# **Probability Theory**

November 6, 2023

# Contents

| 1 | Rand       | lom variables                                                                                                                                            | 3 |
|---|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|   | 1.1        | Independence                                                                                                                                             | 3 |
|   | 1.2        | Borel's zero-one-law                                                                                                                                     | 3 |
|   | 1.3        | Random variables                                                                                                                                         | 3 |
|   | 1.4        | Chebyshev's inequality                                                                                                                                   | 4 |
|   | 1.5        | Expectations of products of independent random variables                                                                                                 | 4 |
|   | 1.6        | The median                                                                                                                                               | 4 |
|   | 1.7        | Lévy's inequality                                                                                                                                        | 4 |
|   | 1.8        | Lévy's convergence theorem                                                                                                                               | 5 |
|   | 1.9        | Abel's partial summation                                                                                                                                 | 5 |
|   | 1.10       | Kronecker's lemma                                                                                                                                        | 5 |
|   | 1.11       | The Khintchin-Kolmogorov convergence theorem                                                                                                             | 6 |
|   | 1.12       | Kolmogorov's strong law of large numbers                                                                                                                 | 6 |
| ~ | <b>c</b> . |                                                                                                                                                          | - |
| 2 |            | •                                                                                                                                                        | 7 |
|   | 2.1        |                                                                                                                                                          | 7 |
|   | 2.2        |                                                                                                                                                          | 8 |
|   | 2.3        | Convexity of the success probability $\dots \dots \dots$ |   |
|   | 2.4        | The Dubins-Savage Theorem 1                                                                                                                              | 0 |
| 3 | Wea        | k convergence 1                                                                                                                                          | 1 |
|   | 3.1        | Simple discontinuities of monotone functions                                                                                                             | 1 |
|   | 3.2        | Distribution functions                                                                                                                                   | 2 |
|   | 3.3        | Expectations and distribution functions 1                                                                                                                | 2 |
|   | 3.4        | The primitive of a distribution function 1                                                                                                               | 2 |
|   | 3.5        | Skorohod's representation theorem                                                                                                                        | 3 |
|   | 3.6        | Convergence in measure and in distribution                                                                                                               | 3 |
|   | 3.7        | The weak law of large numbers                                                                                                                            | 4 |
|   | 3.8        | The Helly-Bray theorem                                                                                                                                   | 4 |
|   | 3.9        | Helly's selection theorem                                                                                                                                | 5 |
|   | 3.10       | Approximation of the Binomial distribution                                                                                                               | 6 |
|   | 3.11       | Approximation of the Poisson distribution                                                                                                                | 6 |
|   |            | The exponential distribution                                                                                                                             | 7 |
|   |            | The Poisson process                                                                                                                                      | 8 |
|   |            | Characteristic functions of independent random variables                                                                                                 |   |
|   |            | Laplace transforms and moment generating functions                                                                                                       |   |
|   |            | Moments and the characteristic function                                                                                                                  |   |
|   |            | The moment criterion for weak convergence                                                                                                                |   |
|   |            | Examples                                                                                                                                                 |   |
|   |            | Approximation of complex products                                                                                                                        |   |
|   | - = 0      |                                                                                                                                                          | - |

| 3.20 | he central limit theorem                                                                                                                       | 22 |
|------|------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 3.21 | yapunov's condition $\ldots \ldots 2$ | 23 |

#### 1 Random variables

#### 1.1 Independence

A family  $(A_i)_{i \in I} \subset \mathcal{A}$  of measurable sets on a **probability space**  $(\Omega; \mathcal{A}; P)$  is **independent**, if  $P(\bigcap_{i\in F} A_i) = \prod_{i\in F} P(A_i)$  for every finite subset  $F \subset I$ . A family  $(\mathcal{E}_i)_{i\in I}$  of set systems  $\mathcal{E}_i \subset \mathcal{A}$ with  $i \in I$  is independent if the families  $(A_{i_f})_{i_f \in F}$  are independent with  $A_{i_f} \in \mathcal{E}_{i_f}$  for  $i_f \in F$  and every nonempty and finite subset  $F \subset I$ . For two independent systems  $\mathcal{E}, \mathcal{D} \subset \mathcal{A}$  on a probability space  $(\Omega; \mathcal{A}; P)$  the corresponding **Dynkin-systems**  $\delta(\mathcal{E})$  and  $\delta(\mathcal{D})$  are independent too since the family  $\mathcal{I}(\mathcal{D}) := \{A \in \mathcal{A} : P(A \cap D) = P(A) \cdot P(D) \forall D \in \mathcal{D}\}$  already is a Dynkin-system: Obviously we have  $\Omega \in \mathcal{I}(\mathcal{D})$  and for  $A \in \mathcal{I}(\mathcal{D})$  and  $D \in \mathcal{D}$  we have  $P((\Omega \setminus A) \cap D) = P(D \setminus (A \cap D)) =$  $P(D) - P(A \cap D) = P(D) - P(A) \cdot P(D) = P(D) \cdot (1 - P(A)) = P(X \setminus A) \cdot P(D)$  such that  $X \setminus A \in P(D)$  $\mathcal{I}(\mathcal{D})$ . For pairwise disjoint  $(A_n)_{n\in\mathbb{N}}\subset\mathcal{I}(\mathcal{D})$  we have  $P\left(\left(\bigcup_{n\in\mathbb{N}}A_n\right)\cap D\right)=P\left(\bigcup_{n\in\mathbb{N}}(A_n\cap D)\right)=$  $\sum_{n \in \mathbb{N}} P(A_n \cap D) = \sum_{n \in \mathbb{N}} P(A_n) \cdot P(D) = P(D) \cdot \sum_{n \in \mathbb{N}} P(A_n) = P(D) \cdot P(\bigcup_{n \in \mathbb{N}} A_n) \text{ and hence}$  $\bigcup_{n\in\mathbb{N}}A_n\subset\mathcal{I}(\mathcal{D})$ . On account of  $\mathcal{E}\subset\mathcal{I}(\mathcal{D})$  follows  $\delta(\mathcal{E})\subset\mathcal{I}(\mathcal{D})$  and hence the assertion. Since independence refers to finite subfamilies this property extends to arbitrary independent families  $(\mathcal{E}_i)_{i \in I}$ and their **Dynkin-systems**  $(\delta(\mathcal{E}_i))_{i \in I}$  and with [4, p. 1.6] even to their  $\sigma$ -algebrae  $(\sigma(\mathcal{E}_i))_{i \in I}$  $(\delta(\mathcal{E}_i))_{i\in I}$  if the  $(\mathcal{E}_i)_{i\in I}$  are closed with respect to intersections. Applying this property to the  $\sigma$ algebrae  $\sigma(\{A\}) = \{\emptyset; A; \Omega \setminus A; \Omega\}$  resp.  $\sigma(\{B\})$  generated by two independents sets A and B shows the independence of the complements.

#### 1.2 Borel's zero-one-law

For an **independent** sequence  $(A_n)_{n\geq 1}$  of measurable sets  $A_n \in \mathcal{A}$  on a probability space  $(\Omega; \mathcal{A}; P)$ we have  $P\left(\bigcap_{n\geq 1} \bigcup_{k\geq n} A_k\right) \in \{0, 1\}.$ 

# **Proof**: Due to 1.1 for every $n \ge 1$ the $\sigma$ -algebrase $\mathcal{T}_{n+1} = \sigma\left(\left\{\bigcap_{m=0}^{j} A_{k_m} : k_m \ge n+1; 0 \le m \le j \in \mathbb{N}\right\}\right)$ and $\mathcal{A}_n = \sigma\left(\left\{\bigcap_{m=0}^{j} A_{k_m} : k_m \le n; 0 \le m \le j \in \mathbb{N}\right\}\right)$ are **independent**. Also for every $n \ge 1$ we have $T = \bigcap_{n\ge 1} \bigcup_{k\ge n} A_k \in \mathcal{T}_n$ and hence $\mathcal{A}_n \in \mathcal{I}(T) := \{A \in \mathcal{A} : P(A \cap T) = P(A) \cdot P(T)\}$ as well as $\mathcal{T}_n \in \sigma(\mathcal{A})$ with $\mathcal{A} = \bigcup_{n\ge 1} \mathcal{A}_n$ . Since $\mathcal{I}(T)$ is a **Dynkin-system** including the $\pi$ -system $\mathcal{A}$ and consequently $\sigma(\mathcal{A}) = \delta(\mathcal{A}) \subset \mathcal{I}(T)$ follows $T \in \mathcal{I}(T)$ , i.e. T is **independent of itself** and hence $P(T) = P(T \cap T) = P(T) \cdot P(T) \in \{0, 1\}$ .

#### 1.3 Random variables

Measurable mappings  $X : \Omega \to Y$  on probability spaces  $(\Omega; \mathcal{A}; P)$  are called random variables with their **expectation**  $E(X) := \int XdP$  and **probability distribution**  $P_X := X(P)$ . The random variables  $(X_i)_{i\in I}$  with  $X_i : (\Omega; \mathcal{A}; P) \to (Y_i; \mathcal{A}_i)$  are **independent** if the  $\sigma$ -algebrae  $\left(X_i^{-1}(\mathcal{A}_i)\right)_{i\in I}$  with  $X_i^{-1}(\mathcal{A}_i) \subset \mathcal{A}$  are **independent**, i.e. for  $i, j \in I$  and  $A_i \in \mathcal{A}_i, A_j \in \mathcal{A}_j$  holds  $P\left(X_i^{-1}[A_i] \cap X_j^{-1}[A_j]\right) = P_{X_i}(A_i) \cdot P_{X_j}(A_j)$ . In the case of a finite  $J = \{1; ...; n\}$  we have  $P\left(\bigcap_{i=1}^n \{X_i \in A_i\}\right) = \prod_{i=1}^n P(X_i \in A_i)$  such that according to [4, th. 8.15] the **common distribution** is given by the **product measure**  $P_{(X_1;...;X_n)} = \bigotimes_{i=1}^n P_{X_i}$  on the **product**  $\sigma$ -algebra  $\bigotimes_{i\in I} \mathcal{A}_i$  whence from [2, th. 7.3] follows that the **distribution of the sum**  $S_n = s_n(X_1;...;X_n) = X_1 + ... + X_n$  coincides with the **convolution**  $P_{S_n} = s_n \circ P_{(X_1;...;X_n)} = P_{X_1} * ... * P_{X_n}(cf. 3.14.4)$ . For **real-valued** random variables  $X : \Omega \to \mathbb{R}$  we have  $0 \leq E\left((X - E(X))^2\right) = E(X^2) - (E(X))^2$  and hence  $E(X^2) \geq (E(X))^2$ .

 $\sigma(X) := \|X - E(X)\|_2 = \sqrt{VAR(X)} = \sigma(X - E(X))$  are independent of the expected value and hence are preserved if we examine the **centered random variable** X - E(X).

#### 1.4 Chebyshev's inequality

For every random variable  $X : \Omega \to \mathbb{R}^+$  on a probability space  $(\Omega; \mathcal{A}; P)$  and every t > 0 we have  $t \cdot P(X \ge t) \le \int X dP$ .

**Proof:**  $\alpha \cdot P(\{X \ge \alpha\}) \le \int_{\{X \ge \alpha\}} X dP \le \int X dP.$ 

#### 1.5 Expectations of products of independent random variables

For **independent** and **real** random variables  $X, Y \in \mathcal{B}(\Omega; \mathbb{R})$  we have  $E(X \cdot Y) = E(X) \cdot E(Y)$ .

**Proof:** On account of  $E(\chi_A \cdot \chi_B) = E(\chi_{A \cap B}) = P(A \cap B) = P(A) \cdot P(B) = E(\chi_A) \cdot E(\chi_B)$  the proposition holds for **characteristic** functions and due to the linearity of the integral also for **step** functions  $\varphi, \psi \in \mathcal{S}(\Omega; \mathbb{R})$ . For **integrable** functions  $X, Y \in \mathcal{B}(\Omega; \mathbb{R})$  with *P*-a.e.  $X = \lim_{n \to \infty} X_n$  resp.  $Y = \lim_{n \to \infty} Y_n$  for sequences  $(X_n)_{n \in \mathbb{N}}, (Y_n)_{n \in \mathbb{N}} \subset \mathcal{S}(\Omega; \mathbb{R})$  according to [4, p. 5.5] we have *P*-a.e.  $X \cdot Y = \lim_{n \to \infty} (X_n \cdot Y_n)$ . According to the hypothesis  $E(X_n \cdot Y_n) = E(X_n) \cdot E(Y_n) \leq 2E(X) \cdot E(Y) < \infty$  holds for  $n \geq N$  and some  $N \in \mathbb{N}$  so that we can apply **monotone convergence** [4, p. 5.12] to obtain  $E(X \cdot Y) = \lim_{n \to \infty} E(X_n \cdot Y_n) = \lim_{n \to \infty} (E(X_n) \cdot E(Y_n)) = \lim_{n \to \infty} E(X_n) \cdot \lim_{n \to \infty} E(Y_n) = E(X) \cdot E(Y)$ .

#### 1.6 The median

The real number m(X) is a **median** of the random variable  $X: \Omega \to \mathbb{R}$  iff  $P(X \le m(X)) \ge \frac{1}{2} \le P(X \ge m(X))$ . Obviously for two medians  $m_1(X) < m_2(X)$  every intermediate value  $m_1(X) < \alpha < m_2(X)$  is a median too. The **minimal median** is  $m_{min}(X) = \inf \left\{ \lambda \in \mathbb{R} : P(X \le \lambda) \ge \frac{1}{2} \right\} = \inf \left\{ \lambda \in \mathbb{R} : P(X > \lambda) \le \frac{1}{2} \right\}$  since due to the **continuity from above**[4, p. 2.2.3] on the one hand we have  $P(X \le m_{min}(X)) = P\left(\bigcap_{n\ge 1} \left\{ X \le m_{min}(X) + \frac{1}{n} \right\} \right) = \inf_{n\ge 1} P\left( X \le m_{min}(X) + \frac{1}{n} \right) \ge \frac{1}{2}$  and on the other hand  $P(X \ge m_{min}(X)) = P\left(\bigcap_{n\ge 1} \left\{ X \le m_{min}(X) - \frac{1}{n} \right\} \right) = \inf_{n\ge 1} P\left(X \le m_{min}(X) + \frac{1}{n} \right) \ge \frac{1}{2}$  and on the other hand  $P(X \ge m_{min}(X)) = P\left(\bigcap_{n\ge 1} \left\{ X \ge m_{min}(X) - \frac{1}{n} \right\} \right) = \inf_{n\ge 1} P\left(X \ge m_{min}(X) - \frac{1}{n} \right) = 1 - \sup_{n\ge 1} P\left(X < m_{min}(X) - \frac{1}{n} \right) \ge \frac{1}{2}$ , i.e.  $m_{min}(X)$  is itself a **median** and since for every  $\epsilon > 0$  holds  $P(X \le m_{min}(X) - \epsilon) < \frac{1}{2}$  it is the **minimal median**. Correspondingly the **maximal median** is  $m_{max}(X) = \sup \left\{ \lambda \in \mathbb{R} : P(X \ge \lambda) \ge \frac{1}{2} \right\} = \sup \left\{ \lambda \in \mathbb{R} : P(X < \lambda) \le \frac{1}{2} \right\}$ . The relation  $m_{min}(X) \le m_{max}(X)$  holds since otherwise we had  $\sup_{n\ge 1} P\left(X \ge m_{max}(X) + \frac{1}{n}\right) = P\left(\bigcup_{n\ge 1} \left\{ X \ge m_{max}(X) + \frac{1}{n} \right\} \right) = P(X > m_{max}(X)) > \frac{1}{2}$ , i.e. there existed a  $\lambda = m_{max}(X) + \frac{1}{n}$  with  $P(X \ge \lambda) \ge \frac{1}{2}$  contrary to the definition of  $m_{max}(X)$ . Obviously we have **linearity** in the form  $c \cdot m(X) = m(c \cdot X)$  and m(X) + c = m(X + c) for every  $c \in \mathbb{R}$ .

#### 1.7 Lévy's inequality

For independent and real random variables  $X_i : (\Omega, A, P) \to \mathbb{R}, 1 \le i \le n$  with sums  $S_m := \sum_{i=1}^m X_i$ and every  $\epsilon > 0$  we have  $\mu\left(\max_{1 \le i \le n} |S_i + m(S_n - S_i)| \ge \epsilon\right) \le 2P(|S_n| \ge \epsilon).$ 

Note: This inequality allows us to obtain an estimate for the maximal deviation  $|S_i + m (S_n - S_i)|$  of all partial sums  $S_i$  given the measure of the deviation  $|S_n|$  of the single sum  $S_n$ .

**Proof:** For  $S_0 := 0$  and  $T = \min_{1 \le i \le m} \{|S_i + m(S_n - S_i)| \ge \epsilon\}$  if such an i exists and T := n + 1 otherwise the **pairwise disjoint** sets  $A_i := \{T = i\} \in \sigma(X_1, ..., X_i)$  are **independent** of  $B_i = \{S_n - S_i \ge m(S_n - S_i)\} \in \sigma(X_i, ..., X_n)$ . Hence from  $P(B_i) \ge \frac{1}{2}$  follows  $P(S_n \ge \epsilon) \ge P\left(\bigcup_{i=1}^n A_i \cap B_i\right)$  $= \sum_{i=1}^n P(A_i \cap B_i) = \sum_{i=1}^n P(A_i) \cdot P(B_i) \ge \frac{1}{2}P(1 \le T \le n) = \frac{1}{2}\mu\left(\max_{1\le i\le n} S_i + m(S_n - S_i) \ge \epsilon\right)$ . Since the same inequality holds for  $-X_i$  resp.  $-S_i$  with  $m(-S_n + S_i) = -m(S_n - S_i)$  and all corresponding sets are **disjoint** we can use the **additivity** of P and simply **add** the two inequalities to obtain the assertion.

#### 1.8 Lévy's convergence theorem

For the sequence  $(S_n)_{n\geq 1}$  of the sums  $S_n := \sum_{i=1}^n X_i$  of real and independent random variables  $(X_i)_{i\geq 1}$  the *P*-a-e- convergence is equivalent to the convergence in measure. **Proof**:

 $\Rightarrow$ : Lebesgue's convergence theorem[4, p. 4.11].

 $\Leftrightarrow: \mathbf{Riesz' convergence theorem}[4, p. 4.13.3] \text{ provides for every } \frac{1}{4} > \epsilon > 0 \text{ an } n_{\epsilon} \ge 1 \text{ with } P(|S_n - S_m| \ge \epsilon) < \epsilon \text{ for all } n > m \ge n_{\epsilon}. \text{ In particular we have } P(|S_n - S_m| \ge \epsilon) < \frac{1}{2} \text{ and hence } |m(S_n - S_m)| \le \epsilon \text{ for } n > m \ge n_{\epsilon}. \text{ The preceding inequality yields } P\left(\max_{m < i \le n} |S_i - S_m| \ge 2\epsilon\right) \le 2P(|S_n - S_m| \ge \epsilon) < 2\epsilon. \text{ For } n \to \infty \text{ follows } P\left(\sup_{m < i} |S_i - S_m| \ge 2\epsilon\right) \le 2\epsilon \text{ and due to the complete-ness } [4, p. 4.14] \text{ of the } P\text{-a-e- convergence we obtain the assertion.}$ 

#### 1.9 Abel's partial summation

1. For two **real** sequences  $(a_i)_{i\geq 0}$ ,  $(b_i)_{i\geq 0} \subset \mathbb{R}$  and  $A_n = \sum_{i=0}^n a_i$  we have  $\sum_{i=1}^n a_i b_i = A_n b_n - A_0 b_1 - \sum_{i=1}^{n-1} A_i (b_{i+1} - b_i)$  for  $n \geq 1$ . 2. If also  $\lim_{n \to \infty} A_n = A_0^* < \infty$  with  $A_n^* = \sum_{i>n} a_i$  holds we have

$$\sum_{i=1}^{n} a_i b_i = A_0^* b_1 - A_n^* b_n + \sum_{i=1}^{n-1} A_i^* (b_{i+1} - b_i) \text{ für } n \ge 1.$$

3. If additionally  $a_i \ge 0$  and  $b_{i+1} \ge b_i \ge 0$  for all  $i \ge 0$  is satisfied we have  $\sum_{i=1}^n a_i b_i = A_0^* b_1 + \sum_{i=1}^{n-1} A_i^* (b_{i+1} - b_i) \text{ for } n \ge 1.$ 

#### **Proof:**

1. 
$$\sum_{i=1}^{n} a_i b_i = \sum_{i=0}^{n-1} (A_{i+1} - A_i) b_{i+1} = A_n b_n - \sum_{i=1}^{n-1} A_i (b_{i+1} - b_i) - A_0 b_1$$

- 2. Follows from 1. with  $a_0 = -\sum_{i=1}^{\infty} a_i = -A_0^*$ .
- 3. In the case of  $\lim_{n\to\infty} A_n^* b_n > 0$  with  $\sum_{i>n} a_i b_i \ge A_n^* b_n$  and 2. we have  $A_0^* b_1 + \sum_{i\ge 1} A_i^* (b_{i+1} b_i) \ge \sum_{i>1} a_i b_i = \infty$  and hence the assertion. For  $\lim_{n\to\infty} A_n^* b_n = 0$  it directly follows from 2. with  $n \to \infty$ .

#### 1.10 Kronecker's lemma

For a **positive real** and **increasing** sequence  $(b_i)_{i\geq 1}$  with  $\lim_{i\to\infty} \frac{1}{b_i} = 0$  and a further **real** sequence  $(a_i)_{i\geq 1}$  with  $\sum_{i\geq 1} \frac{a_i}{b_i} < \infty$  we have  $\lim_{n\to\infty} \frac{1}{b_n} \sum_{i=1}^n a_i = 0$ .

**Proof:** From 1.9.2 with  $c_i = \frac{a_i}{b_i}$  and  $\lim_{n \to \infty} C_n = C_0^* = \sum_{i \ge 1} \frac{a_i}{b_i} < \infty$  resp.  $\lim_{n \to \infty} C_n^* = 0$  we have the decomposition  $\frac{1}{b_n} \sum_{i=1}^n a_i = \frac{1}{b_n} \sum_{i=1}^n c_i b_i = \frac{1}{b_n} C_0^* b_1 + C_n^* + \frac{1}{b_n} \sum_{i=1}^{n-1} C_i^* (b_{i+1} - b_i)$ . For  $n \to \infty$  the first two summands converge to zero. This also holds for the third summand since for every  $\epsilon > 0$  there is an  $m \ge 1$  with  $|C_i^*| < \epsilon$  for all  $i \ge m$  such that on the one hand  $\left|\frac{1}{b_n} \sum_{i=m}^{n-1} C_i^* (b_{i+1} - b_i)\right| < \epsilon \frac{1}{b_n} \sum_{i=m}^{n-1} (b_{i+1} - b_i) < \epsilon$  and on the other hand  $\left|\frac{1}{b_n} \sum_{i=1}^{m-1} C_i^* (b_{i+1} - b_i)\right| < \epsilon$  for a sufficiently large  $n \ge 1$ .

#### 1.11 The Khintchin-Kolmogorov convergence theorem

For every sequence  $(X_n)_{n\geq 1}$  of independent and centered random variables  $X_n \in L^2(P)$  with  $\sum_{n\geq 1} E(X_n^2) < \infty$  the sums  $S_m := \sum_{n=1}^m X_n$  converge *P*-a.e. and in quadratic mean to a  $S = \lim_{m \to \infty} S_m \in L^2(P)$  with  $E(S)^2 = \sum_{n\geq 1} E(X_n^2)$ .

**Proof**: Owing to 1.5,  $E(X_n) = 0$  for all  $n \ge 1$  and by the hypothesis we have  $\lim_{k\to\infty}\sup_{m\ge k} E(S_m - S_k)^2 = \lim_{k\to\infty}\sup_{m\ge k}\sum_{i=k}^m E(X_i^2) = 0$  such that due to[4, p. 6.7] there is an  $S = \lim_{k\to\infty}S_{m(k)} \in L^2(P)$  with a  $\mu$ -a.e. convergent partial sequence  $(S_{m(k)})_{k\ge 1}$  as well as convergence of the complete sequence in the quadratic mean:  $\lim_{m\to\infty} E(S - S_m)^2 = 0$ . Owing to[4, p. 6.9] we can infer the convergence in measure and due to Lévy's theorem 1.8  $\mu$ -a.e. convergence of the complete series. Due to 1.5 and  $E(X_n) = 0$  we also obtain  $E(S)^2 = \lim_{m\to\infty} E(S_m)^2 = \sum_{n\ge 1} E(X_n^2)$ .

#### 1.12 Kolmogorov's strong law of large numbers

The mean values  $\frac{1}{n}S_n = \frac{1}{n}\sum_{k=1}^n X_k$  of every sequence  $(X_k)_{k\geq 1}$  of independent, identically distributed and integrable random variables *P*-almost sure converge to the common expectation :  $\lim_{n\to\infty}\frac{1}{n}S_n = E(X_1)$ .

**Note**: The strong law of large numbers provides a mathematical basis for the principle of learning from experience and every statistical method in science. From the mean results  $\frac{1}{n}S_n$  of independent trials executed under similar conditions in the **past** we infer the expected outcome  $E(X_1)$  in the **future**.

**Proof**: At first we prove the proposition for **truncated random variables**  $Y_k = \frac{1}{k} \cdot X_k \cdot \chi_{\{|X_k| \le k\}}$ : With the sets  $A_n = \{n - 1 < |X_1| \le n\}$  we obtain  $\sum_{k \ge 1} E\left(|Y_k|^2\right) = \sum_{k \ge 1} \sum_{k \ge n \ge 1} n^{-2} \int_{A_n} |X_1|^2 dP$  $= \sum_{n \ge 1} \sum_{k \ge n} n^{-2} \int_{A_m} |X_1|^2 dP \le \sum_{n \ge 1} \frac{2}{n} \int_{A_m} |X_1|^2 dP \le 2 \sum_{n \ge 1} \int_{A_n} |X_1| dP \le 2E(|X_k|) < \infty$  so that due to **Khintchin - Kolmogorov 1**.11 we have *P*-a.s.  $\sum_{k \ge 1} (Y_k - E(Y_k)) < \infty$ .

The deviations have the measure  $\sum_{k\geq 1} P\left(\frac{1}{k}X_k \neq Y_k\right) = \sum_{k\geq 1} P\left(|X_1| > k\right) \leq \sum_{k\geq 1} \sum_{n\geq k} P\left(n+1 \geq |X_1| > n\right)$  $\leq \sum_{n\geq 1} \sum_{n\geq k\geq 1} P\left(n+1 \geq |X_1| > n\right) = \sum_{k\geq 1} (k+1) \cdot P\left(n+1 \geq |X_1| > n\right) \leq E\left(|X_1|\right) < \infty$  such that according to **Borel-Cantelli** [4, th. 4.12] follows  $P\left(\bigcap_{n\geq 1} \bigcup_{k\geq n} \left\{\frac{1}{k}X_k \neq Y_k\right\}\right) = 0$  and with the first estimate above we obtain *P*-a.e.  $\sum_{k\geq 1} \frac{1}{k} (X_k - E\left(k \cdot Y_k\right)) = \sum_{k\geq 1} \left(\frac{1}{k} \cdot X_k - E\left(Y_k\right)\right) < \infty$ . On account of  $\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^n E\left(k \cdot Y_k\right) = \lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^n E\left(X_1 \cdot \chi_{\{|X_1|\leq k\}}\right) = \lim_{n\to\infty} E\left(X_1 \cdot \chi_{\{|X_1|\leq k\}}\right) = E\left(X_1\right)$  and **Kronecker** 1.10 follows  $\lim_{n\to\infty} \frac{1}{n} S_n - E\left(X_1\right) = \lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^n (X_k - E\left(k \cdot Y_k\right)) = 0.$ 

#### 2 Stochastic processes

#### 2.1 Definition of the bold game strategy

A gambler enters the casino with capital  $C_0 > 0$  and takes independently and identically distributed bets with  $P(Y_k = 1) = p$  resp.  $P(Y_k = -1) = 1 - p = q$  for  $k \ge 1$  until his fortune  $C_0 + S_n$  with  $S_n = \sum_{k=1}^n Y_k$  reaches either in the case  $S_{C_0,n} = \{C_0 + S_n = c\} \cap \bigcap_{k=1}^{n-1} \{0 < C_0 + S_n < c\}$  of success the goal c or in the case  $R_{C_0,n} = \{C_0 + S_n = 0\} \cap \bigcap_{k=1}^{n-1} \{0 < C_0 + S_n < c\}$  of run the value 0. The probability of ultimate success is  $s_c(C_0) = P\left(\bigcup_{n\ge 1} S_{C_0,n}\right) = \sum_{n\ge 1} P(S_{C_0,n})$  and correspondingly the probability of ultimate run is  $r_c(C_0) = P\left(\bigcup_{n\ge 1} R_{C_0,n}\right) = \sum_{n\ge 1} P(R_{C_0,n})$ . The cases  $S_{C_0,0} = S_{0,n} = S_{c,n} = \emptyset$  for  $C_0 < c$  resp.  $S_{c,0} = \Omega$  yield the boundary conditions  $s_c(0) = 0$  and  $s_c(c) = 1$ . Similarly  $R_{C_0,0} = R_{0,n} = R_{c,n} = \emptyset$  for  $C_0 < c$  resp.  $R_{0,0} = \Omega$  give  $r_c(0) = 1$  and  $r_c(c) = 0$ . Since the bets are independently and identically distributed we have the recursive formulae

$$s_{c}(C_{0}) = p \cdot s_{c}(C_{0}+1) + q \cdot s_{c}(C_{0}-1)$$
 resp.  $r_{c}(C_{0}) = q \cdot r_{c}(C_{0}+1) + p \cdot r_{c}(C_{0}-1)$ 

In general these recursions have the **explicit solutions** 

$$s_c(C_0) = \begin{cases} A + B \cdot \rho^{C_0} & \text{if } p \neq q \\ A + B \cdot a & \text{if } p = q \end{cases} \text{ for } \rho = \frac{q}{p}$$

The boundary conditions result in

$$s_{c}(C_{0}) = \begin{cases} \frac{\rho^{C_{0}}-1}{\rho^{c}-1} & \text{if } p \neq q \\ \frac{C_{0}}{c} & \text{if } p = q \end{cases} \text{ resp. } r_{c}(C_{0}) = \begin{cases} \frac{\rho^{C_{0}-c}-1}{\rho^{-c}-1} & \text{if } p \neq q \\ \frac{c-C_{0}}{c} & \text{if } p = q \end{cases}$$

Hence  $s_c(C_0) + r_c(C_0) = 1$ , i.e. the game will *P*-almost sure not continue forever.

In the *n*-th game the wager  $W_n(C_0; Y_1; ...; Y_{n-1}) \ge 0$  results in the win  $W_n Y_n$  and the capital  $C_n = C_{n-1} + W_n Y_n$ . The random variables  $(Y_k)_{k\ge 1}$  generate an increasing filtration  $(\mathcal{F}_n)_{n\ge 1}$  with  $\mathcal{F}_n = \sigma(Y_1; ...; Y_n)$  representing the **knowledge** up to the *n*-th game. Since the  $\sigma$ -algebrae  $\sigma(Y_n)$  are independent of the  $\mathcal{F}_{n-1} = \sigma(Y_1; ...; Y_{n-1})$  due to 1.5 we have  $E(Y_n \cdot W_n) = E(Y_n) \cdot E(W_n) = (p-q) \cdot E(W_n)$ . Consequently in the subfair case with p < q the sequence  $(E(C_n))_{n\ge 1}$  of expected capital is decreasing.

The stopping time  $\tau : \mathbb{R} \times \Omega \to \mathbb{N}$  denotes the number  $\tau (C_0; \omega)$  of trials the gambler plays before he decides to stop. This decision depends only in the knowledge gathered up to  $\tau$ , i.e.  $\{\tau = n\} \in \mathcal{F}_n$ . Also we assume that  $P(\tau < \infty) = 1$ . The **capital** then is

$$C_n^* = \begin{cases} C_n & \text{if } \tau \ge n \\ C_\tau & \text{if } \tau \le n \end{cases} \text{ with the wager } W_n^* = \begin{cases} W_n & \text{if } \tau \ge n \\ 0 & \text{if } \tau \le n \end{cases} = W_n \chi_{\{\tau \ge n\}}$$

so that we arrive at the recursive formula  $C_n^* = C_{n-1}^* + W_n^* \cdot Y_n$ . Since  $\{\tau \ge n\} = \Omega \setminus \{\tau < n\} \in \mathcal{F}_{n-1}$  the random variables  $C_n^*$  resp.  $W_n^*$  are  $\mathcal{F}_{n-1}$ - measurable whence the argument from above applies whence the sequence  $(E(C_n^*))_{n\ge 1}$  of expected capital still is **decreasing**. If we assume a finite line of credit of the gambler as well as a finite capital of the bank, i.e.  $-M \le C_n^* \le M$  for an M > 0 and every  $n \ge 1$  and consider that P-a.s.  $\lim_{n\to\infty} C_n^* = C_{\tau}$  the **dominated convergence theorem**[4, p. 5.14] yields  $\lim_{n\to\infty} E(C_n^*) = E(C_{\tau})$  and in particular  $E(C_{\tau}) \le E(C_n) \le E(C_1) \le C_0$ : No gambling system may reverse the odds of a subfair game.

Nonetheless it is possible to optimize the (still unfavourable) success probability in a **subfair** game in a striking way leading to a *P*-a.e. differentiable function with fractal character and outside the domain of the fundamental theorem of calculus. To this end we scale the initial fortune to  $0 \le C_0 \le 1$  and the goal to c = 1. The **bold game** strategy is defined by

$$W_n = \begin{cases} C_{n-1} & \text{if } 0 \le C_{n-1} \le \frac{1}{2} \\ 1 - C_{n-1} & \text{if } \frac{1}{2} \le C_{n-1} \le 1 \end{cases} \text{ and } \tau \left( C_0; \omega \right) = n \text{ iff } C_n \in \{0; 1\}.$$

Under the condition that the play has not terminated at time k-1 it will continue beyond k iff either  $Y_k = 1$  in the case of  $C_{k-1} \leq \frac{1}{2}$  or  $Y_k = -1$  in the case of  $C_{k-1} \geq \frac{1}{2}$ . Hence we have  $P(\tau \geq k+1|\tau \geq k) \leq m = \max\{p;q\}$  whence  $P(\tau \geq k+1) \leq m^n$  and consequently  $P(\tau = \infty) = 0$ . Thus the game will terminate P-a.s. The mapping  $C_{\tau} : \Omega \to \{0;1\}$  is a  $\bigcup_{n \in \mathbb{N}} \mathcal{F}_n$ -measurable random variable since  $\{C_{\tau} = y\} = \bigcup_{n \in \mathbb{N}} (\{\tau = n\} \cap \{C_n = y\})$  for  $y \in \{0;1\}$ . We now examine the success probability of the initial capital  $0 \leq x \leq 1$  expressed by the function  $F : [0;1] \to [0;1]$  with  $F(x) = P(C_{\tau} = 1)$  for  $C_0 = x$ .

#### 2.2 Properties of the bold game strategy

- 1. In the subfair case  $p \leq q$  of a sequence of trials with **independently** and **identically distributed** outcomes  $Y_i : \Omega \to \{-1; 1\}$  and  $P(Y_i = 1) = p$  resp.  $P(Y_i = -1) = q$  for every  $0 \leq x \leq 1$  the success probability F of the **bold game** strategy as described above satisfies the **functional equation**  $F(x) = \begin{cases} p \cdot F(2x) & \text{if } 0 \leq x \leq \frac{1}{2} \\ p + q \cdot F(2x 1) & \text{if } \frac{1}{2} \leq x \leq 1 \end{cases}$ .
- 2. It is also the distribution function  $F(x) = P(X \ge x)$  of the random variable  $X = \sum_{i\ge 1} \frac{X_i}{2^i}$ :  $\Omega \to [0;1]$  with independently and identically distributed coefficients  $X_i : \Omega \to \{0;1\}$ and  $P(X_i = 1) = p$  resp.  $P(X_i = 0) = q$ .
- 3. The function  $F : [0;1] \to [0;1]$  is continuous, increasing and *P*-a.e. differentiable with *P*-a.e.  $\frac{dF}{dx}(x) = 0$  for p < q.

Note: The functional equation expresses the **fractal character** of the distribution function F in terms of self-similarity: The values  $F(y) \in [0; 1]$  on the whole domain  $y \in [0; 1]$  are replicated in the lower part  $F\left(\frac{1}{2}y\right) = \frac{1}{p}F(y) \in [0; p]$  and the values  $F(y) \in [p; 1]$  in the upper part are also repeated in the interval  $F\left(\frac{1}{2}(y+1)\right) = \frac{1}{q}(F(y)-p) \in [0; \frac{1}{q}]$ .

**Proof**: The **functional equation** follows from the **event tree** at the right hand side based on the independently and identically distributed probabilities of the separate trials. Applying it we obtain

$$F(1) = P(1.0)_{2} = 1;$$
  

$$F\left(\frac{1}{2}\right) = P(0.1)_{2} = p;$$
  

$$F\left(\frac{1}{4}\right) = F(0.01)_{2} = P(1;1) = p^{2};$$
  

$$F\left(\frac{3}{4}\right) = F(0.11)_{2} = P(1 \lor 0;1) = p + qp;$$
  

$$F\left(\frac{1}{8}\right) = F(0.001)_{2} = P(1;1;1) = p^{3};$$
  

$$F\left(\frac{3}{8}\right) = F(0.011)_{2} = P(1;1 \lor 1;0;1) = p^{2} + pqp;$$
  

$$F\left(\frac{5}{8}\right) = F(0.101)_{2} = P(1 \lor 0;1;1) = p + qpp;$$
  

$$F\left(\frac{7}{8}\right) = F(0.111)_{2} = P(1 \lor 0;1 \lor 0;0;1) = p + qp + qqp$$





In general for a **dyadic number**  $x = \sum_{i=1}^{n} \frac{x_i}{2^i} = (0.x_1...x_n)_2$  of **rank**  $n \ge 1$  we have

• either 
$$(0.x_1...x_n)_2 + \frac{1}{2^n} \le \frac{1}{2}$$
 hence  $x_1 = 0$  and  $F(x) = p \cdot F(2x)$  so that  $F\left((0.x_1...x_n)_2 + \frac{1}{2^n}\right) - F(0.x_1...x_n)_2 = p\left(F\left((0.x_2...x_n)_2 + \frac{1}{2^{n-1}}\right) - F(0.x_2...x_n)_2\right)$ 

• or 
$$(0.x_1...x_n)_2 + \frac{1}{2^n} \ge \frac{1}{2}$$
 hence  $x_1 = 1$  and  $F(x) = p + q \cdot F(2x-1)$  so that due to  $2 \cdot \left((0.x_1...x_n)_2 + \frac{1}{2^n}\right) - 1 = (1.x_2...x_n)_2 + \frac{1}{2^{n-1}} - 1 = (0.x_2...x_n)_2 + \frac{1}{2^{n-1}}$  we have  $F\left((0.x_1...x_n)_2 + \frac{1}{2^n}\right) - F\left(0.x_1...x_n\right)_2 = q\left(F\left((0.x_2...x_n)_2 + \frac{1}{2^{n-1}}\right) - F\left(0.x_2...x_n\right)_2\right).$ 

Subsuming both cases and skewing the **outcomes**  $Y_i$  slightly so that they fit as **coefficients**  $X_i = 1 - \frac{1}{2}(1 - Y_i)$  such that  $P(X_i = 1) = P(Y_i = 1) = p$  resp.  $P(X_i = 0) = P(Y_i = -1) = q$  we obtain

$$F\left((0.x_1...x_n)_2 + \frac{1}{2^n}\right) - F\left(0.x_1...x_n\right)_2 = p\left(x_1\right) \left(F\left((0.x_2...x_n)_2 + \frac{1}{2^{n-1}}\right) - F\left(0.x_2...x_n\right)_2\right)$$
  

$$\vdots$$
  

$$= P\left(X_1 = x_1\right) \cdot \ldots \cdot P\left(X_n = x_n\right) \cdot \left(F\left(1\right) - F\left(0\right)\right)$$
  

$$= P\left(X_1 = x_1\right) \cdot \ldots \cdot P\left(X_n = x_n\right)$$
  

$$= P\left((X_1, ..., X_k) = (x_1, ..., x_k)\right)$$
  

$$\leq m^n \text{ but also}$$
  

$$> 0$$

whence immediately follow the **increasing** character as well as the **continuity** of F. Also we can compute the **explicit formula** using the **Kronecker symbol**  $\delta_{x1} = \begin{cases} 1 & \text{if } x = 1 \\ 0 & \text{if } x \neq 1 \end{cases}$  to exclude the cases  $x_k = 0$  resp.  $F(0.x_1...x_k)_2 = F(0.x_1...x_{k-1})_2$  so that

$$F(0.x_1...x_n)_2$$

$$= F\left(0.x_1...x_{n-1} + \frac{1}{2^n}\right)_2$$

$$= P(X_1 = x_1) \cdot ... \cdot P(X_n = x_n) \cdot \delta_{x_n 1} + F(0.x_1...x_{n-1})_2$$

$$= P(X_1 = x_1) \cdot ... \cdot P(X_n = x_n) \cdot \delta_{x_n 1} + P(X_1 = x_1) \cdot ... \cdot P(X_{n-1} = x_{n-1}) \cdot \delta_{x_{n-1} 1} + ... + P(X_1 = x_1) \cdot \delta_{x_1 1}$$

$$= \sum_{k=1}^n P(X_1 = x_1) \cdot ... \cdot P(X_k = x_k) \cdot \delta_{x_k 1}$$

$$= \sum_{k=1}^n P((X_1, ..., X_k) = (x_1, ..., x_k))$$

$$= P\left(:\sum_{i=1}^k \frac{X_i}{2^i} \le \sum_{i=1}^n \frac{x_i}{2^i}; k \le n\right)$$

Hence for every **dyadic number**  $x = \sum_{i=1}^{n} \frac{x_i}{2^i}$  of **rank**  $n \ge 1$  we have  $F(x) = P(X \le x)$  for the **random variable**  $X = \sum_{i=1}^{n} \frac{X_i}{2^i}$ . Since the dyadic numbers of finite rank are **dense** in [0; 1] and F is **continuous** this formula extends to every real  $x \in [0; 1]$ , i.e. F is the **distribution function** for the random variable  $X = \sum_{i\ge 1} \frac{X_i}{2^i}$ .

In order to compute the **derivative** for a given  $x \in [0;1[$  (conveniently excluding the  $\lambda$ -null set  $\{0;1\}$ ) and every  $n \geq 1$  we choose  $0 \leq k_n \leq 2^n - 1$  such that  $x \in I_n = \left] \frac{k_n}{2^n}; \frac{k_n+1}{2^n} \right[$ . According to **Lebesgue's differentiation theorem** [4, p. 12.4] the derivative  $\frac{dF}{d\lambda}(x) = \lim_{n \to \infty} \frac{F(\frac{k_n}{2^n} + \frac{1}{2^n}) - F(\frac{k_n}{2^n})}{2^n} = \lim_{n \to \infty} \frac{P(X \in I_n)}{2^n}$  exists  $\lambda$ -a.e. on [0;1]. If we assume  $\frac{dF}{d\lambda}(x) > 0$  it follows that  $P(X \in I_n) > 0$  and from  $\lim_{n \to \infty} \frac{P(X \in I_{n+1})}{2^{n+1}} = \lim_{n \to \infty} \frac{P(X \in I_n)}{2^n}$  we infer  $\lim_{n \to \infty} \frac{P(X \in I_{n+1})}{P(X \in I_n)} = \frac{1}{2}$ . From  $\frac{k_n}{2^n} = (0.x_1...x_n)_2$  follows  $\frac{k_{n+1}}{2^n} = (0.x_1...x_nx_{n+1})_2$  with  $x_{n+1} = 0$  iff  $I_{n+1} \subset I_n$  lies in the left half of  $I_n$  and  $x_{n+1} = 0$  iff it is the right half of  $I_n$ . Due to the explicit formula shown above we infer  $\frac{P(X \in I_{n+1})}{P(X \in I_n)} = \frac{P(X_1 = x_1) \cdots P(X_n = x_{n+1})}{P(X_1 = x_1) \cdots P(X_n = x_n)} = P(X_n = x_{n+1}) \in \{p;q\}$  contrary to the assumption p < q. Hence the proof is complete.



#### 2.3 Convexity of the success probability

In the subfair case  $p \le q$  for every  $0 \le x - t \le x \le x + t \le 1$  we have  $F(x) \ge p \cdot F(x+t) + q \cdot F(x-t)$ . **Proof**: We prove the inequality  $\Delta(r, s) = F(a) - pF(s) - qF(r) \ge 0$  by **induction** over *n* for **dyadic numbers**  $0 \le r \le s \le 1$  of rank *n* and **mean**  $a = \frac{1}{2}(r+s)$  of rank n+1. By the continuity of *F* this result then extends to real arguments. We assume that the inequality holds for r, s of rank  $n \ge 1$ . There are four cases to consider:

**Case I**:  $s \ge \frac{1}{2}$ . The first part of the functional equation gives  $\Delta(r, s) = p\Delta(2r, 2s)$ . Since 2r, 2s are of rank *n* the induction hypothesis implies that  $\Delta(2r, 2s) \ge 0$ .

**Case II**:  $\frac{1}{2} \leq r$ . By the second part of the functional equation we have  $\Delta(r, s) = q\Delta(2r - 1, 2s - 1) \geq 0$ .

**Case III**:  $r \leq a \leq \frac{1}{2} \leq 2$ . The functional equation delivers  $\Delta(r, s) = pF(2a) - p(p+qF(2s-1)) - q(pF(2r))$ . From  $\frac{1}{2} \leq s \leq r+s = 2a \leq 1$  follows F(2a) = p+qF(4a-1) and from  $0 \leq 2a - \frac{1}{2} \leq \frac{1}{2}$  follows  $F\left(2a - \frac{1}{2}\right) = pF(4a-1)$ . Therefore  $pF(2a) = p^2 + qF\left(2a - \frac{1}{2}\right)$  whence  $\Delta(r, s) = q\left(F\left(2a - \frac{1}{2}\right) - pF(2s-1) - pF(2r)\right)$ . Since  $p \leq q$  the right side does not increase if either of the two p is changed to q. Hence  $\Delta(r, s) \geq q \max \{\Delta(2r, 2s - 1), \Delta(2s - 1, 2r)\}$ . Since we may apply the induction hypothesis either to  $2r \leq 2s - 1$  or to  $2s - 1 \leq 2r$  at least one of the two  $\Delta$  on the right is nonnegative.

**Case IV:**  $r \leq \frac{1}{2} \leq a \leq s$ . The functional equation gives  $\Delta(r,s) = pq + qF(2a-1) - pqF(2s-1) - pqF(2r)$ . From  $0 \leq 2a-1 = r+2-1 \leq \frac{1}{2}$  follows F(2a-1) = pF(4a-2) and from  $\frac{1}{2} \leq 2a-\frac{1}{2} = r+s-\frac{1}{2} \leq 1$  follows  $F\left(2a-\frac{1}{2}=p+qF(4a-2)\right)$ . Therefore  $qF(2a-1) = pF\left(2a-\frac{1}{2}\right)$  and it follows that  $\Delta(r,s) = p\left(q-p+F\left(2a-\frac{1}{2}\right)-qF(2s-1)-qF(2r)\right)$ . On the one hand if  $2s-1 \leq 2r$  the right side becomes  $p\left((q-p)\left(1-F(2r)\right)+\Delta(2s-1,2r)\right) \geq 0$ . On the other hand if  $2r \leq 2s-1$  it is  $p\left((q-p)\left(1-F(2s-1)\right)+\Delta(2r,2s-1)\right) \geq 0$ . This completes the proof.

#### 2.4 The Dubins-Savage Theorem

The bold play strategy is the optimal strategy in the subfair case  $p \leq q$ , i.e. for every other strategy  $\pi$  and every initial capital  $0 \leq x \leq 1$  we have  $F_{\pi}(x) \leq F(x)$ .

**Proof**: We consider the conditional chance  $F\left(C_{\pi,n}^*\right)$  of success if the strategy  $\pi$  is replaced by bold game after the *n*-th trial and the capital  $C_{\pi,n}^*$   $(C_0, Y_1, ..., Y_n)$  depending on the initial capital  $0 \le C_0 \le 1$  and the independently as well as identically distributed outcomes  $Y_i \in \{-1, 1\}$  in the trials  $1 \le i \le n$ . We abbreviate  $C_{\pi,n-1}^* = x$  and  $W_{\pi,n}^* = t$  so that we can write  $C_{\pi,n}^* = x + tY_n$ and  $F\left(C_{\pi,n}^*\right) = \sum_{x,t} \chi_{\{C_{\pi,n-1}^* = x, W_{\pi,n}^* = t\}} F(x + tY_n)$  where x resp. t vary over the **finite** ranges of  $\begin{array}{l} C_{\pi,n-1}^{*} \mbox{ resp. } W_{\pi,n}^{*}. \mbox{ Since } C_{\pi,n-1}^{*} \mbox{ and } W_{\pi,n}^{*} \mbox{ are } \sigma\left(Y_{1},...,Y_{n-1}\right)\mbox{-measurable and } F\left(x+tY_{n}\right) \mbox{ is } \sigma\left(Y_{n}\right)\mbox{-measurable for the now fixed (!) } s \mbox{ and } t \mbox{ in the sum by independence we obtain } E\left(F\left(C_{\pi,n}^{*}\right)\right) = \sum_{x,t} P\left(C_{\pi,n-1}^{*}=x,W_{\pi,n}^{*}=t\right) \cdot E\left(F\left(x+tY_{n}\right)\right). \mbox{ According to the preceding lemma 2.3 we have } E\left(F\left(x+tY_{n}\right)\right) \leq F\left(x\right)\mbox{if } 0 \leq x-t \leq x \leq x+t \leq 1. \mbox{ We assume that the alternative strategy } \pi \mbox{ keeps to the same capital limits as the bold game, i.e. } W_{\pi,n}^{*} \leq \min\left\{C_{\pi,n-1}^{*},1-C_{\pi,n-1}^{*}\right\} \mbox{ and consequently } C_{\pi,n}^{*} \in [0;1] \mbox{ whence } E\left(F\left(C_{\pi,n}^{*}\right)\right) \leq \sum_{x,t} P\left(C_{\pi,n-1}^{*}=x,W_{\pi,n}^{*}=t\right) \cdot F\left(x\right) = \sum_{x} P\left(C_{\pi,n-1}^{*}=x\right) \cdot P\left(C_{\pi,n-1}^{*}=x\right) \cdot F\left(x\right) = \sum_{x} P\left(C_{\pi,n-1}^{*}=x\right) \cdot P\left(C_{\pi,n-1}^{*}=x\right) \cdot F\left(x\right) = \sum_{x} P\left(C_{\pi,n-1}^{*}=x\right) \cdot P\left(C_{\pi,$ 

#### 3 Weak convergence

#### 3.1 Simple discontinuities of monotone functions

Every monotone function  $f : ]a; b[ \to \mathbb{R}$  is continuous except at a countable set of points and the discontinuity at each of such point  $c \in ]a; b[$  is simple, i.e.

$$-\infty < \sup_{a < x < c} f\left(x\right) = \lim_{n \to \infty} f\left(c - \frac{1}{n}\right) < \lim_{n \to \infty} f\left(c + \frac{1}{n}\right) = \inf_{c < x < b} f\left(x\right) < \infty$$

Notes:

1. In [4, th. 11.1] it is shown that for every (not necessarily measurable)  $f : (X; d) \to (Y; D)$  between **metric spaces** the set of **discontinuities** 

$$D_{f} = \{x \in X : \exists \epsilon > 0 : \forall \delta > 0 \exists y; z \in B_{\delta}(x) : D(f(y); f(z)) \ge \epsilon\}$$

is  $\mathcal{B}(X)$ -measurable.

2. In [2, th. 1.2] it is proved that for every real  $f : \mathbb{R} \to \mathbb{R}$  the set of jump and vertex points with existing but differing Dini derivatives

$$\left\{ D_{+}f = D^{+}f = D_{+}^{+}f \neq D_{-}^{-}f = D_{-}f = D^{-}f \right\}$$

#### is countable.

**Proof**: W.l.o.g. we assume f to be **nondecreasing** whence a < x < c < y < b implies  $-\infty < f(x) < f(c) < f(y) < \infty$  and consequently  $-\infty < \alpha = \sup_{a < x < c} f(x) \le f(c) \le \inf_{c < x < b} f(x) = \beta < \infty$ . In order to prove that  $\alpha = f(c-) = \lim_{n \to \infty} f\left(c - \frac{1}{n}\right)$  resp.  $\beta = f(c+) = \lim_{n \to \infty} f\left(c + \frac{1}{n}\right)$  we observe that the nondecreasing character of f implies that for every  $\epsilon > 0$  there is an  $m \ge 1$  such that for every  $n \ge m$  holds  $\alpha - \epsilon < f\left(c - \frac{1}{n}\right) \le \alpha$  whence follows  $f(c-) = \alpha$  and analogously  $f(c+) = \beta$ . Also we remark that a < c < x < d < b implies  $f(c+) \le f(x) \le f(d-)$ . Hence for every  $c; d \in D_f = \{x \in ]a; b[: f(x-) < f(x+)\}$  there are **rational**  $f(c-) < r_c < f(c+) < f(d-) < r_d < f(d+)$ , i.e. the map  $r: D \to \mathbb{Q}$  defined by  $r(c) = r_c$  is **injective**.

#### 3.2 Distribution functions

Every random variable  $X : \Omega \to \mathbb{R}$  on a probability space  $(\Omega; \mathcal{A}; P)$  determines a probability measure  $P_X = X \circ P$  on  $(\mathbb{R}; \mathcal{B}(\mathbb{R}))$  and according to [4, th. 3.7] a nondecreasing and right continuous distribution function  $F_X : \mathbb{R} \to [0;1]$  with existing **left limits** such that  $F_X(x) = (X \circ P)([-\infty; x]) =$  $P(X \leq x)$ . According to the preceding theorem 3.1 every distribution function has at most a **countable** number of simple discontinuities. Conversely every such distribution function  $F : \mathbb{R} \to [0;1]$  determines a unique probability measure  $P_F$  on  $(\mathbb{R}; \mathcal{B}(\mathbb{R}))$  and many possible probability spaces  $(\Omega; \mathcal{A}; P)$  with corresponding random variables X :  $\Omega \to \mathbb{R}$  such that  $F(x) = P(X \le x) = P([-\infty; x]),$ among them the **trivial random variable** X = id:  $\mathbb{R} \to \mathbb{R}$ . E.g. the **binomial distribution**  $b_{3;0,5}$  with  $b_{3;0,5}(0) = b_{3;0,5}(3) = \frac{1}{8}$  resp.  $b_{3;0,5}(1) = b_{3;0,5}(2) = \frac{3}{8}$ may be realized by three tosses of a coin as well as by the single throw of an octagonal die with corresponding labels.



#### 3.3 Expectations and distribution functions

For every random variable  $X : \Omega \to \mathbb{R}$  on a probability space  $(\Omega; \mathcal{A}; P)$  we have

1. 
$$E(X) = \int_0^\infty P(X \ge x) \, dx - \int_{-\infty}^0 P(X \le x) \, dx$$
.

In the case of a continuous distribution function  $F : \mathbb{R} \to [0, 1]$  with  $F(x) = P(X \le x)$  holds

2. 
$$E(X) = \int_0^\infty (1 - F(x)) \, dx - \int_{-\infty}^0 F(x) \, dx.$$

**Proof:** By Fubini [4, th. 8.9] we have the expectation of the **positive** part  $E(X^+) = \int X^+ dP$  $= \int t dP_{X^+}(t) = \int \int \chi_{[0 \le x \le t]}(x) dx dP_X(t) = \int \int \chi_{[0 \le x \le t]}(t) dP_X(t) dx = \int_0^\infty P(X \ge x) dx$  and in the case of a **continuous distribution function**  $F : \mathbb{R} \to [0;1]$  with  $P(X = x) = P_X(\{x\}) = P_X\left(\bigcap_{n\ge 1} x - \frac{1}{n}; x + \frac{1}{n}\right] = \lim_{n\to\infty} \left(F\left(x + \frac{1}{n}\right) - F\left(x + \frac{1}{n}\right)\right) = \lim_{n\to\infty} F\left(x + \frac{1}{n}\right) - \lim_{n\to\infty} F\left(x + \frac{1}{n}\right) = F(x) - F(x) = 0$  follows  $E(X^+) = \int_0^\infty P(X > x) dx = \int_0^\infty (1 - F(x)) dx$ . The **negative** part is computed by  $E(X^-) = \int X^- dP = \int t dP_{X^-}(t) = \int \int \chi_{[t\le x\le 0]}(x) dx dP_X(t) = \int \int \chi_{[t\le x\le 0]}(t) dP_X(t) dx = \int_{-\infty}^0 P(X \le x) dx = \int_{-\infty}^0 F(x) dx$  whence by  $E(X) = E(X^+ - X^-) = E(X^+) - E(X^-)$  follows the assertion.

#### 3.4 The primitive of a distribution function

The distribution  $P_X : \mathcal{B}(\mathbb{R}) \to [0; 1]$  of a random variable  $X : \Omega \to \mathbb{R}$  on a probability space  $(\Omega; \mathcal{A}; P)$  is  $\lambda$ -absolutely continuous iff its distribution function  $F : \mathbb{R} \to [0; 1]$  is absolutely continuous and in this case there is a probability density function  $f = \frac{dF}{d\lambda} : \mathbb{R} \to \mathbb{R}_0^+$  which is the primitive of F with  $P(X \le x) = F(x) = \int_{-\infty}^x f d\lambda$ .

#### **Proof**:

 $\Rightarrow: \text{According to } [4, \text{ def. } 9.6] \text{ for every } \epsilon > 0 \text{ there is a } \delta > 0 \text{ such that for any disjoint collection} \\ (]\alpha_i; \beta_i[)_{1 \le i \le n} \text{ of segments with overall length } \sum_{i=1}^n (\beta_i - \alpha_i) = \sum_{i=1}^n \lambda([\beta_i - \alpha_i]) = \lambda\left(\bigcup_{i=1}^n [\beta_i - \alpha_i]\right) < \delta \\ \text{holds } \sum_{i=1}^n |F(\beta_i) - F(\alpha_i)| = \sum_{i=1}^n P_X([\beta_i - \alpha_i]) = P_X\left(\bigcup_{i=1}^n [\beta_i - \alpha_i]\right) < \epsilon \text{ whence from } [2, \text{ def. } 2.7]$ 

follows the absolute continuity of F. The existence of the probability density function then is a consequence of the fundamental theorem of calculus [2, th. 12.10].

 $\Leftarrow$ : Follows at once from the **fundamental theorem of calculus** [2, th. 12.10] and the definition [4, def. 9.5] of absolute continuity with regard to  $\lambda$ .

#### 3.5 Skorohod's representation theorem

For every sequence  $(X_n)_{n\geq 1}$  of **random variables**  $X_n : \Omega \to \mathbb{R}$  on a probability space  $(\Omega; \mathcal{A}; P)$ converging **in measure** to a random variable  $X : \Omega \to \mathbb{R}$  there is a sequence  $(\varphi_n)_{n\geq 1}$  of **random variables**  $\varphi_n : ]0;1[ \to \mathbb{R}$  on the probability space  $(]0;1[;\mathcal{B}(]0;1[);\lambda)$  with **identical distributions**  $\varphi_n \circ \lambda = X_n \circ P$  with regard to the **Lebesgue measure**  $\lambda$  converging **pointwise everywhere** to a random variable  $\varphi : ]0;1[ \to \mathbb{R}$  with  $\varphi \circ \lambda = X \circ P$ .

**Proof:** With the **distribution functions**  $F_n; F : \mathbb{R} \to [0;1]$  defined by  $F_n(x) = P_n(X_n \le x)$  resp.  $F(x) = P(X \le x)$  we define the **quantile function**  $\varphi_n(y) = \inf \{x \in \mathbb{R} : y \le F_n(x)\}$  resp.  $\varphi(y) = \inf \{x \in \mathbb{R} : y \le F(x)\}$  such that due to the **nondecreasing** character and the **right continuity** of F we have  $\varphi(y) \le x \Leftrightarrow \forall \epsilon > 0 : y \le F(x + \epsilon) \Leftrightarrow y \le F(x) = P(X \le x)$  whence  $\lambda(\varphi \le x) = F(x)$ , i.e.  $X \circ P = \varphi \circ \lambda$  and likewise  $\lambda(\varphi_n \le x) = F_n(x)$ , i.e.  $X_n \circ P = X_n \circ \lambda$ . In particular  $\varphi(y)$  is the smallest x such that  $y \le F(x)$  whence  $(\varphi \circ F)(x) \le x$  with **equality** in the case of F strictly increasing in x. Conversely  $y \le (F \circ \varphi)(y)$  with **equality** in the case of F being **left continuous** in

 $\varphi(y)$ , i.e.  $P(\{\varphi(y)\}) = 0$ : The quantile function  $\varphi$  is again **nondecreasing** and **right continuous**; in the strictly increasing and continuous case it is the **inverse** of the distribution function F. It remains to show that  $\lim_{n\to\infty} \varphi_n(y) = \varphi(y)$  for every  $y \in [0; 1]$ :

According to the note in [4, th. 2.2] there are at most countably many  $x \in \mathbb{R}$  with P(X = x) > 0 such that every interval  $]a - \epsilon; a[$  contains an x with P(X = x) = 0.

Consequently for every  $\epsilon > 0$  there is an x with P(X = x) = 0 and  $\varphi(y) - \epsilon < x < \varphi(y)$  such that F(x) < y. Since F is **continuous** in x we have  $\lim_{n \to \infty} F_n(x) = F(x)$  so that for n large enough  $F_n(x) < y$  holds whence  $\varphi(y) - \epsilon < x < \varphi_n(y)$  and consequently  $\liminf_{n \to \infty} \varphi_n(y) \ge \varphi(y)$ .

Analogously for every y' > y exists an x with P(X = x) = 0 and  $\varphi(y') < x < \varphi(y') + \epsilon$  so that  $y < y' \le (F \circ \varphi)(y') \le F(x)$ . Since F is **continuous** in x we have  $\lim_{n \to \infty} F_n(x) = F(x)$  so that for n large enough  $y \le F_n(x)$  holds whence  $\varphi_n(y) \le x < \varphi(y') + \epsilon$  and consequently  $\limsup_{n \to \infty} \varphi_n(y) \le \varphi(y')$  for y < y'. Hence  $\lim_{n \to \infty} \varphi_n(y) = \varphi(y)$  if  $\varphi$  is **continuous** at y. Since  $\varphi$  is nondecreasing on ]0; 1[ it has at most countably many points  $y_k$  with  $\lim_{n \to \infty} \varphi(y_k - \frac{1}{n}) < \varphi(y_k)$  and we may simply define  $\varphi(y_k) = \varphi(y_k) = 0$  to obtain  $\lim_{n \to \infty} \varphi_n(y) = \varphi(y)$  for every  $y \in ]0; 1[$  without changing their distribution.

#### 3.6 Convergence in measure and in distribution

A sequence  $(X_n)_{n\geq 1}$  of **random variables**  $X_n : \Omega \to \mathbb{R}$  on a measure space  $(\Omega; \mathcal{A}; P)$  **converging** in measure to a random variable  $X : \Omega \to \mathbb{R}$  also **converges in distribution** to X, i.e. at every **point of continuity** t the **distribution functions**  $F_n$  defined by  $F_n(t) = P(X_n \le x)$  converge to F defined by  $F(x) = P(X \le x)$ :  $\lim_{n \to \infty} F_n(x) = F(x)$ . **Proof**: For every  $\epsilon > 0$  we have  $\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$  and also for every  $n \ge 1$  the inequality  $P(X \le x - \epsilon) - P(|X - X_n| \ge \epsilon)$  $\le P(X_n \le x) \le P(X \le x + \epsilon) + P(|X_n - X| \ge \epsilon)$ . For  $n \to \infty$  $\infty$  and then  $\epsilon \to 0$  we obtain  $P(X < x) \le \liminf_{n \to \infty} P(X_n \le x)$  $\le \limsup_{n \to \infty} P(X_n \le x) \le P(X \le x)$ . Hence for every point  $x \in \mathbb{R}$  of (left) continuity with  $P_X(\{x\}) = P_X\left(\bigcap_{n\ge 1} x - \frac{1}{n}; x\right]\right)$  $\stackrel{2.2.3}{=} \lim_{n \to \infty} P_X\left(\left[x - \frac{1}{n}; x\right]\right) = \lim_{n \to \infty} \left(F(x) - F\left(x - \frac{1}{n}\right)\right) = 0$  we have  $\lim_{n \to \infty} F_n(x) = \lim_{n \to \infty} P(X_n \le x) = P(X \le x) = F(x).$ 



#### 3.7 The weak law of large numbers

For the mean values  $\frac{1}{n}S_n = \frac{1}{n}\sum_{k=1}^n X_k$  of every sequence  $(X_k)_{k\geq 1}$  of independent, identically distributed and integrable random variables with expectations  $\mu = E(X_1)$  the following statements concerning their asymptotic behaviour hold:

- 1. *P*-almost sure convergence:  $\lim_{n\to\infty} \frac{1}{n}S_n = \mu$  due to the strong law of large numbers 1.12.
- 2. Convergence in measure:  $\lim_{n\to\infty} P\left(\left|\frac{1}{n}S_n \mu\right| \le \epsilon\right) = 0$  for every  $\epsilon > 0$  due to Lebesgue's convergence theorem [4, th. 4.11]
- 3. Weak convergence:  $\lim_{n \to \infty} F_n(x) = \lim_{n \to \infty} P\left(\frac{1}{n}S_n \le t\right) = \begin{cases} 1 & \text{for } x > \mu \\ 0 & \text{for } x < \mu \end{cases} = P\left(\lim_{n \to \infty} \frac{1}{n}S_n \le t\right) = F(x) \text{ for every point of continuity } x \ne \mu \\ \text{due to the preceding theorem 3.6.} \end{cases}$

Note: Concerning the asymptotic behavoiur at the **point of discontinuity**  $x = \mu$  the strong law of large numbers asserts that *P*-a.e.  $\lim_{n\to\infty} \frac{1}{n}S_n = \mu$  whence  $P\left(\lim_{n\to\infty} \frac{1}{n}S_n \leq \mu\right) = 1$ . Choosing a symmetric distribution e.g.  $P(X_k = 0) = P(X_k = 2\mu) = \frac{1}{2}$  we obtain  $P(X_k \leq \mu) = P(X_k \geq \mu) = \frac{1}{2}$  whence  $P\left(\lim_{n\to\infty} \frac{1}{n}S_n \leq \mu\right) = \frac{1}{2}$  for every  $n \geq 1$  such that  $F_n(\mu)$  does not converge to  $F(\mu)$ .

#### 3.8 The Helly-Bray theorem

For probability measures  $P_n; P : \mathcal{B}(\mathbb{R}) \to [0;1]$  with distribution functions  $F_n; F : \mathbb{R} \to [0;1]$ defined by  $F_n(x) = P_n(]-\infty;x]$  resp.  $F(x) = P(]-\infty;x]$  and the linear functionals  $\Lambda_n; \Lambda \in \mathcal{C}_b^*(\mathbb{R};\mathbb{R})$  defined in [3, def. 5.8] by  $\Lambda_n f = \int f dP_n$  resp.  $\Lambda f = \int f dP$  for  $f \in \mathcal{C}_b(\mathbb{R};\mathbb{R})$  the following three conditions are equivalent:

- 1.  $(P_n)_{n\geq 1}$  converges in distribution to P, i.e.  $\lim_{n\to\infty} F_n(x) = F(x)$  at every continuity point  $x \in \mathbb{R}$  of F.
- 2.  $(P_n)_{n\geq 1}$  weakly converges to P, i.e.  $\lim_{n\to\infty} \int f dP_n = \int f dP$  for every bounded and continuous  $f \in \mathcal{C}_b(\mathbb{R};\mathbb{R})$ .
- 3.  $(\Lambda_n)_{n>1}$  weakly\* converges to  $\Lambda$ .
- 4.  $\lim_{n \to \infty} P_n(A) = P(A)$  for every  $\lambda$ -continuity set  $A \in \mathcal{B}(\mathbb{R})$  with  $\lambda(\delta A) = 0$ .

Note: The parts 2. - 4. are a corollary to the **Portmanteau theorem** [4, th. 11.5].

#### **Proof**:

1.  $\Rightarrow$  2. : According to **Skorohod's theorem** 3.5 for the **quantile functions**  $\varphi_n; \varphi : ]0; 1[ \to \mathbb{R}$  with  $P_n = \varphi_n \circ \lambda$  resp.  $P = \varphi \circ \lambda$  and every 0 < y < 1 holds  $\lim_{n \to \infty} (f \circ \varphi_n) (y) = (f \circ \varphi) (y)$  whence by the **mapping theorem** [4, th. 11.7] follows  $\lim_{n \to \infty} (f \circ \varphi_n) (y) = (f \circ \varphi) (y)$  at every **point of continuity**  $y \in ]0; 1[$ , hence  $\lambda$ -a.e. Excluding the **countable**  $\lambda$ -null set of discontinuities according to 3.1 we infer  $\lambda$ -a.e.  $\lim_{n \to \infty} f \circ \varphi_n = f \circ \varphi$  whence by the **dominated convergence** theorem [4, th. 5.14] follows  $\lim_{n \to \infty} \int f dP_n = \lim_{n \to \infty} \int f d\lambda_{\varphi_n} = \lim_{n \to \infty} \int (f \circ \varphi_n) d\lambda = \lim_{n \to \infty} \int (f \circ \varphi) d\lambda = \lim_{n \to \infty} \int f d\lambda_{\varphi} = \int f dP.$ 

2.  $\Rightarrow$  1. : For x < y consider the function  $f : \mathbb{R} \rightarrow [0; 1]$  defined by

$$f(t) = \begin{cases} 1 & \text{for } t \le x \\ \frac{y-t}{y-x} & \text{for } x \le t \le y \\ 0 & \text{for } y \le t \end{cases}$$

Since  $\chi_{]-\infty;x]} \leq f \leq \chi_{]-\infty;y]}$  we have  $\limsup_{n\to\infty} F_n(x) = \limsup_{n\to\infty} \int \chi_{]-\infty;x]} dP_n \leq \lim_{n\to\infty} \int f dP_n = \int f dP = \int \chi_{]-\infty;y]} dP = F(y)$  and since this is true for every y > x we obtain  $\limsup_{n\to\infty} F_n(x) \leq F(x)$ . Similarly for y < x holds  $F(y) \leq \liminf_{n\to\infty} F_n(x)$  and hence  $\lim_{n\to\infty} F\left(x - \frac{1}{n}\right) \leq \liminf_{n\to\infty} F_n(x)$ , i.e. convergence at every point of continuity.

1.  $\Leftrightarrow$  3. : Follows directly from the definition of **weak\* convergence** in [3, def. 5.8].

1.  $\Rightarrow$  4. : Follows directly from [4, th. 11.7] since according to the hypothesis  $f = \chi_A$  is  $\lambda$ -a.e. continuous.

4.  $\Rightarrow$  1. : Obvious since  $\delta(] - \infty; t]) = \{t\}.$ 

#### 3.9 Helly's selection theorem

Every tight sequence  $(P_n)_{n \in \mathbb{N}}$  of probability measures on the real numbers  $P_n : \mathcal{B}(\mathbb{R}) \to [0;1]$ includes a subsequence weakly converging to a probability measure  $P : \mathcal{B}(\mathbb{R}) \to [0;1]$  iff it is tight, i.e. for every  $\epsilon > 0$  exists numbers  $a_{\epsilon} < b_{\epsilon} \in \mathbb{R}$  such that  $P_n(]a_{\epsilon}; b_{\epsilon}]) = F_n(b_{\epsilon}) - F_n(a_{\epsilon}) > 1 - \epsilon$ for every  $n \in \mathbb{N}$ .

Note: This is a corollary to Prohorov's theorem [4, th. 11.10].

**Proof**: With the **distribution functions**  $F_n : \mathbb{R} \to [0; 1]$  defined as usual by  $F_n(x) = P_n(]-\infty; x]$ ) according to the **diagonal principle** [4, th. 11.8] there is a sequence  $(n_k)_{k \in \mathbb{N}}$  such that the limit  $G(r) = \lim_{k \to \infty} F_{n_k}(r)$  exists for every rational  $r \in \mathbb{Q}$ . Then  $F : \mathbb{R} \to [0; 1]$  with  $F(x) = \inf \{G(r) : r > x\}$ is **nondecreasing** and obviously **right continuous**. If F is continuous at  $x \in \mathbb{R}$  for every  $\epsilon > 0$  there is an y < x such that  $F(y) > F(x) - \epsilon$ . Furthermore there are rational  $r, s \in \mathbb{Q}$  with y < r < x < ssuch that  $F(x) - \epsilon < F(r) \le F(x) \le F(s) < F(x) + \epsilon$  whence  $F(x) - \frac{\epsilon}{2} < F_{n_k}(r) \le F_{n_k}(x) \le$  $F_{n_k}(s) \le F(x) + \frac{\epsilon}{2}$  for every  $k \ge K$  and some  $K \in \mathbb{N}$ . Thus  $F(x) = \lim_{k \to \infty} F_{n_k}(x)$  at every point x of continuity of F. Due to the **tightness hypothesis** for every  $\epsilon > 0$  we can find **continuity points** a < b such that  $F(b) - F(a) = \lim_{n \to \infty} (F_n(b) - F_n(a)) \ge 1 - \epsilon$ . On account of the nondecreasing character of F follows  $\lim_{m \to \infty} (F(m)) - F(-m) \ge 1$  and since  $0 \le F(x) \le 1$  for all  $x \in \mathbb{R}$  we arrive at  $\lim_{m \to \infty} F(m) = 1$  resp.  $\lim_{m \to \infty} F(-m) = 0$ .

#### 3.10 Approximation of the Binomial distribution

The random variable  $S_n : \Omega \to \mathbb{N}$  denotes the number of red balls when  $n \ge 1$  balls are drawn without replacement from an urn containing M red balls and N - M black ones. Its distribution is hypergeometric with

$$P(S_n = k)$$

$$= H_{n,M,N}(k)$$

$$= \frac{\binom{M}{k} \cdot \binom{N-M}{n-k}}{\binom{N}{n}}$$



$$= \binom{n}{k} \cdot \underbrace{\frac{M \cdot \ldots \cdot (M - K)}{N \cdot \ldots \cdot (N - K)}}_{\rightarrow p^{k}} \cdot \underbrace{\frac{(N - M) \cdot \ldots \cdot (N - M - n - k + 1)}{(N - K - 1) \cdot \ldots \cdot (N - n + 1)}}_{\rightarrow (1 - p)^{n - k}}$$

and for large N the replacement becomes irrelevant such that the hypergeoemtric distribution converges in to the **Binomial distribution:**  $\lim_{N\to\infty} H_{n,M,N}(k) = B_{n,p}(k)$  with  $p = \frac{M}{N}$ .

#### 3.11 Approximation of the Poisson distribution

For identically and independently distributed random variables  $X_i : \Omega \to \{0, 1\}$  with  $P(X_i = 1)$  and  $P(X_i = 0) = 1 - p$  and  $S_n = \sum_{i=1}^n X_i$  we have the **Binomial distribution** 

$$P(S_n = k) = B_{n,k}(k) = {\binom{n}{k}} p^k (1-p)^{n-k}$$

. For  $\lambda = n \cdot p$  and fixed k the limit

$$\lim_{n \to \infty} B_{n,k}(k) = \lim_{n \to \infty} {\binom{n}{k}} {\left(\frac{\lambda}{n}\right)^k} {\left(1 - \frac{\lambda}{n}\right)^{n-k}}$$
$$= \lim_{n \to \infty} \frac{\lambda^k}{k!} \left(1 - \frac{\lambda}{n}\right)^n \cdot \frac{1}{\left(1 - \frac{\lambda}{n}\right)^k} \cdot \prod_{i=0}^{k-1} \left(1 - \frac{i}{n}\right)$$
$$= \frac{\lambda^k \cdot e^\lambda}{k!} \cdot \lim_{n \to \infty} \prod_{i=0}^{k-1} \frac{1 - \frac{i}{n}}{1 - \frac{\lambda}{n}}$$
$$= \frac{\lambda^k \cdot e^\lambda}{k!}$$
$$= P_\lambda(k)$$



is the **Poisson distribution**. By **Scheffés theorem** [4, p. 9.15] the limit extends to every measurable set whence we obtain **convergence in distribution**.

#### 3.12 The exponential distribution

We define the **independently and identically distributed** random variables  $X_t : \Omega \to \{0; 1\}$  by  $X_t(\omega) = 1$ if an event (e.g. the arrival of a customer at a queue or the call at a telephone exchange) occurs at time t > 0 with  $P(X_t = 1) = \alpha$ . For reasons of compatibility we assume that P-a.s. no event occurs at the start:  $P(X_0 = 0) = 1$ . Also the number of events in a finite time interval shall always be finite:  $\forall \omega \in \Omega \ \forall t > 0$ :  $\operatorname{card} \{0 \leq \tau \leq t : X_t(\omega) = 1\} < \infty$ . Hence we can define the **sample path**  $N_t : \Omega \to \mathbb{N}$  by the finite sum  $N_t(\omega) = \sum_{\tau=0}^{t} \sum_{\tau=0}^$ 



 $X_{\tau}$ . The waiting times  $\Delta T_n : \Omega \to \mathbb{R}^+_0$  between the n-1 th and the *n* th event are  $\Delta T_n = T_n - T_{n-1}$  for  $n \ge 1$  with

the arrival times  $T_n = \inf \{\tau \ge 0 : N_\tau = n\}$  resp.  $T_0 = 0$  are also identically dristributed since  $P(\Delta T_n > s) = P\left(\bigcap_{T_{n-1} \le \tau \le T_{n-1}+s} \{X_\tau = 0\}\right) = P\left(\bigcap_{0 \le \tau \le s} \{X_\tau = 0\}\right) = P(\Delta T_1 > s)$ . Since the events  $\{\Delta T_n > s\} = \bigcap_{T_{n-1} \le \tau \le T_{n-1}+s} \{X_\tau = 0\}$  and  $\bigcap_{T_{n-1}+s < \tau \le T_{n-1}+s+t} \{X_\tau = 0\}$  are independent and  $P(X_0 = 0) = 1$  there is no memory effect, i.e.

$$P\left(\Delta T_n > s+t\right) = P\left(\bigcap_{0 \le \tau \le s+t} \{X_{\tau} = 0\}\right)$$
$$= P\left(\left(\bigcap_{\tau \le s} \{X_{\tau} = 0\}\right) \cap \left(\bigcap_{s < \tau \le s+t} \{X_{\tau} = 0\}\right)\right)$$
$$= P\left(\bigcap_{\tau \le s} \{X_{\tau} = 0\}\right) \cdot P\left(\bigcap_{s < \tau \le s+t} \{X_{\tau} = 0\}\right)$$
$$= P\left(\bigcap_{\tau \le s} \{X_{\tau} = 0\}\right) \cdot P\left(\bigcap_{0 < \tau \le t} \{X_{\tau} = 0\}\right)$$
$$= P\left(\bigcap_{\tau \le s} \{X_{\tau} = 0\}\right) \cdot P\left(\bigcap_{0 \le \tau \le t} \{X_{\tau} = 0\}\right)$$
$$= P\left(\Delta T_n > s\right) \cdot P\left(\Delta T_n > t\right)$$

This is the **functional equation** of the **exponential function** and since  $0 \le P \le 1$  with scaling factor  $P(\Delta T_n > 0) = P(\Delta T_1 > 0) = P(X_0 = 0) = 1$  the exponent must be negative whence  $P(\Delta T_n > t) = e^{-\alpha t}$ . Also we have  $\lim_{t\to 0} \frac{1}{t}P\left(\bigcup_{\tau\le t} \{X_t = 1\}\right) = \lim_{t\to 0} \frac{1}{t}P(\Delta T_n \le t) = \lim_{t\to 0} \frac{1}{t}(1 - e^{-\alpha t}) = \frac{dF}{dt}(0) = \alpha$ . Note that the probability of an event occurring at a **fixed time** is  $P(X_t = 1) = 0$ . The **distribution function**  $F: \mathbb{R}^+_0 \to [0; 1]$  for the waiting times satisfies the functional equation  $1 - F(s+t) = (1 - F(s)) \cdot (1 - F(t))$  with the explicit formula

$$F(t) = P(\Delta T_n \le t) = \begin{cases} 0 & \text{if } t \le 0\\ 1 - e^{-\alpha t} & \text{if } t > 0 \end{cases}$$

and mean waiting time

$$E\left(\Delta T\right) = \int_{\Omega} \Delta T dP = \int_{[0;\infty[} t dF\left(t\right) = \int_{[0;\infty[} t \cdot \frac{dF}{d\lambda} d\lambda\left(t\right) = \int_{[0;\infty[} \alpha t \cdot e^{-\alpha t} dt = \frac{1}{\alpha}.$$

#### 3.13 The Poisson process

Every stochastic process  $N : \mathbb{R}_0^+ \times \Omega \to \mathbb{N}$  defined by the measurable number  $N_I(\omega) \in \mathbb{N}$  of events or increments occurring in the time intervall  $I \subset \mathbb{R}_0^+$  and in particular  $N_t = N_{[0,t]}$  with arrival times  $T_n(\omega) = \inf \{\tau \ge 0 : N_\tau(\omega) = n\}$  and waiting times  $\Delta T_n = T_n - T_{n-1}$  satisfying the following conditions:

- 1. start  $N_0(\omega) = 0$  for every  $\omega \in \Omega$
- 2. nondecreasing càdlàg sample paths  $t \mapsto N_t(\omega)$  for every  $\omega \in \Omega$
- 3. *P*-a.s. single events:  $P\left(N_t \sup_{s < t} N_s \le 1\right) = 1$
- 4. *P*-a.s. no accumulations:  $P(N_t N_s < \infty) = 1$  for every s < t
- 5. independent occurrence  $P(N_{I\cup J} = 0) = P(N_I = 0) \cdot P(N_J = 0)$ for any disjoint intervals  $I, J \subset \mathbb{R}^+_0$
- 6. identically distributed occurrence  $P(N_I = 0) = P(N_J = 0)$ for any disjoint intervals  $I, J \subset \mathbb{R}^+_0$  of equal length

has

- 1. Poisson distributed increments with  $P(N_t = n) = e^{-\alpha t} \cdot \frac{(\alpha t)^n}{n!}$  and
- 2. Exponentially distributed waiting times with  $P(\Delta T_n > t) = e^{-\alpha t}$ .

**Proof**: Note that we **assume** the **existence** and **measurability** of the random variables  $N_t$  on a suitable **measure space**  $(\mathbb{R}^+_0 \times \Omega; \mathcal{F}; P)$ . The construction of the corresponding  $\sigma$ -algebra  $\mathcal{F}$  requires **Kolmogorov's existence theorem** and is not the subject of this proof.

**Proof of 1.:** Let  $p(t) = P(N_t \ge 1)$ , q(t) = 1 - p(t) and q = q(1). From 4. and 5. follows  $q\left(\frac{k}{n}\right) = q^{k/n}$  for every rational  $\frac{k}{n} > 0$ . Due to 2. this relation extends to real t > 0 since  $q(t) = P(N_t = 0) = P(N_t < 1) = P\left(\inf_{k/n > t} N_{k/n} < 1\right) = P\left(\bigcup_{k/n > t} \left\{N_{k/n} < 1\right\}\right) = \sup_{k/n > t} P\left(N_{k/n} < 1\right) = 1$  for every t > 0 whence  $P\left(N_{s,s+t} = \infty\right) = 1$  contrary to 4. Hence we obtain  $P\left(\Delta T_n > t\right) = P\left(N_{s,s+t} = 0\right) = e^{-\alpha t}$  with  $\alpha = -\ln(q)$ .

**Proof of 2.:** Let  $N_{n,t}(\omega) = \sum_{i=1}^{n} \chi_{N_{I_i} \ge 1}$  the number of intervals  $I_i = \left\lfloor \frac{t(i-1)}{n}; \frac{ti}{n} \right\rfloor$  with length  $\frac{t}{n}$  and  $P(N_{I_i} \ge 1) = 1 - e^{-\frac{\alpha t}{n}}$  in a disjoint partition of ]0; 1] with at least an occurrence. Owing to 5. and 6. we have  $P(N_{n,t} = k) = \binom{n}{k} \left(1 - e^{-\frac{\alpha t}{n}}\right)^k \cdot \left(e^{-\frac{\alpha t}{n}}\right)^{n-k}$  whence the **Poisson approximation** 3.11 yields  $\lim_{n \to \infty} P(N_{n,t} = k) = \lim_{n \to \infty} \binom{n}{k} \left(1 - e^{-\alpha \frac{t}{n}}\right)^k \cdot \left(e^{-\alpha \frac{t}{n}}\right)^{n-k} = \lim_{n \to \infty} \binom{n}{k} \left(\frac{\alpha t}{n}\right)^k \left(1 - \frac{\alpha t}{n}\right)^{n-k} = P_{\alpha t}(k)$ . According to 4. for every t > 0 there is an  $n \ge 1$  such that the probability for the event

 $P_{\alpha t}(k)$ . According to 4. for every t > 0 there is an  $n \ge 1$  such that the probability for the event  $D_{t,n} = \bigcap_{\Delta T_k \le t} \{\Delta T_k > \frac{t}{n}\}$  of every waiting time between two events in the interval ]0;t] exceeding  $\frac{t}{n}$  is  $P(D_{t,n}) = 1$ . Hence the sequence  $(D_{t,n})_{n\ge 1}$  of cases  $D_{t,n} = \bigcap_{\Delta T_k \le t} \{\Delta T_k > \frac{t}{n}\} \subset \Omega$  is increasing with  $\lim_{n\to\infty} P(D_{t,n}) = P(\bigcup_{n\ge 1} D_{t,n}) = 1$ . Since  $N_{n,t}(\omega) = N_t(\omega)$  for every  $\omega \in D_{t,n}$  we have  $P(N_{n,t} \ne N_t) = 1 - P(D_{n,t})$  whence P-a.e.  $\lim_{n\to\infty} N_{n,t} = N_t$ . By Lebesgue's convergence theorem [4, p. 4.11], theorem 3.6 and Helly-Bray 3.8.2 we infer  $P(N_t = k) = \lim_{n\to\infty} P(N_{n,t} = k) = P_{\alpha t}(k)$ .



#### 3.14 Characteristic functions of independent random variables

The characteristic function of a real random variable  $X : \Omega \to \mathbb{R}$  is the Fourier transform  $\hat{\varphi}_X(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \varphi_X(x) \cdot e^{-ix\xi} dx = \frac{1}{\sqrt{2\pi}} \int e^{-ix\xi} dP_X = \frac{1}{\sqrt{2\pi}} E\left(e^{-iX\xi}\right)$  of its probability density function  $\varphi_X = \frac{dP_X}{d\lambda}$  according to [2, p. 3.6]. The properties of the Fourier transform translate into the following equations for characteristic functions:

1. 
$$\hat{\varphi}_{X/\sigma}(\xi) = \sigma \cdot \hat{\varphi}_X(\sigma\xi)$$
 from [2, p. 3.8.2]  
2.  $\hat{\varphi}_{X+\mu}(\xi) = e^{-i\mu t} \cdot \hat{\varphi}_X(\xi)$  from [2, p. 3.8.3]  
3.  $(x^n \cdot \varphi)^{\wedge}(\xi) = i^n \frac{\delta^n \hat{\varphi}}{\delta \xi^n}(\xi)$  for  $x^n \varphi \in L^1$  from [2, p. 3.8.6]

For **independent** random variables X, Y the **exponentials**  $e^{-iX\xi}$ ,  $e^{-iY\xi}$  are again **independent** for every  $\xi \in \mathbb{R}$  such that from 1.5 and [2, p. 3.8.4] we obtain

4. 
$$\hat{\varphi}_{X+Y}(\xi) = \frac{1}{\sqrt{2\pi}} E\left(e^{-iX\xi}\right) \cdot E\left(e^{-iY\xi}\right) = \sqrt{2\pi} \cdot \hat{\varphi}_X(\xi) \cdot \hat{\varphi}_Y(\xi) = \left(\varphi_X * \varphi_Y\right)^{\wedge}(\xi)$$

Due to 3.14.3 the *n*-th **moments**  $E(X^n) = \int x^n \cdot \varphi(x) dx$  are of prominent interest in the **Taylor** expansion of probability density functions used in the proof of the central limit theorem 3.20. Due to [4, p. 6.6.1] the *k*-th moments exist for all  $k \leq n$  if the *n*-th absolute moment  $E(|X|^n) < \infty$  is finite. Obviously for the **normal density** all moments are finite so that integrating by parts we obtain E(X) = 0,  $E(X^k) = \frac{1}{\sqrt{2\pi}} \int x^k \cdot e^{-x^2/2} dx = \frac{k-1}{\sqrt{2\pi}} \int x^{k-2} \cdot e^{-x^2/2} dx = (k-1) \cdot E(X^{k-2})$  for all  $k \geq 2$  whence  $E(X^{2k}) = 1 \cdot 3 \cdot ... \cdot (2k-1)$  and  $E(X^{2k+1}) = 0$ .

#### 3.15 Laplace transforms and moment generating functions

The moment generating function of a real random variable  $X : \Omega \to \mathbb{R}$  is the Laplace transform  $L\varphi_X : U \to \mathbb{C}$  of its probability density function  $\varphi_X = \frac{dP_X}{d\lambda}$  defined by  $L\varphi_X(\xi) = \int_{\mathbb{R}} \varphi_X(x) \cdot e^{x\xi} dx = \int e^{X\xi} dP = E(e^{X\xi})$  for every  $\xi \in U \subset \mathbb{C}$  provided that the integral is finite. The Fourier transform is a special case of the Laplace transform with imaginary  $\xi \in i\mathbb{R}$ . For  $\operatorname{Re}\xi \geq 0$  we have  $\int_{\mathbb{R}^-} \varphi_X(x) \cdot e^{x\xi} dx < \infty$  and for  $0 < \operatorname{Re}\xi_1 < \operatorname{Re}\xi_2$  holds  $\left|\int_{\mathbb{R}^+} \varphi_X(x) \cdot e^{x\xi_1} dx\right| < \left|\int_{\mathbb{R}^+} \varphi_X(x) \cdot e^{x\xi_2}\right| dx$  whence  $L\varphi_X(\xi) < \infty$  for  $0 \leq \operatorname{Re}\xi \leq \operatorname{Re}\xi_0$  and since the analogous estimates hold for  $\operatorname{Re}\xi \leq 0$  the integral converges for  $|\operatorname{Re}\xi| \leq \xi_0$  for some  $\xi_0 \geq 0$ . As the discrete probability measure  $P : \mathcal{P}(\mathbb{Z}) \to [0; 1]$  with  $P(z) = \frac{\pi^2}{12z^2}$  for  $z \neq 0$  and P(0) = 0 shows the area of convergence may actually be restricted to the **imaginary axis**, i.e. the Fourier transform.

In the case of convergence in the strip { $|\text{Re}\xi| \leq \xi_0$ } for some  $\xi_0 > 0$  we have an  $P_X$ -integrable majorant  $e^{x\xi_0} + e^{-x\xi_0}$  for every  $|X^k| \leq \sum_{k\geq 0} \frac{|\xi|^k}{k!} |X^k| = e^{|x\xi|}$  such that all moments  $E(X^k) < \infty$  exist and the **dominated convergence theorem** [4, p. 5.14] gives

$$L\varphi_X(\xi) = \int e^{X\xi} dP = \int \sum_{k\geq 0} \frac{(X\xi)^k}{k!} dP = \sum_{k\geq 0} \frac{E\left(X^k\right)}{k!} \xi^k.$$

By the **Taylor expansion** [2, p. 1.13] we conclude that  $\frac{d^k L \varphi_X}{d\xi^k}(0) = E(X^k)$ . Furthermore the measure  $P_{X_{\xi}}$  defined by  $P(X_{\xi} < y) = \int_{\{X < y\}} \frac{e^{\xi X}}{L \varphi_X(\xi)} dP = \int_{-\infty}^{y} \frac{e^{\xi x} \cdot \varphi_X(x)}{L \varphi_X(\xi)} dx$  has the Laplace transform  $L \varphi_{X_{\xi}}(\eta) = \int e^{\eta x} \cdot \frac{e^{\xi x} \cdot \varphi_X(x)}{L \varphi_X(\xi)} dx = \frac{L \varphi_X(\xi + \eta)}{L \varphi_X(\xi)}$  whence  $\frac{1}{L \varphi_X(\xi)} \cdot \frac{d^k L \varphi_X}{dx^k}(\xi) = \frac{d^k L \varphi_X_{\xi}}{dx^k}(0) = E(X_{\xi}^k) = \int \frac{x^k \cdot e^{\xi x} \cdot \varphi_X(x)}{L \varphi_X(\xi)} dx$ . Thus we obtain

$$\frac{d^{k}L\varphi_{X}}{dx^{k}}\left(\xi\right) = \int X^{k} \cdot e^{\xi X} dP = \int x^{k} \cdot e^{\xi x} \cdot \varphi\left(x\right) dx \text{ for } |\operatorname{Re}\xi| \le \xi_{0}$$

#### 3.16 Moments and the characteristic function

For a real random variable  $X : \Omega \to \mathbb{R}$  with k-th absolute moments  $E(|X|^k) < \infty$  and  $\xi \in \mathbb{R}$  we have

1. 
$$\left| \hat{\varphi}_X\left(\xi\right) - \sum_{k=0}^n \frac{E(X^k)}{k!} \left(i\xi\right)^k \right| \le E\left( \min\left\{ \frac{|\xi X|^{n+1}}{(n+1)!}; \frac{2|\xi X|^n}{n!} \right\} \right).$$
  
2.  $\frac{d^k}{dx^k} \hat{\varphi}_X\left(\xi\right) = E\left( (iX)^k \cdot e^{i\xi X} \right)$ , in particular  $\frac{d^k}{dx^k} \hat{\varphi}_X\left(0\right) = i^k E\left(X^k\right)$ 

3. In the case of a **finite Laplace transform**  $L\varphi_X(r) = \sum_{k\geq 0} \frac{E(X^k)}{k!} r^k < \infty$  for some r > 0 the random variable X is **uniquely determined** by its moments  $E(X^k)$  for  $k \geq 1$ .

#### **Proof**:

**1.**: An integration by parts [2, p. 1.5] of the remainder of the Taylor expansion [2, p. 2.2] for the complex valued exponential function yields

$$e^{ix} = \sum_{k=0}^{n} \frac{(ix)^{k}}{k!} + \frac{i^{n+1}}{n!} \int_{0}^{x} (x-t)^{n} e^{it} dt$$
$$= \sum_{k=0}^{n} \frac{(ix)^{k}}{k!} + \frac{i^{n}}{(n-1)!} \int_{0}^{x} (x-t)^{n-1} \left(e^{it} - 1\right) e^{it} dt$$

whence

$$\left| e^{ix} - \sum_{k=0}^{n} \frac{(ix)^{k}}{k!} \right| \le E\left( \min\left\{ \frac{|x|^{n+1}}{(n+1)!}; \frac{2|x|^{n}}{n!} \right\} \right)$$

so that the assertion follows from the definition of the Fourier transform [2, p. 4.6].

**2.**: According to 1. and considering E(E(X)) = E(X) we have

$$\begin{aligned} \left| \frac{\hat{\varphi}_X \left(\xi + h\right) - \hat{\varphi}_X \left(\xi\right)}{h} - E\left(iXe^{i\xi X}\right) \right| &= \left| \frac{1}{h} E\left(e^{i\xi X} \cdot \left(e^{ihX} - 1 - ihX\right)\right) \right| \\ &\leq \frac{1}{|h|} \cdot E\left( \left|e^{ihX} - 1 - ihX\right| \right) \\ &\leq \frac{1}{|h|} E\left(\min\left\{\frac{|hX|^2}{2}; \frac{2|hX|}{1}\right\}\right) \\ &= E\left(\min\left\{\frac{1}{2}|h| \cdot |X|^2; 2|X|\right\}\right) \end{aligned}$$

With the majorant 2|X| for  $h \to 0$  by **dominated convergence** [4, p. 5.14] we obtain  $\frac{d}{d\xi}\hat{\varphi}_X(\xi) = E\left(iXe^{i\xi X}\right)$ . Repeating this argument inductively proves the assertion for  $k \leq n$  with  $E(X^n) < \infty$ .

**3.**: For any  $\xi < r$  there is a  $k_0 \ge 1$  such that  $2k\xi^{2k-1} < r^{2k}$  for  $k \ge k_0$ . Since  $|x|^{2k-1} \le 1 + |x|^{2k}$  for every  $x \in \mathbb{R}$  we have

$$\frac{E\left(|X|^{2k-1}\right)\cdot\xi^{2k-1}}{(2k-1)!} \le \frac{\xi^{2k-1}}{(2k-1)!} + \frac{E\left(|X|^{2k}\right)\cdot\xi^{2k}}{(2k-1)!} \le \frac{\xi^{2k-1}}{(2k-1)!} + \frac{E\left(|X|^{2k}\right)\cdot r^{2k}}{(2k)!}$$

such that because of  $\sum_{k\geq 0} \frac{E(X^k)}{k!} r^k < \infty$  follows  $\lim_{k\to\infty} \frac{E(|X|^k) \cdot \xi^k}{k!} \leq \lim_{k\to\infty} \frac{E(X^k) \cdot r^k}{k!} = 0$ . As in the proof of 1. from

$$\left|e^{i\eta x}\left(e^{i\xi x}-\sum_{k=0}^{n}\frac{(i\xi x)^{k}}{k!}\right)\right| \leq \frac{|\xi x|^{n+1}}{(n+1)!} \text{ and } \frac{d^{k}}{dx^{k}}\hat{\varphi}_{X}\left(\xi\right) = E\left(\left(iX\right)^{k}\cdot e^{i\xi X}\right) \text{ for } \xi, \eta \in \mathbb{R}$$

we infer

$$\left|\hat{\varphi}_X\left(\eta+\xi\right) - \sum_{k=0}^n \frac{1}{k!} \cdot \frac{d^k}{dx^k} \hat{\varphi}_X\left(\eta\right) \cdot \xi^k\right| \le \frac{|\xi|^{n+1} \cdot E\left(|X|^{n+1}\right)}{(n+1)!} \text{ for } \xi, \eta \in \mathbb{R}$$

whence

$$\hat{\varphi}_{X}\left(\eta+\xi\right) = \sum_{k=0}^{n} \frac{1}{k!} \cdot \frac{d^{k}}{dx^{k}} \hat{\varphi}_{X}\left(\eta\right) \cdot \xi^{k} \text{ for } |\xi| \leq r \text{ and } \eta \in \mathbb{R}$$

Assuming a second random variable Y with equal moments by analogous arguments we obtain the characteristic function

$$\hat{\varphi}_{Y}\left(\eta+\xi\right) = \sum_{k=0}^{\infty} \frac{1}{k!} \cdot \frac{d^{k}}{dx^{k}} \hat{\varphi}_{Y}\left(\eta\right) \cdot \xi^{k} \text{ for } |\xi| \leq r \text{ and } \eta \in \mathbb{R}$$

In order to show equality we apply a process of **analytic continuation**: According to 2. for  $\eta = 0$  we have  $\frac{d^k}{dx^k}\hat{\varphi}_X(0) = i^k E\left(X^k\right) = \frac{d^k}{dx^k}\hat{\varphi}_Y(0)$  whence  $\hat{\varphi}_X(\xi) = \hat{\varphi}_Y(\xi)$  for  $|\xi| \leq r - \epsilon$  and any  $\epsilon > 0$ . But then  $\frac{d^k}{dx^k}\hat{\varphi}_X(\pm(r-\epsilon)) = \frac{d^k}{dx^k}\hat{\varphi}_Y(\pm(r-\epsilon))$  and by expansion around  $\pm(r-\epsilon)$  we obtain equality for  $|\xi| \leq 2r - \epsilon$  etc.., so that the assertion follows by the uniqueness of the Fourier transform [2, p. 4.13]. **Note**: The moments  $E\left(X^k\right)$  of a random variable X give an estimate for the probability of large values resp. deviations from the mean E(X) resp. the weight of their **tails**. They also coincide with the **derivatives of the characteristic function**, i.e. its **smoothness** and hence determine its **asymptotic behavior** and thus its suitability for convergence. The more moments X has, the more derivatives  $\varphi_X$  has. in particular 3 transates into a completion of the **Helly-Bray theorem 3.8**:

#### 3.17 The moment criterion for weak convergence

A sequence  $(X_n)_{n\geq 1}$  of real random variable  $X : \Omega \to \mathbb{R}$  with k-th absolute moments  $E\left(|X|^k\right) < \infty$  and finite Laplace transform  $L\varphi_X(r) = \sum_{k\geq 0} \frac{E(X^k)}{k!} r^k < \infty$  for some r > 0 converges in distribution to a random variable X if all moments converge  $\lim_{n\to\infty} E\left(X_n^k\right) = E\left(X^k\right)$  for every  $k \geq 1$ .

#### 3.18 Examples

- 1. A random variable  $X : \Omega \to \mathbb{R}$  with distribution  $P(X \le x) = \Phi_{\mu,\sigma}(x) = \int_{-\infty}^{x} \phi_{\mu,\sigma}(t) dt$  for the **normal density function**  $\phi_{\mu;\sigma}(t) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(t-\mu)^2}{2\sigma^2}\right)$  is **normally distributed** and a short calculation involving **change of variables** as well as **integration by parts** according to the definitions in 1.3 yield the **expectation**  $E(X) = \mu$  and the **variance**  $VAR(X) = \sigma^2$ . The **moment generating function** is  $M_{\varphi}(s) = \frac{1}{\sqrt{2\pi}} \int e^{s\xi} \cdot e^{-\xi^2/2} d\xi = \frac{1}{\sqrt{2\pi}} e^{-s^2/2} \int e^{-(\xi-s)^2/2} d\xi =$  $e^{-s^2/2} = \sum_{k\ge 0} \frac{1}{k!} \left(\frac{s^2}{2}\right)^k = \sum_{k\ge 0} \frac{1\cdot 3 \cdot \ldots \cdot (2k-1)}{(2k)!} \cdot s^{2k}$  whence we obtain the moments  $E\left(X^{2k}\right) =$  $1\cdot 3\cdot \ldots \cdot (2k-1)$  resp.  $E\left(X^{2k+1}\right) = 0$  for  $k \ge 0$ .
- 2. For the **exponential distribution** from 3.12 for  $\operatorname{Re} s < \alpha$  we have the **moment generating** function  $M_p(s) = \int_0^\infty e^{s\xi} \cdot \alpha e^{-\alpha\xi} d\xi = \frac{\alpha}{\alpha-s} = \sum_{k\geq 0} \frac{s^k}{\alpha^k}$  whence  $E\left(X^k\right) = \frac{k!}{\alpha^k}$ , in particular **expectation**  $E(X) = \frac{1}{\alpha}$  and **variance**  $VAR(X) = \frac{1}{\alpha^2}$ .
- 3. For the **Poisson distribution** from 3.13 the **moment generating function** is  $M_{\lambda}(s) = \sum_{k\geq 0} e^{ks} \cdot e^{-\lambda} \frac{\lambda^k}{k!} = e^{\lambda(e^s-1)}$  whence  $\frac{dM}{d\xi}(s) = \lambda e^s \cdot M(s)$  and  $\frac{d^2M}{d\xi^2}(s) = (\lambda^2 e^{2s} + \lambda \cdot e^s) \cdot M(s)$  whence  $\frac{dM}{d\xi}(0) = \lambda$  and  $\frac{d^2M}{d\xi^2}(0) = (\lambda^2 + \lambda)$ ; in particular the **expectation** resp. the **variance** are both  $E(X) = VAR(X) = \lambda$ .

4. For independent random variables X, Y with moment generating functions M(X), M(Y) in  $\{|\text{Res}| \le s_0\}$  the exponents  $e^{sX}$ ,  $e^{sY}$  are still independent such that theorem 1.5 gives

$$M(X+Y) = E\left(e^{s(X+Y)}\right) = E\left(e^{sX} \cdot e^{sY}\right) = E\left(e^{sX}\right) \cdot E\left(e^{sX}\right) = M(X) \cdot M(Y)$$

#### 3.19 Approximation of complex products

For complex numbers  $z_1; ...; z_n; w_1; ...; w_n \in \overline{B_1(0)}$  we have  $\left| \prod_{k=1}^n z_k - \prod_{k=1}^n w_k \right| \le \sum_{k=1}^n |z_k - w_k|.$ 

**Proof**: By induction with  $\prod_{j=1}^{0} w_j = \prod_{i=n+1}^{n} z_i = 1$  from

$$\prod_{k=1}^{n} z_{k} - \prod_{k=1}^{n} w_{k} = (z_{1} - w_{1}) \cdot \prod_{i=2}^{n} z_{i} + w_{1} \cdot \left(\prod_{i=2}^{n} z_{i} - \prod_{i=2}^{n} w_{i}\right)$$
$$= (z_{1} - w_{1}) \cdot \prod_{i=2}^{n} z_{i} + w_{1} \cdot (z_{2} - w_{2}) \cdot \prod_{i=3}^{n} z_{i} + w_{1} \cdot w_{2} \cdot \left(\prod_{i=3}^{n} z_{i} - \prod_{i=3}^{n} w_{i}\right)$$
$$\vdots$$
$$= \sum_{k=1}^{n} \prod_{j=1}^{k-1} w_{j} \cdot (z_{k} - w_{k}) \cdot \prod_{i=k+1}^{n} z_{i}$$

#### 3.20 The central limit theorem

For a **triangular array**  $((X_{n;k})_{k \leq k_n})_{n \geq 1}$  of **independent** families  $X_{n;1}; ...; X_{n;k_n} : \Omega_n \to \mathbb{R}$  of random variables with

- sums  $S_n = \sum_{k=1}^{k_n} X_{n;k}$
- expectations  $\eta_{n;k} = E(X_{n;k}) < \infty$
- variances  $\sigma_{n;k}^2 = E\left(X_{n;k}^2\right) E^2\left(X_{n;k}\right) < \infty$
- sum variances  $s_n = E(S_n^2) E^2(S_n) = \sum_{k=1}^{k_n} \sigma_{n;k}^2$

the **normalized** sums  $\overline{S}_n = \sum_{k=1}^{k_n} \overline{X}_{n;k}$  of  $\overline{X}_{n;k} = \frac{X_{n;k} - \eta_{n;k}}{s_n}$  with

- expectations  $E\left(\overline{S}_n\right) = E\left(\overline{X}_{n;k}\right) = 0$
- variances  $\overline{\sigma}_{n;k}^2 = E\left(\overline{X}_{n;k}^2\right) = \frac{\sigma_{n;k}^2}{s_n^2}$
- sum variances  $E\left(\overline{S}_n^2\right) = \sum_{k=1}^{k_n} \overline{\sigma}_{n;k}^2 = 1$

satisfying the  ${\bf Lindeberg}$  condition

$$\lim_{n \to \infty} \sum_{k=1}^{k_n} \int_{|\overline{X}_{n;k}| \ge \epsilon} \overline{X}_{n;k}^2 dP = 0 \text{ for every } \epsilon > 0$$

converge weakly to the Normal distribution:  $\lim_{n \to \infty} P\left(\overline{S}_n \le x\right) = \mathcal{N}_{0;1}\left(\left[-\infty; x\right]\right) = \int_{-\infty}^x \phi_{0;1}\left(\xi\right) d\xi.$ 



**Proof**: The **Lindeberg condition** yields  $\lim_{n \to \infty} \max_{1 \le k \le k_n} \overline{\sigma}_{n;k}^2 \le \lim_{n \to \infty} \max_{1 \le k \le k_n} \left( \epsilon^2 + \int_{|\overline{X}_{n;k}| \ge \epsilon} \overline{X}_{n;k}^2 dP \right) = 0$  such that for every  $\xi \in \mathbb{R}$  there is an  $n_{\xi} \ge 1$  with  $\frac{1}{2}\overline{\sigma}_{n;k}^2\xi^2 \le 1$ . Hence we can apply

- the lemma 3.19 to both of the **product differences** in the **second** line
- the estimate 3.16.1 to both of the quadratic order Taylor approxiations of  $\hat{\varphi}_{\overline{X}_{n;k}}(\xi)$  and  $e^{-\xi^2 \overline{\sigma}_{n;k}^2/2}$  in the third line

of the following estimate for fixed  $\xi \in \mathbb{R}$  and every  $\epsilon > 0$ :

$$\begin{split} \left| \hat{\varphi}_{\overline{S}_{n}} \left( \xi \right) - \hat{\phi} \left( \xi \right) \right| &= \left| \prod_{k=1}^{k_{n}} \hat{\varphi}_{\overline{X}_{n;k}} \left( \xi \right) - \prod_{k=1}^{k_{n}} e^{-\xi^{2} \overline{\sigma}_{n;k}^{2}/2} \right| \\ &\leq \left| \prod_{k=1}^{k_{n}} \hat{\varphi}_{\overline{X}_{n;k}} \left( \xi \right) - \prod_{k=1}^{k_{n}} \left( 1 - \frac{1}{2} \overline{\sigma}_{n;k}^{2} \xi^{2} \right) \right| + \left| \prod_{k=1}^{k_{n}} e^{-\xi^{2} \overline{\sigma}_{n;k}^{2}/2} - \prod_{k=1}^{k_{n}} \left( 1 - \frac{1}{2} \overline{\sigma}_{n;k}^{2} \xi^{2} \right) \right| \\ &\leq \sum_{k=1}^{k_{n}} \left| \hat{\varphi}_{\overline{X}_{n;k}} \left( \xi \right) - 1 + \frac{1}{2} \overline{\sigma}_{n;k}^{2} \xi^{2} \right| + \sum_{k=1}^{k_{n}} \left| e^{-\xi^{2} \overline{\sigma}_{n;k}^{2}/2} - 1 + \frac{1}{2} \overline{\sigma}_{n;k}^{2} \xi^{2} \right| \\ &\leq \sum_{k=1}^{k_{n}} E \left( \min \left\{ \left| \xi \overline{X}_{n;k} \right|^{2} ; \frac{1}{6} \left| \xi \overline{X}_{n;k} \right|^{3} \right\} \right) + \sum_{k=1}^{k_{n}} \xi^{4} e^{\xi^{2}} \overline{\sigma}_{n;k}^{4} \\ &\leq \sum_{k=1}^{k_{n}} \xi^{2} \int_{\left| \overline{X}_{n;k} \right| < \epsilon} \overline{X}_{n;k}^{2} dP + \sum_{k=1}^{k_{n}} \xi^{2} \int_{\left| \overline{X}_{n;k} \right| \ge \epsilon} \overline{X}_{n;k}^{2} dP + \xi^{4} e^{\xi^{2}} \sum_{k=1}^{k_{n}} \overline{\sigma}_{n;k}^{4} \\ &\leq \epsilon \xi^{2} \sum_{k=1}^{k_{n}} \overline{\sigma}_{n;k}^{2} + \xi^{2} \int_{\left| \overline{X}_{n;k} \right| \ge \epsilon} \overline{X}_{n;k}^{2} dP + \xi^{4} e^{\xi^{2}} \sum_{k=1}^{k_{n}} \overline{\sigma}_{n;k}^{4} \end{split}$$

Due to the Lindeberg condition resp. its consequence  $\lim_{n\to\infty} \max_{1\leq k\leq k_n} \overline{\sigma}_{n;k}^2 = 0$  all three summand vanish for  $n\to\infty$  and by **Lévy's continuity theorem** [2, th. 7.18] the assertion is proved.

#### 3.21 Lyapunov's condition

The Lyapunov condition for some  $\delta > 0$  on the right hand side of the following estimate is stronger than the Lindeberg condition but sometimes easier to prove:

$$\sum_{k=1}^{k_n} \int_{\left|\overline{X}_{n;k}\right| \ge \epsilon} \overline{X}_{n;k}^2 dP \le \frac{1}{\epsilon^{\delta}} \sum_{k=1}^{k_n} \int_{\left|\overline{X}_{n;k}\right| \ge \epsilon} \left|\overline{X}\right|_{n;k}^{2+\delta} dP \le \sum_{k=1}^{k_n} \int_{\left|\overline{X}_{n;k}\right| \ge \epsilon} \left|\overline{X}\right|_{n;k}^{2+\delta} dP < \infty.$$

Note: In [1, th 27.4] a variant of the central limit theorem being very useful for Markov processes is proved for sequences in which random variables far apart from each other are nearly independent.

### Index

P-almost sure, 7 Abel's partial summation, 5 absolute moment, 19 absolutely continuous function, 12 additivity, 5 analytic continuation, 21 arrival times, 17 Binomial distribution, 16 binomial distribution, 12 bold game, 8 Borel's zero-one-law, 3 Borel-Cantelli lemma, 6 boundary conditions, 7 capital. 7 centered random variable, 4 central limit theorem, 19, 22 change of variables, 21 characteristic function, 4 Characteristic functions, 19 Chebyshev's inequality, 4 completeness, 5 continuity from above, 4 convergence in distribution, 13, 14 convergence in measure, 13, 14 convolution, 3 càdlàg, 18 dense, 9 diagonal principle, 15 Dini derivatives, 11 discontinuities, 11 distribution function, 8, 9, 12 distribution functions, 13 dominated convergence, 7, 20 dominated convergence theorem, 15, 19 Dubins-Savage Theorem, 10 dyadic number, 9 dyadic numbers, 10 Dynkin-system, 3 event tree, 8 expectation, 3 explicit formula, 9 explicit solutions, 7 Exponential distribution, 17 exponential distribution, 21 filtration, 7 Fourier transform, 19, 20 fractal, 7, 8

functional equation, 8 fundamental theorem of calculus, 13

Helly's selection theorem, 15 Helly-Bray theorem, 18, 21 Helly-Bray theorem, 14 hypergeometric distribution, 16

increments, 18 independent, 3, 19, 22 independent random variable, 3 independent random variables, 22 independent  $\sigma$ -algebrae, 3 induction, 10 integration by parts, 20, 21

#### jump, 11

Khintchin-Kolmogorov convergence theorem, 6 Kolmogorov's existence theorem, 18 Kolmogorov's strong law of large numbers, 6 Kolmogorow's strong law of large numbers, 14 Kronecker symbol, 9 Kronecker's lemma, 5, 6

 $\lambda$ -absolutely continuous measure, 12  $\lambda$ -continuity set, 14 Laplace transform, 19 Lebesgue measure, 13 Lebesgue's convergence theorem, 5, 18 Lebesgue's differentiation theorem, 10 Lindeberg condition, 22 linearity, 4 Lyapunov condition, 23 Lévy's continuity theorem, 23 Lévy's convergence theorem, 5, 6 Lévy's inequality, 4

mapping theorem, 15 Markov processes, 23 maximal median, 4 median, 4 minimal median, 4 moment, 19 moment generating function, 19 monotone convergence, 4 monotone function, 11

Normal distribution, 22 normal distribution, 21 normalized, 22

 $\pi\text{-system},\,3$ 

point of continuity, 13 Poisson approximation, 18 Poisson distribution, 16, 21 Poisson process, 18 Portmanteau theorem, 14 primitive, 12 probability density function, 12, 19 probability distribution, 3 probability space, 12 product measure, 3 product  $\sigma$ -algebra, 3 Prohorov's theorem, 15 quantile function, 13 random variable, 3, 12 rank, 9 recursive formula, 7 Riesz convergence theorem, 5 right continuous, 12 ruin, 7 sample path, 17 sample paths, 18 Scheffés theorem, 16 simple discontinuity, 11 Skorohod's representation theorem, 13 Skorohod's theorem, 15 standard deviation, 3 step function, 4 stochastic process, 18 stopping time, 7 subfair, 7 success, 7 tails, 21 Taylor expansion, 19, 20 tight family, 15 triangular array, 22 truncated random variables, 6 variance, 3 vertex, 11 wager, 7 waiting time, 17 weak convergence, 14 weak\* convergence, 14 win, 7

## References

- [1] Patrick Billingsley. Probability and Measure. 3rd ed. Wiley, 1994.
- [2] Arne Vorwerg. "Analysis". In: (2023). URL: http://www.vorwerg-net.de/Mathematik/ Analysis.pdf.
- [3] Arne Vorwerg. "Functional Analysis". In: (2023). URL: http://www.vorwerg-net.de/Mathematik/ Functional%20Analysis.pdf.
- [4] Arne Vorwerg. "Measure Theory". In: (2023). URL: http://www.vorwerg-net.de/Mathematik/ Measure%20Theory.pdf.