# Probability Theory 

November 6, 2023

## Contents

1 Random variables ..... 3
1.1 Independence ..... 3
1.2 Borel's zero-one-law ..... 3
1.3 Random variables ..... 3
1.4 Chebyshev's inequality ..... 4
1.5 Expectations of products of independent random variables ..... 4
1.6 The median ..... 4
1.7 Lévy's inequality ..... 4
1.8 Lévy's convergence theorem ..... 5
1.9 Abel's partial summation ..... 5
1.10 Kronecker's lemma ..... 5
1.11 The Khintchin-Kolmogorov convergence theorem ..... 6
1.12 Kolmogorov's strong law of large numbers ..... 6
2 Stochastic processes ..... 7
2.1 Definition of the bold game strategy ..... 7
2.2 Properties of the bold game strategy ..... 8
2.3 Convexity of the success probability ..... 10
2.4 The Dubins-Savage Theorem ..... 10
3 Weak convergence ..... 11
3.1 Simple discontinuities of monotone functions ..... 11
3.2 Distribution functions ..... 12
3.3 Expectations and distribution functions ..... 12
3.4 The primitive of a distribution function ..... 12
3.5 Skorohod's representation theorem ..... 13
3.6 Convergence in measure and in distribution ..... 13
3.7 The weak law of large numbers ..... 14
3.8 The Helly-Bray theorem ..... 14
3.9 Helly's selection theorem ..... 15
3.10 Approximation of the Binomial distribution ..... 16
3.11 Approximation of the Poisson distribution ..... 16
3.12 The exponential distribution ..... 17
3.13 The Poisson process ..... 18
3.14 Characteristic functions of independent random variables ..... 19
3.15 Laplace transforms and moment generating functions ..... 19
3.16 Moments and the characteristic function ..... 20
3.17 The moment criterion for weak convergence ..... 21
3.18 Examples ..... 21
3.19 Approximation of complex products ..... 22
3.20 The central limit theorem ..... 22
3.21 Lyapunov's condition . ..... 23

## 1 Random variables

### 1.1 Independence

A family $\left(A_{i}\right)_{i \in I} \subset \mathcal{A}$ of measurable sets on a probability space $(\Omega ; \mathcal{A} ; P)$ is independent, if $P\left(\bigcap_{i \in F} A_{i}\right)=\prod_{i \in F} P\left(A_{i}\right)$ for every finite subset $F \subset I$. A family $\left(\mathcal{E}_{i}\right)_{i \in I}$ of set systems $\mathcal{E}_{i} \subset \mathcal{A}$ with $i \in I$ is independent if the families $\left(A_{i_{f}}\right)_{i_{f} \in F}$ are independent with $A_{i_{f}} \in \mathcal{E}_{i_{f}}$ for $i_{f} \in F$ and every nonempty and finite subset $F \subset I$. For two independent systems $\mathcal{E}, \mathcal{D} \subset \mathcal{A}$ on a probability space $(\Omega ; \mathcal{A} ; P)$ the corresponding Dynkin-systems $\delta(\mathcal{E})$ and $\delta(\mathcal{D})$ are independent too since the family $\mathcal{I}(\mathcal{D}):=\{A \in \mathcal{A}: P(A \cap D)=P(A) \cdot P(D) \forall D \in \mathcal{D}\}$ already is a Dynkin-system: Obviously we have $\Omega \in \mathcal{I}(\mathcal{D})$ and for $A \in \mathcal{I}(\mathcal{D})$ and $D \in \mathcal{D}$ we have $P((\Omega \backslash A) \cap D)=P(D \backslash(A \cap D))=$ $P(D)-P(A \cap D)=P(D)-P(A) \cdot P(D)=P(D) \cdot(1-P(A))=P(X \backslash A) \cdot P(D)$ such that $X \backslash A \in$ $\mathcal{I}(\mathcal{D})$. For pairwise disjoint $\left(A_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{I}(\mathcal{D})$ we have $P\left(\left(\dot{\cup}_{n \in \mathbb{N}} A_{n}\right) \cap D\right)=P\left(\dot{\cup}_{n \in \mathbb{N}}\left(A_{n} \cap D\right)\right)=$ $\sum_{n \in \mathbb{N}} P\left(A_{n} \cap D\right)=\sum_{n \in \mathbb{N}} P\left(A_{n}\right) \cdot P(D)=P(D) \cdot \sum_{n \in \mathbb{N}} P\left(A_{n}\right)=P(D) \cdot P\left(\cup_{n \in \mathbb{N}} A_{n}\right)$ and hence $\cup_{n \in \mathbb{N}} A_{n} \subset \mathcal{I}(\mathcal{D})$. On account of $\mathcal{E} \subset \mathcal{I}(\mathcal{D})$ follows $\delta(\mathcal{E}) \subset \mathcal{I}(\mathcal{D})$ and hence the assertion. Since independence refers to finite subfamilies this property extends to arbitrary independent families $\left(\mathcal{E}_{i}\right)_{i \in I}$ and their Dynkin-systems $\left(\delta\left(\mathcal{E}_{i}\right)\right)_{i \in I}$ and with [4, p. 1.6] even to their $\sigma$-algebrae $\left(\sigma\left(\mathcal{E}_{i}\right)\right)_{i \in I}=$ $\left(\delta\left(\mathcal{E}_{i}\right)\right)_{i \in I}$ if the $\left(\mathcal{E}_{i}\right)_{i \in I}$ are closed with respect to intersections. Applying this property to the $\sigma$ algebrae $\sigma(\{A\})=\{\emptyset ; A ; \Omega \backslash A ; \Omega\}$ resp. $\sigma(\{B\})$ generated by two independents sets $A$ and $B$ shows the independence of the complements.

### 1.2 Borel's zero-one-law

For an independent sequence $\left(A_{n}\right)_{n \geq 1}$ of measurable sets $A_{n} \in \mathcal{A}$ on a probability space $(\Omega ; \mathcal{A} ; P)$ we have $P\left(\bigcap_{n \geq 1} \cup_{k \geq n} A_{k}\right) \in\{0 ; 1\}$.
Proof: Due to 1.1 for every $n \geq 1$ the $\sigma$-algebrae $\mathcal{T}_{n+1}=\sigma\left(\left\{\bigcap_{m=0}^{j} A_{k_{m}}: k_{m} \geq n+1 ; 0 \leq m \leq j \in \mathbb{N}\right\}\right)$ and $\mathcal{A}_{n}=\sigma\left(\left\{\bigcap_{m=0}^{j} A_{k_{m}}: k_{m} \leq n ; 0 \leq m \leq j \in \mathbb{N}\right\}\right)$ are independent. Also for every $n \geq 1$ we have $T=\bigcap_{n \geq 1} \bigcup_{k \geq n} A_{k} \in \mathcal{T}_{n}$ and hence $\mathcal{A}_{n} \in \mathcal{I}(T):=\{A \in \mathcal{A}: P(A \cap T)=P(A) \cdot P(T)\}$ as well as $\mathcal{T}_{n} \in \sigma(\mathcal{A})$ with $\mathcal{A}=\bigcup_{n \geq 1} \mathcal{A}_{n}$. Since $\mathcal{I}(T)$ is a Dynkin-system including the $\pi$-system $\mathcal{A}$ and consequently $\sigma(\mathcal{A})=\delta(\mathcal{A}) \subset \mathcal{I}(T)$ follows $T \in \mathcal{I}(T)$, i.e. $T$ is independent of itself and hence $P(T)=P(T \cap T)=P(T) \cdot P(T) \in\{0 ; 1\}$.

### 1.3 Random variables

Measurable mappings $X: \Omega \rightarrow Y$ on probability spaces $(\Omega ; \mathcal{A} ; P)$ are called random variables with their expectation $E(X):=\int X d P$ and probability distribution $P_{X}:=X(P)$. The random variables $\left(X_{i}\right)_{i \in I}$ with $X_{i}:(\Omega ; \mathcal{A} ; P) \rightarrow\left(Y_{i} ; \mathcal{A}_{i}\right)$ are independent if the $\sigma$-algebrae $\left(X_{i}^{-1}\left(\mathcal{A}_{i}\right)\right)_{i \in I}$ with $X_{i}^{-1}\left(\mathcal{A}_{i}\right) \subset \mathcal{A}$ are independent, i.e. for $i, j \in I$ and $A_{i} \in \mathcal{A}_{i}, A_{j} \in \mathcal{A}_{j}$ holds $P\left(X_{i}^{-1}\left[A_{i}\right] \cap X_{j}^{-1}\left[A_{j}\right]\right)=$ $P_{X_{i}}\left(A_{i}\right) \cdot P_{X_{j}}\left(A_{j}\right)$. In the case of a finite $J=\{1 ; \ldots ; n\}$ we have $P\left(\bigcap_{i=1}^{n}\left\{X_{i} \in A_{i}\right\}\right)=\prod_{i=1}^{n} P\left(X_{i} \in A_{i}\right)$ such that according to [4, th. 8.15] the common distribution is given by the product measure $P_{\left(X_{1} ; \ldots ; X_{n}\right)}=\bigotimes_{i=1}^{n} P_{X_{i}}$ on the product $\sigma$-algebra $\otimes_{i \in I} \mathcal{A}_{i}$ whence from [2, th. 7.3$]$ follows that the distribution of the sum $S_{n}=s_{n}\left(X_{1} ; \ldots ; X_{n}\right)=X_{1}+\ldots+X_{n}$ coincides with the convolution $P_{S_{n}}=s_{n} \circ P_{\left(X_{1} ; \ldots ; X_{n}\right)}=P_{X_{1}} * \ldots * P_{X_{n}}($ cf. 3.14.4). For real-valued random variables $X: \Omega \rightarrow \mathbb{R}$ we have $0 \leq E\left((X-E(X))^{2}\right)=E\left(X^{2}\right)-(E(X))^{2}$ and hence $E\left(X^{2}\right) \geq(E(X))^{2}$. The variance $\operatorname{VAR}(X)=E\left((X-E(X))^{2}\right)=E\left(X^{2}\right)-E^{2}(X)$ resp. the standard deviation
$\sigma(X):=\|X-E(X)\|_{2}=\sqrt{V A R(X)}=\sigma(X-E(X))$ are independent of the expected value and hence are preserved if we examine the centered random variable $X-E(X)$.

### 1.4 Chebyshev's inequality

For every random variable $X: \Omega \rightarrow \mathbb{R}^{+}$on a probability space $(\Omega ; \mathcal{A} ; P)$ and every $t>0$ we have $t \cdot P(X \geq t) \leq \int X d P$.
Proof: $\alpha \cdot P(\{X \geq \alpha\}) \leq \int_{\{X \geq \alpha\}} X d P \leq \int X d P$.

### 1.5 Expectations of products of independent random variables

For independent and real random variables $X, Y \in \mathcal{B}(\Omega ; \mathbb{R})$ we have $E(X \cdot Y)=E(X) \cdot E(Y)$.
Proof: On account of $E\left(\chi_{A} \cdot \chi_{B}\right)=E\left(\chi_{A \cap B}\right)=P(A \cap B)=P(A) \cdot P(B)=E\left(\chi_{A}\right) \cdot E\left(\chi_{B}\right)$ the proposition holds for characteristic functions and due to the linearity of the integral also for step functions $\varphi, \psi \in \mathcal{S}(\Omega ; \mathbb{R})$. For integrable functions $X, Y \in \mathcal{B}(\Omega ; \mathbb{R})$ with $P$-a.e. $X=\lim _{n \rightarrow \infty} X_{n}$ resp. $Y=\lim _{n \rightarrow \infty} Y_{n}$ for sequences $\left(X_{n}\right)_{n \in \mathbb{N}},\left(Y_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{S}(\Omega ; \mathbb{R})$ according to [4, p. 5.5] we have $P$-a.e. $X \cdot Y=$ $\lim _{n \rightarrow \infty}\left(X_{n} \cdot Y_{n}\right)$. According to the hypothesis $E\left(X_{n} \cdot Y_{n}\right)=E\left(X_{n}\right) \cdot E\left(Y_{n}\right) \leq 2 E(X) \cdot E(Y)<\infty$ holds for $n \geq N$ and some $N \in \mathbb{N}$ so that we can apply monotone convergence [4, p. 5.12] to obtain $E(X \cdot Y)=\lim _{n \rightarrow \infty} E\left(X_{n} \cdot Y_{n}\right)=\lim _{n \rightarrow \infty}\left(E\left(X_{n}\right) \cdot E\left(Y_{n}\right)\right)=\lim _{n \rightarrow \infty} E\left(X_{n}\right) \cdot \lim _{n \rightarrow \infty} E\left(Y_{n}\right)=E(X) \cdot E(Y)$.

### 1.6 The median

The real number $m(X)$ is a median of the random variable $X: \Omega \rightarrow \mathbb{R}$ iff $P(X \leq m(X)) \geq \frac{1}{2} \leq$ $P(X \geq m(X))$. Obviously for two medians $m_{1}(X)<m_{2}(X)$ every intermediate value $m_{1}(X)<$ $\alpha<m_{2}(X)$ is a median too. The minimal median is $m_{\text {min }}(X)=\inf \left\{\lambda \in \mathbb{R}: P(X \leq \lambda) \geq \frac{1}{2}\right\}=$ $\inf \left\{\lambda \in \mathbb{R}: P(X>\lambda) \leq \frac{1}{2}\right\}$ since due to the continuity from above[4, p. 2.2.3] on the one hand we have $P\left(X \leq m_{\text {min }}(X)\right)=P\left(\bigcap_{n \geq 1}\left\{X \leq m_{\min }(X)+\frac{1}{n}\right\}\right)=\inf _{n \geq 1} P\left(X \leq m_{\min }(X)+\frac{1}{n}\right) \geq \frac{1}{2}$ and on the other hand $P\left(X \geq m_{\text {min }}(X)\right)=P\left(\bigcap_{n \geq 1}\left\{X \geq m_{\text {min }}(X)-\frac{1}{n}\right\}\right)=\inf _{n \geq 1} P\left(X \geq m_{\text {min }}(X)-\frac{1}{n}\right)$ $=1-\sup _{n \geq 1} P\left(X<m_{\min }(X)-\frac{1}{n}\right) \geq \frac{1}{2}$, i.e. $m_{\min }(X)$ is itself a median and since for every $\epsilon>0$ holds $P\left(X \leq m_{\text {min }}(X)-\epsilon\right)<\frac{1}{2}$ it is the minimal median. Correspondingly the maximal median is $m_{\max }(X)=\sup \left\{\lambda \in \mathbb{R}: P(X \geq \lambda) \geq \frac{1}{2}\right\}=\sup \left\{\lambda \in \mathbb{R}: P(X<\lambda) \leq \frac{1}{2}\right\}$. The relation $m_{\text {min }}(X) \leq$ $m_{\max }(X)$ holds since otherwise we had $\sup _{n \geq 1} P\left(X \geq m_{\max }(X)+\frac{1}{n}\right)=P\left(\cup_{n \geq 1}\left\{X \geq m_{\max }(X)+\frac{1}{n}\right\}\right)$ $=P\left(X>m_{\max }(X)\right)>\frac{1}{2}$, i.e. there existed a $\lambda=m_{\max }(X)+\frac{1}{n}$ with $P(X \geq \lambda) \geq \frac{1}{2}$ contrary to the definition of $m_{\max }(X)$. Obviously we have linearity in the form $c \cdot m(X)=m(c \cdot X)$ and $m(X)+c=m(X+c)$ for every $c \in \mathbb{R}$.

### 1.7 Lévy's inequality

For independent and real random variables $X_{i}:(\Omega, A, P) \rightarrow \mathbb{R}, 1 \leq i \leq n$ with sums $S_{m}:=\sum_{i=1}^{m} X_{i}$ and every $\epsilon>0$ we have $\mu\left(\max _{1 \leq i \leq n}\left|S_{i}+m\left(S_{n}-S_{i}\right)\right| \geq \epsilon\right) \leq 2 P\left(\left|S_{n}\right| \geq \epsilon\right)$.
Note: This inequality allows us to obtain an estimate for the maximal deviation $\left|S_{i}+m\left(S_{n}-S_{i}\right)\right|$ of all partial sums $S_{i}$ given the measure of the deviation $\left|S_{n}\right|$ of the single sum $S_{n}$.

Proof: For $S_{0}:=0$ and $T=\min _{1 \leq i \leq m}\left\{\left|S_{i}+m\left(S_{n}-S_{i}\right)\right| \geq \epsilon\right\}$ if such an $i$ exists and $T:=n+1$ otherwise the pairwise disjoint sets $A_{i}:=\{T=i\} \in \sigma\left(X_{1}, \ldots, X_{i}\right)$ are independent of $B_{i}=$ $\left\{S_{n}-S_{i} \geq m\left(S_{n}-S_{i}\right)\right\} \in \sigma\left(X_{i}, \ldots, X_{n}\right)$. Hence from $P\left(B_{i}\right) \geq \frac{1}{2}$ follows $P\left(S_{n} \geq \epsilon\right) \geq P\left(\bigcup_{i=1}^{n} A_{i} \cap B_{i}\right)$ $=\sum_{i=1}^{n} P\left(A_{i} \cap B_{i}\right)=\sum_{i=1}^{n} P\left(A_{i}\right) \cdot P\left(B_{i}\right) \geq \frac{1}{2} P(1 \leq T \leq n)=\frac{1}{2} \mu\left(\max _{1 \leq i \leq n} S_{i}+m\left(S_{n}-S_{i}\right) \geq \epsilon\right)$. Since the same inequality holds for $-X_{i}$ resp. $-S_{i}$ with $m\left(-S_{n}+S_{i}\right)=-m\left(S_{n}-S_{i}\right)$ and all corresponding sets are disjoint we can use the additivity of $P$ and simply add the two inequalities to obtain the assertion.

### 1.8 Lévy's convergence theorem

For the sequence $\left(S_{n}\right)_{n \geq 1}$ of the sums $S_{n}:=\sum_{i=1}^{n} X_{i}$ of real and independent random variables $\left(X_{i}\right)_{i \geq 1}$ the $P$-a-e- convergence is equivalent to the convergence in measure.
Proof:
$\Rightarrow$ : Lebesgue's convergence theorem[4, p. 4.11].
$\Leftarrow$ : Riesz' convergence theorem[4, p. 4.13.3] provides for every $\frac{1}{4}>\epsilon>0$ an $n_{\epsilon} \geq 1$ with $P\left(\left|S_{n}-S_{m}\right| \geq \epsilon\right)<\epsilon$ for all $n>m \geq n_{\epsilon}$. In particular we have $P\left(\left|S_{n}-S_{m}\right| \geq \epsilon\right)<\frac{1}{2}$ and hence $\left|m\left(S_{n}-S_{m}\right)\right| \leq \epsilon$ for $n>m \geq n_{\epsilon}$. The preceding inequality yields $P\left(\max _{m<i \leq n}\left|S_{i}-S_{m}\right| \geq 2 \epsilon\right) \leq$ $2 P\left(\left|S_{n}-S_{m}\right| \geq \epsilon\right)<2 \epsilon$. For $n \rightarrow \infty$ follows $P\left(\sup _{m<i}\left|S_{i}-S_{m}\right| \geq 2 \epsilon\right) \leq 2 \epsilon$ and due to the completeness [4, p. 4.14] of the $P$-a-e- convergence we obtain the assertion.

### 1.9 Abel's partial summation

1. For two real sequences $\left(a_{i}\right)_{i \geq 0},\left(b_{i}\right)_{i \geq 0} \subset \mathbb{R}$ and $A_{n}=\sum_{i=0}^{n} a_{i}$ we have

$$
\sum_{i=1}^{n} a_{i} b_{i}=A_{n} b_{n}-A_{0} b_{1}-\sum_{i=1}^{n-1} A_{i}\left(b_{i+1}-b_{i}\right) \text { for } n \geq 1 .
$$

2. If also $\lim _{n \rightarrow \infty} A_{n}=A_{0}^{*}<\infty$ with $A_{n}^{*}=\sum_{i>n} a_{i}$ holds we have

$$
\sum_{i=1}^{n} a_{i} b_{i}=A_{0}^{*} b_{1}-A_{n}^{*} b_{n}+\sum_{i=1}^{n-1} A_{i}^{*}\left(b_{i+1}-b_{i}\right) \text { für } n \geq 1 .
$$

3. If additionally $a_{i} \geq 0$ and $b_{i+1} \geq b_{i} \geq 0$ for all $i \geq 0$ is satisfied we have

$$
\sum_{i=1}^{n} a_{i} b_{i}=A_{0}^{*} b_{1}+\sum_{i=1}^{n-1} A_{i}^{*}\left(b_{i+1}-b_{i}\right) \text { for } n \geq 1 .
$$

## Proof:

1. $\sum_{i=1}^{n} a_{i} b_{i}=\sum_{i=0}^{n-1}\left(A_{i+1}-A_{i}\right) b_{i+1}=A_{n} b_{n}-\sum_{i=1}^{n-1} A_{i}\left(b_{i+1}-b_{i}\right)-A_{0} b_{1}$.
2. Follows from 1. with $a_{0}=-\sum_{i=1}^{\infty} a_{i}=-A_{0}^{*}$.
3. In the case of $\lim _{n \rightarrow \infty} A_{n}^{*} b_{n}>0$ with $\sum_{i>n} a_{i} b_{i} \geq A_{n}^{*} b_{n}$ and 2 . we have $A_{0}^{*} b_{1}+\sum_{i \geq 1} A_{i}^{*}\left(b_{i+1}-b_{i}\right) \geq$ $\sum_{i>1} a_{i} b_{i}=\infty$ and hence the assertion. For $\lim _{n \rightarrow \infty} A_{n}^{*} b_{n}=0$ it directly follows from 2. with $n \rightarrow \infty$.

### 1.10 Kronecker's lemma

For a positive real and increasing sequence $\left(b_{i}\right)_{i \geq 1}$ with $\lim _{i \rightarrow \infty} \frac{1}{b_{i}}=0$ and a further real sequence $\left(a_{i}\right)_{i \geq 1}$ with $\sum_{i \geq 1} \frac{a_{i}}{b_{i}}<\infty$ we have $\lim _{n \rightarrow \infty} \frac{1}{b_{n}} \sum_{i=1}^{n} a_{i}=0$.

Proof: From 1.9.2 with $c_{i}=\frac{a_{i}}{b_{i}}$ and $\lim _{n \rightarrow \infty} C_{n}=C_{0}^{*}=\sum_{i \geq 1} \frac{a_{i}}{b_{i}}<\infty$ resp. $\lim _{n \rightarrow \infty} C_{n}^{*}=0$ we have the decomposition $\frac{1}{b_{n}} \sum_{i=1}^{n} a_{i}=\frac{1}{b_{n}} \sum_{i=1}^{n} c_{i} b_{i}=\frac{1}{b_{n}} C_{0}^{*} b_{1}+C_{n}^{*}+\frac{1}{b_{n}} \sum_{i=1}^{n-1} C_{i}^{*}\left(b_{i+1}-b_{i}\right)$. For $n \rightarrow \infty$ the first two summands converge to zero. This also holds for the third summand since for every $\epsilon>0$ there is an $m \geq 1$ with $\left|C_{i}^{*}\right|<\epsilon$ for all $i \geq m$ such that on the one hand $\left|\frac{1}{b_{n}} \sum_{i=m}^{n-1} C_{i}^{*}\left(b_{i+1}-b_{i}\right)\right|<\epsilon \frac{1}{b_{n}} \sum_{i=m}^{n-1}$ $\left(b_{i+1}-b_{i}\right)=\epsilon\left(1-\frac{b_{m}}{b_{n}}\right)<\epsilon$ and on the other hand $\left|\frac{1}{b_{n}} \sum_{i=1}^{m-1} C_{i}^{*}\left(b_{i+1}-b_{i}\right)\right|<\epsilon$ for a sufficiently large $n \geq 1$.

### 1.11 The Khintchin-Kolmogorov convergence theorem

For every sequence $\left(X_{n}\right)_{n \geq 1}$ of independent and centered random variables $X_{n} \in L^{2}(P)$ with $\sum_{n \geq 1} E\left(X_{n}^{2}\right)<\infty$ the sums $S_{m}:=\sum_{n=1}^{m} X_{n}$ converge $P$-a.e. and in quadratic mean to a $S=$ $\lim _{m \rightarrow \infty} S_{m} \in L^{2}(P)$ with $E(S)^{2}=\sum_{n \geq 1} E\left(X_{n}^{2}\right)$.
Proof: Owing to 1.5, $E\left(X_{n}\right)=0$ for all $\mathrm{n} \geq 1$ and by the hypothesis we have $\lim _{k \rightarrow \infty} \sup _{m \geq k} E\left(S_{m}-S_{k}\right)^{2}=$ $\lim _{k \rightarrow \infty} \sup _{m \geq k} \sum_{i=k}^{m} E\left(X_{i}^{2}\right)=0$ such that due to[4, p. 6.7] there is an $S=\lim _{k \rightarrow \infty} S_{m(k)} \in L^{2}(P)$ with a $\mu$ a.e. convergent partial sequence $\left(S_{m(k)}\right)_{k \geq 1}$ as well as convergence of the complete sequence in the quadratic mean: $\lim _{m \rightarrow \infty} E\left(S-S_{m}\right)^{2}=0$. Owing to[4, p. 6.9] we can infer the convergence in measure and due to Lévy's theorem $1.8 \mu$-a.e. convergence of the complete series. Due to 1.5 and $E\left(X_{n}\right)=0$ we also obtain $E(S)^{2}=\lim _{m \rightarrow \infty} E\left(S_{m}\right)^{2}=\sum_{n \geq 1} E\left(X_{n}^{2}\right)$.

### 1.12 Kolmogorov's strong law of large numbers

The mean values $\frac{1}{n} S_{n}=\frac{1}{n} \sum_{k=1}^{n} X_{k}$ of every sequence $\left(X_{k}\right)_{k \geq 1}$ of independent, identically distributed and integrable random variables $P$-almost sure converge to the common expectation: $\lim _{n \rightarrow \infty} \frac{1}{n} S_{n}=E\left(X_{1}\right)$.
Note: The strong law of large numbers provides a mathematical basis for the principle of learning from experience and every statistical method in science. From the mean results $\frac{1}{n} S_{n}$ of independent trials executed under similar conditions in the past we infer the expected outcome $E\left(X_{1}\right)$ in the future.

Proof: At first we prove the proposition for truncated random variables $Y_{k}=\frac{1}{k} \cdot X_{k} \cdot \chi_{\left\{\left|X_{k}\right| \leq k\right\}}$ : With the sets $A_{n}=\left\{n-1<\left|X_{1}\right| \leq n\right\}$ we obtain $\sum_{k \geq 1} E\left(\left|Y_{k}\right|^{2}\right)=\sum_{k \geq 1} \sum_{k \geq n \geq 1} n^{-2} \int_{A_{n}}\left|X_{1}\right|^{2} d P$ $=\sum_{n \geq 1} \sum_{k \geq n} n^{-2} \int_{A_{m}}\left|X_{1}\right|^{2} d P \leq \sum_{n \geq 1} \frac{2}{n} \int_{A_{m}}\left|X_{1}\right|^{2} d P \leq 2 \sum_{n \geq 1} \int_{A_{n}}\left|X_{1}\right| d P \leq 2 E\left(\left|X_{k}\right|\right)<\infty$ so that due to Khintchin - Kolmogorov 1.11 we have $P$-a.s. $\sum_{k \geq 1}\left(Y_{k}-E\left(Y_{k}\right)\right)<\infty$.
The deviations have the measure $\sum_{k \geq 1} P\left(\frac{1}{k} X_{k} \neq Y_{k}\right)=\sum_{k \geq 1} P\left(\left|X_{1}\right|>k\right) \leq \sum_{k \geq 1} \sum_{n \geq k} P\left(n+1 \geq\left|X_{1}\right|>n\right)$ $\leq \sum_{n \geq 1} \sum_{n \geq k \geq 1} P\left(n+1 \geq\left|X_{1}\right|>n\right)=\sum_{k \geq 1}(k+1) \cdot P\left(n+1 \geq\left|X_{1}\right|>n\right) \leq E\left(\left|X_{1}\right|\right)<\infty$ such that according to Borel-Cantelli [4, th. 4.12] follows $P\left(\cap_{n \geq 1} \bigcup_{k \geq n}\left\{\frac{1}{k} X_{k} \neq Y_{k}\right\}\right)=0$ and with the first estimate above we obtain $P$-a.e. $\sum_{k \geq 1} \frac{1}{k}\left(X_{k}-E\left(k \cdot Y_{k}\right)\right)=\sum_{k \geq 1}\left(\frac{1}{k} \cdot X_{k}-E\left(Y_{k}\right)\right)<\infty$. On account of $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} E\left(k \cdot Y_{k}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} E\left(X_{1} \cdot \chi_{\left\{\left|X_{1}\right| \leq k\right\}}\right)=\lim _{n \rightarrow \infty} E\left(X_{1} \cdot \chi_{\left\{\left|X_{1}\right| \leq k\right\}}\right)=E\left(X_{1}\right)$ and Kronecker 1.10 follows $\lim _{n \rightarrow \infty} \frac{1}{n} S_{n}-E\left(X_{1}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(X_{k}-E\left(k \cdot Y_{k}\right)\right)=0$.

## 2 Stochastic processes

### 2.1 Definition of the bold game strategy

A gambler enters the casino with capital $C_{0}>0$ and takes independently and identically distributed bets with $P\left(Y_{k}=1\right)=p$ resp. $P\left(Y_{k}=-1\right)=1-p=q$ for $k \geq 1$ until his fortune $C_{0}+S_{n}$ with $S_{n}=\sum_{k=1}^{n} Y_{k}$ reaches either in the case $S_{C_{0}, n}=\left\{C_{0}+S_{n}=c\right\} \cap \bigcap_{k=1}^{n-1}\left\{0<C_{0}+S_{n}<c\right\}$ of success the goal $c$ or in the case $R_{C_{0}, n}=\left\{C_{0}+S_{n}=0\right\} \cap \bigcap_{k=1}^{n-1}\left\{0<C_{0}+S_{n}<c\right\}$ of ruin the value 0 . The probability of ultimate success is $s_{c}\left(C_{0}\right)=P\left(\bigcup_{n \geq 1} S_{C_{0}, n}\right)=\sum_{n \geq 1} P\left(S_{C_{0}, n}\right)$ and correspondingly the probability of ultimate ruin is $r_{c}\left(C_{0}\right)=P\left(\bigcup_{n \geq 1} R_{C_{0}, n}\right)=\sum_{n \geq 1} P\left(R_{C_{0}, n}\right)$. The cases $S_{C_{0}, 0}=S_{0, n}=S_{c, n}=\emptyset$ for $C_{0}<c$ resp. $S_{c, 0}=\Omega$ yield the boundary conditions $s_{c}(0)=0$ and $s_{c}(c)=1$. Similarly $R_{C_{0}, 0}=R_{0, n}=R_{c, n}=\emptyset$ for $C_{0}<c$ resp. $R_{0,0}=\Omega$ give $r_{c}(0)=1$ and $r_{c}(c)=0$. Since the bets are independently and identically distributed we have the recursive formulae

$$
s_{c}\left(C_{0}\right)=p \cdot s_{c}\left(C_{0}+1\right)+q \cdot s_{c}\left(C_{0}-1\right) \text { resp. } r_{c}\left(C_{0}\right)=q \cdot r_{c}\left(C_{0}+1\right)+p \cdot r_{c}\left(C_{0}-1\right) .
$$

In general these recursions have the explicit solutions

$$
s_{c}\left(C_{0}\right)=\left\{\begin{array}{ll}
A+B \cdot \rho^{C_{0}} & \text { if } p \neq q \\
A+B \cdot a & \text { if } p=q
\end{array} \text { for } \rho=\frac{q}{p} .\right.
$$

The boundary conditions result in

$$
s_{c}\left(C_{0}\right)=\left\{\begin{array}{ll}
\frac{\rho^{C_{0}-1}}{\rho^{c}-1} & \text { if } p \neq q \\
\frac{C_{0}}{c} & \text { if } p=q
\end{array} \text { resp. } r_{c}\left(C_{0}\right)= \begin{cases}\frac{\rho^{C_{0}-c}-1}{\rho^{-c}-1} & \text { if } p \neq q \\
\frac{c_{-C_{0}}}{c} & \text { if } p=q\end{cases}\right.
$$

Hence $s_{c}\left(C_{0}\right)+r_{c}\left(C_{0}\right)=1$, i.e. the game will $P$-almost sure not continue forever.
In the $n$-th game the wager $W_{n}\left(C_{0} ; Y_{1} ; \ldots ; Y_{n-1}\right) \geq 0$ results in the win $W_{n} Y_{n}$ and the capital $C_{n}=C_{n-1}+W_{n} Y_{n}$. The random variables $\left(Y_{k}\right)_{k \geq 1}$ generate an increasing filtration $\left(\mathcal{F}_{n}\right)_{n \geq 1}$ with $\mathcal{F}_{n}=\sigma\left(Y_{1} ; \ldots ; Y_{n}\right)$ representing the knowledge up to the $n$-th game. Since the $\sigma$-algebrae $\sigma\left(Y_{n}\right)$ are independent of the $\mathcal{F}_{n-1}=\sigma\left(Y_{1} ; \ldots ; Y_{n-1}\right)$ due to 1.5 we have $E\left(Y_{n} \cdot W_{n}\right)=E\left(Y_{n}\right) \cdot E\left(W_{n}\right)=$ $(p-q) \cdot E\left(W_{n}\right)$. Consequently in the subfair case with $p<q$ the sequence $\left(E\left(C_{n}\right)\right)_{n \geq 1}$ of expected capital is decreasing.

The stopping time $\tau: \mathbb{R} \times \Omega \rightarrow \mathbb{N}$ denotes the number $\tau\left(C_{0} ; \omega\right)$ of trials the gambler plays before he decides to stop. This decision depends only in the knowledge gathered up to $\tau$, i.e. $\{\tau=n\} \in \mathcal{F}_{n}$. Also we assume that $P(\tau<\infty)=1$. The capital then is

$$
C_{n}^{*}=\left\{\begin{array}{ll}
C_{n} & \text { if } \tau \geq n \\
C_{\tau} & \text { if } \tau \leq n
\end{array} \text { with the wager } W_{n}^{*}=\left\{\begin{array}{ll}
W_{n} & \text { if } \tau \geq n \\
0 & \text { if } \tau \leq n
\end{array}=W_{n} \chi_{\{\tau \geq n\}}\right.\right.
$$

so that we arrive at the recursive formula $C_{n}^{*}=C_{n-1}^{*}+W_{n}^{*} \cdot Y_{n}$. Since $\{\tau \geq n\}=\Omega \backslash\{\tau<n\} \in \mathcal{F}_{n-1}$ the random variables $C_{n}^{*}$ resp. $W_{n}^{*}$ are $\mathcal{F}_{n-1^{-}}$measurable whence the argument from above applies whence the sequence $\left(E\left(C_{n}^{*}\right)\right)_{n>1}$ of expected capital still is decreasing. If we assume a finite line of credit of the gambler as well as a finite capital of the bank, i.e. $-M \leq C_{n}^{*} \leq M$ for an $M>0$ and every $n \geq 1$ and consider that $P$-a.s. $\lim _{n \rightarrow \infty} C_{n}^{*}=C_{\tau}$ the dominated convergence theorem $[4$, p. 5.14] yields $\lim _{n \rightarrow \infty} E\left(C_{n}^{*}\right)=E\left(C_{\tau}\right)$ and in particular $E\left(C_{\tau}\right) \leq E\left(C_{n}\right) \leq E\left(C_{1}\right) \leq C_{0}$ : No gambling system may reverse the odds of a subfair game.

Nonetheless it is possible to optimize the (still unfavourable) success probability in a subfair game in a striking way leading to a $P$-a.e. differentiable function with fractal character and outside
the domain of the fundamental theorem of calculus. To this end we scale the initial fortune to $0 \leq C_{0} \leq 1$ and the goal to $c=1$. The bold game strategy is defined by

$$
W_{n}=\left\{\begin{array}{ll}
C_{n-1} & \text { if } 0 \leq C_{n-1} \leq \frac{1}{2} \\
1-C_{n-1} & \text { if } \frac{1}{2} \leq C_{n-1} \leq 1
\end{array} \text { and } \tau\left(C_{0} ; \omega\right)=n \text { iff } C_{n} \in\{0 ; 1\} .\right.
$$

Under the condition that the play has not terminated at time $k-1$ it will continue beyond $k$ iff either $Y_{k}=1$ in the case of $C_{k-1} \leq \frac{1}{2}$ or $Y_{k}=-1$ in the case of $C_{k-1} \geq \frac{1}{2}$. Hence we have $P(\tau \geq k+1 \mid \tau \geq k) \leq m=\max \{p ; q\}$ whence $P(\tau \geq k+1) \leq m^{n}$ and consequently $P(\tau=\infty)=0$. Thus the game will terminate $P$-a.s. The mapping $C_{\tau}: \Omega \rightarrow\{0 ; 1\}$ is a $\bigcup_{n \in \mathbb{N}} \mathcal{F}_{n}$-measurable random variable since $\left\{C_{\tau}=y\right\}=\bigcup_{n \in \mathbb{N}}\left(\{\tau=n\} \cap\left\{C_{n}=y\right\}\right)$ for $y \in\{0 ; 1\}$. We now examine the success probability of the initial capital $0 \leq x \leq 1$ expressed by the function $F:[0 ; 1] \rightarrow[0 ; 1]$ with $F(x)=P\left(C_{\tau}=1\right)$ for $C_{0}=x$.

### 2.2 Properties of the bold game strategy

1. In the subfair case $p \leq q$ of a sequence of trials with independently and identically distributed outcomes $Y_{i}: \Omega \rightarrow\{-1 ; 1\}$ and $P\left(Y_{i}=1\right)=p$ resp. $P\left(Y_{i}=-1\right)=q$ for every $0 \leq x \leq 1$ the success probability $F$ of the bold game strategy as described above satisfies the functional equation $F(x)=\left\{\begin{array}{ll}p \cdot F(2 x) & \text { if } 0 \leq x \leq \frac{1}{2} \\ p+q \cdot F(2 x-1) & \text { if } \frac{1}{2} \leq x \leq 1\end{array}\right.$.
2. It is also the distribution function $F(x)=P(X \geq x)$ of the random variable $X=\sum_{i \geq 1} \frac{X_{i}}{2^{i}}$ : $\Omega \rightarrow[0 ; 1]$ with independently and identically distributed coefficients $X_{i}: \Omega \rightarrow\{0 ; 1\}$ and $P\left(X_{i}=1\right)=p$ resp. $P\left(X_{i}=0\right)=q$.
3. The function $F:[0 ; 1] \rightarrow[0 ; 1]$ is continuous, increasing and $P$-a.e. differentiable with $P$-a.e. $\frac{d F}{d x}(x)=0$ for $p<q$.
Note: The functional equation expresses the fractal character of the distribution function $F$ in terms of self-similarity: The values $F(y) \in[0 ; 1]$ on the whole domain $y \in[0 ; 1]$ are replicated in the lower part $F\left(\frac{1}{2} y\right)=\frac{1}{p} F(y) \in[0 ; p]$ and the values $F(y) \in[p ; 1]$ in the upper part are also repeated in the interval $F\left(\frac{1}{2}(y+1)\right)=\frac{1}{q}(F(y)-p) \in\left[0 ; \frac{1}{q}\right]$.
Proof: The functional equation follows from the event tree at the right hand side based on the independently and identically distributed probabilities of the separate trials. Applying it we obtain

$$
\begin{aligned}
& F(1)=P(1.0)_{2}=1 ; \\
& F\left(\frac{1}{2}\right)=P(0.1)_{2}=p ; \\
& F\left(\frac{1}{4}\right)=F(0.01)_{2}=P(1 ; 1)=p^{2} ; \\
& F\left(\frac{3}{4}\right)=F(0.11)_{2}=P(1 \vee 0 ; 1)=p+q p ; \\
& F\left(\frac{1}{8}\right)=F(0.001)_{2}=P(1 ; 1 ; 1)=p^{3} ; \\
& F\left(\frac{3}{8}\right)=F(0.011)_{2}=P(1 ; 1 \vee 1 ; 0 ; 1)=p^{2}+p q p ; \\
& F\left(\frac{5}{8}\right)=F(0.101)_{2}=P(1 \vee 0 ; 1 ; 1)=p+q p p ; \\
& F\left(\frac{7}{8}\right)=F(0.111)_{2}=P(1 \vee 0 ; 1 \vee 0 ; 0 ; 1)=p+q p+q q p
\end{aligned}
$$


$\frac{1}{2} \leq x \leq 1$

In general for a dyadic number $x=\sum_{i=1}^{n} \frac{x_{i}}{2^{i}}=\left(0 . x_{1} \ldots x_{n}\right)_{2}$ of rank $n \geq 1$ we have

- either $\left(0 . x_{1} \ldots x_{n}\right)_{2}+\frac{1}{2^{n}} \leq \frac{1}{2}$ hence $x_{1}=0$ and $F(x)=p \cdot F(2 x)$ so that $F\left(\left(0 . x_{1} \ldots x_{n}\right)_{2}+\frac{1}{2^{n}}\right)-$ $F\left(0 . x_{1} \ldots x_{n}\right)_{2}=p\left(F\left(\left(0 . x_{2} \ldots x_{n}\right)_{2}+\frac{1}{2^{n-1}}\right)-F\left(0 . x_{2} \ldots x_{n}\right)_{2}\right)$
- or $\left(0 \cdot x_{1} \ldots x_{n}\right)_{2}+\frac{1}{2^{n}} \geq \frac{1}{2}$ hence $x_{1}=1$ and $F(x)=p+q \cdot F(2 x-1)$ so that due to $2 \cdot\left(\left(0 . x_{1} \ldots x_{n}\right)_{2}+\frac{1}{2^{n}}\right)-1=\left(1 . x_{2} \ldots x_{n}\right)_{2}+\frac{1}{2^{n-1}}-1=\left(0 . x_{2} \ldots x_{n}\right)_{2}+\frac{1}{2^{n-1}}$ we have $F\left(\left(0 . x_{1} \ldots x_{n}\right)_{2}+\frac{1}{2^{n}}\right)-F\left(0 . x_{1} \ldots x_{n}\right)_{2}=q\left(F\left(\left(0 . x_{2} \ldots x_{n}\right)_{2}+\frac{1}{2^{n-1}}\right)-F\left(0 . x_{2} \ldots x_{n}\right)_{2}\right)$.
Subsuming both cases and skewing the outcomes $Y_{i}$ slightily so that
they fit as coefficients $X_{i}=1-\frac{1}{2}\left(1-Y_{i}\right)$ such that $P\left(X_{i}=1\right)=P\left(Y_{i}=1\right)=p$ resp. $P\left(X_{i}=0\right)=$ $P\left(Y_{i}=-1\right)=q$ we obtain

$$
\begin{aligned}
F\left(\left(0 . x_{1} \ldots x_{n}\right)_{2}+\frac{1}{2^{n}}\right)-F\left(0 . x_{1} \ldots x_{n}\right)_{2} & =p\left(x_{1}\right)\left(F\left(\left(0 . x_{2} \ldots x_{n}\right)_{2}+\frac{1}{2^{n-1}}\right)-F\left(0 . x_{2} \ldots x_{n}\right)_{2}\right) \\
& \vdots \\
& =P\left(X_{1}=x_{1}\right) \cdot \ldots \cdot P\left(X_{n}=x_{n}\right) \cdot(F(1)-F(0)) \\
& =P\left(X_{1}=x_{1}\right) \cdot \ldots \cdot P\left(X_{n}=x_{n}\right) \\
& =P\left(\left(X_{1}, \ldots, X_{k}\right)=\left(x_{1}, \ldots, x_{k}\right)\right) \\
& \leq m^{n} \text { but also } \\
& >0
\end{aligned}
$$

whence immediately follow the increasing character as well as the continuity of $F$. Also we can compute the explicit formula using the Kronecker symbol $\delta_{x 1}=\left\{\begin{array}{ll}1 & \text { if } x=1 \\ 0 & \text { if } x \neq 1\end{array}\right.$ to exclude the cases $x_{k}=0$ resp. $F\left(0 . x_{1} \ldots x_{k}\right)_{2}=F\left(0 . x_{1} \ldots x_{k-1}\right)_{2}$ so that

$$
\begin{aligned}
& F\left(0 . x_{1} \ldots x_{n}\right)_{2} \\
& =F\left(0 . x_{1} \ldots x_{n-1}+\frac{1}{2^{n}}\right)_{2} \\
& =P\left(X_{1}=x_{1}\right) \cdot \ldots \cdot P\left(X_{n}=x_{n}\right) \cdot \delta_{x_{n} 1}+F\left(0 . x_{1} \ldots x_{n-1}\right)_{2} \\
& =P\left(X_{1}=x_{1}\right) \cdot \ldots \cdot P\left(X_{n}=x_{n}\right) \cdot \delta_{x_{n} 1}+P\left(X_{1}=x_{1}\right) \cdot \ldots \cdot P\left(X_{n-1}=x_{n-1}\right) \cdot \delta_{x_{n-1} 1}+\ldots+P\left(X_{1}=x_{1}\right) \cdot \delta_{x_{1} 1} \\
& =\sum_{k=1}^{n} P\left(X_{1}=x_{1}\right) \cdot \ldots \cdot P\left(X_{k}=x_{k}\right) \cdot \delta_{x_{k} 1} \\
& =\sum_{k=1}^{n} P\left(\left(X_{1}, \ldots, X_{k}\right)=\left(x_{1}, \ldots, x_{k}\right)\right) \\
& =P\left(: \sum_{i=1}^{k} \frac{X_{i}}{2^{i}} \leq \sum_{i=1}^{n} \frac{x_{i}}{2^{i}} ; k \leq n\right)
\end{aligned}
$$

Hence for every dyadic number $x=\sum_{i=1}^{n} \frac{x_{i}}{2^{i}}$ of rank $n \geq 1$ we have $F(x)=P(X \leq x)$ for the random variable $X=\sum_{i=1}^{n} \frac{X_{i}}{2^{i}}$. Since the dyadic numbers of finite rank are dense in $[0 ; 1]$ and $F$ is continuous this formula extends to every real $x \in[0 ; 1]$, i.e. $F$ is the distribution function for the random variable $X=\sum_{i \geq 1} \frac{X_{i}}{2^{i}}$.

In order to compute the derivative for a given $x \in] 0 ; 1[$ (conveniently excluding the $\lambda$-null set $\{0 ; 1\}$ ) and every $n \geq 1$ we choose $0 \leq k_{n} \leq 2^{n}-1$ such that $\left.x \in I_{n}=\right] \frac{k_{n}}{2^{n}} ; \frac{k_{n}+1}{2^{n}}[$. According to Lebesgue's differentiation theorem [4, p. 12.4] the derivative $\frac{d F}{d \lambda}(x)=\lim _{n \rightarrow \infty} \frac{F\left(\frac{k_{n}}{2^{n}}+\frac{1}{2^{n}}\right)-F\left(\frac{k_{n}}{2^{n}}\right)}{2^{n}}=\lim _{n \rightarrow \infty} \frac{P\left(X \in I_{n}\right)}{2^{n}}$ exists $\lambda$-a.e. on $[0 ; 1]$. If we assume $\frac{d F}{d \lambda}(x)>0$ it follows that $P\left(X \in I_{n}\right)>0$ and from $\lim _{n \rightarrow \infty} \frac{P\left(X \in I_{n+1}\right)}{2^{n+1}}=\lim _{n \rightarrow \infty} \frac{P\left(X \in I_{n}\right)}{2^{n}}$ we infer $\lim _{n \rightarrow \infty} \frac{P\left(X \in I_{n+1}\right)}{P\left(X \in I_{n}\right)}=\frac{1}{2}$. From $\frac{k_{n}}{2^{n}}=\left(0 . x_{1} \ldots x_{n}\right)_{2}$ follows $\frac{k_{n+1}}{2^{n}}=\left(0 . x_{1} \ldots x_{n} x_{n+1}\right)_{2}$ with $x_{n+1}=0$
 iff $I_{n+1} \subset I_{n}$ lies in the left half of $I_{n}$ and $x_{n+1}=0$ iff it is the right half of $I_{n}$. Due to the explicit formula shown above we infer $\frac{P\left(X \in I_{n+1}\right)}{P\left(X \in I_{n}\right)}=\frac{P\left(X_{1}=x_{1}\right) \cdot \ldots \cdot P\left(X_{n}=x_{n+1}\right)}{P\left(X_{1}=x_{1}\right) \cdot \ldots \cdot P\left(X_{n}=x_{n}\right)}=P\left(X_{n}=x_{n+1}\right) \in\{p ; q\}$ contrary to the assumption $p<q$. Hence the proof is complete.

### 2.3 Convexity of the success probability

In the subfair case $p \leq q$ for every $0 \leq x-t \leq x \leq x+t \leq 1$ we have $F(x) \geq p \cdot F(x+t)+q \cdot F(x-t)$.
Proof: We prove the inequality $\Delta(r, s)=F(a)-p F(s)-q F(r) \geq 0$ by induction over $n$ for dyadic numbers $0 \leq r \leq s \leq 1$ of rank $n$ and mean $a=\frac{1}{2}(r+s)$ of rank $n+1$. By the continuity of $F$ this result then extends to real arguments. We assume that the inequality holds for $r, s$ of rank $n \geq 1$. There are four cases to consider:
Case I: $s \geq \frac{1}{2}$. The first part of the functional equation gives $\Delta(r, s)=p \Delta(2 r, 2 s)$. Since $2 r, 2 s$ are of rank $n$ the induction hypothesis implies that $\Delta(2 r, 2 s) \geq 0$.
Case II: $\frac{1}{2} \leq r$. By the second part of the functional equation we have $\Delta(r, s)=q \Delta(2 r-1,2 s-1) \geq$ 0.

Case III: $r \leq a \leq \frac{1}{2} \leq 2$. The functional equation delivers $\Delta(r, s)=p F(2 a)-p(p+q F(2 s-1))-$ $q(p F(2 r))$. From $\frac{1}{2} \leq s \leq r+s=2 a \leq 1$ follows $F(2 a)=p+q F(4 a-1)$ and from $0 \leq 2 a-$ $\frac{1}{2} \leq \frac{1}{2}$ follows $F\left(2 a-\frac{1}{2}\right)=p F(4 a-1)$. Therefore $p F(2 a)=p^{2}+q F\left(2 a-\frac{1}{2}\right)$ whence $\Delta(r, s)=$ $q\left(F\left(2 a-\frac{1}{2}\right)-p F(2 s-1)-p F(2 r)\right)$. Since $p \leq q$ the right side does not increase if either of the two $p$ is changed to $q$. Hence $\Delta(r, s) \geq q \max \{\Delta(2 r, 2 s-1), \Delta(2 s-1,2 r)\}$. Since we may apply the induction hypothesis either to $2 r \leq 2 s-1$ or to $2 s-1 \leq 2 r$ at least one of the two $\Delta$ on the right is nonnegative.
Case IV: $r \leq \frac{1}{2} \leq a \leq s$. The functional equation gives $\Delta(r, s)=p q+q F(2 a-1)-p q F(2 s-1)-$ $p q F(2 r)$. From $0 \leq 2 a-1=r+2-1 \leq \frac{1}{2}$ follows $F(2 a-1)=p F(4 a-2)$ and from $\frac{1}{2} \leq 2 a-\frac{1}{2}=$ $r+s-\frac{1}{2} \leq 1$ follows $F\left(2 a-\frac{1}{2}=p+q F(4 a-2)\right)$. Therefore $q F(2 a-1)=p F\left(2 a-\frac{1}{2}\right)$ and it follows that $\Delta(r, s)=p\left(q-p+F\left(2 a-\frac{1}{2}\right)-q F(2 s-1)-q F(2 r)\right)$. On the one hand if $2 s-1 \leq 2 r$ the right side becomes $p((q-p)(1-F(2 r))+\Delta(2 s-1,2 r)) \geq 0$. On the other hand if $2 r \leq 2 s-1$ it is $p((q-p)(1-F(2 s-1))+\Delta(2 r, 2 s-1)) \geq 0$. This completes the proof.

### 2.4 The Dubins-Savage Theorem

The bold play strategy is the optimal strategy in the subfair case $p \leq q$, i.e. for every other strategy $\pi$ and every initial capital $0 \leq x \leq 1$ we have $F_{\pi}(x) \leq F(x)$.
Proof: We consider the conditional chance $F\left(C_{\pi, n}^{*}\right)$ of success if the strategy $\pi$ is replaced by bold game after the $n$-th trial and the capital $C_{\pi, n}^{*}\left(C_{0}, Y_{1}, \ldots, Y_{n}\right)$ depending on the initial capital $0 \leq C_{0} \leq 1$ and the independently as well as identically distributed outcomes $Y_{i} \in\{-1,1\}$ in the trials $1 \leq i \leq n$. We abbreviate $C_{\pi, n-1}^{*}=x$ and $W_{\pi, n}^{*}=t$ so that we can write $C_{\pi, n}^{*}=x+t Y_{n}$ and $F\left(C_{\pi, n}^{*}\right)=\sum_{x, t} \chi_{\left\{C_{\pi, n-1}^{*}=x, W_{\pi, n}^{*}=t\right\}} F\left(x+t Y_{n}\right)$ where $x$ resp. $t$ vary over the finite ranges of
$C_{\pi, n-1}^{*}$ resp. $W_{\pi, n}^{*}$. Since $C_{\pi, n-1}^{*}$ and $W_{\pi, n}^{*}$ are $\sigma\left(Y_{1}, \ldots, Y_{n-1}\right)$-measurable and $F\left(x+t Y_{n}\right)$ is $\sigma\left(Y_{n}\right)$ measurable for the now fixed (!) $s$ and $t$ in the sum by independence we obtain $E\left(F\left(C_{\pi, n}^{*}\right)\right)=$ $\sum_{x, t} P\left(C_{\pi, n-1}^{*}=x, W_{\pi, n}^{*}=t\right) \cdot E\left(F\left(x+t Y_{n}\right)\right)$. According to the preceding lemma 2.3 we have $E\left(F\left(x+t Y_{n}\right)\right) \leq F(x)$ if $0 \leq x-t \leq x \leq x+t \leq 1$. We assume that the alternative strategy $\pi$ keeps to the same capital limits as the bold game, i.e. $W_{\pi, n}^{*} \leq \min \left\{C_{\pi, n-1}^{*}, 1-C_{\pi, n-1}^{*}\right\}$ and consequently $C_{\pi, n}^{*} \in[0 ; 1]$ whence $E\left(F\left(C_{\pi, n}^{*}\right)\right) \leq \sum_{x, t} P\left(C_{\pi, n-1}^{*}=x, W_{\pi, n}^{*}=t\right) \cdot F(x)=\sum_{x} P\left(C_{\pi, n-1}^{*}=x\right)$. $F(x)=E\left(F\left(C_{\pi, n-1}^{*}\right)\right)$. This inequality already implies that every trial the gambler waits before changing to bold play diminishes his expected chance of success in the overall game played in the first $n$ trials in some arbitrary alternative strategy and from the $n+1$ th game on with bold play. But we can sharpen this statement considerably: Since the estimate is true for each $n \geq 1$ and $F\left(C_{\pi, \tau_{\pi}}^{*}\right)=F\left(C_{\pi, n}^{*}\right)=\left\{\begin{array}{ll}1 & \text { if } C_{\pi, \tau_{\pi}}^{*}=1 \\ 0 & \text { if } C_{\pi, \tau_{\pi}}^{*} \neq 1\end{array}\right.$ for $n \geq \tau_{\pi}$ with $P\left(\tau_{p}<\infty\right)$ guaranteed by the alternative strategy $\pi\left(\right.$ cf. 2.1) we obtain $E\left(F\left(C_{\pi, \tau_{\pi}}^{*}\right)\right)=E\left(F\left(C_{\pi, n}^{*}\right)\right) \leq E\left(F\left(C_{\pi, 0}^{*}\right)\right)=E\left(F\left(C_{0}\right)\right)=F\left(C_{0}\right)$. Since $F_{\pi}\left(C_{0}\right)=1 \cdot P\left(C_{\pi, \tau_{\pi}}^{*}=1\right)=F\left(C_{\pi, \tau_{\pi}}^{*}=1\right) \cdot P\left(C_{\pi, \tau_{\pi}}^{*}=1\right) \leq E\left(F\left(C_{\tau}\right)\right) \leq F\left(C_{0}\right)$ we have proven the assertion.

## 3 Weak convergence

### 3.1 Simple discontinuities of monotone functions

Every monotone function $f:] a ; b[\rightarrow \mathbb{R}$ is continuous except at a countable set of points and the discontinuity at each of such point $c \in] a ; b[$ is simple, i.e.

$$
-\infty<\sup _{a<x<c} f(x)=\lim _{n \rightarrow \infty} f\left(c-\frac{1}{n}\right)<\lim _{n \rightarrow \infty} f\left(c+\frac{1}{n}\right)=\inf _{c<x<b} f(x)<\infty
$$

## Notes:

1. In $[4$, th. 11.1] it is shown that for every (not necessarily measurable) $f:(X ; d) \rightarrow(Y ; D)$ between metric spaces the set of discontinuities

$$
D_{f}=\left\{x \in X: \exists \epsilon>0: \forall \delta>0 \exists y ; z \in B_{\delta}(x): D(f(y) ; f(z)) \geq \epsilon\right\}
$$

is $\mathcal{B}(X)$-measurable.
2. In [2, th. 1.2] it is proved that for every real $f: \mathbb{R} \rightarrow \mathbb{R}$ the set of jump and vertex points with existing but differing Dini derivatives

$$
\left\{D_{+} f=D^{+} f=D_{+}^{+} f \neq D_{-}^{-} f=D_{-} f=D^{-} f\right\}
$$

is countable.
Proof: W.l.o.g. we assume $f$ to be nondecreasing whence $a<x<c<y<b$ implies $-\infty<$ $f(x)<f(c)<f(y)<\infty$ and consequently $-\infty<\alpha=\sup _{a<x<c} f(x) \leq f(c) \leq \inf _{c<x<b} f(x)=\beta<\infty$. In order to prove that $\alpha=f(c-)=\lim _{n \rightarrow \infty} f\left(c-\frac{1}{n}\right)$ resp. $\beta=f(c+)=\lim _{n \rightarrow \infty} f\left(c+\frac{1}{n}\right)$ we observe that the nondecreasing character of $f$ implies that for every $\epsilon>0$ there is an $m \geq 1$ such that for every $n \geq m$ holds $\alpha-\epsilon<f\left(c-\frac{1}{n}\right) \leq \alpha$ whence follows $f(c-)=\alpha$ and analogously $f(c+)=\beta$. Also we remark that $a<c<x<d<b$ implies $f(c+) \leq f(x) \leq f(d-)$. Hence for every $c ; d \in D_{f}=$ $\{x \in] a ; b[: f(x-)<f(x+)\}$ there are rational $f(c-)<r_{c}<f(c+)<f(d-)<r_{d}<f(d+)$, i.e. the map $r: D \rightarrow \mathbb{Q}$ defined by $r(c)=r_{c}$ is injective.

### 3.2 Distribution functions

Every random variable $X: \Omega \rightarrow \mathbb{R}$ on a probability space $(\Omega ; \mathcal{A} ; P)$ determines a probability measure $P_{X}=X \circ P$ on $(\mathbb{R} ; \mathcal{B}(\mathbb{R}))$ and according to $[4$, th. 3.7] a nondecreasing and right continuous distribution function $F_{X}: \mathbb{R} \rightarrow[0 ; 1]$ with existing left limits such that $\left.\left.F_{X}(x)=(X \circ P)(]-\infty ; x\right]\right)=$ $P(X \leq x)$. According to the preceding theorem 3.1 every distribution function has at most a countable number of simple discontinuities. Conversely every such distribution function $F: \mathbb{R} \rightarrow[0 ; 1]$ determines a unique probability measure $P_{F}$ on $(\mathbb{R} ; \mathcal{B}(\mathbb{R}))$ and many possible probability spaces $(\Omega ; \mathcal{A} ; P)$ with corresponding random variables $X$ : $\Omega \rightarrow \mathbb{R}$ such that $F(x)=P(X \leq x)=P(]-\infty ; x])$, among them the trivial random variable $X=$ id : $\mathbb{R} \rightarrow \mathbb{R}$. E.g. the binomial distribution $b_{3 ; 0,5}$ with $b_{3 ; 0,5}(0)=b_{3 ; 0,5}(3)=\frac{1}{8}$ resp. $b_{3 ; 0,5}(1)=b_{3 ; 0,5}(2)=\frac{3}{8}$ may be realized by three tosses of a coin as well as by the single throw of an octagonal die with corresponding labels.


### 3.3 Expectations and distribution functions

For every random variable $X: \Omega \rightarrow \mathbb{R}$ on a probability space $(\Omega ; \mathcal{A} ; P)$ we have

1. $E(X)=\int_{0}^{\infty} P(X \geq x) d x-\int_{-\infty}^{0} P(X \leq x) d x$.

In the case of a continuous distribution function $F: \mathbb{R} \rightarrow[0 ; 1]$ with $F(x)=P(X \leq x)$ holds
2. $E(X)=\int_{0}^{\infty}(1-F(x)) d x-\int_{-\infty}^{0} F(x) d x$.

Proof: By Fubini [4, th. 8.9] we have the expectation of the positive part $E\left(X^{+}\right)=\int X^{+} d P$ $=\int t d P_{X^{+}}(t)=\iint \chi_{[0 \leq x \leq t]}(x) d x d P_{X}(t)=\iint \chi_{[0 \leq x \leq t]}(t) d P_{X}(t) d x=\int_{0}^{\infty} P(X \geq x) d x$ and in the case of a continuous distribution function $\bar{F}: \mathbb{R} \rightarrow[0 ; 1]$ with $P(X=x)=P_{X}(\{x\})=$ $\left.\left.P_{X}\left(\bigcap_{n \geq 1}\right] x-\frac{1}{n} ; x+\frac{1}{n}\right]\right)=\lim _{n \rightarrow \infty}\left(F\left(x+\frac{1}{n}\right)-F\left(x+\frac{1}{n}\right)\right)=\lim _{n \rightarrow \infty} F\left(x+\frac{1}{n}\right)-\lim _{n \rightarrow \infty} F\left(x+\frac{1}{n}\right)=$ $F(x)-F(x)=0$ follows $E\left(X^{+}\right)=\int_{0}^{\infty} P(X>x) d x=\int_{0}^{\infty}(1-F(x)) d x$. The negative part is computed by $E\left(X^{-}\right)=\int X^{-} d P=\int t d P_{X^{-}}(t)=\iint \chi_{[t \leq x \leq 0]}(x) d x d P_{X}(t)=\iint \chi_{[t \leq x \leq 0]}(t) d P_{X}(t) d x$ $=\int_{-\infty}^{0} P(X \leq x) d x=\int_{-\infty}^{0} F(x) d x$ whence by $E(X)=E\left(X^{+}-X^{-}\right)=E\left(X^{+}\right)-E\left(X^{-}\right)$follows the assertion.

### 3.4 The primitive of a distribution function

The distribution $P_{X}: \mathcal{B}(\mathbb{R}) \rightarrow[0 ; 1]$ of a random variable $X: \Omega \rightarrow \mathbb{R}$ on a probability space $(\Omega ; \mathcal{A} ; P)$ is $\lambda$-absolutely continuous iff its distribution function $F: \mathbb{R} \rightarrow[0 ; 1]$ is absolutely continuous and in this case there is a probability density function $f=\frac{d F}{d \lambda}: \mathbb{R} \rightarrow \mathbb{R}_{0}^{+}$which is the primitive of $F$ with $P(X \leq x)=F(x)=\int_{-\infty}^{x} f d \lambda$.
Proof:
$\Rightarrow$ : According to [4, def. 9.6] for every $\epsilon>0$ there is a $\delta>0$ such that for any disjoint collection (]$\alpha_{i} ; \beta_{i}[)_{1 \leq i \leq n}$ of segments with overall length $\left.\left.\left.\left.\sum_{i=1}^{n}\left(\beta_{i}-\alpha_{i}\right)=\sum_{i=1}^{n} \lambda(] \beta_{i}-\alpha_{i}\right]\right)=\lambda\left(\bigcup_{i=1}^{n}\right] \beta_{i}-\alpha_{i}\right]\right)<\delta$ holds $\left.\left.\left.\left.\sum_{i=1}^{n}\left|F\left(\beta_{i}\right)-F\left(\alpha_{i}\right)\right|=\sum_{i=1}^{n} P_{X}(] \beta_{i}-\alpha_{i}\right]\right)=P_{X}\left(\bigcup_{i=1}^{n}\right] \beta_{i}-\alpha_{i}\right]\right)<\epsilon$ whence from [2, def. 2.7]
follows the absolute continuity of $F$. The existence of the probability density function then is a consequence of the fundamental theorem of calculus [2, th. 12.10].
$\Leftarrow$ : Follows at once from the fundamental theorem of calculus [2, th. 12.10] and the definition [4, def. 9.5] of absolute continuity with regard to $\lambda$.

### 3.5 Skorohod's representation theorem

For every sequence $\left(X_{n}\right)_{n \geq 1}$ of random variables $X_{n}: \Omega \rightarrow \mathbb{R}$ on a probability space $(\Omega ; \mathcal{A} ; P)$ converging in measure to a random variable $X: \Omega \rightarrow \mathbb{R}$ there is a sequence $\left(\varphi_{n}\right)_{n>1}$ of random variables $\left.\varphi_{n}:\right] 0 ; 1[\rightarrow \mathbb{R}$ on the probability space (] $0 ; 1[; \mathcal{B}(] 0 ; 1[) ; \lambda)$ with identical distributions $\varphi_{n} \circ \lambda=X_{n} \circ P$ with regard to the Lebesgue measure $\lambda$ converging pointwise everywhere to a random variable $\varphi:] 0 ; 1[\rightarrow \mathbb{R}$ with $\varphi \circ \lambda=X \circ P$.
Proof: With the distribution functions $F_{n} ; F: \mathbb{R} \rightarrow[0 ; 1]$ defined by $F_{n}(x)=P_{n}\left(X_{n} \leq x\right)$ resp. $F(x)=P(X \leq x)$ we define the quantile function $\varphi_{n}(y)=\inf \left\{x \in \mathbb{R}: y \leq F_{n}(x)\right\}$ resp. $\varphi(y)=$ $\inf \{x \in \mathbb{R}: y \leq F(x)\}$ such that due to the nondecreasing character and the right continuity of $F$ we have $\varphi(y) \leq x \Leftrightarrow \forall \epsilon>0: y \leq F(x+\epsilon) \Leftrightarrow$ $y \leq F(x)=P(X \leq x)$ whence $\lambda(\varphi \leq x)=F(x)$, i.e. $X \circ P=\varphi \circ \lambda$ and likewise $\lambda\left(\varphi_{n} \leq x\right)=F_{n}(x)$, i.e. $X_{n} \circ P=X_{n} \circ \lambda$. In particular $\varphi(y)$ is the smallest $x$ such that $y \leq F(x)$ whence $(\varphi \circ F)(x) \leq x$ with equality in the case of $F$ strictly increasing in $x$. Conversely
 $y \leq(F \circ \varphi)(y)$ with equality in the case of $F$ being left continuous in $\varphi(y)$, i.e. $P(\{\varphi(y)\})=0$ : The quantile function $\varphi$ is again nondecreasing and right continuous; in the strictly increasing and continuous case it is the inverse of the distribution function $F$. It remains to show that $\lim _{n \rightarrow \infty} \varphi_{n}(y)=\varphi(y)$ for every $\left.y \in\right] 0 ; 1[$ :
According to the note in $[4$, th. 2.2] there are at most countably many $x \in \mathbb{R}$ with $P(X=x)>0$ such that every interval $] a-\epsilon ; a[$ contains an $x$ with $P(X=x)=0$.
Consequently for every $\epsilon>0$ there is an $x$ with $P(X=x)=0$ and $\varphi(y)-\epsilon<x<\varphi(y)$ such that $F(x)<y$. Since $F$ is continuous in $x$ we have $\lim _{n \rightarrow \infty} F_{n}(x)=F(x)$ so that for $n$ large enough $F_{n}(x)<y$ holds whence $\varphi(y)-\epsilon<x<\varphi_{n}(y)$ and consequently $\liminf _{n \rightarrow \infty} \varphi_{n}(y) \geq \varphi(y)$.
Analogously for every $y^{\prime}>y$ exists an $x$ with $P(X=x)=0$ and $\varphi\left(y^{\prime}\right)<x<\varphi\left(y^{\prime}\right)+\epsilon$ so that $y<y^{\prime} \leq(F \circ \varphi)\left(y^{\prime}\right) \leq F(x)$. Since $F$ is continuous in $x$ we have $\lim _{n \rightarrow \infty} F_{n}(x)=F(x)$ so that for $n$ large enough $y \leq F_{n}(x)$ holds whence $\varphi_{n}(y) \leq x<\varphi\left(y^{\prime}\right)+\epsilon$ and consequently $\limsup _{n \rightarrow \infty} \varphi_{n}(y) \leq \varphi\left(y^{\prime}\right)$ for $y<y^{\prime}$. Hence $\lim _{n \rightarrow \infty} \varphi_{n}(y)=\varphi(y)$ if $\varphi$ is continuous at $y$. Since $\varphi$ is nondecreasing on $] 0 ; 1[$ it has at most countably many points $y_{k}$ with $\lim _{n \rightarrow \infty} \varphi\left(y_{k}-\frac{1}{n}\right)<\varphi\left(y_{k}\right)$ and we may simply define $\varphi\left(y_{k}\right)=$ $\varphi\left(y_{k}\right)=0$ to obtain $\lim _{n \rightarrow \infty} \varphi_{n}(y)=\varphi(y)$ for every $\left.y \in\right] 0 ; 1[$ without changing their distribution.

### 3.6 Convergence in measure and in distribution

A sequence $\left(X_{n}\right)_{n \geq 1}$ of random variables $X_{n}: \Omega \rightarrow \mathbb{R}$ on a measure space $(\Omega ; \mathcal{A} ; P)$ converging in measure to a random variable $X: \Omega \rightarrow \mathbb{R}$ also converges in distribution to $X$, i.e. at every point of continuity $t$ the distribution functions $F_{n}$ defined by $F_{n}(t)=P\left(X_{n} \leq x\right)$ converge to $F$ defined by $F(x)=P(X \leq x): \lim _{n \rightarrow \infty} F_{n}(x)=F(x)$.

Proof: For every $\epsilon>0$ we have $\lim _{n \rightarrow \infty} P\left(\left|X_{n}-X\right|>\epsilon\right)=0$ and also for every $n \geq 1$ the inequality $P(X \leq x-\epsilon)-P\left(\left|X-X_{n}\right| \geq \epsilon\right)$ $\leq P\left(X_{n} \leq x\right) \leq P(X \leq x+\epsilon)+P\left(\left|X_{n}-X\right| \geq \epsilon\right)$. For $n \rightarrow$ $\infty$ and then $\epsilon \rightarrow 0$ we obtain $P(X<x) \leq \liminf _{n \rightarrow \infty} P\left(X_{n} \leq x\right)$ $\leq \limsup _{n \rightarrow \infty} P\left(X_{n} \leq x\right) \leq P(X \leq x)$. Hence for every point $x \in$ $\mathbb{R}$ of (left) continuity with $\left.\left.P_{X}(\{x\})=P_{X}\left(\bigcap_{n \geq 1}\right] x-\frac{1}{n} ; x\right]\right)$ $\left.\left.\stackrel{2.2 .3}{=} \lim _{n \rightarrow \infty} P_{X}(] x-\frac{1}{n} ; x\right]\right)=\lim _{n \rightarrow \infty}\left(F(x)-F\left(x-\frac{1}{n}\right)\right)=0$ we have $\lim _{n \rightarrow \infty} F_{n}(x)=\lim _{n \rightarrow \infty} P\left(X_{n} \leq x\right)=P(X \leq x)=F(x)$.



### 3.7 The weak law of large numbers

For the mean values $\frac{1}{n} S_{n}=\frac{1}{n} \sum_{k=1}^{n} X_{k}$ of every sequence $\left(X_{k}\right)_{k \geq 1}$ of independent, identically distributed and integrable random variables with expectations $\mu=E\left(X_{1}\right)$ the following statements concerning their asymptotic behaviour hold:

1. $P$-almost sure convergence: $\lim _{n \rightarrow \infty} \frac{1}{n} S_{n}=\mu$
due to the strong law of large numbers 1.12.
2. Convergence in measure: $\lim _{n \rightarrow \infty} P\left(\left|\frac{1}{n} S_{n}-\mu\right| \leq \epsilon\right)=0$ for every $\epsilon>0$ due to Lebesgue's convergence theorem [4, th. 4.11]
3. Weak convergence: $\lim _{n \rightarrow \infty} F_{n}(x)=\lim _{n \rightarrow \infty} P\left(\frac{1}{n} S_{n} \leq t\right)=\left\{\begin{array}{ll}1 & \text { for } x>\mu \\ 0 & \text { for } x<\mu\end{array}=P\left(\lim _{n \rightarrow \infty} \frac{1}{n} S_{n} \leq t\right)=\right.$ $F(x)$ for every point of continuity $x \neq \mu$ due to the preceding theorem 3.6.

Note: Concerning the asymptotic behavoiur at the point of discontinuity $x=\mu$ the strong law of large numbers asserts that $P$-a.e. $\lim _{n \rightarrow \infty} \frac{1}{n} S_{n}=\mu$ whence $P\left(\lim _{n \rightarrow \infty} \frac{1}{n} S_{n} \leq \mu\right)=1$. Choosing a symmetric distribution e.g. $P\left(X_{k}=0\right)=P\left(X_{k}=2 \mu\right)=\frac{1}{2}$ we obtain $P\left(X_{k} \leq \mu\right)=P\left(X_{k} \geq \mu\right)=\frac{1}{2}$ whence $P\left(\lim _{n \rightarrow \infty} \frac{1}{n} S_{n} \leq \mu\right)=\frac{1}{2}$ for every $n \geq 1$ such that $F_{n}(\mu)$ does not converge to $F(\mu)$.

### 3.8 The Helly-Bray theorem

For probability measures $P_{n} ; P: \mathcal{B}(\mathbb{R}) \rightarrow[0 ; 1]$ with distribution functions $F_{n} ; F: \mathbb{R} \rightarrow[0 ; 1]$ defined by $\left.\left.F_{n}(x)=P_{n}(]-\infty ; x\right]\right)$ resp. $\left.\left.F(x)=P(]-\infty ; x\right]\right)$ and the linear functionals $\Lambda_{n} ; \Lambda \in$ $\mathcal{C}_{b}^{*}(\mathbb{R} ; \mathbb{R})$ defined in [3, def. 5.8] by $\Lambda_{n} f=\int f d P_{n}$ resp. $\Lambda f=\int f d P$ for $f \in \mathcal{C}_{b}(\mathbb{R} ; \mathbb{R})$ the following three conditions are equivalent:

1. $\left(P_{n}\right)_{n>1}$ converges in distribution to $P$, i.e. $\lim _{n \rightarrow \infty}{\overline{F_{n}}}_{n}(x)=F(x)$ at every continuity point $x \in \mathbb{R}$ of $F$.
2. $\left(P_{n}\right)_{n \geq 1}$ weakly converges to $P$, i.e. $\lim _{n \rightarrow \infty} \int f d P_{n}=\int f d P$ for every bounded and continuous $f \in \mathcal{C}_{b}(\mathbb{R} ; \mathbb{R})$.
3. $\left(\Lambda_{n}\right)_{n \geq 1}$ weakly* converges to $\Lambda$.
4. $\lim _{n \rightarrow \infty} P_{n}(A)=P(A)$ for every $\lambda$-continuity set $A \in \mathcal{B}(\mathbb{R})$ with $\lambda(\delta A)=0$.

Note: The parts 2. - 4. are a corollary to the Portmanteau theorem [4, th. 11.5].

## Proof:

1. $\Rightarrow 2$. : According to Skorohod's theorem 3.5 for the quantile functions $\left.\varphi_{n} ; \varphi:\right] 0 ; 1[\rightarrow \mathbb{R}$ with $P_{n}=\varphi_{n} \circ \lambda$ resp. $P=\varphi \circ \lambda$ and every $0<y<1$ holds $\lim _{n \rightarrow \infty}\left(f \circ \varphi_{n}\right)(y)=(f \circ \varphi)(y)$ whence by the mapping theorem [4, th. 11.7] follows $\lim _{n \rightarrow \infty}\left(f \circ \varphi_{n}\right)(y)=(f \circ \varphi)(y)$ at every point of continuity $y \in] 0 ; 1[$, hence $\lambda$-a.e. Excluding the countable $\lambda$-null set of discontinuities according to 3.1 we infer $\lambda$-a.e. $\lim _{n \rightarrow \infty} f \circ \varphi_{n}=f \circ \varphi$ whence by the dominated convergence theorem [4, th. 5.14] follows $\lim _{n \rightarrow \infty} \int f d P_{n}=\lim _{n \rightarrow \infty} \int f d \lambda_{\varphi_{n}}=\lim _{n \rightarrow \infty} \int\left(f \circ \varphi_{n}\right) d \lambda=\lim _{n \rightarrow \infty} \int(f \circ \varphi) d \lambda=\lim _{n \rightarrow \infty} \int f d \lambda_{\varphi}=\int f d P$.
2. $\Rightarrow 1$. : For $x<y$ consider the function $f: \mathbb{R} \rightarrow[0 ; 1]$ defined by

$$
f(t)= \begin{cases}1 & \text { for } t \leq x \\ \frac{y-t}{y-x} & \text { for } x \leq t \leq y \\ 0 & \text { for } y \leq t\end{cases}
$$

Since $\chi_{]-\infty ; x]} \leq f \leq \chi_{]-\infty ; y]}$ we have $\limsup _{n \rightarrow \infty} F_{n}(x)=\limsup _{n \rightarrow \infty} \int \chi_{]-\infty ; x]} d P_{n} \leq \lim _{n \rightarrow \infty} \int f d P_{n}=\int f d P=$ $\int \chi_{]-\infty ; y]} d P=F(y)$ and since this is true for every $y>x$ we obtain $\limsup _{n \rightarrow \infty} F_{n}(x) \leq F(x)$. Similarly for $y<x$ holds $F(y) \leq \liminf _{n \rightarrow \infty} F_{n}(x)$ and hence $\lim _{n \rightarrow \infty} F\left(x-\frac{1}{n}\right) \leq \liminf _{n \rightarrow \infty} F_{n}(x)$, i.e. convergence at every point of continuity.
$1 . \Leftrightarrow 3$. : Follows directly from the definition of weak* convergence in [3, def. 5.8].
$1 . \Rightarrow 4$. : Follows directly from [4, th. 11.7] since according to the hypothesis $f=\chi_{A}$ is $\lambda$-a.e. continuous.
4. $\Rightarrow 1$ : : Obvious since $\delta(]-\infty ; t])=\{t\}$.

### 3.9 Helly's selection theorem

Every tight sequence $\left(P_{n}\right)_{n \in \mathbb{N}}$ of probability measures on the real numbers $P_{n}: \mathcal{B}(\mathbb{R}) \rightarrow[0 ; 1]$ includes a subsequence weakly converging to a probability measure $P: \mathcal{B}(\mathbb{R}) \rightarrow[0 ; 1]$ iff it is tight, i.e. for every $\epsilon>0$ exists numbers $a_{\epsilon}<b_{\epsilon} \in \mathbb{R}$ such that $\left.\left.P_{n}(] a_{\epsilon} ; b_{\epsilon}\right]\right)=F_{n}\left(b_{\epsilon}\right)-F_{n}\left(a_{\epsilon}\right)>1-\epsilon$ for every $n \in \mathbb{N}$.
Note: This is a corollary to Prohorov's theorem [4, th. 11.10].
Proof: With the distribution functions $F_{n}: \mathbb{R} \rightarrow[0 ; 1]$ defined as usual by $\left.\left.F_{n}(x)=P_{n}(]-\infty ; x\right]\right)$ according to the diagonal principle [4, th. 11.8] there is a sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ such that the limit $G(r)=\lim _{k \rightarrow \infty} F_{n_{k}}(r)$ exists for every rational $r \in \mathbb{Q}$. Then $F: \mathbb{R} \rightarrow[0 ; 1]$ with $F(x)=\inf \{G(r): r>x\}$ is nondecreasing and obviously right continuous. If $F$ is continuous at $x \in \mathbb{R}$ for every $\epsilon>0$ there is an $y<x$ such that $F(y)>F(x)-\epsilon$. Furthermore there are rational $r, s \in \mathbb{Q}$ with $y<r<x<s$ such that $F(x)-\epsilon<F(r) \leq F(x) \leq F(s)<F(x)+\epsilon$ whence $F(x)-\frac{\epsilon}{2}<F_{n_{k}}(r) \leq F_{n_{k}}(x) \leq$ $F_{n_{k}}(s) \leq F(x)+\frac{\epsilon}{2}$ for every $k \geq K$ and some $K \in \mathbb{N}$. Thus $F(x)=\lim _{k \rightarrow \infty} F_{n_{k}}(x)$ at every point $x$ of continuity of $F$. Due to the tightness hypothesis for every $\epsilon>0$ we can find continuity points $a<b$ such that $F(b)-F(a)=\lim _{n \rightarrow \infty}\left(F_{n}(b)-F_{n}(a)\right) \geq 1-\epsilon$. On account of the nondecreasing character of $F$ follows $\lim _{m \rightarrow \infty}(F(m))-F(-m) \geq 1$ and since $0 \leq F(x) \leq 1$ for all $x \in \mathbb{R}$ we arrive at $\lim _{m \rightarrow \infty} F(m)=1$ resp. $\lim _{M \rightarrow \infty} F(-m)=0$.

### 3.10 Approximation of the Binomial distribution

The random variable $S_{n}: \Omega \rightarrow \mathbb{N}$ denotes the number of red balls when $n \geq 1$ balls are drawn without replacement from an urn containing $M$ red balls and $N-M$ black ones. Its distribution is hypergeometric with

$$
\begin{aligned}
& P\left(S_{n}=k\right) \\
& =H_{n, M, N}(k)
\end{aligned}
$$

$$
=\frac{\binom{M}{k} \cdot\binom{N-M}{n-k}}{\binom{N}{n}}
$$


$=\binom{n}{k} \cdot \underbrace{\frac{M \cdot \ldots \cdot(M-K)}{N \cdot \ldots \cdot(N-K)}}_{\rightarrow p^{k}} \cdot \underbrace{\frac{(N-M) \cdot \ldots \cdot(N-M-n-k+1)}{(N-K-1) \cdot \ldots \cdot(N-n+1)}}_{\rightarrow(1-p)^{n-k}}$
and for large $N$ the replacement becomes irrelevant such that the hypergeoemtric distribution converges in to the Binomial distribution: $\lim _{N \rightarrow \infty} H_{n, M, N}(k)=B_{n, p}(k)$ with $p=\frac{M}{N}$.

### 3.11 Approximation of the Poisson distribution

For identically and independently distributed random variables $X_{i}: \Omega \rightarrow\{0 ; 1\}$ with $P\left(X_{i}=1\right)$ and $P\left(X_{i}=0\right)=$ $1-p$ and $S_{n}=\sum_{i=1}^{n} X_{i}$ we have the Binomial distribution

$$
P\left(S_{n}=k\right)=B_{n, k}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

. For $\lambda=n \cdot p$ and fixed $k$ the limit

$$
\begin{aligned}
\lim _{n \rightarrow \infty} B_{n, k}(k) & =\lim _{n \rightarrow \infty}\binom{n}{k}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k} \\
& =\lim _{n \rightarrow \infty} \frac{\lambda^{k}}{k!}\left(1-\frac{\lambda}{n}\right)^{n} \cdot \frac{1}{\left(1-\frac{\lambda}{n}\right)^{k}} \cdot \prod_{i=0}^{k-1}\left(1-\frac{i}{n}\right) \\
& =\frac{\lambda^{k} \cdot e^{\lambda}}{k!} \cdot \lim _{n \rightarrow \infty} \prod_{i=0}^{k-1} \frac{1-\frac{i}{n}}{1-\frac{\lambda}{n}} \\
& =\frac{\lambda^{k} \cdot e^{\lambda}}{k!} \\
& =P_{\lambda}(k)
\end{aligned}
$$



### 3.12 The exponential distribution

We define the independently and identically distributed random variables $X_{t}: \Omega \rightarrow\{0 ; 1\}$ by $X_{t}(\omega)=1$ if an event (e.g. the arrival of a customer at a queue or the call at a telephone exchange) occurs at time $t>$ 0 with $P\left(X_{t}=1\right)=\alpha$. For reasons of compatibility we assume that $P$-a.s. no event occurs at the start: $P\left(X_{0}=0\right)=1$. Also the number of events in a finite time interval shall always be finite: $\forall \omega \in \Omega \forall t>0$ : card $\left\{0 \leq \tau \leq t: X_{t}(\omega)=1\right\}<\infty$. Hence we can define the sample path $N_{t}: \Omega \rightarrow \mathbb{N}$ by the finite sum $N_{t}(\omega)=\sum_{\tau=0}^{t}$
 $X_{\tau}$. The waiting times $\Delta T_{n}: \Omega \rightarrow \mathbb{R}_{0}^{+}$between the $n-1$ th and the $n$th event are $\Delta T_{n}=T_{n}-T_{n-1}$ for $n \geq 1$ with the arrival times $T_{n}=\inf \left\{\tau \geq 0: N_{\tau}=n\right\}$ resp. $T_{0}=0$ are also identically dristributed since $P\left(\Delta T_{n}>s\right)=P\left(\bigcap_{T_{n-1} \leq \tau \leq T_{n-1}+s}\left\{X_{\tau}=0\right\}\right)=P\left(\bigcap_{0 \leq \tau \leq s}\left\{X_{\tau}=0\right\}\right)=P\left(\Delta T_{1}>s\right)$. Since the events $\left\{\Delta T_{n}>s\right\}=\bigcap_{T_{n-1} \leq \tau \leq T_{n-1}+s}\left\{X_{\tau}=0\right\}$ and $\bigcap_{T_{n-1}+s<\tau \leq T_{n-1}+s+t}\left\{X_{\tau}=0\right\}$ are independent and $P\left(X_{0}=0\right)=1$ there is no memory effect, i.e.

$$
\begin{aligned}
P\left(\Delta T_{n}>s+t\right) & =P\left(\bigcap_{0 \leq \tau \leq s+t}\left\{X_{\tau}=0\right\}\right) \\
& =P\left(\left(\bigcap_{\tau \leq s}\left\{X_{\tau}=0\right\}\right) \cap\left(\bigcap_{s<\tau \leq s+t}\left\{X_{\tau}=0\right\}\right)\right) \\
& =P\left(\bigcap_{\tau \leq s}\left\{X_{\tau}=0\right\}\right) \cdot P\left(\bigcap_{s<\tau \leq s+t}\left\{X_{\tau}=0\right\}\right) \\
& =P\left(\bigcap_{\tau \leq s}\left\{X_{\tau}=0\right\}\right) \cdot P\left(\bigcap_{0<\tau \leq t}\left\{X_{\tau}=0\right\}\right) \\
& =P\left(\bigcap_{\tau \leq s}\left\{X_{\tau}=0\right\}\right) \cdot P\left(\bigcap_{0 \leq \tau \leq t}\left\{X_{\tau}=0\right\}\right) \\
& =P\left(\Delta T_{n}>s\right) \cdot P\left(\Delta T_{n}>t\right)
\end{aligned}
$$

This is the functional equation of the exponential function and since $0 \leq P \leq 1$ with scaling factor $P\left(\Delta T_{n}>0\right)=P\left(\Delta T_{1}>0\right)=P\left(X_{0}=0\right)=1$ the exponent must be negative whence $P\left(\Delta T_{n}>t\right)=e^{-\alpha t}$. Also we have $\lim _{t \rightarrow 0} \frac{1}{t} P\left(\bigcup_{\tau \leq t}\left\{X_{t}=1\right\}\right)=\lim _{t \rightarrow 0} \frac{1}{t} P\left(\Delta T_{n} \leq t\right)=\lim _{t \rightarrow 0^{t}} \frac{1}{t}\left(1-e^{-\alpha t}\right)=$ $\frac{d F}{d t}(0)=\alpha$. Note that the probability of an event occurring at a fixed time is $P\left(X_{t}=1\right)=0$. The distribution function $F: \mathbb{R}_{0}^{+} \rightarrow[0 ; 1]$ for the waiting times satisfies the functional equation $1-F(s+t)=(1-F(s)) \cdot(1-F(t))$ with the explicit formula

$$
F(t)=P\left(\Delta T_{n} \leq t\right)= \begin{cases}0 & \text { if } t \leq 0 \\ 1-e^{-\alpha t} & \text { if } t>0\end{cases}
$$

and mean waiting time

$$
E(\Delta T)=\int_{\Omega} \Delta T d P=\int_{[0 ; \infty[ } t d F(t)=\int_{[0 ; \infty[ } t \cdot \frac{d F}{d \lambda} d \lambda(t)=\int_{[0 ; \infty[ } \alpha t \cdot e^{-\alpha t} d t=\frac{1}{\alpha} .
$$

### 3.13 The Poisson process

Every stochastic process $N: \mathbb{R}_{0}^{+} \times \Omega \rightarrow \mathbb{N}$ defined by the measurable number $N_{I}(\omega) \in \mathbb{N}$ of events or increments occurring in the time intervall $I \subset \mathbb{R}_{0}^{+}$and in particular $N_{t}=N_{[0 ; t]}$ with arrival times $T_{n}(\omega)=\inf \left\{\tau \geq 0: N_{\tau}(\omega)=n\right\}$ and waiting times $\Delta T_{n}=T_{n}-T_{n-1}$ satisfying the following conditions:

1. start $N_{0}(\omega)=0$ for every $\omega \in \Omega$
2. nondecreasing càdlàg sample paths $t \mapsto N_{t}(\omega)$ for every
 $\omega \in \Omega$
3. $P$-a.s. single events: $P\left(N_{t}-\sup _{s<t} N_{s} \leq 1\right)=1$
4. $P$-a.s. no accumulations: $P\left(N_{t}-N_{s}<\infty\right)=1$ for every $s<t$
5. independent occurrence $P\left(N_{I \cup J}=0\right)=P\left(N_{I}=0\right) \cdot P\left(N_{J}=0\right)$ for any disjoint intervals $I, J \subset \mathbb{R}_{0}^{+}$
6. identically distributed occurrence $P\left(N_{I}=0\right)=P\left(N_{J}=0\right)$ for any disjoint intervals $I, J \subset \mathbb{R}_{0}^{+}$of equal length
has
7. Poisson distributed increments with $P\left(N_{t}=n\right)=e^{-\alpha t} \cdot \frac{(\alpha t)^{n}}{n!}$ and
8. Exponentially distributed waiting times with $P\left(\Delta T_{n}>t\right)=e^{-\alpha t}$.

Proof: Note that we assume the existence and measurability of the random variables $N_{t}$ on a suitable measure space $\left(\mathbb{R}_{0}^{+} \times \Omega ; \mathcal{F} ; P\right)$. The construction of the corresponding $\sigma$-algebra $\mathcal{F}$ requires Kolmogorov's existence theorem and is not the subject of this proof.

Proof of 1.: Let $p(t)=P\left(N_{t} \geq 1\right), q(t)=1-p(t)$ and $q=q(1)$. From 4. and 5. follows $q\left(\frac{k}{n}\right)=q^{k / n}$ for every rational $\frac{k}{n}>0$. Due to 2 . this relation extends to real $t>0$ since $q(t)=$ $P\left(N_{t}=0\right)=P\left(N_{t}<1\right)=P\left(\inf _{k / n>t} N_{k / n}<1\right)=P\left(\bigcup_{k / n>t}\left\{N_{k / n}<1\right\}\right)=\sup _{k / n>t} P\left(N_{k / n}<1\right)=$ $\sup _{k / n>t} q^{k / n}=q^{t}$. On account of 5 . we have $P\left(N_{[s ; s+t[ }=0\right)=q^{t}$ with $q>0$ since otherwise we had $P\left(N_{[s ; s+t[ } \geq 1\right)=1$ for every $t>0$ whence $P\left(N_{[s ; s+t[ }=\infty\right)=1$ contrary to 4 . Hence we obtain $P\left(\Delta T_{n}>t\right)=P\left(N_{] s ; s+t[ }=0\right)=e^{-\alpha t}$ with $\alpha=-\ln (q)$.
Proof of 2.: Let $N_{n, t}(\omega)=\sum_{i=1}^{n} \chi_{N_{I_{i}} \geq 1}$ the number of intervals $\left.\left.I_{i}=\right\rceil \frac{t(i-1)}{n} ; \frac{t i}{n}\right]$ with length $\frac{t}{n}$ and $P\left(N_{I_{i}} \geq 1\right)=1-e^{-\frac{\alpha t}{n}}$ in a disjoint partition of $\left.] 0 ; 1\right]$ with at least an occurrence. Owing to 5 . and 6. we have $P\left(N_{n, t}=k\right)=\binom{n}{k}\left(1-e^{-\frac{\alpha t}{n}}\right)^{k} \cdot\left(e^{-\frac{\alpha t}{n}}\right)^{n-k}$ whence the Poisson approximation 3.11 yields $\lim _{n \rightarrow \infty} P\left(N_{n, t}=k\right)=\lim _{n \rightarrow \infty}\binom{n}{k}\left(1-e^{-\alpha \frac{t}{n}}\right)^{k} \cdot\left(e^{-\alpha \frac{t}{n}}\right)^{n-k}=\lim _{n \rightarrow \infty}\binom{n}{k}\left(\frac{\alpha t}{n}\right)^{k}\left(1-\frac{\alpha t}{n}\right)^{n-k}=$ $P_{\alpha t}(k)$. According to 4 . for every $t>0$ there is an $n \geq 1$ such that the probability for the event $D_{t, n}=\bigcap_{\Delta T_{k} \leq t}\left\{\Delta T_{k}>\frac{t}{n}\right\}$ of every waiting time between two events in the interval $\left.] 0 ; t\right]$ exceeding $\frac{t}{n}$ is $P\left(D_{t, n}\right)=1$. Hence the sequence $\left(D_{t, n}\right)_{n \geq 1}$ of cases $D_{t, n}=\bigcap_{\Delta T_{k} \leq t}\left\{\Delta T_{k}>\frac{t}{n}\right\} \subset \Omega$ is increasing with $\lim _{n \rightarrow \infty} P\left(D_{t, n}\right)=P\left(\bigcup_{n \geq 1} D_{t, n}\right)=1$. Since $N_{n, t}(\omega)=N_{t}(\omega)$ for every $\omega \in D_{t, n}$ we have $P\left(N_{n, t} \neq N_{t}\right)=1-P\left(D_{n, t}\right)$ whence $P$-a.e. $\lim _{n \rightarrow \infty} N_{n, t}=N_{t}$. By Lebesgue's convergence theorem [4, p. 4.11], theorem 3.6 and Helly-Bray 3.8.2 we infer $P\left(N_{t}=k\right)=\lim _{n \rightarrow \infty} P\left(N_{n, t}=k\right)=P_{\alpha t}(k)$.

### 3.14 Characteristic functions of independent random variables

The characteristic function of a real random variable $X: \Omega \rightarrow \mathbb{R}$ is the Fourier transform $\hat{\varphi}_{X}(\xi)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \varphi_{X}(x) \cdot e^{-i x \xi} d x=\frac{1}{\sqrt{2 \pi}} \int e^{-i x \xi} d P_{X}=\frac{1}{\sqrt{2 \pi}} E\left(e^{-i X \xi}\right)$ of its probability density function $\varphi_{X}=\frac{d P_{X}}{d \lambda}$ according to [2, p. 3.6]. The properties of the Fourier transform translate into the following equations for characteristic functions:

1. $\hat{\varphi}_{X / \sigma}(\xi)=\sigma \cdot \hat{\varphi}_{X}(\sigma \xi)$ from [2, p. 3.8.2]
2. $\hat{\varphi}_{X+\mu}(\xi)=e^{-i \mu t} \cdot \hat{\varphi}_{X}(\xi)$ from [2, p. 3.8.3]
3. $\left(x^{n} \cdot \varphi\right)^{\wedge}(\xi)=i^{n} \frac{\delta^{n} \hat{\varphi}}{\delta \xi^{n}}(\xi)$ for $x^{n} \varphi \in L^{1}$ from [2, p. 3.8.6]

For independent random variables $X, Y$ the exponentials $e^{-i X \xi}, e^{-i Y \xi}$ are again independent for every $\xi \in \mathbb{R}$ such that from 1.5 and $[2, \mathrm{p} .3 .8 .4]$ we obtain

$$
\text { 4. } \hat{\varphi}_{X+Y}(\xi)=\frac{1}{\sqrt{2 \pi}} E\left(e^{-i X \xi}\right) \cdot E\left(e^{-i Y \xi}\right)=\sqrt{2 \pi} \cdot \hat{\varphi}_{X}(\xi) \cdot \hat{\varphi}_{Y}(\xi)=\left(\varphi_{X} * \varphi_{Y}\right)^{\wedge}(\xi)
$$

Due to 3.14 .3 the $n$-th moments $E\left(X^{n}\right)=\int x^{n} \cdot \varphi(x) d x$ are of prominent interest in the Taylor expansion of probability density functions used in the proof of the central limit theorem 3.20. Due to [4, p. 6.6.1] the $k$-th moments exist for all $k \leq n$ if the $n$-th absolute moment $E\left(|X|^{n}\right)<\infty$ is finite. Obviously for the normal density all moments are finite so that integrating by parts we obtain $E(X)=0, E\left(X^{k}\right)=\frac{1}{\sqrt{2 \pi}} \int x^{k} \cdot e^{-x^{2} / 2} d x=\frac{k-1}{\sqrt{2 \pi}} \int x^{k-2} \cdot e^{-x^{2} / 2} d x=(k-1) \cdot E\left(X^{k-2}\right)$ for all $k \geq 2$ whence $E\left(X^{2 k}\right)=1 \cdot 3 \cdot \ldots \cdot(2 k-1)$ and $E\left(X^{2 k+1}\right)=0$.

### 3.15 Laplace transforms and moment generating functions

The moment generating function of a real random variable $X: \Omega \rightarrow \mathbb{R}$ is the Laplace transform $L \varphi_{X}: U \rightarrow \mathbb{C}$ of its probability density function $\varphi_{X}=\frac{d P_{X}}{d \lambda}$ defined by $L \varphi_{X}(\xi)=$ $\int_{\mathbb{R}} \varphi_{X}(x) \cdot e^{x \xi} d x=\int e^{X \xi} d P=E\left(e^{X \xi}\right)$ for every $\xi \in U \subset \mathbb{C}$ provided that the integral is finite. The Fourier transform is a special case of the Laplace transform with imaginary $\xi \in i \mathbb{R}$. For $\operatorname{Re} \xi \geq 0$ we have $\int_{\mathbb{R}^{-}} \varphi_{X}(x) \cdot e^{x \xi} d x<\infty$ and for $0<\operatorname{Re} \xi_{1}<\operatorname{Re} \xi_{2}$ holds $\left|\int_{\mathbb{R}^{+}} \varphi_{X}(x) \cdot e^{x \xi_{1}} d x\right|<$ $\left|\int_{\mathbb{R}^{+}} \varphi_{X}(x) \cdot e^{x \xi_{2}}\right| d x$ whence $L \varphi_{X}(\xi)<\infty$ for $0 \leq \operatorname{Re} \xi \leq \operatorname{Re} \xi_{0}$ and since the analogous estimates hold for $\operatorname{Re} \xi \leq 0$ the integral converges for $|\operatorname{Re} \xi| \leq \xi_{0}$ for some $\xi_{0} \geq 0$. As the discrete probability measure $P: \mathcal{P}(\mathbb{Z}) \rightarrow[0 ; 1]$ with $P(z)=\frac{\pi^{2}}{12 z^{2}}$ for $z \neq 0$ and $P(0)=0$ shows the area of convergence may actually be restricted to the imaginary axis, i.e. the Fourier transform.

In the case of convergence in the strip $\left\{|\operatorname{Re} \xi| \leq \xi_{0}\right\}$ for some $\xi_{0}>0$ we have an $P_{X}$-integrable majorant $e^{x \xi_{0}}+e^{-x \xi_{0}}$ for every $\left|X^{k}\right| \leq \sum_{k \geq 0} \frac{|\xi|^{k}}{k!}\left|X^{k}\right|=e^{|x \xi|}$ such that all moments $E\left(X^{k}\right)<\infty$ exist and the dominated convergence theorem [4, p. 5.14] gives

$$
L \varphi_{X}(\xi)=\int e^{X \xi} d P=\int \sum_{k \geq 0} \frac{(X \xi)^{k}}{k!} d P=\sum_{k \geq 0} \frac{E\left(X^{k}\right)}{k!} \xi^{k}
$$

By the Taylor expansion [2, p. 1.13] we conclude that $\frac{d^{k} L \varphi_{X}}{d \xi^{k}}(0)=E\left(X^{k}\right)$. Furthermore the measure $P_{X_{\xi}}$ defined by $P\left(X_{\xi}<y\right)=\int_{\{X<y\}} \frac{e^{\xi X}}{L \varphi_{X}(\xi)} d P=\int_{-\infty}^{y} \frac{e^{\xi x} \cdot \varphi_{X}(x)}{L \varphi_{X}(\xi)} d x$ has the Laplace transform $L \varphi_{X_{\xi}}(\eta)=\int e^{\eta x} \cdot \frac{e^{\xi x} \cdot \varphi_{X}(x)}{L \varphi_{X}(\xi)} d x=\frac{L \varphi_{X}(\xi+\eta)}{L \varphi_{X}(\xi)}$ whence $\frac{1}{L \varphi_{X}(\xi)} \cdot \frac{d^{k} L \varphi_{X}}{d x^{k}}(\xi)=\frac{d^{k} L \varphi_{X_{\xi}}}{d x^{k}}(0)=E\left(X_{\xi}^{k}\right)=$ $\int \frac{x^{k} \cdot e^{\xi x} \cdot \varphi_{X}(x)}{L \varphi_{X}(\xi)} d x$. Thus we obtain

$$
\frac{d^{k} L \varphi_{X}}{d x^{k}}(\xi)=\int X^{k} \cdot e^{\xi X} d P=\int x^{k} \cdot e^{\xi x} \cdot \varphi(x) d x \text { for }|\operatorname{Re} \xi| \leq \xi_{0}
$$

### 3.16 Moments and the characteristic function

For a real random variable $X: \Omega \rightarrow \mathbb{R}$ with $k$-th absolute moments $E\left(|X|^{k}\right)<\infty$ and $\xi \in \mathbb{R}$ we have

1. $\left|\hat{\varphi}_{X}(\xi)-\sum_{k=0}^{n} \frac{E\left(X^{k}\right)}{k!}(i \xi)^{k}\right| \leq E\left(\min \left\{\frac{|\xi X|^{n+1}}{(n+1)!} ; \frac{2|\xi X|^{n}}{n!}\right\}\right)$.
2. $\frac{d^{k}}{d x^{k}} \hat{\varphi}_{X}(\xi)=E\left((i X)^{k} \cdot e^{i \xi X}\right)$, in particular $\frac{d^{k}}{d x^{k}} \hat{\varphi}_{X}(0)=i^{k} E\left(X^{k}\right)$
3. In the case of a finite Laplace transform $L \varphi_{X}(r)=\sum_{k \geq 0} \frac{E\left(X^{k}\right)}{k!} r^{k}<\infty$ for some $r>0$ the random variable $X$ is uniquely determined by its moments $E\left(X^{k}\right)$ for $k \geq 1$.

## Proof:

1.: An integration by parts [2, p. 1.5] of the remainder of the Taylor expansion [2, p. 2.2] for the complex valued exponential function yields

$$
\begin{aligned}
e^{i x} & =\sum_{k=0}^{n} \frac{(i x)^{k}}{k!}+\frac{i^{n+1}}{n!} \int_{0}^{x}(x-t)^{n} e^{i t} d t \\
& =\sum_{k=0}^{n} \frac{(i x)^{k}}{k!}+\frac{i^{n}}{(n-1)!} \int_{0}^{x}(x-t)^{n-1}\left(e^{i t}-1\right) e^{i t} d t
\end{aligned}
$$

whence
$\left|e^{i x}-\sum_{k=0}^{n} \frac{(i x)^{k}}{k!}\right| \leq E\left(\min \left\{\frac{|x|^{n+1}}{(n+1)!} ; \frac{2|x|^{n}}{n!}\right\}\right)$
so that the assertion follows from the definition of the Fourier transform [2, p. 4.6].
2.: According to 1. and considering $E(E(X))=E(X)$ we have

$$
\begin{aligned}
\left|\frac{\hat{\varphi}_{X}(\xi+h)-\hat{\varphi}_{X}(\xi)}{h}-E\left(i X e^{i \xi X}\right)\right| & =\left|\frac{1}{h} E\left(e^{i \xi X} \cdot\left(e^{i h X}-1-i h X\right)\right)\right| \\
& \leq \frac{1}{|h|} \cdot E\left(\left|e^{i h X}-1-i h X\right|\right) \\
& \leq \frac{1}{|h|} E\left(\min \left\{\frac{|h X|^{2}}{2} ; \frac{2|h X|}{1}\right\}\right) \\
& =E\left(\min \left\{\frac{1}{2}|h| \cdot|X|^{2} ; 2|X|\right\}\right)
\end{aligned}
$$

With the majorant $2|X|$ for $h \rightarrow 0$ by dominated convergence [4, p. 5.14] we obtain $\frac{d}{d \xi} \hat{\varphi}_{X}(\xi)=$ $E\left(i X e^{i \xi X}\right)$. Repeating this argument inductively proves the assertion for $k \leq n$ with $E\left(X^{n}\right)<\infty$.
3.: For any $\xi<r$ there is a $k_{0} \geq 1$ such that $2 k \xi^{2 k-1}<r^{2 k}$ for $k \geq k_{0}$. Since $|x|^{2 k-1} \leq 1+|x|^{2 k}$ for every $x \in \mathbb{R}$ we have

$$
\frac{E\left(|X|^{2 k-1}\right) \cdot \xi^{2 k-1}}{(2 k-1)!} \leq \frac{\xi^{2 k-1}}{(2 k-1)!}+\frac{E\left(|X|^{2 k}\right) \cdot \xi^{2 k}}{(2 k-1)!} \leq \frac{\xi^{2 k-1}}{(2 k-1)!}+\frac{E\left(|X|^{2 k}\right) \cdot r^{2 k}}{(2 k)!}
$$

such that because of $\sum_{k \geq 0} \frac{E\left(X^{k}\right)}{k!} r^{k}<\infty$ follows $\lim _{k \rightarrow \infty} \frac{E\left(|X|^{k}\right) \cdot \xi^{k}}{k!} \leq \lim _{k \rightarrow \infty} \frac{E\left(X^{k}\right) \cdot r^{k}}{k!}=0$. As in the proof of 1 . from

$$
\left|e^{i \eta x}\left(e^{i \xi x}-\sum_{k=0}^{n} \frac{(i \xi x)^{k}}{k!}\right)\right| \leq \frac{|\xi x|^{n+1}}{(n+1)!} \text { and } \frac{d^{k}}{d x^{k}} \hat{\varphi}_{X}(\xi)=E\left((i X)^{k} \cdot e^{i \xi X}\right) \text { for } \xi, \eta \in \mathbb{R}
$$

we infer

$$
\left|\hat{\varphi}_{X}(\eta+\xi)-\sum_{k=0}^{n} \frac{1}{k!} \cdot \frac{d^{k}}{d x^{k}} \hat{\varphi}_{X}(\eta) \cdot \xi^{k}\right| \leq \frac{|\xi|^{n+1} \cdot E\left(|X|^{n+1}\right)}{(n+1)!} \text { for } \xi, \eta \in \mathbb{R}
$$

whence

$$
\hat{\varphi}_{X}(\eta+\xi)=\sum_{k=0}^{n} \frac{1}{k!} \cdot \frac{d^{k}}{d x^{k}} \hat{\varphi}_{X}(\eta) \cdot \xi^{k} \text { for }|\xi| \leq r \text { and } \eta \in \mathbb{R}
$$

Assuming a second random variable $Y$ with equal moments by analogous arguments we obtain the characteristic function

$$
\hat{\varphi}_{Y}(\eta+\xi)=\sum_{k=0}^{\infty} \frac{1}{k!} \cdot \frac{d^{k}}{d x^{k}} \hat{\varphi}_{Y}(\eta) \cdot \xi^{k} \text { for }|\xi| \leq r \text { and } \eta \in \mathbb{R}
$$

In order to show equality we apply a process of analytic continuation: According to 2. for $\eta=0$ we have $\frac{d^{k}}{d x^{k}} \hat{\varphi}_{X}(0)=i^{k} E\left(X^{k}\right)=\frac{d^{k}}{d x^{k}} \hat{\varphi}_{Y}(0)$ whence $\hat{\varphi}_{X}(\xi)=\hat{\varphi}_{Y}(\xi)$ for $|\xi| \leq r-\epsilon$ and any $\epsilon>0$. But then $\frac{d^{k}}{d x^{k}} \hat{\varphi}_{X}( \pm(r-\epsilon))=\frac{d^{k}}{d x^{k}} \hat{\varphi}_{Y}( \pm(r-\epsilon))$ and by expansion around $\pm(r-\epsilon)$ we obtain equality for $|\xi| \leq 2 r-\epsilon$ etc.., so that the assertion follows by the uniqueness of the Fourier transform [2, p. 4.13].
Note: The moments $E\left(X^{k}\right)$ of a random variable $X$ give an estimate for the probability of large values resp. deviations from the mean $E(X)$ resp. the weight of their tails. They also coincide with the derivatives of the characteristic function, i.e. its smoothness and hence determine its asymptotic behavior and thus its suitability for convergence. The more moments $X$ has, the more derivatives $\varphi_{X}$ has. in particular 3 tranlsates into a completion of the Helly-Bray theorem 3.8:

### 3.17 The moment criterion for weak convergence

A sequence $\left(X_{n}\right)_{n \geq 1}$ of real random variable $X: \Omega \rightarrow \mathbb{R}$ with $k$-th absolute moments $E\left(|X|^{k}\right)<$ $\infty$ and finite Laplace transform $L \varphi_{X}(r)=\sum_{k \geq 0} \frac{E\left(X^{k}\right)}{k!} r^{k}<\infty$ for some $r>0$ converges in distribution to a random variable $X$ if all moments converge $\lim _{n \rightarrow \infty} E\left(X_{n}^{k}\right)=E\left(X^{k}\right)$ for every $k \geq 1$.

### 3.18 Examples

1. A random variable $X: \Omega \rightarrow \mathbb{R}$ with distribution $P(X \leq x)=\Phi_{\mu, \sigma}(x)=\int_{-\infty}^{x} \phi_{\mu, \sigma}(t) d t$ for the normal density function $\phi_{\mu ; \sigma}(t)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(t-\mu)^{2}}{2 \sigma^{2}}\right)$ is normally distributed and a short calculation involving change of variables as well as integration by parts according to the definitions in 1.3 yield the expectation $E(X)=\mu$ and the variance $\operatorname{VAR}(X)=\sigma^{2}$. The moment generating function is $M_{\varphi}(s)=\frac{1}{\sqrt{2 \pi}} \int e^{s \xi} \cdot e^{-\xi^{2} / 2} d \xi=\frac{1}{\sqrt{2 \pi}} e^{-s^{2} / 2} \int e^{-(\xi-s)^{2} / 2} d \xi=$ $e^{-s^{2} / 2}=\sum_{k \geq 0} \frac{1}{k!}\left(\frac{s^{2}}{2}\right)^{k}=\sum_{k \geq 0} \frac{1 \cdot 3 \ldots .(2 k-1)}{(2 k)!} \cdot s^{2 k}$ whence we obtain the moments $E\left(X^{2 k}\right)=$ $1 \cdot 3 \cdot \ldots \cdot(2 k-1)$ resp. $E\left(X^{2 k+1}\right)=0$ for $k \geq 0$.
2. For the exponential distribution from 3.12 for Res $<\alpha$ we have the moment generating function $M_{p}(s)=\int_{0}^{\infty} e^{s \xi} \cdot \alpha e^{-\alpha \xi} d \xi=\frac{\alpha}{\alpha-s}=\sum_{k \geq 0} \frac{s^{k}}{\alpha^{k}}$ whence $E\left(X^{k}\right)=\frac{k!}{\alpha^{k}}$, in particular expectation $E(X)=\frac{1}{\alpha}$ and variance $\operatorname{VAR}(X)=\frac{1}{\alpha^{2}}$.
3. For the Poisson distribution from 3.13 the moment generating function is $M_{\lambda}(s)=$ $\sum_{k \geq 0} e^{k s} \cdot e^{-\lambda \frac{\lambda^{k}}{k!}}=e^{\lambda\left(e^{s}-1\right)}$ whence $\frac{d M}{d \xi}(s)=\lambda e^{s} \cdot M(s)$ and $\frac{d^{2} M}{d \xi^{2}}(s)=\left(\lambda^{2} e^{2 s}+\lambda \cdot e^{s}\right) \cdot M(s)$ whence $\frac{d M}{d \xi}(0)=\lambda$ and $\frac{d^{2} M}{d \xi^{2}}(0)=\left(\lambda^{2}+\lambda\right)$; in particular the expectation resp. the variance are both $E(X)=V A R(X)=\lambda$.
4. For independent random variables $X, Y$ with moment generating functions $M(X), M(Y)$ in $\left\{|\operatorname{Re} s| \leq s_{0}\right\}$ the exponents $e^{s X}, e^{s Y}$ are stilll independent such that theorem 1.5 gives

$$
M(X+Y)=E\left(e^{s(X+Y)}\right)=E\left(e^{s X} \cdot e^{s Y}\right)=E\left(e^{s X}\right) \cdot E\left(e^{s X}\right)=M(X) \cdot M(Y)
$$

### 3.19 Approximation of complex products

For complex numbers $z_{1} ; \ldots ; z_{n} ; w_{1} ; \ldots ; w_{n} \in \overline{B_{1}(0)}$ we have $\left|\prod_{k=1}^{n} z_{k}-\prod_{k=1}^{n} w_{k}\right| \leq \sum_{k=1}^{n}\left|z_{k}-w_{k}\right|$.
Proof: By induction with $\prod_{j=1}^{0} w_{j}=\prod_{i=n+1}^{n} z_{i}=1$ from

$$
\begin{aligned}
\prod_{k=1}^{n} z_{k}-\prod_{k=1}^{n} w_{k} & =\left(z_{1}-w_{1}\right) \cdot \prod_{i=2}^{n} z_{i}+w_{1} \cdot\left(\prod_{i=2}^{n} z_{i}-\prod_{i=2}^{n} w_{i}\right) \\
& =\left(z_{1}-w_{1}\right) \cdot \prod_{i=2}^{n} z_{i}+w_{1} \cdot\left(z_{2}-w_{2}\right) \cdot \prod_{i=3}^{n} z_{i}+w_{1} \cdot w_{2} \cdot\left(\prod_{i=3}^{n} z_{i}-\prod_{i=3}^{n} w_{i}\right) \\
& \vdots \\
& =\sum_{k=1}^{n} \prod_{j=1}^{k-1} w_{j} \cdot\left(z_{k}-w_{k}\right) \cdot \prod_{i=k+1}^{n} z_{i}
\end{aligned}
$$

### 3.20 The central limit theorem

For a triangular array $\left(\left(X_{n ; k}\right)_{k \leq k_{n}}\right)_{n \geq 1}$ of independent families $X_{n ; 1} ; \ldots ; X_{n ; k_{n}}: \Omega_{n} \rightarrow \mathbb{R}$ of random variables with

- $\operatorname{sums} S_{n}=\sum_{k=1}^{k_{n}} X_{n ; k}$
- expectations $\eta_{n ; k}=E\left(X_{n ; k}\right)<\infty$
- variances $\sigma_{n ; k}^{2}=E\left(X_{n ; k}^{2}\right)-E^{2}\left(X_{n ; k}\right)<\infty$
- sum variances $s_{n}=E\left(S_{n}^{2}\right)-E^{2}\left(S_{n}\right)=\sum_{k=1}^{k_{n}} \sigma_{n ; k}^{2}$
the normalized sums $\bar{S}_{n}=\sum_{k=1}^{k_{n}} \bar{X}_{n ; k}$ of $\bar{X}_{n ; k}=\frac{X_{n ; k}-\eta_{n ; k}}{s_{n}}$
 with
- expectations $E\left(\bar{S}_{n}\right)=E\left(\bar{X}_{n ; k}\right)=0$
- variances $\bar{\sigma}_{n ; k}^{2}=E\left(\bar{X}_{n ; k}^{2}\right)=\frac{\sigma_{n ; k}^{2}}{s_{n}^{2}}$
- sum variances $E\left(\bar{S}_{n}^{2}\right)=\sum_{k=1}^{k_{n}} \bar{\sigma}_{n ; k}^{2}=1$
satisfying the Lindeberg condition

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{k_{n}} \int_{\left|\bar{X}_{n ; k}\right| \geq \epsilon} \bar{X}_{n ; k}^{2} d P=0 \text { for every } \epsilon>0
$$

converge weakly to the Normal distribution: $\left.\left.\lim _{n \rightarrow \infty} P\left(\bar{S}_{n} \leq x\right)=\mathcal{N}_{0 ; 1}(]-\infty ; x\right]\right)=\int_{-\infty}^{x} \phi_{0 ; 1}(\xi) d \xi$.

Proof: The Lindeberg condition yields $\lim _{n \rightarrow \infty} \max _{1 \leq k \leq k_{n}} \bar{\sigma}_{n ; k}^{2} \leq \lim _{n \rightarrow \infty} \max _{1 \leq k \leq k_{n}}\left(\epsilon^{2}+\int_{\left|\bar{X}_{n ; k}\right| \geq \epsilon} \bar{X}_{n ; k}^{2} d P\right)=0$ such that for every $\xi \in \mathbb{R}$ there is an $n_{\xi} \geq 1$ with $\frac{1}{2} \bar{\sigma}_{n ; k}^{2} \xi^{2} \leq 1$. Hence we can apply

- the lemma 3.19 to both of the product differences in the second line
- the estimate 3.16 .1 to both of the quadratic order Taylor approxiations of $\hat{\varphi}_{\bar{X}_{n ; k}}(\xi)$ and $e^{-\xi^{2} \bar{\sigma}_{n ; k}^{2} / 2}$ in the third line
of the following estimate for fixed $\xi \in \mathbb{R}$ and every $\epsilon>0$ :

$$
\begin{aligned}
\left|\hat{\varphi}_{\bar{S}_{n}}(\xi)-\hat{\phi}(\xi)\right| & =\left|\prod_{k=1}^{k_{n}} \hat{\varphi}_{\bar{X}_{n ; k}}(\xi)-\prod_{k=1}^{k_{n}} e^{-\xi^{2} \bar{\sigma}_{n ; k}^{2} / 2}\right| \\
& \leq\left|\prod_{k=1}^{k_{n}} \hat{\varphi}_{\bar{X}_{n ; k}}(\xi)-\prod_{k=1}^{k_{n}}\left(1-\frac{1}{2} \bar{\sigma}_{n ; k}^{2} \xi^{2}\right)\right|+\left|\prod_{k=1}^{k_{n}} e^{-\xi^{2} \bar{\sigma}_{n ; k}^{2} / 2}-\prod_{k=1}^{k_{n}}\left(1-\frac{1}{2} \bar{\sigma}_{n ; k}^{2} \xi^{2}\right)\right| \\
& \leq \sum_{k=1}^{k_{n}}\left|\hat{\varphi}_{\bar{X}_{n ; k}}(\xi)-1+\frac{1}{2} \bar{\sigma}_{n ; k}^{2} \xi^{2}\right|+\sum_{k=1}^{k_{n}}\left|e^{-\xi^{2} \bar{\sigma}_{n ; k}^{2} / 2}-1+\frac{1}{2} \bar{\sigma}_{n ; k}^{2} \xi^{2}\right| \\
& \leq \sum_{k=1}^{k_{n}} E\left(\min \left\{\left|\xi \bar{X}_{n ; k}\right|^{2} ; \frac{1}{6}\left|\xi \bar{X}_{n ; k}\right|^{3}\right\}\right)+\sum_{k=1}^{k_{n}} \xi^{4} e^{\xi^{2}} \bar{\sigma}_{n ; k}^{4} \\
& \leq \sum_{k=1}^{k_{n}} \xi^{2} \int_{\left|\bar{X}_{n ; k}\right|<\epsilon} \bar{X}_{n ; k}^{2} d P+\sum_{k=1}^{k_{n}} \xi^{2} \int_{\left|\bar{X}_{n ; k}\right| \geq \epsilon} \bar{X}_{n ; k}^{2} d P+\xi^{4} e^{\xi^{2}} \sum_{k=1}^{k_{n}} \bar{\sigma}_{n ; k}^{4} \\
& \leq \epsilon \xi^{2} \sum_{k=1}^{k_{n}} \bar{\sigma}_{n ; k}^{2}+\xi^{2} \int_{\left|\bar{X}_{n ; k}\right| \geq \epsilon} \bar{X}_{n ; k}^{2} d P+\xi^{4} e^{\xi^{2}} \sum_{k=1}^{k_{n}} \bar{\sigma}_{n ; k}^{4}
\end{aligned}
$$

Due to the Lindeberg condition resp. its consequence $\lim _{n \rightarrow \infty} \max _{\leq k \leq k_{n}} \bar{\sigma}_{n ; k}^{2}=0$ all three summand vanish for $n \rightarrow \infty$ and by Lévy's continuity theorem [2, th. 7.18] the assertion is proved.

### 3.21 Lyapunov's condition

The Lyapunov condition for some $\delta>0$ on the right hand side of the following estimate is stronger than the Lindeberg condition but sometimes easier to prove:
$\sum_{k=1}^{k_{n}} \int_{\left|\bar{X}_{n ; k}\right| \geq \epsilon} \bar{X}_{n ; k}^{2} d P \leq \frac{1}{\epsilon} \sum_{k=1}^{k_{n}} \int_{\left|\bar{X}_{n ; k}\right| \geq \epsilon}|\bar{X}|_{n ; k}^{2+\delta} d P \leq \sum_{k=1}^{k_{n}} \int_{\left|\bar{X}_{n ; k}\right| \geq \epsilon}|\bar{X}|_{n ; k}^{2+\delta} d P<\infty$.
Note: In [1, th 27.4] a variant of the central limit theorem being very useful for Markov processes is proved for sequences in which random variables far apart from each other are nearly independent.

## Index

$P$-almost sure, 7
Abel's partial summation, 5
absolute moment, 19
absolutely continuous function, 12
additivity, 5
analytic continuation, 21
arrival times, 17
Binomial distribution, 16
binomial distribution, 12
bold game, 8
Borel's zero-one-law, 3
Borel-Cantelli lemma, 6
boundary conditions, 7
capital, 7
centered random variable, 4
central limit theorem, 19, 22
change of variables, 21
characteristic function, 4
Characteristic functions, 19
Chebyshev's inequality, 4
completeness, 5
continuity from above, 4
convergence in distribution, 13, 14
convergence in measure, 13,14
convolution, 3
càdlàg, 18
dense, 9
diagonal principle, 15
Dini derivatives, 11
discontinuities, 11
distribution function, $8,9,12$
distribution functions, 13
dominated convergence, 7,20
dominated convergence theorem, 15, 19
Dubins-Savage Theorem, 10
dyadic number, 9
dyadic numbers, 10
Dynkin-system, 3
event tree, 8
expectation, 3
explicit formula, 9
explicit solutions, 7
Exponential distribution, 17
exponential distribution, 21
filtration, 7
Fourier transform, 19, 20
fractal, 7, 8
functional equation, 8
fundamental theorem of calculus, 13
Helly's selection theorem, 15
Helly-Bray theorem, 18, 21
Helly-Bray theorem, 14
hypergeometric distribution, 16
increments, 18
independent, 3, 19, 22
independent random variable, 3
independent random variables, 22
independent $\sigma$-algebrae, 3
induction, 10
integration by parts, 20, 21
jump, 11
Khintchin-Kolmogorov convergence theorem, 6
Kolmogorov's existence theorem, 18
Kolmogorov's strong law of large numbers, 6
Kolmogorow's strong law of large numbers, 14
Kronecker symbol, 9
Kronecker's lemma, 5, 6
$\lambda$-absolutely continuous measure, 12
$\lambda$-continuity set, 14
Laplace transform, 19
Lebesgue measure, 13
Lebesgue's convergence theorem, 5,18
Lebesgue's differentiation theorem, 10
Lindeberg condition, 22
linearity, 4
Lyapunov condition, 23
Lévy's continuity theorem, 23
Lévy's convergence theorem, 5, 6
Lévy's inequality, 4
mapping theorem, 15
Markov processes, 23
maximal median, 4
median, 4
minimal median, 4
moment, 19
moment generating function, 19
monotone convergence, 4
monotone function, 11
Normal distribution, 22
normal distribution, 21
normalized, 22
$\pi$-system, 3
point of continuity, 13
Poisson approximation, 18
Poisson distribution, 16, 21
Poisson process, 18
Portmanteau theorem, 14
primitive, 12
probability density function, 12,19
probability distribution, 3
probability space, 12
product measure, 3
product $\sigma$-algebra, 3
Prohorov's theorem, 15
quantile function, 13
random variable, 3,12
rank, 9
recursive formula, 7
Riesz convergence theorem, 5
right continuous, 12
ruin, 7
sample path, 17
sample paths, 18
Scheffés theorem, 16
simple discontinuity, 11
Skorohod's representation theorem, 13
Skorohod's theorem, 15
standard deviation, 3
step function, 4
stochastic process, 18
stopping time, 7
subfair, 7
success, 7
tails, 21
Taylor expansion, 19, 20
tight family, 15
triangular array, 22
truncated random variables, 6
variance, 3
vertex, 11
wager, 7
waiting time, 17
weak convergence, 14
weak* convergence, 14
win, 7

## References

[1] Patrick Billingsley. Probability and Measure. 3rd ed. Wiley, 1994.
[2] Arne Vorwerg. "Analysis". In: (2023). URL: http : / / www . vorwerg - net . de / Mathematik / Analysis.pdf.
[3] Arne Vorwerg. "Functional Analysis". In: (2023). URL: http://www.vorwerg-net.de/Mathematik/ Functional\%20Analysis.pdf.
[4] Arne Vorwerg. "Measure Theory". In: (2023). URL: http://www.vorwerg-net.de/Mathematik/ Measure\%20Theory.pdf.

