k=1

(
1 − 1

2σ
2
n;kξ

2
)∣∣∣∣∣∣

≤
kn∑

k=1

∣∣∣∣φ̂Xn;k
(ξ) − 1 + 1

2σ
2
n;kξ

2
∣∣∣∣+ kn∑

k=1

∣∣∣∣e−ξ2σ2
n;k/2 − 1 + 1

2σ
2
n;kξ

2
∣∣∣∣

≤
kn∑

k=1
E

(
min

{∣∣∣ξXn;k
∣∣∣2 ; 1

6
∣∣∣ξXn;k

∣∣∣3})+
kn∑

k=1
ξ4eξ2

σ4
n;k

≤
kn∑

k=1
ξ2
∫
|Xn;k|<ϵ

X
2
n;kdP+

kn∑
k=1

ξ2
∫
|Xn;k|≥ϵ

X
2
n;kdP + ξ4eξ2

kn∑
k=1

σ4
n;k

≤ ϵξ2
kn∑

k=1
σ2

n;k + ξ2
∫
|Xn;k|≥ϵ

X
2
n;kdP + ξ4eξ2

kn∑
k=1

σ4
n;k

Due to the Lindeberg condition resp. its consequence lim
n→∞

max
1≤k≤kn

σ2
n;k = 0 all three summand vanish

for n → ∞ and by Lévy’s continuity theorem [2, th. 7.18] the assertion is proved.

3.21 Lyapunov’s condition

The Lyapunov condition for some δ > 0 on the right hand side of the following estimate is stronger
than the Lindeberg condition but sometimes easier to prove:
kn∑

k=1

∫
|Xn;k|≥ϵX

2
n;kdP ≤ 1

ϵδ

kn∑
k=1

∫
|Xn;k|≥ϵ

∣∣∣X∣∣∣2+δ

n;k
dP ≤

kn∑
k=1

∫
|Xn;k|≥ϵ

∣∣∣X∣∣∣2+δ

n;k
dP < ∞.

Note: In [1, th 27.4] a variant of the central limit theorem being very useful for Markov pro-
cesses is proved for sequences in which random variables far apart from each other are nearly
independent.
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Index
P -almost sure, 7

Abel’s partial summation, 5
absolute moment, 19
absolutely continuous function, 12
additivity, 5
analytic continuation, 21
arrival times, 17

Binomial distribution, 16
binomial distribution, 12
bold game, 8
Borel’s zero-one-law, 3
Borel-Cantelli lemma, 6
boundary conditions, 7

capital, 7
centered random variable, 4
central limit theorem, 19, 22
change of variables, 21
characteristic function, 4
Characteristic functions, 19
Chebyshev’s inequality, 4
completeness, 5
continuity from above, 4
convergence in distribution, 13, 14
convergence in measure, 13, 14
convolution, 3
càdlàg, 18

dense, 9
diagonal principle, 15
Dini derivatives, 11
discontinuities, 11
distribution function, 8, 9, 12
distribution functions, 13
dominated convergence, 7, 20
dominated convergence theorem, 15, 19
Dubins-Savage Theorem, 10
dyadic number, 9
dyadic numbers, 10
Dynkin-system, 3

event tree, 8
expectation, 3
explicit formula, 9
explicit solutions, 7
Exponential distribution, 17
exponential distribution, 21

filtration, 7
Fourier transform, 19, 20
fractal, 7, 8

functional equation, 8
fundamental theorem of calculus, 13

Helly’s selection theorem, 15
Helly-Bray theorem, 18, 21
Helly-Bray theorem, 14
hypergeometric distribution, 16

increments, 18
independent, 3, 19, 22
independent random variable, 3
independent random variables, 22
independent σ-algebrae, 3
induction, 10
integration by parts, 20, 21

jump, 11

Khintchin-Kolmogorov convergence theorem, 6
Kolmogorov’s existence theorem, 18
Kolmogorov’s strong law of large numbers, 6
Kolmogorow’s strong law of large numbers, 14
Kronecker symbol, 9
Kronecker’s lemma, 5, 6

λ-absolutely continuous measure, 12
λ-continuity set, 14
Laplace transform, 19
Lebesgue measure, 13
Lebesgue’s convergence theorem, 5, 18
Lebesgue’s differentiation theorem, 10
Lindeberg condition, 22
linearity, 4
Lyapunov condition, 23
Lévy’s continuity theorem, 23
Lévy’s convergence theorem, 5, 6
Lévy’s inequality, 4

mapping theorem, 15
Markov processes, 23
maximal median, 4
median, 4
minimal median, 4
moment, 19
moment generating function, 19
monotone convergence, 4
monotone function, 11

Normal distribution, 22
normal distribution, 21
normalized, 22

π-system, 3
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point of continuity, 13
Poisson approximation, 18
Poisson distribution, 16, 21
Poisson process, 18
Portmanteau theorem, 14
primitive, 12
probability density function, 12, 19
probability distribution, 3
probability space, 12
product measure, 3
product σ-algebra, 3
Prohorov’s theorem, 15

quantile function, 13

random variable, 3, 12
rank, 9
recursive formula, 7
Riesz convergence theorem, 5
right continuous, 12
ruin, 7

sample path, 17
sample paths, 18
Scheffés theorem, 16
simple discontinuity, 11
Skorohod’s representation theorem, 13
Skorohod’s theorem, 15
standard deviation, 3
step function, 4
stochastic process, 18
stopping time, 7
subfair, 7
success, 7

tails, 21
Taylor expansion, 19, 20
tight family, 15
triangular array, 22
truncated random variables, 6

variance, 3
vertex, 11

wager, 7
waiting time, 17
weak convergence, 14
weak* convergence, 14
win, 7
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