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Preface

Topology is the branch of mathematics concerned with generalized concepts of distance which are the
foundation for the study of convergence, continuity and differentiation of functions in complex
and functional analysis, differential geometry as well as probability theory. There is a close
relationship between topology and measure theory, which is dedicated to the understanding of
volume in mathematics leading to the theory of integration in the above mentioned fields..

Apart from minor alterations and reorganisations this text follows the classical expositions by those
von Querenburg [10] and J. Kelley [3]. The required basic facts of set theory can be found in
e.g. [19] and are not included in this text. Results from measure theory and complex analysis which
are needed in the latter parts are dealt with in [18] resp. [15] or alternatively in the standard books
[13] resp. [12] by W. Rudin and [6] resp. [4] by S. Lang. The introductory first chapter revises
topological facts in metric spaces which are familiar from calculus. Since different metrics result in
equivalent properties concerning convergence and continuity these fundamental qualities of functions
obviously depend on simpler concepts. After this motivation chapters 2 - 5 develop these fundametal
concepts of topology: Open sets, neighborhoods, axioms of countability, continuous and
open functions, construction of topological spaces on subsets, products, quotients and sums
of topologicals spaces as well as connectedness. During the early 20th century E. H. Moore
introduced nets resp. directed sets to generalize the concept of convergence from well ordered
sequences to less structured sets. Nets were further developd by american mathematicians a.o. J.
W. Tukey and G. Birkhoff; J. Kelley bases his classical work [3] on nets. In chapter 6 of this
text, however, the theory of convergence is instead built on the concept of a filter developed in the
1940’s by french mathematicians around H. Cartan and J. Dieudonné under the pseudonym of IN.
Bourbaki [2]. It is more abstract than nets but leads to the same results via very short and elegant
proofs. The subsequent parts 7 - 8 deal with separation axioms, standard theorems of Urysohn
and Tietze about the extension of continuous functions on normal spaces and partitions of unity.
In 9 - 14 the next steps follow in canonical order: compactness, uniformization, metrization
and completion of topological spaces. The basic characteristics of Polish and Baire spaces are
developed in chapters 15 and 16. Chapter 17 presents the Stone—éech—compactiﬁcation. Further
results about function spaces required in complex and functional analysis are presented in
the next chapters: In chapter 18 the topology of compact convergence leads to the Stone-
Weierstrass-theorem while in chapter 19 the concept of equicontinuity leads to the theorem of
Ascoli with applications in differential equations and complex analysis. The last section returns
to the geometrical origins of topology in the form of topological manifolds, i.e. sets which locally
can be described as topological vector spaces. The classification of their global structures leads the
notions of homotopy and homology; a very general construction method for manifolds is given by
cell complexes leading to the characterisation of topological properties in the language of algebraic
topology and combinatorics. Theses topics are drawn from [7] and as far as possible adapted to
infinite-dimensional Banach spaces following [5] and [11]. The necessary prerequites from functional
analysis can be found in [16].
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1 Metric Spaces

1.1 Index notation

The axiom of choice (cf. [19, p. 14.2.1]) postulates the existence of a choice function z with
z(i) € i for every set i. Thus for every set I there is a product [[[ :={z: I - UI:z(:i) €iVie I}
where z to each element i of the index set I assigns an element (i) of the set i. The big union
U is the set of all elements x (i) of elements ¢ from I. To emphasize the set character of the indices
¢ in this rather terse notation we usually write X; := ¢ and arrive at the common index notation
[Licr Xii={x: I = Ujer Xi - 2(@) == z; € X;}.

1.2 Metrics

The essential characteristics of our notion of distance on a set X are given by the metric d : X? —
[0; o[ with the following conditions:

1. d(z;y) = 0 & x = y (positive definiteness)
2. d(z;y) = d(y;z) for all x,y € X (symmetry)
3. d(z;y) +d(y; 2) < d(z;z) for all z,y,z € X (triangle inequality)

One of the principal interests of topology consists in the research for necessary and sufficient condi-
tions for the existence of a metric. The study of these conditions (cf. section 12) has revealed that
the separability of two points as expressed by positive definiteness 1.2.1 is quite independent of the
problem of measuring of distances in general. Consequently the necessary minimum requirement for
a quantification of distance is the pseudometric which differs from the metric by reducing 1.2.1 to
1.2.1’: d(xz,z) = 0. The separability of points is postulated independently by the separation ax-
ioms 77 resp. T (ch.7.1). In most cases of practical interest these axioms are satisfied anyway or
can at least be achieved by identifying inseparable objects as eqivalence classes (cf. 1.3) thereby
restoring positive definiteness. For this reason and the sake of simplicity we will presume the Haus-
dorff property 75 almost throughout the text with the exception of an exemplary consideration of
pseudometrization of non-Haussdorff-spaces in section 13. The ordered pair (X;d) is called a metric
space.

1.3 Normed vector spaces
A function |||| : X — [0; 0o[ on the vector space X over the field K € {R;C} is a norm iff it satisfies
the following conditions:

1. ||z|| = 0 < 2 =0 (positive definiteness)

2. ||A-z|| =[N - ||=| for all A € K (linearity with respect to multiplication)

3. [lx+yll < |lz|| + ||y|| for all z,y € X (triangle inequality).

Via d(x;y) := ||z — y|| the norm induces a metric on X.
Examples:
1. The Euclidean norm ||(z1;...;x,)| := \/m on a vector space X = C".
2. The Supremum norm || f|| := sup{|f(z)|: a < x < b} on the vector space of all continuous

complex-valued functions X = C ([a;b];C) on a closed interval [a;b].

3. The LP-norm | f|, :== ([[f[" d,u)% on the vector space LP = LP/R of all p-integrable func-
tions on a measure space (X;u) with £P = {f (X)) = (RyA) I, < oo} and fRg <
f = g almost everywhere ( i.e. everywhere except on a set with measure zero).



The last item provides an important example for a seminorm ||f|/, on £P with weakened condition
1.3.1": ||z|| = 0 which is extended to a full norm with restored positive definiteness by reducing
LPto the quotient space LP = LP/R, i.e. by identifying formerly inseparable functions as common
equivalence classes.

1.4 Topological concepts on metric spaces

On a metric space (X;d) a neighborhood of x is defined as a set including an open ball B,(z) :=
{y € X : d(x;y) < r} with center z and radius r. A subset A C X is open iff it is a neighborhood for
each of its elements. A is closed iff its complement X \ A is open. A function f: (X;d) — (X';d)
is continuous iff the inverse images f~! [O] of open sets O C X’ are again open in X. For every
€ > 0 there is a § > 0 such that f[Bs(x)] C B.(f(z)). A sequence (z,),.y On a metric space
X converges to a limit point z = T}Lrgo xn € X iff every neighborhood of z contains almost all
members: Ve > 03n(e) € N:Vn > n(e) : x,, € Be(x). A point y € X is an accumulation point iff
every neighborhood of y contains infinitely many members: Ve > 0Vn € NIm > n : x,,, € B(y).
The sequence is a Cauchy sequence iff for each ¢ > 0 almost all members have a distance less
than € to each other: Ve > 03k € N : Vn,m > k : d(zn;2m,) < €. A Cauchy sequence converges
to all of its accumulation points. X is complete iff every Cauchy sequence converges to a limit
point in X. Q is not complete since e.g. (n),cy With zg := 1 and z,11 = %(a:n + x%) is a
Cauchy sequence converging to v/2€ R\ Q. A function f : (X;d) — (X’;d’) is continuous iff

for every sequence (z,),cy with z, " 2 € X the image sequence f(z,) "=° f(z) € X'
The function sequence (fyn),cy : N — (X';d’) converges uniformly resp. with reference to the
supremum norm to f : X — X’ iff every neighborhood of f contains almost all members:
Ve >03dm e N:Vn > mVze € X : f,(x) € Be (f(x)). The following well-known theorem from analysis
provides a good example for the usefulness of these concepts and will appear in a generalized form as

theorem 18.3 :

1.5 Uniform convergence of continuous functions

Ifall f,, : (X;d) — (X';d') are continuous and converge uniformly to f then f is also continuous.

Proof: Vo € X ANe > 036 > 0Am € N:Vn > mAy € Bs(x) : f(y) € Bes(fuly)) for a
0 independently of the chosen y on account of the uniform convergence of thef,, furthermore
fn(y) € Beys(fa()) because f, is continuous in z € X and finally f,(z) € B3 (f(z)) due to the
convergence of the f, at the point z. The triangle inequality yields f(y) € B (f(x)).

Example: The continuous parabolae f,(z) = 2™ converge in [0; 1] pointwise but not uniformly
to f with f(z) =0 for 0< 2z < 1 and f(1) = 1. Obviously f is discontinuous in = = 1.

1.6 Equivalent metrics

On a metric space (X, d) the metric d' := #‘ld < 1 is equivalent to d: A set O C X is open with
reference to d iff it is open with reference to d'.

Proof: The positive definiteness and symmetry of d’ are a direct result of the corresponding properties
of d. To check the triangle equality let a := d(x;z), b := d(z;y) and ¢ := d(y;z). Then due

to the the premise a < b + ¢ and because of z — =

1+x
a b+c+be bt+ct+2bc _ b c d ! / ; _ 2e
Tre < Thbrerse < Thprerte = Ta3 + 142 From 555 < d’ < d follows B C B{ C By with d(€) = 1=,

and € < 1 and thus the equivalencce of the topologies induced bei the neighborhood systems B, und
Bl

being monotone for x > 0 we can infer




1.7 Product metrics

On a finite product [];c; X; of metric spaces (Xj; d;) the following three metrics are equivalent:
L d'(z3y) == Yier di(2i; yi)
2. d"(a3y) i= 1\ Cier dF (233 9i)
3. d"(zyy) == mazierdi(i; yi)

2
Proof: From 0 < (d; — d;)” & 2d;d; > 2did; follows (1 <ic di) = Yicijen didy < 3 Sicijenl(d?+
d3) =1 <;<p, di. This yields the estimate d” < d’ < \/n-d"< By(x) C B}!(z) C B:/ﬁ.r(x). Obviously
we also have d” < d' <n-d" < Bl(z) C B(x) C Bl,..(z).

1.8 Countable products of metric spaces

On a countably infinite product [],. X, of metric spaces (X,;d,) with d,, < 1¥n € N the

expression d(z;y) := Y ,cn w defines a metric.

Proof: Due to the absolute convergence of the geometric series the properties 1.2.1 - 3 transfer
from the single summands resp. the partial sums to the limit.

The existence of different equivalent metrics for a common topology leads to the insight that the metric
is not fundamental for the concepts of space and distance. Consequetly the follwowing parts develop
the concepts of open sets, neighborhoods and continuity independently of a metric. After having
established a general theory for these ideas we will return to the metric and determine necessary and
sufficient conditions for its existence.

2 Topological Spaces

2.1 Open and closed sets

A set family O C 2% on a space X is a topology iff it is closed under arbitrary unions and finite
intersections. Every topology contains the sets § = 0 and X := [JO. The ordered pair (X;O)
is a topological space. The elements O € O are the open sets and their complements X \ O are
the closed sets. On a given set X the indiscrete topology {{); X} is the minimal and the discrete
topology 2% the maximal topology. For two topologies O; C Oy means O, is stronger than O; und
O, weaker than O,.

2.2 Bases and subbases

A subfamily B C O is a basis of the topology O iff for each O € O and = € O exists a B, € B with
x € B, C O. A subfamily B C 2% is a basis for a unique topology O = 7 (B) iff UB = X and every
open set O = J,co {B: : © € B, € B} is a union of basis sets i.e. iff the intersection of every nonempty
finite subfamily from B is equal to the union of elements from 5. In a metric space (X;d) the open
balls B,(x) for r > 0 and € X constitute a basis for the open sets. The natural topology 7 (d)
on R"™ is generated by the euclidean norm resp. the euclidean metric according to 1.3.

A family S ¢ 2X is a subbasis of the topology O iff the system of all intersections from finite
subfamilies from S constitutes a basis B of the topology O. For example the intervals | — oo; a[ and
la; oo for a € R are a subbasis of the natural topology on R.
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2.3 Neighborhoods

A family U(z) is a neighborhood system of a point z € X and the sets U € U(z) are neighbor-
hoods of z iff the following conditions are satisfied:

1. Every U € U(z) contains x and another neighborhood V' € U(x) such that U € U(y) for all
yeV cCUuU.

2. With U every overlying set U’ D U belongs to U(z).
3. With finitely many sets Us;...; U, their intersection (1, <,<,, U; also belongs to U(x).

A subfamily B(z) of a neighborhood system U(x) is a neighborhood basis iff for every U € U(x)
there is a B € B(z) with B C U. The following theorem desribing the generation of a uniquely
determined topology by a neighborhood system will reappear in a simplified and generalized form as
Th. 12.3 relating to uniform structures

2.4 Equivalence of neighborhood systems and topologies

1. For a given set of neighborhood systems U/(x) for each point x of a set X the family O of all
sets which are a neighborhood for each of their points constitutes a topology on X.

2. For a given topology O on a set X the families U(x) of sets U € X which contain an open set
O € O with ¢ € O C U constitute for each z € X a neighborhood system.

3. The neighborhood systems U(x) of 2. are uniquely determined by condition 1.

2.
<~
JO

1.

4. The topology O of 1. is uniquely determined by condition 2.: U ()

Proof:

1. Due to 2.3.1 arbitrary unions of subsets and the whole set X belong to O and on account of
2.3.3 this is also true for finite intersections. The empty set () belongs to O because it contains
no point and the condition is satisfied in a trivial way.

2. The conditions 2.3.1. - 3. are trivially satisfied with V = 0O .

3. We have to show: The construction U (z) — O — U’ (z) leads back to the same neighborhood
system U’ () = U () it started with. Assume U’'(x) for each z € X is another neighborhood
o

system satisfying condition 1. For z € X and U’ € U'(x) it follows from 2.3.1 that U :=
{y e U":U" e U'(y)} contains at least one element. Again with 2.3.1 there is a V' € U'(y) for

ay e U with U’ € U'(z) for all z € V' C U'. But this implies V' C U and with 2.3.2 we get

o
U € U'(y). Consequently U is a neighourhood for each of its points and according to 1. it is the
desired open set over x in U’.

4. We have to show: The construction O — U () — O’ leads back to the same topology O’ = O
it started with. Assume O’ is a second topology on X satisfying condition 2. and choose a set
O’ € O'. But then O’ is a neighborhood for each of its points and hence belongs to O according
to 1.

2.5 Axioms of countability

A topological space (X;0) is first countable resp. satisfies the first axiom of countability iff
every point has a countable neighborhood basis. Every metric space (X;d) is first countable with the
open balls By, (z) for n € N* and z € X. A topological space (X;0) is second countable resp.
satisfies the second axiom of countability iff O has a countable basis. According to 2.4.2 and 2.4.3
the second axiom of countability includes the first.

11



2.6 Closure and interior

Let A be a subset of the topological space (X;0). A point z € X is an accumulation point
or limit point of A iff every neighborhood of z intersects A. The set of all accumulation points
of A is the closure A of A. If a subset A of a topological space X is closed then it contains every
accumulation point of every sequence in A. The converse is only true if X is first countable. The closure
A=N{FD>A:X\F €O} is the minimal closed set including A. A point z € X is an interior

point of A iff A is a neighborhood of x. The set of all interior points of A is the interior ;1 of A. The

interior A = U{O Cc A: O € O} is the maximal open set included in A. We have U;c; Ai D Ujer Ai
and N;er Ai C Nier 4i resp. User Ai D Uier A; and Nier Ai C Nier A; with equality for finite index
sets 1.

2.7 Boundary points, dense and nowhere dense sets

A point x € X is a boundary point of A iff z is a limit point of A as well as of the complement

X \ A. The set of all boundary points is the boundary 94 = A\ A of A. Since X \0A = AUX \ A

is open the boundary is always closed. A is dense in X iff every point in X is an accumulation point
o

of A: A = X. A is nowhere dense in X iff A = (). In this case A has no interior points and
the complement X \ 4 is dense. Conversely the complement of a dense set need not be nowhere
dense: Both Q and R\ Q are dense in R. For a dense set A its interior A is dense too: A=A = X;
for every nowhere dense set A its closure A obviously is nowhere dense. Note that in general

o J— o J— o

A#Aand A# A Eg R=Q#Q=0and R =0Q # Q = (. The equality A = A holds if the
o

interior is nonempty. In that case for any x € A there is an open O with € O C A and since

o
z € DA would yield the contradiction O N X \ A # ) we infer z € A, i.e. A C A. For open A the
boundary 0A lies outwards of A and for closed A it lies inside A. In this case A is nowhere dense
in X. A topological space is separable iff it contains a countable dense subset. Obviously every
second countable space is separable and every separable and metric space is second countable.
The following paragraph presents a space which is first countable and separable but not second
countable.

2.8 Natural topologies and the Sorgenfrey line

Obviously N is closed and nowhere dense in R. Q is neither open nor closed in R since between two
rational numbers - and "W‘H assuming w.l.o.g. n < m we find an irrational number %\/i with r < n

such that ;- < V2 < % The rational numbers have no interior points and are dense in R: @ =0
and 0Q = Q = R. The same is true for the irrational numbers R \ Q. The natural topology
on R satisfies the second axiom of countability since Q" is a countable dense subset and the open
balls By, (x) with n € N* for z € Q" are a basis for the open sets. The half open intervals [a; b[ with
a < b € R generate the topology O; of the Sorgenfrey line R := (R; O,) (cf. [14, example 51]) which
on account of ]a;b] = U,en [a + %; b[ is stronger than the euclidean topology but weaker than
the discrete topology since atoms {a} contain no half open intervals. The rational numbers Q are a
countable and dense subset since every basis set contains a rational number. The sets [a; a+ %{
form a countable neighborhood basis for every a € R. R is separable and first countable, but
not second countable, since for every countable family B := ([an;bn]),cy there is an a € R with
a ¢ {an; by} Vn € N such that no interval [a; b] with b > a can be a union of basis sets.
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2.9 The Cantor set

Let f : {0;2}" — [0;1] be defined by f(z) = > on>1 3n for every sequence x = (z),,; with z,, € {0;2}.
Then f is injective and the set T := f [{0; 2}N} is non countable , closed and nowhere dense in
[0;1].

Proof: Since on the one han% > 1<n<m §"2+ 0

Tn Tn —

< Zn>1 3n < Zl<n<m 3n + 3m + Zn>m 3n -

22:1<n<m 2+ 3w 3m and on the other hand Zl<n<m 3
Tn

Zl<n<m 3n + 3m + Zn>m 3n < Zn>1 3n <

Zl<n<m 3n + Zn>m 3n Zl<n<m 5” + 3m 3m—1 the

2m. 2m+41 1
set T = (V>0 U0§m<§(3n,1) [3%?, ok } is generated 0 3

starting with [0; 1] by subsequently removing the mid- L ! L !
dle third |31 <em 3 + 3 Dicnem 5 + 55| from oo
the intervals [Zl§n<m 2+ 052 <pem 55 + 3”1%1} 9 9
From this construction we infer that T is closed. For I S 1 I

all z € {0;2}" and m e N there isana =35, 9% €

[0;1] \ T with |f(z) — a|] = 7. Simply choose a,, = z,, for n # m and a,, = 1. Consequently 7" has
no interior points and the closed character implies being nowhere dense in [0;1]. Since f is injective
and {0;2}" is not countable (cf. [19, Satz 17.9]) this is also true for the image 7.

0 1

+
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3 Continuous functions

3.1 Continuous functions

f:(X;0x) — (Y;Oy) is continuous iff the inverse images of open sets in (Y;Oy) under f are
open in (X;0x): VO € Oy : f~10) € Ox. Since f~1(Y \ O) = X \ f~1(O) the function f is
continuous iff the inverse images of closed sets in (Y;Oy) under f are closed in (X;Ox). Since
FHNier Ail = Nier F7HA] and f1[Uier Ai] = User f1[Ai] the function f is continuous iff the
inverse images of a subbasis S of Oy are open in (X;Ox). (X;Ox) carries the discrete topology and
(Y'; Oy) carries the indiscrete topology iff every function f: (X;Ox) — (Y; Oy) is continuous. O is
stronger than Os iff the identity id : (X; O;)— (X; O2) is continuous. For two continuous mappings
f:(X;0x) = (Y;0y) and g : (Y;0y) — (Z;0z) the composition go f : (X;0x)— (Z;0z) is
also continuous. Hence for every continuous function f : X — C the reciprocal value % for f(x) # 0,
the absolute value |f| and the multiple « - f with a € C are again continuous.

3.2 Continuity at a point

[ (X;0x) = (Y;0y) is continuous at x € X iff the inverse images of neighborhoods of
f(z) under f are neighborhoods of z: YU € U(f(z)) : f~1(U) € U(x). Due to 2.2 the function
[ is continuous at x € X iff the inverse images of a neighborhood basis B(f(z)) are included
in the neighborhood system B(z): VB € B(f(z)) : f~Y(B) € B(x). f is continuous on X iff f is
continuous at every x € X. On a first countable space X the function f is continuous at x € X iff
for every convergent sequence (), .y C X with nh_>n;o xn, = x follows nh_)mgO f(zn) = f(2)
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3.3 Semicontinuity

f : (X;0) - R is upper semicon-
tinuous at a point z € X iff Ve > 0
U € U(x): U C {f < f(z)+ €} and
upper semicontinuous on X iff it
is continuous relative to the topology

Ot ={]-o0;a| : a € RYU{D;R}. Cor-
respondingly f l.S lower semicontin- Upper Semicontinuity ~ Lower Semicontinuity right continuous
uous at x € X iff Ve > 0 U € U(z) : left limits
UcC{f> f(x) — €} resp. on X iff it is continuous with regard to O~ = {Ja; 0o[ : a € R}U{D; R}. A spe-
cial case of an upper semicontinuous function is a cumulative distribution function f : R— [0; 1] with
f(z) =p(X < x) for arandom variable X : Q — R on a probability space ({2; p). Such a function
is strictly increasing with existing left-limits lim,_,,- f (z) and right-limits lim,_,,+ f (z) = f (a)
for a € R or in short cadlag (continue a droite, limite d gauche).

3.4 Homeomorphisms

[ (X;0x) — (Y;0Oy) is open resp. closed iff the images of open resp. closed sets from Ox
are again open resp. closed in Oy. Since f[U;c;r Ai] = Uer FlAi] (cf. [19, p. 9.2.1]) f is open
iff the images of a basis B of Ox are open in Oy. Corresponding to 3.2 the mappimg f is open
iff for all x € X the images of neighborhoods of z under f are again neighborhoods of f(x)
& Vo € XVU € U(z) « fIU] € U(f(z)). f is a homeomorphism iff it is continuous, open
and bijective. A continuous function f : (X;O0x)— (Y;0Oy) is a homeomorphism iff the inverse
f71:(Y;0y)— (X;Ox) exists and is continuous. The topological spaces (X; Ox) and (Y; Oy) then
are homeomorphic to each other. For example the open ball B; (0) C X in every Banach space
X is homeomorphic to X by means of p : By (0) — X given by p (x) = 1= H$|I and p~! (y) = ﬁ

3.5 Continuous and open functions

For f: (X;0x) — (Y;Oy) the following statements hold:
1. fiscontinuous(:)f{Z} CfIAVACX & f! [ } > fI[B]VBCY.

2. fisopen@f[ﬁ} O fIAIVAC X & ! [ }Cf [B]VB CY.
Proof:

1. =: Assume there is an 2 € A with f(z) € Y\ f[A]. Since Y \ f[A] is open there is an
Uecl(f(x)) with U Cc Y\ f[A]. Since f is continuous we have f~! [U] € U(x). Since z is an
accumulation point of A we have ) # f~1[U] N A and hence 00  f [f 1 [U]NA] cUnN f[A]
contrary to U C X \ f[A4]. <: Assuming f is not continuous there is a * € X and an
UeU(f(z)) with 0 £V (X\fLU])VV € Uz), ie. z € Aresp. f(z) € f [Z] with
A = X\ f'[U]. On the other hand because of U € U (f(x)) open arﬂQ, Satz 9.2.3]
f@) ¢ VAT = FIXINF 0] > FIXN S 0] = FIAL iee. £ [4] ¢ FTA] The second
equivalence follows with A := f~1[B] resp. B := f[A] and A C f~L[f [A]].

2. =: Assume there is a € X \ f~![B] with f(x) € B. Since X \ f~1[B] is open there is
an U € U(xz) with U € X \ f~1[B]. On account of f being open we have f[U] € U (f(x)).
Since f(z) is an accumulation point of B we have f[U] N B # () and thus f~![f [U] N B] =
U N f~1[B] contrary to U C X \ f~1[B]. <: Assuming f is not open there is an z € X and
an U € U (z) with f[U] ¢ U (f(x),ie. 0AVNY\fIU =VNfIA #0VV elU(f(x)) with
B:=Y\ f[U] and so f(z) € B resp. = € f~1 {E] On the other hand because of U € U (x)
is open we have z ¢ X\ U = f~L[Y]\ f~1[f[U]] = f~'[B]. The first equivalence follows as
above with A := f~1[B] resp. B:= f[A] and A C f~1[f [A]].
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3.6 Closed maps

Let f : (X;O0x)— (Y; Oy) be a closed map. Then for each B C Y and open U C X with f~}[B] c U
there is an open V O B with f~![V]C U.

Proof: V := Y \ f[X\U] is open and so from X \ U C fl[f[X \U]] follows f~1[V] = X \
f7Hf[X \U]] Cc U. Furthermore we have f ' [B]CU = BC f[U] = Y\BD2Y\f[U] D f[X\U]
S BCY\[fIX\U]=

4 Initial and final topologies

4.1 The initial topology

The initial or weak topology 7 (f;:i € I) on a set X with reference to the

functions f; : U; — Y; from subsets U; C X covering X = J;c;U; into the (Y3;0;), o
? 7

topological spaces (Y;; O;) with ¢ € I is the minimal resp. weakest topology fiog

on X such that all f; are continuous. On account of 3.1 the inverse images / T(fz)iel

£71[0;] of open sets O; € O; form a subbasis for the initial topology. The A g (X;7)
initial topology is uniquely determined by the following universal property:

any map g : Z — X is continuous iff all compositions f; o g: ¢~ ! [U;] — Y; are

continuous.

Proof: For every element f;l [O;] of the subbasis with open O; € O; we have g~! [ f;l [OZ]} =

(fi 0 g) "' [O:] whence by 3.1 follows the universal property. Conversely the case g = id : (X;7) —
(X;7) shows that the universal property implies the continuity of all f; and in particular that 7 must
contain all fl-_1 [0;] with O; € O,. For any other topology o on X satisfying the universal property the
case id : (X;0) — (X;7) shows that 7 C ¢ while id : (X;7) — (X;0) implies ¢ C 7 whence follows
that 7 is uniquely determined by the universal property.

4.2 The product topology

The product topology ®;c;O; = 7(m; : i € I) on the product space [];c; X; of the topological
spaces (X;;O0;),c; is the initial topology of the projections m; : [[;c; X; — X;. On account of 3.4

and 7; (ﬂzeﬂr ! [OZ]) = Oj for j € I resp. = X for j ¢ J the projections 7; are open. Owing to 3.1

the mapping f : Y — [[;c; X; is continuous iff the inverse images f~! {77;1 [OZ]] = (m; 0 f)f1 [O;] of
subbasis sets are open in (Y;O).

Hence f is continuous iff all components m; o f : (Y;0) — (X;; O;)

are continuous. The open sets of the product topology are unions y
of finite intersections of subbasis sets, i.e. the basis sets have the
structure of cylinder sets O = Or X [[;cp\p Xi with Or € ;7 O;
and finite T' C I. The drawing on the right hand shows that an open
set in the product topology (the circle) is included in the product of
its components (the square) but may be much smaller. Conversely it
can be shown that infinite products of open sets need not be open in
the product algebra.

e (U) X my (U)

1. Due to [Ti<k<p Beyym(r) C B (z) C [licken Be.ym(@r) with @ = (21,...,2,) the euclidean

norm |z| = /2% + ... + 22 generates a topology on R" which is identical to the product of the
topologies on R induced by the absolute values |x|.

2. Regarding the complex numbers C ~ R? as a product of R we infer from 3.1 that the real part
Ref = pre o f and the imaginary part Imf = py,,, o f of a continuous mapping f : C — C
are again continuous.
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3. Due to {(u +v):u € Bez(z) ANv € Be/g(y)} C Be(z+y)and {(u-v) : u € Bs(x) ANv € Bs(y)} C
Be(x - y) with 0 = Fmax([eT oAy the addition + : C?" — C" and multiplication : C?* — C"
are continuous mappings such that the sum f + g resp. the product f - g of continuous
f,9: C" — C" are continuous again.

4. Owing to d (z;y) < d(z;u) + d (u;v) + d (v;y) the metric d: X x X — [0;00[ is an uniformly
continuous mapping on the product Oy (d)®0; (d) generated by the squares B/, (z) x By, (y)
with n € N* since for any (u;v) € B (z) x Bs (y) we have |d (z;y) — d (u;v)| < d (z;u)+d (y;v) <
20 and consequently d (u;v) € Bas(d(z;y)). It is also uniformly continuous on the initial
topology 7(d) C 01 (d) ® O (d) induced by the diagonal strips d(z;y) < 1 with n € N*.
Due to 1.7 the product topology is identical to the Euclidean topology O” defined by the
product metric d” ((z;y); (u;v)) = /d? (x;y) + d? (u;v) via the open discs Bi’/n (x;y) with
n € N*. (cf. 11.13)

4.3 The subspace topology

The subspace or trace topology O4 = 7(i4) on a subset A of the topological space (X;Ox)
is the initial topology with reference to the canonical injection t4 : A — X and consists of the
intersections ¢;'[0] = ON A with open sets O € O. Hence amap g : (Y;Oy) — (A4; O4) is continuous
iff taog: (Y;0y)— (X;Ox) is continuous.

1. Due to 3.1 for every continuous f : (X;Ox) — (Y; Oy) its restriction foiy := f|a: (4;04) —
(Y; Oy) is continuous too.

2. The converse holds only if the subsets (A;);c; on which the restrictions f|a; @ (A;; Oa:) —
(Y; Oy) are continuous form a cover of X so that every open set O € Oy can be represented

as a union f~1[0] = f71 O] NUicr Ai = Uier £ 0] N Ai = Uie; flai [O).

3. For all A; open the covering condition is already sufficient since in that case every set O N A;
open in Oy, is also open in Ox.

4. For all A; closed the covering has to be at least locally finite i.e. for every x € X there is
a neighborhood U € U(x) and a finite subset J € I with U C J;c; Ai. We can assume that
x € AVi € J because in the case of v ¢ A; for a j € J one may exclude the A; from the local
covering by reducing the neighborhood from U to U N X \ A;. For a given V € U(f(x)) there
is for each i € J an U; € U(z) with f|4; [U;] CV and W :=;c; U; NU € U(z) is the desired
neighborhood with f[W] C V since for each y € W there is an i € J with y € U; N A; and
therefore f(y) = flai(y) € V.

4.4 Topological embeddings

A map f: X — Y is an embedding of (X;Ox) into (Y;Oy) iff f is a homeomorphism from X
onto the subspace f [X]. For example the parametrization f : I — I x {0} C R? of a line I = [0; 27|
given by f(t) = (¢;0) is a toplogical embedding. In particular it is open with regard to the trace
topology on I x {0} C R? whereas the same map f : I — R? is still continuous but not open any
more since f [I] is not open in R?. The corresponding movement on the unit circle g : I — S C R?
with g(t) = (cost;sint) is not a topological embedding because the image of the (locally) open time
interval [0;a[C I with a < 27 is neither open nor closed in S'. The starting time {0} € I as well
as its image f (0) = (0;0) € I x {0} on the line are boundary points but the corresponding image
g (0) = (1;0) € S! on the unit circle is an interior point. The parametrization of the open spiral
h:R — C with h(t) = et is a topological embedding.
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4.5 The final topology

The final topology on a set Y with respect to a family (f;),c; of maps f; : X; — Y
is the maximal or strongest topology so that all f; are continuous. Hence a set YV —% > 7
O C Y is open resp. closed with regard to the final toplogy iff all inverse images T /
f;l [O] are open resp. closed in X;. In general a topology on Y is the final topology Ji gofi
with respect to the f; iff it satisfies the universal property: Anymap g:Y — 7Z X;

is continuous iff all go f; : X; — Z are continuous for i € I.

Proof: The final topology satisfies the universal property since due to 3.1 every map g : ¥ — Z
is continuous iff the inverse images f; *[¢~'[0]] = (go f;)""[O] of open sets O C Z are open in
X;. Then = follows since all f; are continuous and < is a consequence of the definition since if all
£ [g7[O]] are open in X; their image ¢~'[O] is open in Y. Conversely the universal property
uniquely determines the final topology since < implies the continuity of all f; and therefore that
all f;1[O] for open O C Y be open in X; whereas the direction = demands that no other sets be

included.

4.6 The coherent topology

The coherent topology on a set X = (J;c; X; with a covering (Xj>j€J is the final topology with
regard to the injections i; : X; — X. Hence a set O C X is open resp. closed with regard to the
coherent toplogy iff all intersections O N X; are open resp. closed in the subspace topology of X;.

4.7 The quotient topology

Let (X; Ox) a topological space and R an equivalence relation on X with the equivalence classes
T = {y € X : xRy} forming the quotient set X/R = {Z : x € X}. The quotient topology is the final
topology with regard to the canonical projection 7 : X — X/R defined by 7 (z) = Z. It comprises
exactly the images O = (7 o 7 1) [O] of all open saturated sets 7! [O] but since there may be other
open resp. closed sets in Ox apart from the saturated ones the canonical projection 7 : X — X/R
in general is not an open map.

4.8 Quotient maps

A map f : X — Y may be decomposed into the surjective projection 7; : X — X/Ry, the
canonical bijection f := f o wj?l : X/Ry — f[X] and the injection ¢y : f[X] — Y by means
of the equivalence relation Ry C X x X defined by xRy < f(x) = f(y). Note that 7TJ71 is only a

relation but the composition fo 7TJ71 is a function. Since a set 7 [O] is open resp. closed in X/R iff

(7‘(;1 o 7rf) [O] = (f~1 o f)[O] is open resp. closed in X the quotient topology consists exactly of the

projections 7y [O] of saturated open sets of the form O = (f*1 o f) [O] and its closed sets are the
projections of their complements, i.e. projections of saturated closed sets. According to 4.3 resp.
4.7 the continuity of f extends to all three components with regard to the quotient topology on
X/R; and the trace topology on f[X] CY. Amap f: X =Y is a quotient map iff one of the
following three equivalent conditions is satisfied:

1. f is continuous and its canonical bijection f is open and therefore a homeomorphism
between X/Ry and f [X]|C Y.

2. f is continuous and every open resp. closed saturated set O = (ffl o f) [O] has an image
f [O] which is open resp. closed in f[X].

3. The trace topology Oy N f[X] on f[X] C Y coincides with its final topology O which is
then called the identification topology .
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Proof:

1. = 2.: Directly follows from the definition of the quotient topology in ?7?7. Due to the surjectivity
of f with regard to f[X] the conditions fort open and closed sets are equivalent.

2. = 3.: Due to the continuity the trace topology on f [X] contains at most those O C f[X] for
which f~![O] is open while the open character of the canonical bijection f implies that it contains
all of these sets.

3. = 1.: The continuity of f is equivalent to Oy N f [X] C Oy while Oy C Oy N f[X] implies that
every (fo7rf) [O] = f[O] C f[X] with saturated open O = (f~'o f)[0] C X is open in f[X]
whence f : X/R; — f[X] is an open map.

Examples:

1. f:[0;27] — S* C R? with f(x) = (cosx;sinz) is continuous, surjective and closed but not
open since f []z;27]] is not open in S! for 0 < x < 2. But due to its bijective character f is
open and consequently the loop [0; 27|/ Ry with regard to Ry < f ()= f (y) is homeomorphic
to the unit circle (cf 4.4).

2. g:R3=R3\ {0} — S? with g(z) = H%II is continuous, surjective and open such that the
space R?/R, of all open rays Ty L(z) = {tx : t > 0} defined by the equivalence relation xR,y
< g (x)= g (y) is homeomorphic to the unit sphere.

4.9 The restriction of a quotient map

The restriction f|y : U — f[U] of the quotient map f: X — Y to a saturated open or closed set
U C X is again a quotient map and the trace topology Oy N f [U] coincides with the induced final
topology Oy, on f[U]

Proof: For every saturated U C X and open O C Y the inverse image f|;;* [f [U] N O] = UNf~ [O]
is open in U whence f[U] N O is open in the final topology such that we have shown Oy N f[U] C
O¢|,,- For an open saturated U C X and every O € Oy, with open inverse image f]l_Jl 0] =
f~1[0] C U this inverse image is also open and saturated in X whence O = f { flt [O]} C flU]is
open in Y and consequently O € Oy N f [U]. In the case of a closed saturated U C X there is an
open f~1[0] € Vp C X with f|;'[0] = f~'[0] = UNV} and the enlarged set V = VoU X \ U is open
as well as saturated with f|;;* [0] = UNV whence f [V] is open in Y and consequently O = f [V N U]
= fIVINf[U] € Oy N f[U] such that we have shown Oy, C Oy N f[U].

Note: If the restrictions of a the canonical projction to the subset U C X is injective every open set
ONU = f|;' [flv [0 N U] is saturated such that f|;; is a homeomorphism and the subset U can
be identified with its image f [U].

4.10 The topological sum

The topological sum | |;.; X; is defined as the union OieIXi of the disjoint topological spaces
(X5, O0i);c; endowed with the final topology of the injections ¢; : X; — U;c; X;, i.e. the strongest
topology such that all ¢; are continuous. Owing to (U;e; Xi) \ O = User (Xi \ O) aset O C | ;7 X; is
open resp. closed iff all ONX; are open resp. closed in O; for every i € I. In particular the injections
are open as well as closed maps, hence topological embeddings. Due to the universal property
4.5amap f : | |;c; Xis — Y is continuous iff every restriction f|x, = fo¢; is continuous. In the case
of the X; not being disjoint they are placed in separate dimensions via indexing and are treated in the
form (X; x {i},{Uzco (z;4) : O € Oi}),.; such that the trace topology on X; C | ];c; X; coincides
with the original topology O;.
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4.11 The attaching lemma

For continuous maps f; : A; — Y coinciding on the intersections f;|4;n A; = filan A; with 55 € 1
of either an open or a finite closed cover (4;),.; of a common space X C [J;c; A; exists a unique
continuous extension f: X — Y with f|a,= f;.

Note: The attaching lemma is tacitly applied in the construction of the Mdbius strip 20.12, the

torus 20.16 and related manifolds by attaching suitable neighborhoods with corresponding parametriza-

tions.

Proof: f is well defined by f (x) = f; (x) for 2 € A; and for open O C Y and open 4; all f;![O] are
open in A;, hence open in X and so is the the preimage f~' [0] = U;c; f; ' [O]. In the case of closed
A; we consider a closed A € Y with f; ! [A] closed in all A;, hence closed in X and so is the finite

union £~ [A] = Use; fi_l [A].

4.12 Adjunction spaces

Two disjoint topological spaces X and Y are attached by means of
a continuous map ¢ : A — Y on a closed set A C X in the form of
the adjunction space X U, Y := (X UY) /Rg with regard to the

canonical extension ¢ : X UY — (X \ A) LY defined by ®|4 = ¢ X\ A
and ®|x\ 4uy = id. Hence according to 4.10 a set m¢ [O] is open resp.
closed in XU, Y iff XN O is openin X and Y NO is open in Y. Then Y U(X\ A)

1. The restriction mgly : Y — X U, Y is an embedding and T(D

7o [Y] is closed in X U, Y.

2. The restriction mg|x\4 : X \ A = X U, Y is an embedding
and 7e [X \ A] is open in X U, Y.

3. The adjunction space XU, Y is the disjoint union of 7g [Y]
and g [X \ A] and it is homeomorphic to the topological
sum (X \ A)UY. In particular the sum topology coincides
with the final topology of the canonical extension .

Proof: YUX

1. The restriction of the canonical projection 7|y is obviously continuous, injective and it is
also a closed map since for every closed B C Y the intersection 75" [7g [B]]NY = B is closed
in the closed subset Y while the intersection 75" [ [B]] N X = ¢! [B] is closed in the closed
subset X whence according to 4.8 the saturated set 74" [7g [B]] is closed in the disjoint union
X UY such that according to 4.8 mg [B] is closed in the quotient topology of X U, Y.

2. Follows from 74! [16 [C]] = C for every C' C X \ A.

3. Obvious since m [A] C 7 [X]. The homeomorphy is a consequence of 1. and 2.
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4.13 The wedge sum

The wedge sum \/,.; X; = (e Xi) Uy {p} of the disjoint topological spaces
(Xi, 0i);c; with regard to the base points p; € X; is the adjunction space of 3
the topological sum | |;c; X; and the base point p attached to each other by
g (Pi)ier — {p} with g (p;) = p for every i € I. All open sets O; C X with p; ¢ O;
are still open in \/;c; X; but the neighborhood system of the base point consists
of all unions (J;c; O; of open sets containing p; € O;. For example the wedge
sums \Vq<;<, R; resp. V<<, S' are homeomorphic to the union of the coordinate
axes Ulzi;n {z; =0V £ i_} C R” resp. to a subset of the bouquet of circles
Ui<izj<n Sizj € R™ with S; ;= OB (e;) N {xy = 0VEk #iV k # j} each furnished
with the trace topology in R™.

5 Connected spaces

5.1 Connectedness

A topological space (X; Q) is connected iff it cannot be decomposed into two disjoint open sets.
Hence it is connected iff there are no other sets being open as well as closed apart from () and X. It
is totally disconnected iff every set in X is open as well as closed. (X; ) is connected iff there is a
surjective mapping on a discrete space containing at least two points. The continuous image f [X]
of a connected space X obviously stays connected. A connected set A stays connected if boundary
points are added: any B satisfying A C B C A is still connected. If a connected set A contains

o
interior and exterior points of a set B it also must contain boundary points of B since otherwise B

o
and X \ Bwould constitute an open disjoint covering of A. The union AU B of two connected sets A
und B is connected iff AN B # (.

5.2 Intervals and the intermediate value theorem

Every interval I C R is connected with reference to the natural topology. In particular every
continuous function f: X — R on a connected set X with s,t € f[X] assumes every value between s
and t.

Proof: Assume [ is open. Let O and Oz be open disjoint sets in R both meeting I with I C O UOQOs.
Let ue O1NI,ve OsNI withu <wvands:=sup{w € [:[u;w] CO1}. Hence u < s < v and due
to the definition of an interval we have s € I so either x € O; or x € Os. Since [ is open there is an
€ > 0 with either Bs.(s)C I NOjor Op or in Ba.(s) C I N Os. In the first case we have [u;s + €] C O
and s is not an upper bound. In the second case it follows that [u;s — €] € O; and s is not the least
upper bound. On account of 5.1 the connectedness extends to arbitrary intervals.

5.3 Connected graphs

In set theory a function is defined as a set of ordered pairs such that the second

coordinate y = f (z) € Y is uniquely determined by the first coordinate x € X y y=sin(3)

(cf [19, p. 9.1]). In analysis a (not necessarely existing) algebraic expression 1

f (z) determining the value of the second coordinate from a given value of

the first coordinate is usually being referred to as the function in contrast x
to its graph Gy = {(x; f(x)) : 2 € X} C X x Y illustrating the geometric 1
aspect of f. Although set theory does not distinguish between graph and _;

function this text will follow the analytical fashion:. Hence the “graph” G; =

{(z; f(z)) : @ € I} C R? of a continuous real-valued function f : I — R on the interval I C R is itself
connected in R? since it is the continuous image of the trajectory k : I — R? with k(t) = (; f(t))
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which in turn is continuous according to 4.2. An interesting case is I =]0;1] and f(z) = sin (%)
Due to 5.1 the closure Gy = Gy U {0} x [—1;1] is also connected but for I = [—1;1]\ {0} this is
not true any more because the right half plane H; = {(z;y) € R? : > 0} and the left half plane
H_ = {(z;y) € R*: 2 < 0} form an open disjoint covering of G ¢- By adding an arbitrary boundary
point (0;a) with —1 < a < 1 the connectedness can be restored. The Sorgenfrey line from 2.8

is totally disconnected since all basis sets [a,b] = R\ (]—o0;a[ U [b;o0[) are closed on account of
|—o05al = Upen la — n;af resp. [a,00] = Upen la;a + nl.

5.4 Connected components

A simple chain between two points a and b in a topological space X is a finite sequence of open
sets Uy, ..., Uy, so that only the first set contains a, only the last set contains b and each set intersects
only the directly adjacent sets. a and b are connected iff every open covering U of X contains
a simple chain between a and b. Since this definition refers to every possible open covering the
elements of a simple chain must be connected and since the union of two open connected sets is again
connected the union of a chain is an open connected set. For a given open covering U the union Ky, (a)
of all chains in U containing a is an open connected set and consequently if a and b are connected there
is an open connected set containing both points. The converse is also true for in the case of an
open covering U such that b ¢ Ky (a) and vice versa we have a partition of X into disjoint open sets
Ky (a), Ky (b) and possibly X \ (K (a) U Kz (b)) such that every open set O containing both a and
b admits an open partition of the corresponding intersections. The connectedness between two points
is an equivalence relation and the equivalence class of a point z is the connected component K (r)
i.e. the union of all connected open sets containing x. The connected components form a disjoint
covering of X. Every K (x)is closed since y ¢ K (x) must have a neighborhood U € U (y) contained
in X \ K (x). Hence if the number of connected components is finite, they are open as well as closed.
In general every open as well as closed set containing x also contains K (x). Consequently K(z) lies
in the intersection of alle open as well as closed sets containig z. But K (z)is not equal to this
intersection:

5.5 Connected components in the plane

The set X C R? contains the points u = (0;0), v = (0;1) and the lines s, =
{%} x [0;1] for n € N* with the trace topology in R2. Since all s, are disjoint,
connected, open and closed sets it follows that K(u) = {u} and K(v) = {v}. But
any open and closed set M containing v meets infinitely many s,, and must contain
all of these lines since each of them is connected. Hence v is a boundary point of M

and so belongs to M. K(u) = {u} and K(v) = {v} are closed but not open.

u X

5.6 Connected products

X = [l;er X; is connected iff all X; are connected

Proof: = follows from the continuity of the components

resp. 5.1. Concerning < we show that the connected

component K(a) of an arbitrary point a = (a;);c; € X

is dense in X and apply 5.1. Let U = MperPs (Uk)

with Up open in X, and finite K C N an arbitrary ba-

sis set of the product topology on X. W.log let K = X1 X2 X3 Xa X5
{1;..;n}, choose by € U, for k € K and define E; =

{reX:xz;e€Xjanda; =a;else}, EFy = {ze€X:x;=0b,20 € Xoandz; = q;else},..., E, =

{reX:x1=0b1,...,xp_1=0by_1,2, € X, and x; = a; else}. The E; are homeomorph to the X; and
connected due to 5.1. Also we have F; N E;11 # () and again due to 5.1 the set A = Ui<i<n Bi i
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connected. On account of a € E; C A we have A C K(a) and hence ) #UNE, CUNACUNK(a).
Consequently K (a) intersects every basis set U and so is dense in X.

5.7 Connected components of products

For every x = (2;);c; € [lier Xi is K(x) = [1;er K (24).

Proof: Due to 5.6 the product [];c; K (z;) is connected and contains x so that [[;c; K (z;) C K(x).
On the other hand with K (x) every p; (K (x)) is connected too and contains x;. Hence p; (K (x)) C
K (x;) for all i € I and hence K(z) C [[;c; K ().

5.8 Path connectedness

A continuous map f : I — X on the closed interval I = [0;1] C R into the topological space X is a
path and X is path connected iff for any two points x,y € X there is a path f with f(0) = z and
f(1) = y. Since with I the continuous image f [I] is connected every path connected space is
connected. The converse is not true since for example the closure f of 5.3 is connected but not path
connected. A map g : [0;1] — f with g(0) = (0;0) and g(0) # g(1) € f cannot be continuous in z = 0
since for any § > 0 there is a < ¢ with [|g(x) — g(0)|| = ||g(z)|| > 1. This example also shows that
the closure of a path connected space is not necessarily path connected. Connected open subsets
O C X of metric spaces (X;d) are path connected, since in that case the path connected open
neighborhoods B, (z) form a neighborhood basis for every € X whence the path component
P (z) of all points being path connected to x is open such that the path components constitute
a disjoint open partition of O.

5.9 Local path connectedness

A topological space X is locally path connected iff for every x € X and every
neighborhood U of x there is a subordinate path connected neighborhood V' C U of y

x. A connected as well as locally path connected X is also (globally) path connected v

since from the open cover of X by the path connected neightbourhoods of all points

z,y € X we can choose a finite chain of path connected sets whose union is again u x
path connected and contains x as well as y.

For example the set X = {0} x [0; 1]UU,,en+ {(x, nz) ER?:0< < %} C R? is connected and path
connected (cf. 5.8) but not locally path connected since every neighborhood of a point (0;¢) with
0 <t < 1 on the vertical line meets infinitely many of the skewed lines and thus can only be path
connected if it contains the node (0;0) of these lines.

5.10 Simple connectivity

A loop in a topological space X based at z € X is a closed path f with
f(0) = f(1) = z and it is contractible iff there is a continuous contraction
F:I? - X with I = [0;1] such that F (t;0) = f (t) and F (t;1) = z for every
t € I. The space X is simply connected iff it is connected and every loop
in X is contractible. Thus simple connectivity indicates holes in manifolds
as e.g. the torus X which is connected as well as locally path connected.
The loop f on its side is contractible while the loop ag round its hole is not.
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6 Filters and convergence

6.1 Filter

A Filter F on a set X is a family of subsets of X containing for every member Fj its nonempty
intersection F;NF, with any other member F5 as well as every overlying set F3 D F} and especially
X. A subfamily B C F is a filter basis of F iff every element of F includes an element of B. Hence
a family of subsets is a filter basis iff every nonempty intersection of two members of B includes a
member of B. For every nonempty subset A C X the family of all overlying sets F' with A C FF C X
is a filter. For an atom A = {x} this filter includes the neighborhood system U (x) which is itself a
filter, namely the neighborhood filter. For a sequence (z;);,.yC X the tails By := {z; : i > n} for
k € N form a basis for the filter induced by the sequence.

6.2 Ultrafilter

A filter F; is included in a filter F5 resp. Fi; C JF3 iff every member of F; contains a member of 7.
We say that Fi is weaker than F> and F» is stronger than F;. A filter is an ultrafilter iff there
is no stronger filter on X. Every filter is included in an ultrafilter since every linearly ordered
subfamily ®¢ of the family ® of all filters containing the given filter F has the upper bound | ®g € ¢
whence @ is inductive with regard to the inclusion C. By applying Zorn’s lemma [19, p. 14.2.4]
we obtain a maximal element G of ® which is the desired ultrafilter.

6.3 Characterization of ultrafilters

F is an ultrafilter on X iff for any subset A C X either A€ F or X \ A € F.

Proof: Due to AN X\ A = 0 the filter F cannot contain two sets F; C A and F» C X \ A: All
elements of F intersect either A or X \ A. W.l.o.g. assuming the first case {F'N A : F € F} is a basis
for a filter G which is stronger than F and contains A. Since F is an ultrafilter it follows F = G and
consequently A € F. Conversely let F be a filter containing every subset of X or its complement.
Then for any filter G 2 F there exists a set A € G\ F but applying the hypothesis we also have
X\ A€ F CGsog cannot be a filter.

6.4 Free and principal filters

The principal filter of a given set A is the family of all sets including A. A filter F is free iff N F = (.
Hence every free filter is nonprincipal but the converse is not true since a nonprincipal filter may be a
proper subset of a principal filter. A filter F is a principal ultrafilter iff ¥ = {FF C X : x € F'} for
azxeX.

6.5 Convergence

A filter F — x converges to the limit point z € X iff it includes the neighborhood filter of .
The element x € X is an accumulation point of F iff  is an accumulation point for every element
F € F. The set of accumulation points of F is Npcr F. (cf. 2.6)

Examples:

The Fréchet filter induced by B={]a; o[: a € R} is free and does not have any accumulation points.
A point is an accumulation point or cluster point of a sequence iff it is an accumulation point
of the filter induced by the sequence. The closure A a of a nonempty set A is the set of all ac-
cumulation points of its principal filter F = {FFC X : AC F}. A point z is an accumulation
point of a filter F iff there is a stronger filter G converging to x. G is generated by the basis
B={FNU:FeGAUe€U(z)}. Hence an ultrafilter converges to its accumulation points.
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6.6 Continuity

The image f(F) of a filter F under the mapping f : X — Y is the filter generated by B :=
{fIF]: FeF}onY. Dueto f[F]Nf[G] D f[F NG| the family B is a filter basis. The image f (F)
of an ultrafilter F on X is again an ultrafilter on Y since for every set A C Y holds either f~! (A4) €
F=A=i(it(A)ci(F)oa X\ f1AeF=FfX\f1A)=f(X)\ACY\Ac f(F). The
following three statements are equivalent:

1. f: X =Y is continuous in z € X .
2. U(f () C f U ().
3. F=z= f(F)— flz) .

6.7 Convergence on initial topologies
A filter F on the space X with the initial topology O with reference to the mappings f; : X — (Y;; 0;)
converges to © = (N7 f; ' (x;) € X iff the image filter f; (F) converges to z; for all i € I.

Proof: = follows from f; being continuous and 6.6. In order to show < we choose for every i € [
and U; € U(z;) a F; € F with f; [F;] C U; and for a basis set U = (;cp fi_1 [U;] € U(x) with finite E
follows that F' = (\;cp F; € F with ' C U hence U(x) C F resp. F — x.

6.8 Trace filter

The trace FNA={FNA:F € F} of a filter F on a nonempty set A C X is a trace filter on A
iff A intersects every filter set F'. For an ultrafilter the trace 7 N A is a filter on A iff A € F and in
this case F N A is an ultrafilter on A. The following three statements are equivalent:

1. z € A
2. The trace U(x) N A is a filter.

3. There is a filter on A whose image under the injection j : A — X converges to x.

7 Separation axioms

7.1 Separation axioms ( Trennungseigenschaften)

A topological space X is a

o T-space iff two distinct points in X have neighborhoods which do not meet the respective other
point.

e Ta- or Hausdorff space iff two distinct points in X have disjoint neighborhoods .

o Tg-space iff every closed set A C X and every x € X \ A have disjoint neighborhoods and
regular iff Tq holds as well.

o T3a-space iff for every closed set A C X and for every x € X \ A there is a continuous function
f:X —[0;1] with f[A] = {0} as well as f(z) = {1} and completely regular iff T is satisfied
as well .

e Ty-space iff any two disjoint closed sets have disjoint overlying open sets and normal iff it
complies with T4 as well.
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7.2 Separation axioms in metric spaces

In metric spaces all separation axioms are valid and furthermore two disjoint closed sets A and B can
be separated by a continuous function f: X — [0;1] with f[A] = {0} and f [B] = {1}.

Proof: We only need to show T4: Let A and B be closed and disjoint. For every € A there is an
e(x) > 0 with By.(;)(z) N B = 0 and for each x € B an ¢(z) > 0 such that By.(;y(z) N A = 0. The
sets Uyea Be(x) resp. U,ep Be(z) separate A and B. For every (not necessarily closed) A C X we
have d4 : X — RT with da(x) := inf {d(x;y) : y € A} continuous since for xg € d;'[]a;b[] there is an
e >0 with a + 2¢ < a4 2¢ < da (29) < b — 2¢ and consequently Be(zg) C d;* [Ja;b[], i.e. dy* [Ja;b[]
is open in X. Due to 3.3 the function f(z) := #% is still continuous with f[A] = {0} and
f[B] = {1}. On account of ds(x) = 0 & z € A the sets A resp. B need not be closed but they cannot

have a common boundary point.

7.3 Separation axioms in subspaces
All separation axioms with exception of T4 are inherited by arbitrary subspaces. T4 extends to closed
subspaces only.

Proof: The validity of T; and Ts is trivial since every neighborhood in the subspace X C Y is the
intersection of a neighborhood in Y with X. In order to show T3 let A be closed in X C Y and
xz € X \ A. There is a neighborhood U of z in the superordinate space ¥ which does not meet A i.e.
x is not a boundary point of A in Y either. Hence the closure A in Y can be separated from x by
open sets in Y and the intersections of these open sets with X separate A and x in X. The proof of
T3, is analogous: There is a continuous function f : Y — [0;1] with f [Z] = {0} and f(z) = {1}.
Due to 4.3.1 its restriction f|x is still continuous on X with f|x [A] C {0} as well as f|x(z) = 1.
Concerning T4 we note the fact that any set A being closed with reference to a closed subspace X C Y
is still closed in the superordinate space Y.

7.4 T,-spaces

The following statements are equivalent:
1. X is a Ty-space.
2. Every atom {z} is a closed set.

3. Every set is the intersection of all of its neighborhoods.

7.5 T,-spaces

The following statements are equivalent:
1. X is a Ty-space.
2. Every convergent filter on X has exactly one limit point.
3. Every point on X is the intersection of all of its closed neighborhoods.
4. The diagonal A is closed in X?2.
Proof:
1. = 2.: Two limit points would have two disjoint neighborhoods which both would belong to F.

2. = 3. Assuming the intersection of all closed neighborhoods contains another point y this point
would also be a boundary point of the neighborhood filter of x and according to 6.6 there
would exist a stronger Filter converging to x as well as to .
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3.=4.: Assuming A is not closed there would exist two points = # y so that (x;y) ¢ A were
a boundary point of A. Consequently every neighborhood U x V with U € U(z) and
V € U(y) meets A i.e. every neighborhood of x meets every neighborhood of y. But then
y is a boundary point of all neighborhoods of x and thus it lies in the intersection of all
closed neighborhoods, i.e. z = y.

4. = 1. Assuming there are two points x # y with every neighborhood of x meeting every neigh-
borhood of y then (x;y) ¢ A is a boundary point of the diagonal A.

7.6 The cofinite topology

Every Ta-space is T but the converse is not true: Given an infinite set X with the cofinite topology
consisting of all complements of finite sets for two points x,y € X the set X \ {z;y} is a neighborhood
of x as well as of y not meeting the corresponding other point. Since in this topology no complement
of an open set contains another open set there are no open disjoint sets separating x and y. Hence
the cofinite topology satisfies Ty but not Ts.

7.7 T3-spaces

A topological space X satisfies Ty iff the closed neighborhoods of every point x € X form a
neighborhood basis. A look at the indiscrete topology shows that a Ts-space needs neither
be T; nor Ty. Regular spaces are Hausdorff on account of 7.4.2. In Ts-spaces the closure
A=N{OD>A:0€0} of aset Ais equal to the intersection of all open sets containing A and

the interior A = U{F C A: X\ F € O} is the union of all open sets being included in A. (cf. 2.6)

7.8 T3,-spaces

For a topological space (X; Q) with the family C (X;[0;1]) of all continuous functions f : X — [0; 1]
the following statements are equivalent:

1. (X;0) is a T3a-space.

2. {f710]: 0 € O;f e C(X;[0;1])} is a basis of the topology in X.

3. Every closed set A has the representation A = {f~1(0): f € C(X;[0;1])}.
Proof:

1. = 2.: Any open set can be represented as the union ,co £ 1]0;1] of open sets produced by the
continuous functions f, : X — [0;1] with f, [X \ 4] C {0} and f (z) = 1.

2. = 3. Let A be closed in X. According to the hypothesis there is a point z € X \ A, an open
set U, C [0;1] and a f, € C (X;[0;1]) with x € f,;1[U,] € X \ A. Since R is completely
regular there exists a g, € C(R;[0;1]) with g, [R\ U,] € {0} and g,(x) = 1. Thus
we get A C X\ £, [U.] = £, R\ Uy € f7' (9,1 (0)) = (gz© f2)”' (0). Consequently
A= ﬂzeX\A (92 © fx)_l (0).

3.= 1.: Let Abeclosed in X and 2y € X\ A. Accoording to the hypothesis thereisa g € C' (X;[0;1])

with g [A] = {0} and g (zo) # 0. Take f(x) := ;(ﬁ))).

The following theorem 7.9 is fundamental for Urysohn’s metrization theorems 11.12 as well as
for the Stone-Cech-compactification 17.7:
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7.9 Embedding of a T3,- space

A Tga- space can be embedded in a product [[ cc«(x) Iy of real intervals.

Proof: The image ¢ [X] of every ¢ : X — R taken from the set & := C*(X) of real con-
tinuous bounded functions on X lies in a minimal closed interval I, C R. The mapping
e X = [lpecwx)lp with e(z) = (¢(2)),ecn(x) i injective since for z # y there is a ¢ €
C* (X) with ¢(z) # ¢(y) and consequently e(z) # e(y). The components p, oe : X — I, with
(ppoe) (x) = p(x) are continuous and so is e due to 4.1. The mapping e is open since the inverse
images (p, o e) ' [U] = ¢ 1 [U] with U open in I, constitute a basis for the topology on X owing to

7.8.2 and their images e [(pw oe)™! [U]} =e[X]Np, ! [U] are open in e[X].

7.10 Separation axioms in product spaces

All separation axioms with the exception of T4 transfer to the product space.

Proof: T; and Ty follow from the fact that N;cp p; ' [Us] with U; € U(z;) and finite K form a
neighborhood basis for every = (2;);c; € [l;c; Xi. For the proof of T3 we apply 7.7 two times:
Since the components satisfy T3 for every basis set (Ve p; * [Ui] with U; € U(z;) we have closed A;
and open V; € U(z;) with V; C A; C U;. Hence N;eg ;' [Ai]l € Niex p; ' [Ui] is closed and includes
Micr Pi L [Vi] € U(z) ie. it is a closed neighborhood of z. Concerning Ts, let N;cx p; ' [Ui] be a
neighborhood of x which does not intersect A. The continuous f; : X; — [0;1] with f; [X; \ U;] C {0}
and fi(z;) = 1 can be combined e.g. via f(y) := min{(fiop;)(y):i € K} to form a continuous
[ i TLier Xi — [0;1] with f[A] € {0} and f(x) = 1. According to 3.3 the composition of f needs only
to maintain the continuity and the values 0 resp. 1. Hence other possible compositions include the
maximum or the mean value of thef;.

7.11 Separation axioms in quotient spaces

Let R be an equivalence relation on X and 7 : X — X/R the canonical projection.
1. X/R is a Ty-space iff the equivalence classes 7! (7 (x)) are closed in X for every z € X.
2. X/R is a To-space if 7 is open and R is closed in X2.
3. X/R is a Ty-space if 7 is open as well as closed and X is regular.
4. X/R is a Ty-space resp. normal if 7 is closed and X is a T4-space resp. normal.
Proof:
1. = follows from the continuity of the projection m and <« is obvious from 7.4.2.

2. For 7(x) # n(y) € X/R we have 7! (r (2)) x 7~ (7 (x)) € X?\ R and due to R closed in X?
there are open U,V C X with 77! (7 (z)) x 77! (7 (z)) CU x V C X?\ R. Since 7 is open the
images 7 (U) resp. (V) are open disjoint neighborhoods of 7 (x) resp. 7 (y).

3. For (z;y) € X2\ R we have x ¢ 7 (7 (y)). On account of Ty the point z is closed in X
and since 7 is continuous as well as closed its image 7(y) is closed and so is the inverse image
771 (7 (y)). Due toT3 there are open and disjoint sets U and V with 2 € U and 7~ (7 (y)) C V.
According to 3.6 we have an open neighborhood W of 7(y) with 7#=1 (7 (y)) C ==} [W] C V.
Thus U x 71 [W] is a neighborhood of (z;y) which does not meet R. Consequently R ist closed
in X2 and the proposition follows from 2.

4. For closed disjoint sets A and B in X/R the inverse images 7! [4] and 7! [B] are closed and
disjoint in X due to the continuity of 7. Owing to the hypothesis there are open disjoint U4 and
Up in X with 771 [A] C Uy and 7~ [B] C Up. On account of 3.6 there are open neighborhoods
V4 of A with 771 [V4] C Ua and Vg of B with 77! [V3] C Up. Since V4 and Vg are disjoint the
proposition then follows. In the case of X satisfying T every point x € X is closed and since m
is closed every equivalence class w(x) € X/R is closed too so that the proposition follows from
7.4.2.

27



7.12 Continuous functions into Hausdorff spaces

The graph {(z;y) € X xY :y = f(z)} of a continuous f : X — Y into a Hausdorfl-space Y is closed
in X x Y since it is the inverse image of the closed diagonal A C Y2 (cf. 7.5.4) under the continuous
mapping (f;id) : X x Y — Y2 (cf. 4.2). For injective f the domain X is Hausdorff too since it is the
continuous inverse image of the Hausdorff-space f[X] C Y (cf. 7.3). This precondition can be forced
upon X by substituting it with the quotient space X/R under xRy < f(z) = f(y).

7.13 Extension of continuous functions in Hausdorff spaces

For two continuous functions f,g: X — Y into a Hausdorff space Y the set {z € X : f(x) = g(x)} is
closed in X. Especially f and g are identical iff they coincide on a dense subset of X.

7.14 Extension of continuous functions in regular spaces

A continuous mapping f 1D —Y onadense set D C X into the regular space ¥ can be extended
to a continuous mapping f : X — Y iff for every z € X the imagef (U(x) N D) of the neighborhood
filter converges in Y.

Proof: Let f(x) be the uniquely determined (cf. 7.5.2 and 7.7) limit point of f (U(x) N D). f coincides

with f on D since for any x € D the image filter f (U(z) N D) = f (U(x) N D) converges to f(z) due
to 6.6. We show that f is continuous: For z € X and U € U (? (:z:)) C f(U(x) N D) there is an open

V e U(x) with f [V N D]C U. On account of 7.7 we can assume U closed so that even f [V N D] C U.
For every y € V holds V' € U(y) and so f[V N D] € f(U(y) N D). Since the limit point f(y) is an

accumulation point it follows that f(y) € f [V N D] C U hence f[V] C U, i.e. f is continuous.

8 Normal spaces

8.1 Urysohn’s lemma
A topological space X is a Ty-space iff any pair of disjoint closed sets A and B can be separated by
a continuous f : X — [0;1] with f[A] = {0} and f[B] = {1}.
Corollaries:
1. For every closed set A C O C X in an open set O in a normal space X exists a continuous
bump function f: X — [0;1] on A supported in O with f~! {1} = A and {f # 0} C O.
Gr /
8
( G1 B
“ \
iyj € {Zlgmgn % cz(m) € {0;1} An € N} an open set G; with

G; C G j<i Wedefine f: X — [0;1] by f(z) =inf{t eR: 2 € G} if ¢ Gy and f(z) =1
if z € G1. Hence we obtain the desired properties f[A] = {0}, f[B] = {1} and f(z) <i < x € G,.
f is continuous in z € X since for any ¢ > 0 we have f [Gf(x)Jr(;\éf(x),(;} C B:(f(x)) and

2. A normal space is completely regular.

Proof: In a Ty-space for any open set G; and an underlying closed
set G; C Gy eiists an open set Ciiﬂ»)/g lying with its closure be- \Gé \GQ Gs
tween them: GZ C G(2+])/2 C G(Z+])/2 - G] We begin with
A C X\ B and apply this nesting two times to obtain Go and 4 | 4,
G1 with A C Go € Gy C Gy c G cX \ B. Subsequently /
G1

we proceed as above for any pair G; C G; and obtain for each aq

1
2

Gray+s \ Gpy—s € U(x) for 0 < § < e. Conversely if such an f exists the corresponding open
disjoint sets are given in the form of A C f~1[B.(0)] resp. B C f~![B:(1)] with € < 1.
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8.2 G;- and F,-sets

A subset A of a topological space X is a Gg-set iff it is the countable intersection A = (,,cn G of
open sets Gy, and it is a Fs-set iff it is the countable union A = |J,, ey Fr of closed sets F,. (G =
Gebiet; F = fermé ; 0 = Summe ; 6 = Durchschnitt ).

A nonempty closed set A in a Ty-space X is a kernel A = f~! {0} of a continuous f : X — [0;1]
iff it is a Gg-set. Correspondingly the closure of a nonempty open set O = {f # 0} is the support of
a continuous f : X — [0;1] iff it is a F,-set.

Proof:

=-: Assuming the open sets G, from the preceding definition and the separating functions f, :
X — [0;1] with f,, [A] = {0} and f,, [X \ Gy] = {1} according to 8.1 we obtain the desired function
by f(z) =>,en ! "Q(f) which is continuous due to the continuity of the partial sums (1.6).

«: The given f provides the desired open sets by means of G,, = f~! [Bl /n (0)}

8.3 Tietze’'s extension theorem

A topological space X is a T4-space iff every real-valued continuous function on a closed subset A C X
can be extended to X.

Proof:

<: Let A be closed in X and since R is homeomorph to

]—1;1] (cf. 3.4) we assume a continuous f : A —|—1;1[. Ac- 1.0t

cording to 8.1 there is a continuous fy: X — [—%; é] with

Bl{r<-4)] = -4} ma o[> 3)] = (3): s
approximation of order n = 0 satisfies |f(z) — fo(z)| < . s s P
%. Applying 8.1 again we improve this approximation for . ¥
every n > 1 by means of f, : X — {—% (%)n,% (%)n} _osk §2+f1

i 1= Toeer 2@ = ()

( - 2 —7 fo+fi+fat fa
and f, [{f — Yo<i<n—1fi 2 é (%) H - {% (%>

—1.0¢4

Due

to 1.6 the limit f := 3°,,cx fn is continuous with ’f(x)‘ SZ,LGN% (%)n = 1 and coincides with fon
A. Finally we remove the remainig values +1 by means of a 8.1 yet again: Let g : X — [0;1] be
continuous with g H‘f‘ = 1}] C {0} and g[A] = 1. Then go f : X —] —1;1[ is the desired continuous
extension of f.

—— Wl

= For disjoint closed sets A and B the function f : AUB —]1;1[ with f[A4] = {—%} and f [B] = {%}
is continuous on the closed set AU B since the connected components A and B are both open as well
as closed on AU B. Hence it can be extended to a continuous f : X —] — 1;1[. The sets 771 []—1;0[]

und ?_1 []0;1[] are open and disjoint sets separating A and B.

8.4 Open covers

A set family (U;);c; on a topological space X is open resp. closed iff the corresponding property is
assumed by all U; and finite resp. countable referring to the index set I. It is point finite resp.
locally finite iff every point x € X meets only finitely many U; resp. has a neighborhood which
meets only finitely many Uj.

For every closed set A in a normal space X and a point finite open cover (U;),.; of A there is a
further open cover (O;);.; of A with O; C U; for all i € 1.
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Proof: Let M be the family of all open covers of A of the form (Oy);cx U (Up);cp, with KUL =1,
KNL=0and Oy C Uy for k € K. For two covers C = (Og)ex U (Un)jep, € M and C' = (Oy) g U
(U)jery € Mlet C < C'iff K € K' and Oy = O}, for all k € K. For a linearly ordered subfamily
(C%)ses = (Of)pers Y (U)jeps € M let K i= Ugeg K%, L i= Nyes L? and C := (OF) e Y (Un)er-
Since K UL = I and K N L = () the family C is well defined. It is also a cover: Assume x € A
and P(x) := {i € I : x € U;}. In the case of P(x) N L = () and since (U;);c; is a cover there is an i
with x € U; € C. If P(x) C K and since P(x) is finite there is an s with P(z) C K*® and due to
the linear order of (C*),.q and the covering property of the C* there is an i € K with 2 € O; € C.
Hence C is a cover of A and consequently the upper bound of (C*), g. Zorn’s lemma (cf. [19, Satz
14.2.4]) then delivers a maximal element C* = (Op)pcx+ U (Up)cp-- Assuming L* # @ for an i € L*
the set B := A\ (UkeK* Ok UUer\{i) Ul) must be closed and is included in an open set U;. Since
X is normal there is an open O; with B € O; C O; C U; and substituting U; with O; results in
C™ = (Ok)pex-uiy Y (U jep\ iy € M with C* < C™ contrary to the maximality of C*. Hence we
conclude L* = () which completes the proof.

8.5 Partitions of unity

The support of a continuous function f : X — R is the closure A of the set A = {x € X : f(x) # 0}.
A system (f;);c; of continuous functions f; : X — R* is a partition of unity subordinate to
the open cover (U;),.; iff the supports of the f; form a locally finite system, are contained in the
U; for all i € I and satisfy > ;o7 fi(x) =1 for all € X. Since the supports are locally finite the sum
> ier fi(x) is well defined and continuous even without the latter condition.

In a normal space X every locally finite cover U = (U;),.; has a subordinate partition of unity.

i€l
Proof: Due to 8.4 there is an open cover O = (O;);c; with O; C U, for all i € I. Since X is normal we
can find open sets C; with O; C C; € C; C U; and according to 8.1 continuous functions g; : X — [0; 1]

with g; [X \ C;] = {0} and g; {51} = {1}. The supports of the g; lie in C; and therefore in U;. Since U
is locally finite the function g(z) := >,c; gi(x) is well defined and continuous. Because O is a cover of

X we have g(x) > 1. The functions f;(z) := % are continuous again and form the desired partition
of unity subordinate to U.

9 Compact spaces

9.1 Definitions

A topological space X is quasi-compact iff every open cover (U;),.; of X has a finite subcover of X.
The space X is compact iff it is also Hausdorff. A subset A C X is (quasi)compact iff this property
holds for the subspace A. The set A C X is precompact iff the closure A is compact.

9.2 Properties of compact spaces

The following statements are equivalent:

1. X is quasi-compact.

2. Every family of closed sets with empty intersection has a finite subfamily with empty intersection.
3. Every filter on X has an accumulation point. (Bolzano-Weierstrass)
4

. Every ultrafilter on X is convergent.

30



Proof:

1. = 2.: by taking the complements.
2. = 3.: with 6.5.

3. = 4.: with 6.2.

4. = 1.: If an open cover of X had no finite subcover every finite subfamily of the closed complements
would have a nonempty intersection and consequently these intersections would form the basis of an
ultrafilter converging to an x € X. But then the ultrafilter would include every neighborhood of x
and consquently an element of the open cover as well as its complement.

9.3 Sequences on quasi-compact spaces

According to 9.2.3 every sequence on a quasi-compact space has an accumulation point. The converse
is not always true: Let X = {0;1}* the set of all functions f : R — {0; 1} with the product topology
and A the subspace of all functions f € X with countably many zeroes. Fo every sequence (fp),cy C A
with countable zero sets I, the function f € A with f(z) = 0 for € U,,en In (a countable union of
countable sets is again countable, cf. [19, p. 17.6]) and f(z) = 1 else is an accumulation point since the
sets {0} x {1}/ x {0; I}R\(IUJ) with finite I C U,,ey In and J C R\ U,y In form a a neighborhood
basis for f in A and contain every f,,. But A is not compact since the open sets {0}, x {0; I}R\{x} for
xz € R and {1}, x {0; 1}R\{0} cover X and especially A but no finite subfamily covers A.

9.4 Compact subsets

Every compact subset K C X in a Hausdorff space X can be separated from any point z € X \ K
by disjoint open neighborhoods. Hence every compact subset of a Hausdorff space is closed and
since every closed subset of a quasi-compact space is obviously quasi-compact we conclude that
compact spaces are regular.

Proof: Every point y € K has a neighborhood U(y) disjoint from the open neighborhood Uy (z).
These U(y) cover K and the union of the finite subcover is an open set containing K which does not
meet the finite and therefore open intersection of the corresponding Uy(x) .

9.5 Compact spaces are normal

Proof: Due to 9.4 the closed disjoint sets A and B are compact and on account of X being regular
every y € B has a neighborhood U(y) disjoint from an open neighborhood U,(A) of A. The U(y)
cover B and the union of the finite subcover is an open set containing B which does not meet the
finite and therefore open intersection of the corresponding Uy (A).

9.6 Alexander’s theorem

X is quasi-compact iff every cover of X by sets from a subbasis S has a finite subcover.

Proof: Assuming there is an ultrafilter F which does not converge. Then for each z € X there
is a neighborhood U, € U (z) not included in F. Due to 2.2 there is a basis set B, C U, with
By = Nkek, 1Sz} and w.lo.g. = € Sy € S for finite K, and k € K,. There is a k, € K, with
Sxk, ¢ F since otherwise with all S, their finite intersection B, and especially U, D B, were included
in F contrary to the hypothesis. Again under the hypothesis there is a finite subcover (Sy, ) e x With
the corresponding complements belonging to F. Their intersection is empty in contradiction to 6.1.

31



9.7 The Heine-Borel theorem for one dimension

Every closed and bounded subset of R is compact.

Proof: On account of 9.4 and 9.6 we only have to show that every cover U of a closed interval [a; b] C R
by half open intervals [a; ¢[ and ]d; b] possesses a finite subcover. For ¢ :=sup{c € R: [a;c[e U} > b
there is a ¢’ < b with [a;¢”[€ U which already covers [a;b[. In the case of ¢ < b there is a d' < ¢
with |d’; b] € U since otherwise ¢’ cannot be covered. Furthermore there is a ¢’ with d’ < ¢’ < ¢ and
la; ’[€ U such that [a;b] C [a; "[U]d'; b].

9.8 The closed map lemma

For every map f : X — Y from a compact space X into a Hausdorff space Y we have the following
inclusions:

1. f is continuous = f is a closed map.
2. f is continuous and surjective = f is a quotient map.

3. f is continuous and injective = f is an open map onto f[X] and hence a topological
embedding.

4. f is continuous and bijective = f is a homeomorophism.
Corollary:
Every curve f [I_} C R™ parametrized by a continuous f without intersections on a closed
interval I C R is homeomorphic to this interval.
Proof:

1. Due to 9.4 every closed subset A of a compact space X is compact and its continuous image
f 4] is obviously compact, hence closed in the Hausdorff space Y.

2. Due to enu:4.8.2.
3. Due to [19] th. 9.2.5 and enu:4.8.2.

4. obvious.

9.9 Tychonov’s theorem

A nonempty product space X = [[,c; X; is quasi-compact iff all components X; are quasi-
compact.

Proof:

= follows from 9.8 and from the projections 7; : X — X; being continuous.

<: On account of 6.3 the image 7; (F) of an ultrafilter F is again an ultrafilter since for every A; C X;
either the 7; ' [4;] or 7; 1 [X \ 4;] are included in F and consequently either 4; = m; {771-_ ! [Al]} or
X\A =m {77;1 [X\ Al]} are part of p; (F). Due to 9.2.4 the m; (F) converge to a z; € X; and on
account of 6.7 the filter F converges to (z;),.; € X.

9.10 The Heine-Borel theorem

A subset of R" is compact iff it is bounded and closed.
Proof:

=: Due to 9.4 a compact subset of the Hausdorff-space R" is closed. The open cover {B,(0) : n € N}
shows that the set is bounded.

<: On account of 9.7 and 9.9 every bounded and closed subset of R" is compact since it is the subset
of the compact cube [—m;m]"
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9.11 Open and closed cells

For every p € K in the nonempty interior of a compact convex set K C R” exists a homeomor-
phism ¢ : B" — D with ¢ (0) = p and ¢ [B"] = K with regard to the unit ball B” = B? (0). In
particular K is a closed n-cell, i.e. homeomorphic to B” and its interior K is an open n-cell, i.e.
homeomorphic to B™.

Proof: The hypothesis implies the existence of an € > 0 such
that B™ (p) C K and by referring to the homeomorphisms @ —
T — presp.  — %w we may assume p = 0 and B" C K. Due
to the preceding closed-map lemma 9.8 resp. the Heine-
Borel-theorem 9.10 for every « € B” the compact ray R, =
{txz :t >0} N K has a uniquely determined endpoint e, € R,
with ||ez|| = max {||y| : y € Rz} since y — ||y|| is continuous
such that according to 5.1 the set of all norms of ray vectors is
bounded, closed and connected, i.e. it is a closed interval
{llyll : vy € Ry} = [0; |lez||] € R. Obviously we have e, € 0K and for every y € B}, (\e,) exists a z
€ K with y —z = X (eg — 2) resp. z = 1 (y — Ae) whence follows [|z|| < 1 resp. z € B" C K. By

the convexity of K and e, € K we conclude y € K whence follows B} \(Aeg) C K and in particular
Aeg € K for every 0 < A < 1. Hence the map ¢ : B" — K is well defined by ¢ () = |||| e,. Moreover
the preceding construction shows that it is injective, surjective and also continuous whence by
the closed-map lemma follows the assumption.

9.12 Extension of continuous maps on the unit ball

For every p € B, ¢ € R and every real continuous map f : 9B — R on the
compact boundary of the unit ball B = B; (0) C R” exists a continuous
extension f, : B — R with fp( )= cand fp(x) = c+ Bap - (f (xp) — ¢) for

to 5.2, 5.8 and 9.10 the image f [0B] = [a;b] is a closed interval on the real
line such that in the case of a < ¢ < b the above construction satisfies f, [B] =
[a; b] while for ¢ < a follows fp_1 (c)= {p} and f, [B] = [¢; b].

B"

9.13 Kronecker’s approximation theorem

For every irrational v € [0;1] let f : N — [0;1] be defined by f(n) := ny — [ny] with the Gauss
bracket or floor function [a| denoting the greatest integer not exceeding a. Then f is injective
and the countable set f [N] is dense in [0; 1].

Proof: f is injective since ny — [ny] = my—[my] & v = W € Q. Since the f(n) are different
from each other 9.3 yields that the sequence has at least one accumulation point in the compact (cf.
9.7) interval [0;1] and hence for every e > 0 there are natural numbers w.l.o.g. n > m with ¢ :=
Iny — [ny] — (my — [m7])| < e. With k =n—m and z = [ny] — [m7] we get |ky — z| < e = z = [kv] if
kv > zresp. z = [kvy]+1if ky < z. In the first case it follows that 0 < § = f(k) = ky—[k7] < € and for
v-6 < 1 we get [vky] = v[ky] so that the subsequence (f(vk)), oy with f(vk) = v (ky — [ky]) =v-6
is increasing in [0; 1] with increments f ((v + 1)k) — f(vk) = § < e. In the second case we have
l—e<1—-6:=f(k) =ky—[ky] <1andfor v-§ <1 it follows that [vkvy] = v[ky] + 1 so that
the subsequence (f(vk)),cy- is decreasing in [0;1] starting with f (k) = 1 — 0 and decrements
fwky) — f((v+1)ky) = § < e. In both cases the subsequence will meet the open neighborhood
Bs (x) of every x € [0;1].
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9.14 Dini’s theorem

If the continuous real-valued functions (f,),cy C C(X;R) on a topological space X converge point-
wise to a continuous f C C(X;R) they also converge uniformly on compact sets to f.

Proof: Due to the hypothesis the increasing sequence (infy>), fk)neN with infp>p, fr < fo < f
converges pointwise to f. Hence for every € > 0 and every x € K there is 6, > 0 and a n, € N with
1f () = infrzn, fe W) < 1f () = foo W] < 1f W) = @) + [ (@) = foo @) + [fro () = frro W)] <
$+ 5§+ 5 = cfory e Bs, (z). The finite subcover (Bs, (2i));cx vields a m = max {ng, : i € K} with
|f (y) — inf>m fi (y)| < € for every y € K and hence the uniform convergence of (infy>, f) to f
on K. With an analogous argument we obtain the uniform convergence of the decreasing sequence
(sukan fk)neN to f and hence the proposition.

9.15 Lebesgue’s Lemma

For every open cover |J;c; U; C K of a compact set in a metric space (X;d) there exists a positive
Lebesgue number )\ > 0 such that for every set A C X with AN K # () and diameter 6 (4) < A
there is an 7 € I with A C U;.

Proof: The open balls (BEI/Q (x)) x with €, > 0 and B, (z) C U; include a finite subcover over
X
z € J such that A := min {¢,/2 : x € J} clearly satisfies the assertion.

10 Locally compact spaces

10.1 Locally compact spaces

A Hausdorff space is locally compact iff every point has a compact neighborhood. Due to 9.10
the most important representant is R".

10.2 The Alexandrov compactification

A locally compact space X can be extended to a compact space X = X U {cc} by adding a single
point at infinity oo as well as the complements of all compact sets in X united with {oo}. Every
compact space which is homeomorphic to X up to a single point x is homeomorphic to X.

Proof: The complements of compact sets in X united with {oo} already form a topology since
arbitrary intersections and finite unions of compact sets are compact. Due to 9.4 the added sets are
compatible with the existing topology as they are open in the subspace X. X is Hausdorff since
X is Hausdorff and every € X can be separated from oo by a compact neighborhood. X is quasi-
compact since every open cover must include the complement of a compact set X. Let X' be a further
space with infinite point oo’ such that X' := Y/\{ oo’} is homeomorph to X. Then according to 9.4 the
complements X' \U’" = X'\ U’ of open neighborhoods U’ of oo’ must be compact and consequently the
homeomorphism f : X — X’ can be extended to f : X — X by means of flx := f resp. f(o0) := 0.
It remains to show that f is continuous and open in oo, i.e. YU’ € U(od') : 7 [U'] € U(co) and
VYU € U(oo) : f[U] € U(cx'). But this is evident from f being bijective together with 9.8 and 9.4 since
the neighborhoods of oo’ must be the complements of compact sets in X’.
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10.3 The continuity of extended addition and multiplication

For 6 = n+ 2||a|| for all n > 2 we have {(u +v):u€ Bysla) hveC\ B(;(O)}C C\ B,(0) whence
the extended addition from 4.2.3 + : T - T for a € C is continuous at the added points

(a;00) resp. (oo;a) as well as (oo;00) and therefore on the entire extended plane C’. Since we
have {(uv) tu € Byys(a) Av € @\B(;(O)}C C\ B,(0) with § = 22 for all n > 3 the extended

llall

multiplication - : c’ \ {(0;0); (00;0)} — C is continuous.

10.4 Meromorphic functions

A function f : C — C is continuous iff its restriction f := f| {1fl<c0} * C — C is continuous and for every

z € f~!(c0) and n € Nthereisad > 0such that f [Bs(x)] € C\B,(0), i.e., [|u —z| < & = ||f(u)|| > n.
Therefore all meromorphic functions are continuous at their poles with reference to the Alexandrov
compactification.

10.5 Complete regularity

A locally compact space X is completely regular owing to 7.3 since it is the subspace of the
completely regular Alexandrov compactification X.

10.6 Compact neighborhoods

Due to 7.7, 9.4 and subsec:Alexandrov-compactification the compact neighborhoods of every point
in a locally compact space form a neighborhood basis. Consequently in a locally compact space
open resp. closed subsets as well as their finite intersections are locally compact with reference
to their trace topology.

10.7 Regularity

For every compact set K and an open neighborhood V' O K in a locally compact space X there
is a continuous g : X — [0;1] with ¢! ({1}) = K and ¢~ ({0}) D X \ V. In particular two disjoint
and compact sets can be separated by disjoint and open neighborhoods. Moreover due to 7.7 and
9.4 the compact neighborhoods form a neighborhood basis.

Proof: Due to 10.6 every x € K possesses open neighborhoods with compact closures x € U, C U,
with U, C V such that the union U := J,c; U, with finite J C K of the subcover (U;),.; of K
is open with K C U C V and compact closure U = |J,¢c; U;. Due to 9.5 we can apply Urysohn’s
lemma 8.1 to find a ¢’ : U — [0;1] with ¢! ({1}) = K and ¢'~! ({0}) = U\ U which can be extended
by g (x) := 0 for every z € X \ U D X \ V to obtain the desired function.

10.8 o-compact spaces

A locally compact space is o-compact or countable at infinity iff it is a countable union of compact
sets resp. iff the point at infinity has a countable neighborhood basis. A locally compact space X is
o-compact if it is second countable since every compact neigbourhood K () includes an open basis

set Uy, (z) as well as its compact closure U, (x) and the resulting cover (Un (x)) ex X consists of
x

a countable number of compact sets.
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10.9 Normal character of o-compact spaces

Every locally and o-compact space is normal.

Proof: Due to 9.4 the intersections A N K; resp. B N K; of disjoint closed sets A, B C X with the
sets of a w.l.o.g. increasing compact cover (K;),.y of X are closed and with 9.5 there are w.lo.g.
increasing sequences (V;),cy resp. (W;);cy of open sets with V; D AN K; resp. W; D BN K; as
well as V, "W, N K; = (. But then V = UienVi D A resp. W = J;en Wi D B are open disjoint
neighborhoods of A bzw. B in X: Assuming « € V; N W; # 0 with w.l.o.g i < j due to the ascending
character of all set sequences concerned follows x € Vi, N W}, # 0 Vk > j but also z € K}, for k > [ and
some [ € N contrary to the hypothesis V; N W; N K; = 0.

10.10 Countably compact spaces

A Hausdorff space is countably compact, i.e., every countable open cover has a finite subcover,
iff every sequence has an accumulation point.

Proof:

=: Assume the sequence (), does not have an accumulation point. Then every point has a
neighborhood meeting only finitely many members. In a Hausdorff space this neighborhood can be
reduced to an open neighborhood meeting no members at all and consequently the complement of
the sequence is an open set which taken together with the neighborhoods mentioned above forms a
countable open cover of X. Since every set of the cover contains at most a single member a finite
subcover is obviously impossible.

<: Let (0;);cy an open cover of the Hausdorff space X and x, € X\Up<;<,, Oi- Then the accumulation
point y of the sequence (y,),,cy lies in an open set O; which consequently contains infinitely many z,,
contrary to the construction of the sequence..

10.11 Lindelof spaces
A topological space is a Lindelof space iff every open cover has a countable subcover. Consequently

every second countable space is Lindel6f. A topological space is compact iff it is countably
compact and Lindelof.

10.12 Sequentially compact spaces
A Hausdorff space is sequentially compact iff every sequence has a convergent subsequence.

In a first countable space every accumulation point of a sequence allows the selection of a convergent
subsequence. Such a space is sequentially compact iff it is countably compact.

10.13 Compactness on metric spaces

In a metric space the properties of being compact, countably compact

and sequentially compact are equivalent. compact

Proof: Due to 10.10, 10.11 and 10.12 it remains to show that se- ﬁ
quentially compact metric spaces are second countable. For Lindelof <= countably compact

an arbitrary xg, € X choose z1, € X \ By (o) and for x;, € X m&//
subsequently choose xiy1n € X \ Up<j<; Bin (Tjn). Because X is se- \
quentially compact the sequence must end after finitely many z;,, and seduentialy locally compact
the corresponding By, (z;,) obviously cover X. The set of all x;, :ﬁ@ ﬁ
then is a countable dense subset of X and the B, (z;,) for m € N* countably

form a countable base of X. compact focally compact
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10.14 Alexandrov’s theorem

Every path connected locally compact metric space is separable
and hence second countable.

Proof: In the case of r, = sup {6 : B () is compact} = oo the space X is o-compact disks. The
assertion the follows from the facts that metric spaces are first countable and that compact metric
spaces are separable. Due to 9.4 we have r, > r, — d(z;y) such that r,< oo for one z € X entails
ry< oo for every other y € X as well. Since X is path connected every y € X can be connectd
to = by a path which is covered by finitely many B, /4 (z) such that the sequence defined inductively
by A1 = Erz/z (z) and Apy1 = Uyea, Ery/Z (y) covers X = UJ,>1 An. The set A; is compact and
assuming a compact A, for every sequence (zj);~; C Ant1 exists a sequence (yx),~; C A, with zy,

€ Erykﬂ (yx) and a subsequence (yk(i)) -

i

d(y;yr) + d (v er) < d(yye) + sy, < 3d(y;yn) + 37y and lim d(y; yx) = 0 there is a K' € N such

converging to an y = lim y,; € An. Due to d(y; ) <
71— 00

that z, € B, (y) for all k > K. According to 10.12 a subsequence (:ck(j)) ., converges to an x =
) j>
lim 7,(;). Again the preceding inequality and lim d (y;yx) = 0 imply * € B, 2 (y) C An41 whence
1—00

J—00
Ap+1 is compact by 10.13. Hence we have again proved that X is o-compact and the assertion

follows by the same argument as above.

10.15 Products of quotient maps with the identity

Every product f x idg : X x K — Y x K of a quotient map f : X — Y and the identity on a
locally compact space K is a quotient map.

Proof: For every (f~!(yo);ko) € (f xidg) " [U] exists an open neighborhood (f~'(yo);ko) C
Wo x Jo C (f x idK)_1 [U]. According to 10.6 there is a precompact neighborhood z € J C JC Jy
and due to f~L[f[Wo]] x J C (f xidg) U] for every & € f~1[f[Wo]] and every k € J exists
a neighborhood (z;k) € Vi x Ji C (f xidg)~ ' [U]. Finitely many of the J;, cover J and if Vj is
the open intersection of the corresponding Vj, we obtain a common neighborhood (z;k) € V, x J C
(f xidg) "' [U) and Wy x J C (f x idg) ™" [U] with the open set W1 = Uye;-1(swy)) Vo including
f71[f [Wo]]. Repeating this construction yields a sequence (W;),o of open sets W; C f=1[f [W;]]
C Wizr and Wy x J € (f xidg) " [U] for @ > 0. Then the open set W = [U;so W; is obviously
saturated, i.e. W= f~![f[W]] whence its image f[WW] is open in the final topology of f on Y.
Therefore (yo; ko) € f[W] x J C U is an open neighborhood whence U is open in the final topology
on Y and consequently f is an open map.

11 Metrization

11.1 Paracompact spaces

A Hausdorff-space X is paracompact iff for every open cover U = (U;);.; of X there is a locally
finite refinement V = (Vj),; such that every Vj is contained in an U;.

11.2 A paracompact space is normal.

Proof: The assertion follows with regard to 7.4.2 from applying the following property twice: Two
disjoint closed sets A and B in a paracompact space X have disjoint open neighborhoods iff every
x € A can be separated from B by disjoint open neighborhoods U, of x and V,, of B. In order to find
these neighborhoods we take a look at the locally finite refinement (77);.; subordinate to the open
cover of X provided by the set X \ A together with the system of the supposed neighborhoods U, for
x € Awith U, NV, = 0:
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For ANT; # () there is an x; € A with T; C Uy and T := Upng, 29 Ti
is an open cover of A. For every y € B there is an open neighborhood
W, such that J, :== {i€I: ANT; #0 # W, NT;} is finite. For each
of these finitely many j € J, there are open neighborhoods V,; of B
with T; N Vg; = (0 such that none of the open neighborhood W; =
Wy N Njegy Vaj of B meets any T;. Then W := {J,cp W), is the desired
open neighborhood of B with TNW = (.

11.3 Partitions of unity in paracompact spaces

A topological space X is paracompact iff it is Hausdorff and every open cover has a subordinate
partition of unity.

Proof:

=-: On account of 11.1 and 8.5 we already have a partition of unity (gj)j s subordinate to the locally
finite refinement V = (V;),; of the given cover U = (Uj);c;- In order to extend this partition to
we choose for every j € J a ¢ (j) € I with V; C U; and combine the g; assigned to V; C U; into a
sum f; 1= 3 40)=; 95 if ¢~ (i) # 0 and f; = 0if $~1 (i) # 0. The f; are continuous, their supports are
included in the U¢(j):z‘ V; C U; and we have D ;o fi = > i Z¢(j):i 95 =2 jes9i = 1.

«: According to 8.5 the open sets V;= {g; > 0} for a partition of unity (9J)jeJ subordinate to the
given open cover U = (U;),; are a locally finite refinement of /.

11.4 Closures of a locally finite systems

For a locally finite system V on a topological space X the family of the closures V is again locally
finite and JV = U V.

Proof: For x € JV and the neighborhood U € U (x) meeting only finitely many V1,...,V;, € V we
have z € Uj<pen Vin C UV since otherweise U \ Uj<,<p, Vi Were an open neighborhood of 2 not

meeting any V' € V. Thus we have shown [JV C [JV and since the converse is always true the equation
follows.

11.5 Characterization of paracompact spaces

A topological space is paracompact iff it is regular and for every open cover U = (U;);c; of X
exists a o-locally finite open refinemet S = J,,cySn. Note that the subfamilies S,, are open and
and locally finite but not necessarily a cover.

Proof: Note that in the following (J,,cny Sy is the family of all sets included in any S,, whereas J S,
is the union of the sets contained in the single family §,,. On account of 11.2 we only have to show
<. This argument is split into three steps by demonstrating the equivalence of the following four
statements for a regular space X with an open cover U = (U;),;:

1. There is a o-locally finite open refinement cover & = J,,cy S, of U.
2. There is a locally finite refinement cover V of U.

3. There is a closed locally finite refinement cover A of /.

4. There is an open locally finite refinement cover O of U.

1.=2:V:=(Y,nN S)nEN,SGSn with X, := Ug<men USm, Yo := Xo and Y,, := X, \ X,,_1 is a cover
since for any x € X there is a n with x € Y, C _U S,, because (Xn)neN covers X and furthermore
there is a S, € S, with z € S, because S, covers |JS,,. Since S, is locally finite for 0 < m < n and
X, is open there is a neighborhood W,, C X,, of £ meeting only finitely many sets from S,,. Then
W = No<m<n Wm is a neighborhood of x which intersects only a finite number of sets from V because
for k > n we have V NY; = (). Hence V is locally finite.
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2. = 3.: Since X is regular for every x € X and U € U with x € U there T An

is an open neighborhood W, € U (z) with x € W, € W, C U. According Wn
to the hypothesis there is a locally finite refinemet cover V of the open cover

W = (Wy),ex - The family of the closures A :=V = {V Ve V} of V S, Xn-1

is again a refinement cover of ¥V and hence of U. It is locally finite since

for x € X and a neighborhood U € U (z) intersecting only finitely many Vi,...,V,, € V the point x
cannot be an accumulation point for any of the remaining V € V, ie.,, x ¢ U (V\ {Vl, ...,Vn}) =

UV \{Vi,..,V,} due to 11.4 and U\ UV \ {V1,..., Vi,} is an open neighborhood intersecting only the
closures V1,...,V, € V.

3. = 4.: Let V be a locally finite refinement cover of U W := (W,),.x the cover formed by the
open neighborhoods W, of x € X each intersecting each finitely many V € V and finally let A be
a closed locally finite refinement cover of W. For Ve Vet V' := X \U{A € A: ANV = 0}.
Since the A are closed and the system A is locally finite the V' must be open due to 11.4. On account
of V. C V' the family V' := (V'),.,, is an open cover of X. In order to show that V' is locally finite
let T, be a neighborhood of x € X inersecting only finitely many Aq, ..., A, € A. Since A is a cover it
follows that T,, C A1 U...UA,. In the case of T}, intersecting a V'’ we have A, NV’ # () for some k with
1 < k < n and from the definition of the V’ we infer A, NV # (). Since A is a refinement of W every
Aj meets only finitely many V' € V and consequently T, meets only finitely many V’. We finally fit
V' into U by choosing for every V € V a Uy € U with V' C Uy and defining O := (Uy NV’)y,.y,. Due
to V. C Uy NV’ this is the desired open refinement cover of /.

11.6 Countability of paracompact spaces

1. A first countable and regular space is paracompact.

2. The countable union of closed sets in a paracompact space is again paracompact.

11.7 Open sets in regular spaces with a o-locally finite basis

In a regular space with o-locally finite basis every open set is a F,-set.

Proof: Since X is regular and due to 7.7 for every x there is an open OC X and a neighborhood
V, with x € V, C V, C O as well as elements Shnyip Of the basis § = (J,,ey Sp with locally finite S,
satisfying = € S, ;, C V; and therefore S,,, ;. C V, C O. Since the S, are locally finite and due to

11.4 the S, = U {gn“z cx €0,n, = k} are closed and we have [y Sk = 0.

11.8 The distance between sets in metric spaces

In a metric space (X;d) we define the distance d(x; A) := inf {d(z;y) : y € A} between a point x € X
and a set A C X and correspondingly d(A; B) := inf {d(z; B) : x € A}. The triangle inequality takes
the form d(z; A) < d(z;y) + d(y; A) since for all z € A we have d(x; A) < d(z;2) < d(z;y) + d(y; 2)
and consequently d(z; A) < inf{d(x;y) + d(y;2) : z € A} = d(x;y) + d(y; A).

11.9 Stone’s Theorem

In a metric space (X;d) every open cover U = (U;),.; has a locally
finite open refinement cover O.

Proof: We fill the U; starting with the core Ap; :=
{zr €U;:1<d(z;X\U;)} and proceeding towards the rim with in-
creasing layers A,; = {z € U; : 27" < d(x; X \ U;) < 27"} with
n € N*. Since the U; are open we have |J,en Ani = U;. From
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27" < d(x; X\U;) for all @ € A,y and d(y; X \U;) < 27"7F1 for all y € A,,x; together
with 11.8 we infer d(z;y) > d(z; X \U;) —d(y; X \U;) > 27" (1 —21_k) > 277! and hence
d(Anﬂ'; An—l—k,i) > 277~ for k > 2.

In a second stage we remove the overlapping parts of the U; by means of taking By, ; := Ap; \ Uj<: Uj
to achieve the locally finite property. Since the B,, ; are not yet open we add narrow perimeters by
means of Cp,; = {x €U :d(z;Bp;) < 2_”_3} so that only adjacent C),; intersect each other, i.e.
CpniNCri =0 if [n —m| > 1 because d (Cyi; Crik,i) > d (B Bniki) —2-27"73 > d (Ani; Antki) —
27n=2 > 97—l _9=n=2 — 9=n=2  Tp order to demonstrate the covering property of the By, ; and
especially the Cj,; we can assume a well-ordered index set I (cf. [19, p. 14.2]). Foraxz € X let i € I
be the smallest index with € U;. On account of |J,,cy Ans = U; there is a n € N with € A,,; but
due to the choice of i we have « ¢ U; for all j < i and hence x € By, ; C C, ;.

The C),; are locally finite since for the above mentioned x € B,,; C C,; due to the construction of
the By, ; we have x ¢ B, ; for all j < i resp. m € N and according to the choice of i € I and because
of x € U; this extends to all j > i. Especially we have z ¢ C,,; for j # ¢ and m € N. Due to
d (Crmi; Cmg24) > 27™=2 for m € N the neighborhood By-n-3(z) apart from Cp,; meets at most the
two neighbours Cy,_1; and Cy11,. Hence the system O := (Cnvi)nEN,iE ; is the desired locally finite
refinement cover of .

11.10 The metrization theorem of Bing, Nagata and Smirnow

A topological space X is metrizable iff it is regular and has a o-locally finite basis.
Proof:

=: On account of 11.9 for every n € N and the cover U, = (By-n (7)),cx there is a locally finite
refinement cover O,. The desired o-locally finite base then is given by O := (Oy),, oy since for every
open O and z € O there is a n € N and an open ball By-» (x) C O as well as a k € N with another
open ball By »n—2-& (z) intersecting only finitely many sets of 0,42 all of them included in a By—n—2 (y)
and therefore in By—n (2) C O.

<: Due to 11.5 X is paracompact: For an open cover U = (U;);c; the basis S = (Sy,),,cn With locally
finite S,, = (Sn;i)z’eln yields locally finite refinement systems V,, :={V € S,,: Ji € [ : V C U;} whose
union V := U, en Vn covers X since S is a basis. Due to 11.7 the S, ;are F,, the X \ S,,; are G5 and
so with 11.2 and 8.2 a continuous function ¢n;; : X — [0;1] exists with S, ; = {¢,,; > 0}. Since S,

is locally finite the function 1, := % is well defined and continuous with 0 < 4,,;; < 27",
iy, Pnit

Snii = {ni > 0} as well as 0 < 3Ziep ¥ny < 277 Thus d(z59) = Ypen 2ier, [Ynii () — tnii (1))
is the desired metric: For x # y and due to T} there is a Sy,; € U (z) with y ¢ S, and hence
Y () — Pnsi (y) # 0 resp. d(z;y) # 0. For x = y we have of course d (z;y) = 0. Symmetry and
triangle inequality directly follow from the definition. This metric is not uniquely determined but we
have to show that it leads back to the given topology (cf. 1.8). For any z € X and a Sp; € S with
x € Sp,; we have § := )i (x) > 0. Hence for all y € By (x) the estimate |1 () — ¥n (y)| < d holds
and therefore 1,,.; (y) > 0 and consequently y € Sy.; resp. Bjs(z) C Sp;. Thus d induces a topology
which is stronger than the given topology. Conversely for any x € X the limit d (z; ) : X — R of a
uniformly convergent sequence of continuous functions (cf. 18.3) is again continuous with reference to
the given topology, i.e. for 6 > 0 there is a basis set S,,; with d (z;y) < ¢ for all y € Sy, especially
x € Sp;; and hence S,,.;C Bs (x) which shows that the given topology is stronger than the topology
induced by d.

Remark: The construction of the metric is based on Urysohn’s lemma 8.1 and its extension in
8.2. Urysohn’s approach is based on the following improvement of theorem 7.9 on the embedding of
a completely regular space into a product Hgo@b I, of real and therefore metrizable intervals:
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11.11 Embedding of normal spaces in product spaces

A normal space X with basis B = (VJ)] ¢ can be embedded into a product space [0; 17

Proof: For every basis set V; € B = (Vj)jeJ there is an U; € B with U; C V; C X and a continuous
fi + X — [0;1] with f; [U} = {0} resp. f;[X\V] = {1}. The mapping e : X — [0;1)7 with
e(x) := (fj (2));c; is continuous due to 4.2 and injective owing to Ty. It is also open since for

open O C X and x € O there is are U;,V; € Bwith z € U; C U; C V; C O as well as corresponding f;
as described above so that the cylinder set {f; < 1} = 7rj_1 [0;1[Ne[X] is open in e [X] and contained
in e[O].

11.12 Metrizable product spaces

The product J];c;Y; of metric spaces Y; is metrizable iff the index set J is countable.

Proof: Due to 4.2 the locally finite property of the basis sets S,;; = (Sn.j) on the X is

iEIn;j
] ’.

p. 17.6] the family (Bn%j)neN-jeJ is countable iff J is countable. Due to 7.10 the regular character is

transferred to the product in any case and hence the assertion follows from 11.11.

transferred to the subbasis sets B,,.; := (7r»_1 (Sn;i;j)) . on the product [];c; Y;. On account of [19,
1€y

11.13 Urysohn’s metrization theorems:

1. A topological space is metrizable and separable iff it is regular and second countable.
2. A compact space is metrizable iff it is second countable.

3. A locally compact space is metrizable and o-compact iff it is second countable.

Proof:
1. = follows from 2.7 and 7.2 whereas < follows from 11.11 resp. 11.12.
2. = follows from 10.2 whereas <« follows from 9.5 resp. 11.10.

3. =: The countable basis is provided by the open balls Bj , (%5,m) which for every n € N and
1 < m < m, form a finite refinement cover of the open cover (Bl /n (x)) - of the compact
x n
sets K, covering themselves X. Indeed for any open O C X and any x € O there isan € N
with By, (r) C O and a k > 2n with a 1 < m < my, such that x € By, (vk,m) C By, () C O.
< follows from 10.9 resp. since the sets K, := X \ Uy, Ur provided by the basis (Uy),,cy of X
are compact and cover X.

12 Uniform spaces

12.1 Uniform structures

For arbitrary sets A, B C X? we define A™' = {(2;9) € X : (y;2) € A} and AB = {(2;2) € X : Iy €
X : (z;y) € AA(y;2) € B} with A2 := AA. Ais symmetriciff A=! = A. We have (AB)"! = B~14~!
and (AB) C = A(BC); from A C B follows A~! ¢ B~! and AC C BC for arbitrary C. The symmetry
of A entails the symmetry of all A™ for n € N*. A neighborhood filter I/ on a set X is a filter on
the product X? whose neighborhoods or entourages U € If contain the diagonal A and with
every entourage U its mirror imageU ~!as well as another entourage V with V2C U. The pair (X;U)
then is a uniform space. Two points x and y in X are adjacent of order U € U iff (z;y) € U,
analogously a set V C X is small of order U € U iff V2 C U. On account of A C U € U we have
UcU"™eU for n e N*.

41



12.2 Neighbourhood basis

A subfamily B of a neighborhood filter I/ is a neighborhood basis iff every neighborhood from U
contains a member of B. With B the systems B' := {BNB~': B € B} and B, := {B": B € B} are
also neighborhood bases for the neighborhood filter i.

12.3 Uniformization

For a neighborhood filter & on a set X the family U(z) = {y€ X : (z;y) € U} for U € U and
x € X is a neighborhood system defining a topology O on X according to 2.4. Correspondingly
for a neighborhood basis B the sets B(z) with B € B define a neighborhood basis of z. The
topology O induced by B (x) resp. U () is the topology of the uniform space. A topology O is
uniformizable iff there is a neighborhood filter ¢4 which induces O.

12.4 The discrete uniform structure

The indiscrete topology is induced by the set X? itself. The discrete topology on the one hand
is generated by the set of all subsets of X? including the diagonal A. One the other hand it is
generated by the neighborhood filter of the finite partitions: Indeed for every finite partition
P = {A;,..., Ay} of X the neighborhoods Up = {(x;y) : 3A; € P: x,y € A;} satisfy the conditions
12.1 with Up D Upr iff every set from P is the union of sets from P’ and Up NUp: is the neighborhood
generated by all intersections of sets from P with sets from P’. Since every partition is a disjoint cover
we also have U]% =Up.

12.5 Open interiors and closures of a neighborhood filter

The open interiors resp. the closures of a neighborhood filter with reference to the product X? are
again a neighborhood filter in X.

Proof: According to 12.1 for any neighborhood U there is a symmetric neighborhood V with V3 c U.
For (z;y) € V the set V(z) x V(y) is open in X? and included in V3. Hence V3 is a neighborhood for
each of its points, i.e. it is an open set in X2. Consequently V3 C (; and ﬁ is also a neighborhood in
X. For (x;y) € V we have V(z) x V(y) NV # () and there is a pair (z/;9') € V with (z;2') € V resp.
(y;9') € V and on account of the symmetry of V follows (z;y) € V3. Especially we have V.C V3 C U
which proves the statement with respect to the closures.

12.6 Separation axioms

The concepts introduced in section 7 tacitly refer to the topology induced by the uniform structure.
An uniform space is separated iff it satisfies Ty or equivalently Ty (cf. 12.1).

1. An uniform space is separated iff the diagonal A is the intersection of all its neighborhoods.
2. Every uniform space is a T3-space.
Proof:

1. =: For x # y there is a neighborhood U with U(x) NU(y) = 0 = (z;y) ¢ U. Hence the
intersection of all neighborhoods does not contain (x;y) and since this is true for arbitrary x # y
the statement follows. <: For = # y there is a neighborhood U with (z;y) ¢ U. Due to 12.1
there is another neighborhood V' with V2 C U and especially V(x) NV (y) = (.

2. The propsition follows from 7.7 since owing to 12.1 for every neighborhood U there is a symmetric
neighborhood V with V2 C U and V(x) C V?(x) C U(x). Note that in this instance we mean
the closure V(x) C V?(x) with respect to X whereas in 12.5 we refer to the closure V C V3 in
X2,
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12.7 Compactness

For a neighborhood U and a subset A the set V (A) := J,c4 V() is the uniform neighborhood of
A. In a uniform space the two following statements hold:

1. Every neighborhood of a compact subset contains an uniform neighborhood.

2. Two disjoint sets K and A can be separated by uniform neighborhoods if K is compact and
A is closed.

Proof:

1. For the neighborhood U of the compact subset K C X and every « € K there is a neighborhood
U, with U,(z) C U and a second neighborhood V, with V.2 C U,. The V,(x) cover K and
let V' be the finite intersection of those V, whose corresponding neighborhoods V,(z) cover K.
For everyy € V (K) there is a z € K with (y;z) € V. This z is located in one of the V,(x),
ie. (z;2) € Vi such that (y;2) € VVy C V2 C U,. Hence y € Uy(x) C U and consequently
V(K)cCU.

2. On account of 12.6.1 the set K can be separated by a uniform neighborhood U (K) from A.
Then the uniform neighborhoods V (K) and V(A) with V2 C U are disjoint.

12.8 Uniformly continuous functions

A function f : X — Y between uniform spaces (X,Ux) and (Y,Uy) is uniformly continuous iff
(fz)_1 [U] € UxVU € Uy . For every neighborhood U € Uy there is a neighborhood V' € Ux with
(f3)[V] c U. Obviously it is sufficient to show this property for sets of a neighborhood basis.
The composition go f : X — Z of two uniformly continuous f: X — Y and g : Y — Z is again
uniformly continuous. Obviously every uniformly continuous function is continuous with reference
to the induced topologies.

12.9 Heine’s theorem

A continuous function f : X — Y on a compact uniform space (X, Ux) into a uniform space (Y, Uy)
is uniformly continuous.

Proof: For any U € Uy we choose a symmetric V € Uy such that V2 C U. Since f is continuous for
every x € X there is a V; € Ux with f[Vy(x)] C V (f(x)) and subsequently another symmetrc W, €
Uy with W2 C V.. The W, (x) possess a finite subcover and the intersection W of the corresponding
W, constitutes the desired neighborhood with (f x f) [W] C U. For (y; z) € W there is a Wy(x) of the
finite subcover with y € W,(z) € W2(z) C V() and therefore 2 € WW,(z) C W2(x) C Vi(z). On
account of f [Vx(x)] C V (f(z)) it follows that f(y), f(2) € V (f(z)) and hence (f(y); f(2)) € V2 C U.

12.10 Initial neighborhood filter

The notations of stronger resp. weaker topologies are extended to neighborhood filters: U, C U,
is denoted as Uy stronger than U resp. Uy weaker than Uy. These relationships obviously transfer
to the induced topologies. The identity id : (X;U;) — (X;Us2) is uniformly continuous iff U/ is
stronger than Us. The weakest filter U on a set X such that the functions f; : (X,U) — (Y;,U;)
into the uniform spaces (Y;,U;),; are uniformly contiuous is the initial neighborhood filter with

reference to the f;. The finite intersections ;¢ ( ff)_l [U;] of inverse images of neighborhoods
-1
U; € U; for finite E C I form a neighborhood basis of U since (f2) " [Uiﬂ - (( ) [Ui]>

_ 2 — —
and for V;* C U; follows (ﬂieE (3 ! [Vz]) C Nicr (f?) ! V2] C Nier (f7) "[U;]. The initial
neighborhood filter ¢/ induces the initial topology with reference to the f; : (X,0) — (Y;,0;)
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with the topologies O resp. O; induced by U resp. U;. Indeed the sets (ﬂzeE (flz)_1 [UZ]> (z) =

Nice ((ff)_l [UZ]) (2) = Mieg f; 1 [Ui (fi(z))] form a neighborhood basis of the topology induced
by U. The topology induced by these neighborhoods is is the weakest topology so that all f; are
continuous.

12.11 Product of uniform spaces: Analogous to 4.2 the product filter on the product [[,c; X;

of the uniform spaces (X, U;);c; is the initial neighborhood filter with reference to the projec-

tions 7m; : [[;c; Xi — X;. It is generated by the finite intersections (;cp (7rz<2)71 [Ui]. The func-
tion f : Y — [[;c; Xi is uniformly contiuous iff the inverse images (f2)" [N;ep (72) " [Ui]] =

—1
Nice ((771 o f)2) [U;] of basis neighborhoods are again neighborhoods in (Y,4). Hence f is uni-
formly continuous iff all components ;o f : (Y,U) — (X;,U;) are uniformly continuous.

12.11 Uniform subspaces

Analogous to 4.3 the trace filter on the subset A C X of the uniform space (X;U) is the initial

neighborhood filter with reference to the injection j : A — X. It is constituted by the intersections
(72" [U] = U N (A?) of neighborhoods U € U with A2.

12.12 Dense subsets

For a dense subset A in X the closures with reference to X? of neighborhoods of the uniform subspace
A form a basis for the neighborhoods in X.

Proof: For an open neighborhood U of X we have U C U N A2 since for (z;y) € U every neighbor-
hood V(x) x W(y) w.l.o.g. contained in U intersects A% and hence (;y) is an accumulation point of
U N A2, Especially U N A2 is itself a neighborhood and contained in U. The proposition then follows
from 12.5.

13 Uniformization

13.1 Uniformization of metric spaces

In a metric space (X;d) the sets Uy, := {(m;y) € X?:d(z;y) < %} = {d < %} for n € N* form a
countable neighborhood basis of the corresponding neighborhood filter. This property is already
sufficient in the general case for the construction of a pseudometric (cf. 1.2):

13.2 Uniformization of first countable spaces

A uniform space (X;U) is induced by a pseudometric iff it has a countable neighborhood basis.

Proof: Owing to 12.2 we can assume that all ele-
ments B,, of the countable neighborhood basis (By),,cy-
of the neighborhood filter U are symmetric and decreas-
ing with B§L+1 C Bp. For z,y € X let g(x;y) =
1 for (z;y) ¢ B

{ min {2*’{ ‘(z;y) € By k € N*}
all finite sequences (2;);c; with index set K = {0;1;...;n}
for an n € N, starting point o = = and endpoint z,, = y.

with M, be the set of By: L
’ B1 :

N =

The desired pseudometric is then given by d(x;y) := inf {Zogign—l g (i wir1) @ (T4)ep € Mwy}. The
properties 1.2.1 resp. 1.2.2 are trivial and the triangle inequality results from the fact that the paths
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from x to z via y are a subset of all paths from z to z. In order to show that d actually generates the
B, = {g < 27"} we prove the estimate %g(x;y) < d(z;y) < g(z;y) for (z;y) € By. The right hand
part directly follows from the definition.

The left hand part is equivalent to g(z;y) < > o<i<n—19 (wi;xip1) for (zi);cx € Myy and will be
demonstrated by induction over n. The base case n = 1 is trivial. Now let g = z;...;2p41 = ¥y
and a = 3 g<;<p—19 (7i; Tit1) # 0. In the case of a > % the induction step immediately follows from
g(z;y) < 1. Solet a < 3 and m the greatest index such that Y g<icp_1 9 (Zi2it1) < 4. Then we
have 3 g<i<m 9 (%33 i41) > § and hence the remaining sum is ijkl_gigng (w35 2i11) < §. Applying
the induction hypothesis to the partial sums on the left and the right hand sides of m we obtain
$9(z;2m) < % and g(zmi1;y) < %. As before he definition of a yields $g(@m; Tm+41) < %. Let k be
the smallest integer with 27% < a, then g (z;2.,) , g (Tm; Tma1) and g (Tme1;y) are less than or equal
to 27% ie. (z32m), (Tm; Tm+1) and (Tp41;y) are in By, and hence in (z;y) € B C By_1. Especially
we get g (z;9) < 27¢D resp. %g (r;y) < 27% < a. In the case of Y yc;c,1 9 (zi;zip1) = 0 all
(z4;2441) are in By, and therefore (z;y) in By, for all k € N*, i.e. g(z;9) = 0.

The above proved estimate entails By, C d~! [ {0;2"“” C By_1, i.e. the given neighborhood basis

(Bn)pen- is generated by d. Conversely the pseudometric d generates a countable neighborhood basis
(Bp)pens with By, :=d ™! [ [O; 2~k H for the neighborhood filter induced by d.

13.3 The metrization theorem for uniform spaces

A uniform space is metrizable iff it is separated and first countable.

13.4 Uniformization by a system of pseudometrics

Every uniform space can be induced by a system of pseudometrics.

Proof: For every neighborhood V of the given neighborhood filter U there is a sequence of symmetric
neighborhoods B,, such that By C V and B;z +1 C By for all n € N*. Each of these sequences is
the basis for a neighborhood filter Uy, which is induced by a pseudometric dy as shown in 13.2. On
account of Uy C UVV € U and Uy ¢ Uy = U the filter U is the weakest filter being stronger then any
of the Uy. Then B := {ﬂVGSCu dy' [0sa[] : |€] € N;a €]0; 1]} = {d71[[0;a[] : a €]0; 1]} for d(z;y)
= min{dy(z;y) : V € £ CU;|E| € N}is a neighborhood basis for ¢. The dy are pseudometrics on
the topological space induced by U but they generate only a part of the neighborhoods in Uy whereas
the function d : X2 — [0; 1] generates the system U by means of its inverse images but in general it is
not a pseudometric any more.

13.5 Uniformization of T5,-spaces

A topological space X is uniformizable iff it satisfies T3,.
Proof:

=: On account of 13.4 for a closed A C X , 290 € X \ A and V € U with V (zo) C X \ A there
is a pseudometric dy and an a €]0;1] such that d;,' [[0;a]] C V. The function f : X — [0;1] with

f(z) := sup {O; 1-Ldy (a:;xg)} is continuous since dy;' [[0;a[] € Uy C U and furthermore we have
f1A] = {0} as well as f (z9) = 1.
<: Let (X;0) be a Tss-space and I the set of continuous functions f : X — [0;1]. On account of

7.8.2 the topology O is the initial topology with reference to the f € I. The initial neighborhood
filter U with reference to the f € I induces a topology O coinciding with O on account of 12.2.
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13.6 Metrization and Uniformization

As shown in 1.4 and 12.4 the relation metric — neighborhood filter —

topology is not injective. Especially a topology O can be induced by dif- d and

ferent neighborhood filters & and U’ not each of them being necessarily separable
metrizable. E.g. the metric d with d(z;x) = 0 resp. d(x;y) = 1 generates

the discrete neighborhood filter & and subsequently the discrete topol- Ty

ogy O. The neighborhood filter U’ of the finite partitions described 2t73 +1.AC
in 12.4 also induces the discrete topology. But for an infinite set X the +2.AC TﬁtleB 13.3
uniform structure U’ is not metrizable since in that case there would exist 1114 f’fsllf u

a countable neighborhood basis (P,),,cy owing to 13.3 , i.e. every set in a

finite partition P of X would be the union of sets from a single partition JTSG
P, C P. But by means of unions a single partition P, can only generate o 14.5

a finite number of weaker partitions and hence the set of partitions of the
infinite set X would be countable contrary to e.g. [19, p. 17.9].

14 Completion

14.1 Cauchy filter

A subset A of an uniform space (X;U) resp. metric space (X;d) is small of order V € U resp. € > 0
iff A2C V resp. A2 C d~1[[0;¢[]. A filter F on X is a Cauchy filter iff for every neighborhood V

there is a I' € F small of order V.

1. Every convergent filter F is a Cauchy filter since for every V' € U the neighborhood filter
U(z) C F contains an element U(z) € U(z) C F with U? C V, i.e. U(x) is small of order V.

. Every Cauchy filter converges to its accumulation points since for every accumulation point
x and U(z) € U(z) there is a F € F small of order V € U with V2 C U and F NV (z) # 0,
hence F' C U(z) and therefore U(x) € F.

. The image f (F) of a Cauchy-filter F under the uniformly continuous function f : (X;Ux) —
(Y;Uy) is again a Cauchy filter since for every V' € Uy we have (fz)_1 [V] € Ux such that there
is a F € F with F2 C (f2)7" [V] and therefore f2 [F2] = (f[F])> C V.

. Afilter 7 on X is a Cauchy filter with reference to the initial neighborhood filter U/ for the
functions f; : X — (Y;l;) iff its filter images f; (F) are Cauchy filters. Indeed on the one hand
for a given neighborhood basis set B = ;cg (]”2)_1 [U;] with U; € U;, finite E C I (cf. 12.10)
and if all filter images are Cauchy there are F; € F with f; (F;) € f; (F) with f? (F?) CU;Vi € E
and the filter set F := ;cp F; satisfies f? (F?) C U;Vi € E. Hence F? C B such that F must
be a Cauchy filter. The converse follows from 12.8.

14.2 Complete spaces

An uniform space (X;U) is complete iff every Cauchy filter 7 on X converges to a limit z € X.

1. The product X = [[;c; X; of complete spaces X; is complete since the images 7; (F) of a

Cauchy filter F under the projections m; : X — X; are again Cauchy filters on the X; and
converge each to an x; € X; such that F converges to (xi)id e X.

. Every closed subspace A of a complete space X is again complete since the image filter i (F)
of a Cauchy filter F under the injection i : A — X is again a Cauchy filter on X and converges
to an z € X which because of U (x) C i (F) is an accumulation point of the set A as well as of
the filter F on A so that under the hypothesis F converges to x € A.
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3. Conversely every complete subspace A of a separable space X is closed since for every
accumulation point x of A the nonempty intersections U(z) N A of a neighborhood basis U(x)
with A generate a Cauchy filter on A which on account of Ty has a single accumulation point x
and converges to  due to 14.1. Since A is complete x must lie in A.

14.3 Minimal Cauchy filter:

For every Cauchy filter F on a uniform space (X;U) there is a unique minimal Cauchy filter Fy C F.

Proof: Fj is generated by B := {U(F):U €U, F € F}. On account of (U; NU2) (F1NFp) C
Ui (F1) NUsy (Fy) the family B is a filter basis. JFy is Cauchy-filter since for U € U there is a V € U
with V3 C U and due to the hypothesis a F € F with F'x F C V such that V (F)x V (F) c V3 C U.
Obviously we have Fy C F and for every other Cauchy filter F) C F we have Fy C JF{ since for every
U (F) € B there is a F' € F} with F'> C U and F' N F # () such that F’ C U (F) and hence Fy C F}.

14.4 Properties of minimal Cauchy filters

1. Every neighborhood filter ¢(z) is a minimal Cauchy filter.
2. A minimal Cauchy filter containing the filter set F' also contains its interior F.

3. The basis B of a Cauchy filter F is a basis for the corresponding minimal Cauchy filter Fjy.

14.5 Characterization of complete spaces by Cauchy filters

A uniform space X is complete iff the trace F N A of every Cauchy filter F on a dense subset
A C X converges to an z € X.

Proof: Due to 14.4.2 the minimal Cauchy filter Fy of F with every set F' € Fy also contains its
nonempty open interior FeF intersecting the dense subset A. Consequently Fy N A is again a
Cauchy filter converging to a € X due to the hypothesis, i.e. U () N A C Fp N A. Hence x is also
accumulation point of Fy and owing to 14.1.2 Fy converges to x and so does F.

14.6 Extension of uniformly continuous functions

A uniformly continuous function f: A — Y on a dense subset A of the uniform space (X;Ux)
into the complete and separated space (Y;Uy ) can be extended to a unique and uniformly continuous
f: XY,

Proof: Every neighborhood of an arbitrary z € X intersects the set A and hence the trace U(z) N A
is a Cauchy filter on A. According to the hypothesis the uniformly continuous image f (U(z) N A) =
(f oi) (U(x)) is again a Cauchy filter converging on Y to a uniquely determined f(z) := lim (f o) (U(x))
with the canonical injection i : A — X. f is uniformly continuous since for U € Uy there is a V € Uy
wit V3 C U and on account of f being uniformly continuous a W € Ux with f2[W N (A?)] C V.
For (z;y) € M with M3 C W there are neighborhoods M, resp. M, w.l.o.g. small of order M and
points x4 € My(x) N A resp. ya € My(y) N A with f(za) € f[We(z)NAl CV (7(x)) resp. f(ya)
e fWy(y)yNAl CV (?(y)) So we have (x4;y4) € M3 C W, hence (f (x4); f (ya)) € V and finally

(?(w),?(m)) € V3 C U. According to 6.6.3 the extension f coincides on A with f. The uniqueness
follows from 7.13.
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14.7 Completion of separated spaces

A separated space (X;U) can be embedded into a complete separated space ()Z ; L?) The space

(X ; u ) is unique up to homeomorphism and every uniformly continuous f : X — Y into another

complete separated space Y can be extended to a uniformly continuous f: X — Y such that f= f o1
with the embedding i : X — X. The image e [X] is dense in X, i.e. the completion is its closure:
e[X] = X. In particular every closed subset of a completely regular space is complete.

Proof: Let X be the set of all minimal Cauchy filters on X with the uniform

structure U generated by the neighborhoods V of the pairs (F;G) having a common  _ 7o~
set M small of order V' € U with symmetric V. On account of 6.1 the filters F X——Y
and G then coincide on all sets including M such that possible limit points must Z—T %
be adjacent of order V. The symmetry of the V transfers to the V and they all

include the diagonal A since every Cauchy filter contains a set small of order V. X

From W2 c V follows W2 C V since for (F;G),(G;H) € W thereisa M € FNG

and N € G N'H with M2, N? C V such that MUN € FN'H and (MUN) C V. In an analogous
way we see that from U C V NW follows UcVnWw.

X is separated since assuming (F;G) € V for all V € U the sets M U N with M € F and N € g
induce a Cauchy filter included in F as well as in G and since F and G are minimal it follows that

F=g.

The mapping i : X — X with i(x) =U(z) € X is well defined on account of 14.1.1 and also injective
for U(x) = U(y) = = = y due to Y being separated. i is uniformly continuous since for every
V € U there is a symmetric W € U with W3 C V and for (z;y) € W the set W (z)NW (y) € U(z)NU(y)
is small of order W3, i.e. (i(x);i(y)) € V. i is open since for every open O C X and U (z) C i [O]
we have z € O and hence U (x) C O for a U € U such that U (U (z z)) C i[0], i.e. i[O] open in i [X].
The set i [X] of all neighborhood filters is dense in the set X of all minimal Cauchy filters
since for F € X and every neighborhood V (F) there is a wlo.g. open U € F (cf. 14.4.2) small
of order V, ie. U(x) € V (F) for all z € U € F. But that means i [U] C V (F) and since for every

V (F) € U (F) there exists a U € F small of order V' we conclude that the image i (F) of the minimal
Cauchy filter F converges to F € X.

X is complete: Due to (z’2)71 [‘7] C VYV € U for every Cauchy filter G on X the inverse image
it (é) forms a basis for a Cauchy filter F'on X including a minimal Cauchy filter . The uniformly

continuous image i (F) is again a Cauchy filter converging to the element F € X as shown above.
On account of 14.4.3 we have i1 (é) CF=G=i (i_l (Qv)) C i (F) and due to U (F) C i (F) the

element F is an accumulation point of G; hence the Cauchy filter G also converges to F and is in
fact identical to i (F).

For a uniformly continuous f : X — Y into a second complete and separated space Y we may
define fy : i(X) — Y by means of fo () := lim f (U(z)) on account of the completeness of ¥ and
the uniform continuity of f. We have f = fg o4 and fo is uniformly continuous since for every
neighborhood U in Y there is a symmetric neighborhood V in X with (fQ)_1 [(ﬂ C V such that for

(i(2);i(y)) € V = (239) €V = (f(2); f(y)) = (fo (i(2)): fo (i(y))) € U. The mapping fo is uniquely
determined by f = ﬁ) oi and due to 14.6 it can be extended in an unique way to a uniformly continuous
f: X =Y with f= foi.

Finally let ( ) be a second pair satisfying the hypothesis. By applying the above proved extension

tot = f: X — Y = X' we get 7/ : X = X'with ¢/ =i 0i on the one hand and on the other hand
by applying it a second time to ¢ := f X — Y := X we obtain i : X’ — X with i =i 0i’. We can
substitute to 7/ 07 = id 5 as well as to i o i = =idg, le. X' is homeomorphic to X.
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14.8 Completion of metric spaces

Every metric space (X;d) is homeomorphic to a dense subset of a complete metric space
()

Proof: Let ()Z ,a) be the complete closure of the uniform space (X;U) induced by the metric d

according to 14.7. The image i2 [X] := i[X] x i[X] is dense in X? and the function d o (i_1)2 :
2

i [X] — R is uniformly continuous since for ¢ > 0 and a neighborhood base set U, = {d < e} € U
(in this instance d is regarded as a metric on X!) resp. the corresponding neighborhood basis
set U, = {(]:;g) eX2:AIM e FNGAM? C Uﬁ} € U we have (do (i_1)2) {IZ} = j{ﬁﬁ N4 [X]} <
€. According to 14.6 the function d o (fl)2 can be extended to a uniformly continuous function
d: X% - R with (ﬂl}e} —d|U.n2[X]| cd [(76 N 42 [X]} < ¢ due to 3.5.1. We show that d is metric
on X: As to the positive definiteness from the assumption d (F;G) < eVe > 0 follows that FNG is a
basis for a Cauchy filter including both F and G which then must be equal due to 14.3. Concerning the
triangle inequality let € > 0 and U, /3 resp. U3 as above defined. For F,G,H € X there are z,y,z €

X with (U(z); F), U(y);G), U(2); H) € 56/3 since i2 [X] is dense in X2 and J{ﬁe/g} < §. On account
of d(U(z);U(y)) = do (i1)* U(x);U(y)) = d(z;y) Yo,y € X follows d (F;G) +d (G H) — d (F; H) >
dU):UW)+d Uy);U2)) —d U(x); U(2)) +2e = d(z;y) +d(y; 2) — d(z; 2) +2€ > 2¢ and this being
true for every € > 0 proves the triangle inequality. The symmetry is obvious. Finally we must show
that the neighborhood filter /¢ induced by the the metric d is identical to ZTIN. In both cases we will use
12.5: The definition of Jalready yielded J{ﬁe] <ee U C {JS 6} & U? c U. On the other hand

with {d < e} Ni?[X] < e = {do (i_1)2 < e} dense in {dv< e} we obtain {J< e} Cc {d<e}ni?[X]
={(U();U(y)) € 2(X) : (z;9) € U} = U.Ni2[X] = U. € U, hence U C g

14.9 Complete metric spaces
In a metric space (X;d) the diameter of a set A C X is defined as §(A) := sup {d(z;y);z,y € A}.
Then the following statements are equivalent:

1. X is complete.

2. The intersection of a decreasing sequence (Ay),,; of nonempty closed sets A1 C A, C X

for all n > 1 with ir;fld (Ap) = 0 contains exactly one point: (,~; 4, = {z} C X.
s >

3. Every Cauchy sequence converges.

Proof:

1.=2.:  On account of inf § (4,,) = 0 the A,, form the basis for a Cauchy filter converging to a single
point owing to the hypothesis and 7.5.2.

2. = 3.:  The closures of the tails A, := U,,>, {zn} satisfy the conditions of 2. and the intersection
Nn>1 An = {z} contains the limit point = lim (27,),,5; -

3.=1.. A Cauchy filter F includes a nonempty set § # F,, € F with 6 (F,) < % for every n € N.
Every sequence (xy),~; with z,, € F, is a Cauchy sequence and converges to a point
z = lim (2,,),,5 € Nn>1 Fn Which is an accumulation point and hence resp. due to 14.1.2
and 7.5.2 the single limit point of the whole filter F.

14.10 The dilation principle

A continuous function f : X — (Y;d3) on a complete metric space (X;dy) into an arbitrary metric
space (Y;dz2) being dilated with da (f(x); f(y)) > di (x;y) for all z,y € X is closed.
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Proof: For a closed set A C X and every y € f [A] there is a sequence (), C A with 1Lm f(zn) =
n—oo

y. Owing to the hypothesis (), is a Cauchy sequence on the complete set A (cf.14.2.2) and
hence converges to an z € A. Since f is continuous we infer y = f(x) € f[A].

14.11 The contraction principle

For every contracting function f : X — X on a complete metric space (X;d) with d (f(z); f(y)) <
K -d(z;y) for some 0 < K < 1 and all z,y € X exists a uniquely determined fixed point z = f (z) =
lim ™ (x) € X for every z € X.

n—oo

Proof: According to the hypothesis for x € X we have d (f"*(z); f*(x)) < K" -d(f (z);x) whence
(f"(x)),>; is a Cauchy sequence converging to a z € X. Then for every e > 0 there is an

n > 1 such that d (f"*H(z); f(z)) < d(f"(x);2) < §, d(f"(2); f"(x)) < § and consequently
d(f(2);2) < d(f(2); ")) +d (f" L (z); f*(x)) + d(f*(z);2) < e. Hence f(z) = z and for every

other u = f (u)we have d (u; z) = d (f(u); f(2)) < d(u;2) =0 whence z = u.

14.12 Isometric embeddings

A continuous map f: X — Y from a complete metric space (X;dx) into a metric space (Y;dy)
is an isometric homeomorphism iff its restriction f|x, is an isometry from a dense subset
Xo C X into a dense subset f[Xo] C Y.

Proof: Due to the isometry of f on the dense subset Xy and the continuity of (f;f) : X2 —
Y2 resp. dx : X? — Rt and dy : Y? — Rt for every z;y € X with approximating sequences
(Zn)p>1 C Xo and (yn),>; C Xo such that Jim z, = x resp. lim y, =y we have dy (f(x); f(y) =
dy ((lim f ()5 lim f (yn)) = dy (Hm (f (@n); f (9))) = lim dy (f () f () = lim dx (zn; yn)
=dx (T}Lngoxn,nlgrgoyn) = dx (z;y). Hence f is an isometry on X. Since f[X(] is dense in Y for
every y € Y there is a sequence (7,),>; C Xo with nlLHgof (zn) = y. Since (f (zn)),>; is Cauchy
in Y and f is an isometry (z,),>; is Cauchy in X whence exists a limit nh_}rgo xn = ¢ € X since
X is complete. From the continuity of f follows nh_)ngo f(zn) = f(x) = y which shows that f is
surjective.

14.13 The supremum property

Every bounded set (;);c; in a linearly ordered complete metric space X has a supremum
sup;.

i€l

Proof: Due to the hypothesis and the well-ordering of the natural numbers for every n € N there
is a Minimum p, of the set of all natural numbers p € N such that £ is an upper bound of (z;),c;-.

271
The upper bounds (g—z)n N form a decreasing Cauchy sequence with limit x € X which clearly

is the minimum of all upper bounds, i.e. x = supz;.
i€l

15 Polish spaces

15.1 Definitions

A topological space X is polish iff it is completely metrizable and second countable.

1. On account of 14.2 these properties extend to closed subsets and countable products.
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2. Open subsets O C X are also polish: If we pair all points x € O with the inverse m of

their distance to the boundary we obtain the set f~! {1} = {(t; x):d(z; X \0) = %} CRx X
which as the reverse image of the closed set {1} under the continuous mapping f: R x X — R
with f(t;2) =t-d(x; X \ O) is closed and hence polish. Due to the uniqueness off the distance
d(z; X \ O) of a given point = the projection m : R x X — X is injective on the subset
f~1{1} C Rx X and hence a homeomorphism due to 4.2. Thus the image O = m [f~1 {1}] C
X is polish. Note that 73 is continuous and open on the set R x X but obviously not closed
since it is not injective for arbitrary pairs (¢, x).

3. The most important representants of polish spaces besides C" are the family CY of all complex
valued sequences and the continuous complex valued functions C (I,C) C C’ (cf. remark
18.12) on a compact interval I C R resp. the subspace of sequences (X, (w)), ¢y of random
variables X, : Q — C resp. families (X;(w)),.; of continuous random variables occurring
as realisations of stochastic processes for a given event w € ). By means of the Skorokhod
metric ([1, ch. 3, p. 121]) the cadlag (vgl. 3.3) real valued functions D (I,R) are provided
with a topology of a polish space coinciding with the trace of the product topology on
C(I,C) c D(I,C) c C!. Due to [20, th. 6.7 and 6.8] the spaces L? of real valued p-
integrable functions are polish too.

15.2 Locally compact polish spaces

Every locally compact and second countable space X is polish.

Proof: Owing to 10.8 the space X is o-compact whence the Alexandrov compactification 10.2 X
is second countable and due to Urysohns metrization theorem 11.14.2 metrizable. According
to 10.13, 10.10 and 14.1.2 the compact metric space X is complete and consequently polish. Since
X C X is an open subspace the assertion follows from the preceding section 15.1.2.

Note: The three equivalent metrics d,d’ and d” defined by d(z;y) = |z —y|, d = #‘ld and

d" (z;y) = ’%\rl - #‘y" for z;y € R illustrate the fact mentioned in [12, p. 21 and ex. 12 on p. 39]
that different metrics may induce the same topology with ot without completeness depending
on their translation invariance: d and d’ are translation invariant and produce the same complete
topology on R; d' by d’' (x;00) = 1 for every z € R also covers the Alexandrov compactification
R = RU {oo}. The metric d” generates the same topology on R = R U {oo} with d” (x;00) = 1 for
every z € R but as the d”-Cauchy sequences (n), .y — o0 € R and (—n),,.y — —0co ¢ R show neither
space is complete any more. For (x;y) close to the origin d’ and d” behave similarly to d, i.e. they
generates the same neighborhood basis; with increasing distance from the origin d’ and d” tend to 1
so that oo € BY(z) for |z| > 1 — 1. The distances d’ (0;n) and d” (0;n) both tend to 1 as n — oo
but due to the translation invariance d’ (n;n + 1) = 1 stays constant while d” (n;n + 1) — 0 whence
(1) ey is d”-Cauchy but not d’-Cauchy.

15.3 Mazurkiewicz’ theorem

A subspace of a polish space is polish iff it is Gs.
Proof:

=: For a polish subspace A C X and n € N* let A4, = {az €A:FU el (z):64(UNA)< %}
Obviously we have A C N,en+ An C A and for an © € ),y An the family U (z) N A generates a
Cauchy filter on A converging to a unique =’ € A with 2’ = = and consequently A = (,cn+ An. Every
A, isopenin A and U,, = U{U dr e A:Uel(x):04(UNA) < %} is open in X with U,NA = A,,.
The neighborhoods V,, = {a: eX:d (m;Z) < %} of A are open in X with A = (,,cn+ V. Hence
A =,en+ (Un N'V;,) provides the desired representation as a Gs-set.
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«: Let A = ,en On with open O,, C X which are already polish according to 15.1. The function
i MaenOn — A C [lpen On with f(z) = (2),cy is bijective and with its componentsp, o f = id
being continuous as well as open these additional properties transfer to f. Thus f: A - Ais a
homeomorphism on the diagonal A which is closed due to 7.5.4 and therefore a polish subset of the
polish space [],,cy On according to 15.1. Hence A is polish..

15.4 Homeomorphism to a Gs-set in the Hilbert cube

A topological space X is polish iff it is homeomorphic to a Gs-set in the Hilbert cube H := [0, l]N.
Proof:

= Follows directly from 7.2, Urysohn’s metrization theorem 11.11 and Mazurkiewicz 15.3.
The following alternative proof provides the construction of a concrete embedding: Assume (X, d)
polish with a dense subset (2,),,cy C X and (H,d') with the product metric d'(z;y) := >, cn |x§,;yl"|
for © = (n),en ¥ = WUn)pen € H according to 1.8. Due to 1.6 we can assume d < 1 and define f :
X — [0,1]N by means of f (z) = (d (=; Zn))pen- On account of d (f (z); f (v)) = X ,en Mw
< Y nen |d2(ff{)‘ = 1d(z;y) the function f is continuous. f is open and especially injective since
for every x € X there is an m € N with d(2;2,) < € and for d(f (v);f(y)) < smyr we have
|d(x; 2m) — d(y; 2m)| < € hence d (y; z;,) < 2¢ and therefore d (x;y) < d(x; 2m) + d (y; 2m) <3e.

«: Consider again Mazurkiewicz 15.3 resp.15.1.

15.5 The Baire space N

The Baire space N := NV is the set of all sequences of natural numbers furnished with the product
of the discrete topologies induced by the basis B = {Us 15 € N<N} with N<N = (J, .y N" and

Us :={x € N : s C x}. Since a countable union of countable sets is again countable (cf. [19, th 17.6])
this construction already yields the 2nd axiom of countability. N is regular (cf. 7.10) and therefore
metrizable as well as separable (cf. 11.14.1). A (Ultra)metric is given by means of d (z,y) = Qn(%y)
with n(z,y) = min{n € N:xz, # y,} whereas D = {&x € N : Im € N: z,, = 0¥n > m} provides a
countable and dense subset. N is complete since a given Cauchy family (z,),.ny C N for every
m € N must possess a finite subsequence s, € N™ with n,, € N such that z,, € Us, Vn > n,, and hence
converges to the uniquely determined limit z := |J {s;, : m € N}. Thus N is polish and according to
11.12 resp. 14.2.1 resp. the above mentioned argument concerning the second axiom of countability
these properties transfer to countable products AN, Every 2 € A has a countable neighborhood
basis constituted by the sets Uy, (x) := {y € N : y|, C x} with z|,, := {z0;...; 21} for n € N. Their
complements N\ U, (v) = {y € N': 3k € N: g4 # 23} include the neighborhood Uy} € U (y) of
every y € N'\ U, () and hence are open too, i.e. N is totally disconnected (cf. 5.1). A mapping
f: N — N is continuous iff for every n € N there is an m,, € N such that the images f (y) of all
sequences y € N coinciding on the first m coordinates with x on the first n coordinates coincide
with f (x). This pleasantly computational space is extremly useful for the study of the function spaces
mentioned in 15.1 since in 15.8 we will show that every polish space is the continuous image of a
closed subset of /. To this end we need the following definitions and two lemmas being of interest
in their own right:

15.6 Trees and paths

A tree is a family T ¢ NN with t € s = ¢t € T for all s € T and a path through T is a
sequence x € N with z|, € TWn € N. Then [T] C N is the set of all paths trough 7 and for
s = {xo;...;x,} € NN resp. k € N we abbreviate sk := {z¢;...;z,;k}. A tree is pruned iff for
every s € T there is a k € N with sk € T resp. iff for every s € T there is an z € [T] with s C .
Hence in a figurative sense a pruned tree doesn’t have dead ends. For a tree T C N<N the subtree
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T :={seT:3xe€[T]:sCux}isapruned tree with 77 C T and [T'] = [T]. For a closed set F' C N'
every © € X \ F possesses a finite subsequence s C x with Us C X \ F resp. for z € F and every s C z

there is a y € F with s C y, i.e. Tp = {3 eNN:3zeF:sc :c} is a pruned tree with F' = [TF].
Thus we have the following lemma:

15.7 Characterization of open and closed sets

1. U C NV is open iff there is a family S € N<N of finite sequences with U = {J,cg Us.
2. F C N is closed iff there is a pruned tree T c N<N with F = [T7].

15.8 Coverings

In a polish space (X;d) for every ¢ > 0 and every

1. open set O C X there is a cover O := (On)neN of open sets with diameter § (@) < € and
O = Unen On = Upen On.
2. Fy-set A C X there is a coverA := (A,),cy of disjoint F,-sets with diameter § (A7n> < € and
A =Upen An = Upen 4n-
Particularly in a polish space every open set is F, and every closed set is Gs.
Proof:
1. Choose O = {B% (y):yeYNO /\E% (y) CONE< %} with a countable dense subset
Y C X. Then for each z € O there is an n € N with 1 < ¢ and B% () € O as well as a
y €Y with z € B% (y) C Bﬁ (y) C B% (x) C O, ie. B% (y) € O. Concerning the diameter
we note that in metric spaces § (ﬁ) =0 (A).
2. For A = U,,ey Cn with closed C), we obtain closed disjoint B,, := Cj, \ Uo<k<n Cr with A =
Unen Br. According to 1. for every n € N we can find open sets Oy, with 6 (Op,m) < € and
X\ Uo<ken Ck = Unmen Onym = Upen On,m- Hence the sets An@ = Cr N Opm \ Uo<i<m On.i
are disjoint with 0 (An,,) < € and Bp, = Upmeny Anm = Umen Anm. The A, are Fy, since

they are formed by intersections of the closed sets C,, N X\ Uo<i<m On,i with the open sets Oy, i,
which are F, according to 1.

15.9 Characterization of polish spaces as closed subsets of the Baire space

Every polish space X is the image of a closed set ' C N under a uniformly continuous bijection
o:F — X.

Proof: According to 15.8 there is a family {XU cX:o€ N<N}
of F,-sets on X with the following properties: X
i / ‘ \
1. X@ =X X1 U X2 U X3

2. Xo = UneN Xon = UneNTm /
3.0 (Tg) < ﬁ

Xo1 U Xog U Xoz U

U

4. coCct=X,CX,
5. n#Em= Xgy N Xgm =10
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Due to 14.9.3 the set F' = {f eN:JreX:xe mneNXf\n} is not empty and ® : F' — X is well

defined by means of ® (f) € ,,en m On account of 5. the mapping ® is injective. It is surjective
since for every x € X and every 0 € N<N with o € X, due to 2. and 5. there is a unique n € N
with # € X4, so that we find an increasing sequence () = oy C o1 C ... of finite sequences o, € N"
and a corresponding decreasing sequence X = Xy D X, D ... of Fy-sets with € (,,cy Xo,,. The
mapping ¢ is uniformly continuous since for f,g € F with d(f;g) < 2% we have f|, = ¢g|, and
hence d (® (f);®(g9)) < + on due to 3. and 4. According to 3.1 the set F' = ®~![X] is open
and closed. For a better understanding of the mapping ® it is useful to demonstrate the closed
character of F' directly: Let (fn),cy C F be a Cauchy sequence converging to a f € N, ie.,
Vn € NIm € N : fi|, = f]nVk > m. According to 14.1.3 ® (f),cy C X is again a Cauchy sequence
converging to a € X, ie. ¥n € NIm € N:d(z;®(fy)) < 2 Vk >m < Vn € NIm € N:
€ Xy, =Xy, Vk>2m = 2 €eny Xy, = =@ (f) =f € F whence F is closed and also open

due to 15.5.

16 Baire spaces

16.1 Baire Categories

A set A C X is meager or of first category in the space X iff it is a countable union A = UJ,,cry An
of nowhere dense sets A, resp. iff its complement X \ A = N,y X \ 4, is the countable
intersection of dense sets X \ A, and not meager resp. of second category otherwise.

1. If a subset A C B C X is of first category in a set B C X then it is also of first category in
X since for a A,, not nowhere dense in X there is an 2 and a neighborhood U with z € U C 4,
such that x cannot be a boundary point and especially x € UN A,, # 0. Since A,, C B it follows
that x € U N B C A, N B hence A4,, is not nowhere dense in B.

2. The first category of any set obviously extends to subsets, finite intersections und count-
able unions.

3. The rational numbers Q are of first category in R and likewise the Cantor set T in [0; 1]
(cf. 2.9). Both have the Lebesgue measure \ (Q) = A (7') = 0. On the other hand there are
sets U C R of first category with Lebesgue measure A (U) = 1. (cf. [19, p. 3.7])

4. For a measure p being bounded from above, i.e. u(A) < MVA € A the space L? is of first
1_1

category in L? for p < ¢: According to [19, p. 6.6.1]) in this case we have || f||, < [|f||,- M» 9.

The closures BY (with reference to [ll,) of the balls B} = {f e L |fll, < n} C L9 C LP have

no interior points with reference to ||[|, since for every m > 2n there is an h = n%|(g;m-rn-as]

1

with o = % . 11?1((21)) such that on the one hand [[h], = (n®-m™P .- n=P)a= (n”‘(q*p)m*p) /
1 1

= (m??.m™P)s = m > 2n and on the other hand [|h[l, = (n®?-m™P . n=P)r = L. Hence

for every f € B in every neighborhood BP, (f) there is a g € BZ N B”, (f) and a further
2m

2m

g+he B (g9)C B5 (f) with g+ h ¢ BY so that f cannot be an interior point of Bf. Thus

2m m
L? =, >1 B} is of first category in L”.

16.2 Baire spaces

A topological space X is a Baire space iff it satisfies one of the following equivalent conditions:
1. Every set of first category is nowhere dense.
2. A countable intersection of open and dense sets ist again dense.

3. A countable intersection of dense Ggs-sets is again dense and Gg.
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4. Every nonempty open subset is of second category.
5. The complement of every set of first category is dense.
Proof:
1. = 2.: Consider the complements.
2. = 3.: If the intersection A,, = (,,cny Um,n is dense the U, ,, must be dense too.

3. = 4.: For a nonempty, open and meager O = J,,cny An # 0 the open sets X \ 4,, are dense and due
to the hypothesis the intersection (,,cy (X \Zn) =X \Unen4n C X \Upen4n =X\ O
is dense too. Since X \ O is closed X \ O = X contrary to the assumption.

4.=5.: Assuming the complement X \ A of the meager set A is not dense the open set A c A would
be nonempty and due to 16.1.2 be of first category contrary to 4. again.

5.= 1.: For a meager A = J,cy An the set X \ A =0 and hence A is nowhere dense.

16.3 Baire’s category theorem

For a nonempty Baire space X the following statements hold:

1. Every countable closed cover (An)neN contains at least one A,, with An # (.

2. Every nonempty open subset O C X is Baire.

3. The complement of every set of first category is Baire and hence of second category.
Proof:

1. Follows directly from 16.2.1.

2. Assuming there is a nonempty open subset () # U = [J,,cny A C O of first category in O with
nowhere dense A, in O. Since U is nonempty and open in X and X is Baire one of the A, must
contain a neighborhood V € U(x) in X of an interior point x € A,, C A, of the closure A4,, in
X. But then V N O is a nonempty neighborhood in O and x would be an interior point of the
closure A, N O in O contrary to the assumption.

3. According to 16.2.5 the complement X \ A of a set A C X of first category in a Baire space
X is dense in X. Due to 16.1.1 a subset B C X \ A being of first category in X \ 4 is also
of first category in X. From 16.1.2 we infer that A U B is of first category in X such that the
complement (X \ A)\ B =X\ (AU B) is dense in X and especially in X \ A.

16.4 Baire’s theorem

A topological space X is Baire if it is
1. completely metrizable or
2. locally compact.

Proof:

1. For a countable intersection O = (,,cy On # 0 of w.l.o.g. decreasing open dense sets (On)pen
and an arbitrary open U C X there is a a decreasing sequence (B,,),,cy With 6 (B,) < n%q
und B, 1 C B, C O, NU. Due to 14.9.2 we have () # ﬂneNPn C U N O and the statement

follows from 16.2.2.

2. On account of 10.6 and 9.4 the B,, from above may be chosen as closed and compact sets such
that the proposition follows from 9.2.2.
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16.5 Banach’s category theorem

In any topological space the union of open sets of first catogory is again of first category.

Proof: On account of 16.2.4 the topological space is not a Baire space. Let G be the union of a
family G of nonempty open sets of first category. According to Zorn’s lemma (cf.[19, p. 14.2.4]) there
is a maximal family F := (Ua),c4 of disjoint, nonempty and open sets U, such that each of them
is included in a set from G and that any set of any other such family is included in a set of 7. Then the
closed set G\ Upea Ua is nowhere dense since any interior point could be added to an U, contrary to
the maximality of G. For Uy, = U,,cy Na,n With nowhere dense N, ,, let NV, := U,e a4 Na,n- Any open
set U intersecting NN, particularly meets a N, ,, such that §) # (U N Uy)\Nan C U\N,,. Hence N,, does

not include any open set and consequently is nowhere dense and the set G C (@ \ Unca Ua) UUaca Ua
= (é\ Uaea Ua) U Unen IVn is of first category.

16.6 Decomposition into sets of first and second category

Every topological space con be decomposed into an open set G of first category and a closed
Baire set X \ G.

Proof: The system of all families G of nonempty open sets of first category is inductively ordered with
regard to inclusion such that on account of Zorn’s lemma (cf. [19, p. 14.2.4]) there is a maximal
family with open union G of first category owing to the preceding theorem16.5. On account of the
maximal character of G and 16.2.4 the closed complement X \ G is Baire.

16.7 Examples

Q is dense and if first category in R and R is not dense but still of first category in C. Q is not Baire
since (r)TeQ is a countable closed cover without interior points; R™ is Baire owing to 16.4.2. The
category theorem 16.3 and Baire’s theorem 16.4 in suitable situations may reduce the proof of a
proposition for a Baire space X to the case of a single element A, of a closed cover (A,), cn:

16.8 Continuous functions on Baire spaces

For a family (f;);c; of real valued, continuous and pointwise bounded functions on a Baire
space X for every open U C X there is a nonempty and open set V' C U so that the f; are
uniformly bounded on V.

Proof: On account of 16.3.2 the set U is Baire and with A, := {sup;c; fi < n} we obtain a closed

cover (Ap),cy containing at least one A, with nonempty interior V' due to 16.3.1.

Note: The statement of 16.8 can be extended to the whole space X in the case of X being compact
and convex (cf. [16, th. 4.3]). Further applications of the Baire theorem are the Banach-Steinhaus
theorem [16, th. 4.1], the open mapping theorem [16, th. 4.4] and the closed graph theorem
[16, th. 4.6] concerning continuity and open character of linear mappings between Fréchet
spaces.

17 Compactification

17.1 Precompact spaces
A uniform space is precompact iff for every neighborhood V on X there is a finite cover of X with

sets small of order V. A subset A C X is precompact iff the uniform subspace A is precompact.
Metric precompact spaces are denoted as totally bounded.

o6



17.2 Separated precompact spaces

For a separated space X the following statements are equivalent:
1. X is precompact.
2. The complete closure X is compact.
3. Every ultrafilter on X is a Cauchy filter.

Proof:

1.= 2.: For an ultrafilter F and a w.l.o.g. (cf. 12.5) closed neighborhood V on the complete closure
i(X) = X (cf. 14.7) there is a finite cover X = Uj<p<, A with A7 C (i-1)° [f/] Hence

~ ~ n -
we have i (X) = Ujcpen i (Ax) with 42 (A4;) C V and consequently X = J i(A;) with
o k=1

i (Ag) x i (Ay) C V since V is closed. Because of Mi<k<n X \ A = 0 the ultrafilter F must
contain one of the i (Ax) and since this is true for every V the filter F is Cauchy converging

on the complete space X which must be compact due to 9.2.4.

2. = 3.: Due to 6.6 the continuous image i (F) of an ultrafilter F on X is again an ultrafilter on X
converging on account of 9.2.4. Hence for every V C X? the image i (F) contains a filter
set F e F with F2 C i2 (V) and agin owing to 6.6 there is a F' € F with i (F) C F. Hence
i2(F) C 42 (V) = F? C V and consequently F is a Cauchy filter.

3. = 1.: Assuming there is a neighborhood V' and no finite covering X with sets A; small of order V'
the sets X \ ;e Ai with finite L and A; small of order V' constitute a basis for an ultrafilter
F containing every X \ A; and hence none of the A;. Thus F does not contain any set small
of order V' and cannot be a Cauchy filter.

17.3 Complete precompact spaces

A separated space is compact iff it is precompact and complete.

Proof: =: A separated compact space X is obviously precompact (cf. 17.1), as a compact subspace
of the separated complete closure X it is closed (cf. 14.7 and 9.4) and hence itself complete owing to
14.2.2. «: Follows directly from 17.2.2.

17.4 Neighbourhood filters of compact spaces

The uniquely determind neighborhood filter U of a compact space X consists of all neighbor-
hoods of the diagonal A in X?2.

Proof: Due to 9.5 and 8.1.2 the space X is completely regular, complete (cf. 17.3) and uni-
formizable (cf. 13.5). For every neighborhood V' € U in the uniform space (X,U) there is a neighbor-
hood W with W (W) C V. Then we have A C Uyex (W x W) (z;2) C V and U,ex (W x W) (z;2)
is open in the product space (XQ,Z/{Q), i.e. V is a neighborhood of A in X2. Assuming there is a
neighborhood V' of A with V ¢ U then the sets{U N (X2?\ V) : U € U} are the basis for a neighbor-
hood filter F stronger than /. The product space (X 2,1/{2) is compact (Tychonov 9.9) such that F
and particularly ¢/ must have an accumulation point (z,y) € Nyey U with (z,y) ¢ A according to its
construction (cf. 9.2.3). But according to 12.5 and 12.6.1 we have A = ;¢ U since X is separated.

17.5 Locally compact spaces with a countable basis

Every locally compact space with a countable basis is polish.

Proof: On account of 10.8 the Alexandrov compactification X U {oo} of the locally compact
space X is second countable, hence metrizable due to 11.14.3 and complete owing to 17.3. Thus
X U{oc} is polish as well as the open subset X C X U {oo} due to 15.1.
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17.6 Totally bounded spaces

For a metric space (X;d) the following statements are equivalent:
1. X is totally bounded.
2. For every € > 0 there is a finite cover (Uy), <<, of X with ¢ (Uy) <e.

3. Every sequence has a partial Cauchy sequence.
Proof:

1.=2.: In a metric space a set A is small of order € iff  (4) <.

2. = 3.: For every k € N there is at least one set Uy of every finite cover of sets small of order %

containing infinitely many members of the given sequence (z,,),, . W.l.o.g. choose ng := 0,
n1 := 1 and Vj := U;j such that it contains infinitely many members x,, with n > 1. For
already chosen zy1;...; Tni and Vi; ...; Vi take Ugyq such that Vi1 := Uiy NV} contains in-
finitely many members x,, with n > ni and ngy1 ;= min{n € N: x,, € Viu1 \ {zn1;..;zni} }-
Thus we get a partial Cauchy sequence (2n),cny With 2, € Vig for k > ko and Vi1 C Vi
as well as 6 (Vj,) = 1.

3. = 1.: Assuming there is an € > 0 such that no finite union of sets small of order e covers the
set X. Choose an arbitrary zp € X and Uy := Be(xg). For already chosen x1, ..., x, and
Ui,...,Up take o1 € Uy \ Uy, and Uy yq := Uy, U Be (25,41) such that the sequence (Tn)pnen
satisfies d (z,,; xg) > € for all k,n € N with & < n and consquently does not contain a partial
Cauchy sequence.

17.7 The Stone-Cech-compactification

Every completely regular space X has an embedding e : X — SX into a compact space 5X which
is uniquely determined up to homeomorphism and allows the unique extension of any continuous
f: X — Y into a compact space Y to a continuous Sf : X — Y with f = 8f oe. The image e [X]
is dense in X, i.e. the compactification is its closure: e [(X] = X. In particular every closed subset
of a completely regular space is compact.

Proof: For every ¢ : X — R from the set C* (X) of real-valued, continuous and bounded functions on
X the image ¢ [X] lies in a minimal closed interval I, C R. According to 7.9 the evaluation function
e: X = [lpec+(x) Iy with e(z) := (¢(2)) s+ (x) is an embedding and X := e [X] is compact owing
to 9.4 and Tychonov’s theorem 9.9.

Let Y be compact with a continuous f : X — Y and an em-

bedding a : Y — []yccx(v) Ly with a(y) = (¢(y))wec*(y) Moec(x) s F occ-v) o

into BY = a[Y] = alY]. Now we simply change coor-

dinates by means of F' : [[ co+(x)lp — Ilyec+yv) Ly with U U
Bf

F(e(z)) := a(f(z)) resp. (py o F) ((t¢)¢ec*(x)) = tyos. Thus BX BY

the functions ¢ € C* (V') are identified with ¢ = 1o f € C* (X) eT QT

such that the ¢-th coordinate ¢, of [ cc«(x) Ly can be assigned X ¥ v

to the ¢-th coordinate ty of a[Y] C [[cc=(yy) Iy. The mapping
F is continuous since F~! {plzl [Uwﬂ = (pyo F) ' [Uy] = p;if [Uypoy] is open in [ cox(x) Ip. There-
fore and since F' (e(z)) = a (f(x)) we obtain F' [X] = F [e [X]} CFleX]]=al[f[X]]CalY]=8Y.

The desired continuous extension is Sf := a™' o Flgx with (3foe)(z) = (a7 toFlgxoe)(z) =
(atoao f)(x) = f(z). The restriction Flgx) = ao fo e ! resp. Bf|lx = foe ! is determined

by Flexjoe = ao f resp. f = f]X o e and on account of 7.13 the continuous extension Sf is

uniquely determined. The uniqueness of the compactification X := e[X] follows as in the proof

of 14.7 by invoking twice the uniqueness of the extension with regard to an alternative embedding
f=¢€:X — BX".
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17.8 Application to the ordinal numbers

Due to the request for a continuous extension the Stone—éech—compactiﬁcation in general needs a
lot more additional points than the Alexandrov compactification according to 10.2. The exact
cardinality even of apparently simple examples like N is still the subject of current research. But
there are also simple cases: On the set w of the ordinal numbers (vgl. [19, p. 11.1]) with the order
topology generated by the open intervals |a; b[with a C b € w we have the smallest infinite ordinal
Ny = N and smallest non countable ordinal ¥;. Every ordinal x € w represents a half open interval
[0, 2] (cf. [19, p. 11.3.3]). It can be shown that the Stone-Cech-compactification of the subset of the
countable ordinals ¥y = [(); N1[ is achieved by simply adding N; itself: R} = Ry U {N;}.

18 Compact convergence

18.1 Uniform convergence

For a family F/(X;Y") of functions f : X — Y on a set X into a uniform space (Y;U) the finite in-
tersections of the sets W(U) := {(f;g) € F*(X;Y) : (f(x);g(x)) € UVx € X} for U € U generate the
neighborhood filter W (i) of uniform convergence. The resulting topology Ox of uniform con-
vergence on X is induced by the finite intersections of W(U)(f) :={g € F(X;Y) : g(z) € U (f(x))}
and the topological space is denoted as Fy (X;Y) := (F (X;Y);Ox).

18.2 Examples

On a metric space (Y;d) the neighborhood filters W (Ul/n) = {D(f; g) < %} with the supremum
metric D(f;g) :=sup{d(f(x);g(z)) : = € X} constitute a countable basis for W (/). For compact
X the continuous image f [X] is compact (cf. 9.8) and hence bounded with reference to the metric
d on Y. On account of 12.9 the continuous functions f € Cy(X;Y) are uniformly continuous for

compact X.

18.3 Uniform limits of continuous functions

Cy(X;Y) is closed in Fy(X;Y). Particularly every limit function of a uniformly convergent
filter of continuous functions is again continuous.

Proof: For every filter F on X the familyAr of all f € Fy(X;Y) with f(F) being a Cauchy filter is
closed in Fp(X;Y): For an accumulation element g on A and V3 C U € U there is an f € Ar with
(f,g) € V and a filter set F € F with f[F] x f[F] C V such that g[F] x g[F] C V3 C U, i.e. g(F)
is a Cauchy filter too and hence g € Ax. For a Cauchy filter f (U (x)) and every neighborhood V' on
Y there is a neighborhood U (z) € U (x) with f[U (2)] x f[U (z)] C V, ie. f[U (x)] C V (f(x)) so
that we have U (f (z)) C f[U (z)] and due to 6.6.2 we infer M, cx Ay(z) € Cu(X;Y). The converse
inclusion is trivial and the closed character of the Ay (,) extends to their intersection Cyy(X;Y).

18.4 Completeness of spaces of uniform convergence

Completeness transfers from Y to Fy (X;Y).

Proof: For a Cauchy filter F on Fy/(X;Y) and every z € X the sets F(z) := {g(x):g € F} for
F € F constitute a Cauchy filter F(z) on Y uniformly converging to a f(z) := y € Y. The resulting
function f : X — Y is the limit element of F since for every neighborhood U € U there is an F' € F
with F(z) C U (f(x)) Ve € X, i.e. FCW(U)(f) € F.

99



18.5 Uniform S-convergence

For a subsystem S C P(X) let W (S;U) be the initial neighborhood filter on the set F'(X;Y') with
reference to the projections ps : F(X;Y) — F(S;Y) with ps(f) := f|s for S € S. According to
12.10 this neighborhood filter of uniform S-convergence W (S;U) is generated by finite inter-
sections of sets W (S;U) := (p%)_1 W (U)] ={(f;9) € FA(X;Y): (f(z);9(z)) eUVz € S} for U e U
and S € S while the finite intersections of sets pg' [U(f)] = {g € F(X;Y) : g(z) € U (f(x)) Yz € S}
induce the topology Og of uniform S-convergence. Note that for particular sets S; C S, we have
W(S1;U) D W(S2;U) but for set families S; C Sy the inclusion is converse: W (S1;U)C W (Sa;U)
and Og, is stronger than Og,.

18.6 Examples

1.

For the set S = & of finite subsets on X we obtain the neighborhood filter W (€;U) resp.
the topology O¢ of pointwise convergence coinciding with the product filter generated by
the sets W ({};U) == (mp x mz) ' [U] on [[,ex Y = YX. A filter converges on Fg(X;Y) iff
every component m, (F) = F(z) := {f(z) : f € F} converges pointwise.

. For a topology on X and the family & = K of compact subsets we get the neighborhood filter

W (IC;U) resp. the topology O of compact convergence. A filter converges with reference to
the corresponding topology of compact convergence on Fi(X;Y) iff it uniformly converges
on every compact subset of X. The subspace Cx(X;Y) C Fic(X;Y) contains the functions that
are uniformly continuous on compact sets (cf. 12.9)

For S={X} we have the neighborhood filter W (i) resp. the topology Ox of uniform con-
vergence on X.

Due to &€ C K and W(X;U) ¢ W(K;U) ¢ W ({z};U)VU € U,z € K € K the inclusion
W(EU) CW(K;U) C W (U)holds. (cf. 18.5): Uniform convergence ist stronger than compact

convergence which is stronger than poitwise convergence.

On account of 4. the projections m, : F(X;Y) — Y with m,(f) := f(z) are not only continuous
on W (&;U) but also on W (KC;U) and W (). Hence for any set A C F(X;Y) we have A(z) =

T [Z] C m, [A] = A(z) owing to 3.5.

18.7 Properties of the function spaces Fs(X;Y)

For a set X and a uniform space Y the following statements hold:.

1.

For a separated Y and a cover S of X the function space Fs(X;Y) is separated too since
for f # g € Fs(X;Y) thereis a x € S C S with f(z) # g(z) and hence U,V € Uy with
U (f(x))NV (g(x)) =0 so that W (S;U) (f) N W (S;V) (g) = 0.

. For a family S of subsets whose interiors already cover X the continuous functions C'(X;Y")

are closed in Fs(X;Y') since owing to 18.3 the set Cy(S;Y) is closed in Fy(S;Y) and on
account of the projections pg : F(X;Y) — Fy(S;Y) being continuous this is also true for
C(X;Y) = NgesPs' [Cu(S;Y)]. Note that due to the hypothesis f~![O] is open in X iff
(f71[0]) N S is open in X for all S € S, cf. 4.3.3.

The completeness of Y transfers to F1,(S;Y") due to 18.4 and hence to Fs(X;Y') on account of
6.7 since for a Cauchy filter F' C Fs(X;Y) every projection pg (F') C Fy(S;Y) is again a Cauchy
filter converging to a fs € Fy(S;Y) such that F converges to f := N\gesPs (fs) € Fs(X;Y).

All separation axioms with the exception of Ty transfer to Fg(X;Y') due to 7.10.

For X locally compact as well as o-compact and Y metrizable the function spaces Fic(X;Y)
and Cx(X;Y) are metrizable: Each f has a countable neighborhood basis pl_(i [Bl/m (f)}
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with compact K, C X for n € N, K;, C K41 and U,,ey K = X resp. By, = {d < %} Fur-
thermore it is separated due to 18.7.1 and hence metrizable on account of 13.3. A metric on

Fx(X;Y)is provided by D(f;g) := max% with d,,(f;g) :=sup{d(f(x);9(x)) : v € K, }:

As in 1.6 the triangle inequality follows from the corresponding relation of the components:

. . dn(f39) dn(g;h) dn(f;g) dn(g;h)
D(f;g) + Dlgsh) = maxoelfilos + maxolef@ins > max (sl 9oy + snidfiomy) =

mggl(ﬁf(])w = D(f;h). On the one hand for every ¢ > 0 and n. = [¢"!] the basis set
1”26} - W (Kn; { 1”26}) € W (K;U) and on the other hand for
n=0

(D<ey =1 { -
n=0

every neighborhood W (K;U) € W (K;U) there is an n € N with K C K,, and an € > 0 with

{d < e} C U such that {D < 5} € W (K;U).

18.8 The compact open topology

For a topological space X and a uniform space Y the sets (K;0):= {f: X — Y : f[K] C O} for
compact K C X and open O C Y form a subbasis for the compact open topology on the
set of continuous functions C(X;Y’). Due to 18.6.2 the compact open topology is identical with the
topology Ok of compact convergence on the subspace Ci(X;Y) C Fi(X;Y).

Proof:

For an arbitrary (K;0), f € (K;0) and every y € f[K] there is a neighborhood V,(y) C O and a
finite £ C f[K] with f[K] C U,ep Uy(y) and U} C V, since f [K] is quasi-compact due to 9.8. For
U = Nyeg Uy we have U (f [K]) C O such that for g € W(K;U)(f) with f[K] x g[K] C U follows
g[K]CU(f[K]) CO,ie. ge (K;0). Hence we have shown that W (K;U)(f) C (K;O).

Conversely for an arbitrary W (K;U)(f) there is a closed and symmetric V3 C U as well as a finite
E C f[K]with f [K] C Uieg V (f(z;)). Onaccount of 3.1 and 9.4 the sets K; := KNf~1 (V (f(z;)))are
again compact and cover K. For g € (cp (K;;0;) and = € K there is an ¢ € E with z € K;
such that g(z) € O; = V? (f(xl)) and since f(x) € V (f(z;)) we infer (f(z);g(x)) € V3 hence
Nier (Ki; 0i) € WK U)(f).

18.9 Uniform approximation of the absolute value function by real polynomials

1. The polynomials p, : R — R defined by py(t) := 0 and pn41(t) := pn(t)+ 1 (t — p2(t)) uniformly
converge on [0;1] to f(t) = v/t since for t € [0;1] we have vt — p,1(t) = (\/f—pn(t)) .
(1 — (\f —l—pn(t)» and by means of induction over n it is easily shown that 0 < v/t — p,(t)
< 2J2r‘n/ 7 < 2 Whence follows uniform convergence.

2. The polynomials ¢, : R — R defined by ¢, (t) := a - p, (2—22) uniformly converge on [—a;al to

2

2a4/ =
h(t) = |t| since for t € [—a;a] we have ||t| — g, (t)] = |a

< 2

;22 - QH(t)‘ <

3“9

24n

i

18.10 Algebrae of continuous functions on compact spaces

The closure A of a subalgebra A C C(K;C) of continuous complex-valued functions on a
compact space K with regard to uniform convergence has the following properties:

1. A is again a subalgebra since for f,g € A in every e—neighbourhood there are f¢, g. € A such
that [[[a- fl| = fla- felll < lal-[If = fel| < lafe=a-fe A< |f = fetg—gl <2e= f+g€

A and finally [||f + gll = [l fe + gelll < [ILf - gll = lfe - gelll < [llgll - [Lf = fel + 1fell - g = gelll <
lgll - e+ (|fll +€) -e= f-g€ Asince f and g are bounded on K due to 9.8 and 9.10.
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2. For every f;g € A we have |f| € A, max{f;g} = %((f+g)+ |f —g]) € A and min{f;g} =
L((f+9)+|f —g|) € A since with a := || f|| we can apply 18.9.2, i.e. for every e > 0 there is
a polynomial p. without constant term satisfying ||| f(x)| — pe (f(2))|| < € and p. (f(z)) € A on
account of 1.

18.11 The Stone Weierstrass theorem on compact spaces

The subalgebra A (D) generated by a subfamily D C C(K;C) of continuous complex-valued
functions on a compact space K by means of polynomials without constant term is dense in
C (K;C) with regard to uniform convergence if D satisfies the following conditions:

1. D separates every point in K from 0: Vy € K3g, € D : g, (y) # 0.
2. D separates points in K: Vy,z € K3ge€ D : g(y) # g(2)
3. With every f € D we also have the complex conjugate f € D.

Proof: Owing to condition 3. and on account of g+ h = G+ h resp. g-h = g - h the subalgebra
A (D) can be decomposed into a real part ReA (D) = {% <h + E) thed (D)} and an imaginary
part ImA (D) = {% (h—ﬁ) the A(D)}. For a given f € C(K;C) we have Ref € C(K;R) and
for every y,z € K due to condition 1. we obtain g,;g9. € A(D) with g, (y) = g.(2) = 1 and
hence a gy = gy + 9- — gy - 9 € A(D) with gy, (y) = gy.(2) = 1. Thus the function hy, =
Ref(y)(g_g(z)'g‘?;;:gfi{g(z)(g_g(y)'gyz) € A(D) satisfies hy. (y) = Ref (y) and hy. (2) = Ref (z) for g €
A (D) being either the real part or the imaginary part of the separating function for y und z depending
on which part actually separates the two points according to condition 2. For every z € K the
neighborhoods U, (y) = {hy. — Ref < €} cover the compact set K for finitely many y € L C K and
h.e = max {hy, :y € L} € A(D) with h,. (z)—Ref () < eVa € K due to 18.10.2. The neighborhoods
Uc(z) = {hze — Ref > —€} again cover K for finitely many z € M C X and as above we have
Rehe := max{h..: z € M} € A(D) with |Rehe — Ref| < €. In the same way we find Imh, € A (D)
with [Imhe — Imf| < € and hence for he = Reh, + ilmh, € A (D) we have ||he — f|| < V/2e.

18.12 Properties of C (K;C)

The algebra A (D) induced by the three functions D = {x +— 1;z — z;x — T} has the same cardinality
as the set of all finite subsets of N and hence is countable due to [19, p. 17.6]. According to the
preceding theorem it is also dense in C (K;C). Due to 18.7.5 the topological vector space C (K;C)
is metrizable whence on account of 11.14.1 it is second countable. Finally because of 18.7.3 it is
complete and hence a polish space.

18.13 The Stone-Weierstrass theorem for locally compact spaces

Let X be a o-compact space X and Cy (X;C) the algebra of all continuous functions vanishing
at infinity, i.e. |:cl‘iinOo |f (x)| =0V f € Co(X;C). Then the subalgebra A (D)

1. generated by D C C (X;C) is dense in C (X;C) with regard to compact convergence.

2. generated by D C Cyp (X;C) on is dense in Cy (X;C) with regard to uniform convergence.
if D satisfies the conditions 1. - 3. from 18.11.
Proof:

1. This is just a paraphrasing of 18.11.

2. By the Alexandrov compactification 10.2 and the contintuous extension f (oo0) = 0 for
every f € Cp (X;C) by he conditions for 18.11 are obviously satisfied.
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19 Equicontinuity

19.1 Equicontinuity

For a topological space X and a uniform space Y the family HC F (X;Y) is equicontinuous in
z € X iff for evey neighborhood U in Y there is a neighborhood V(z) of = such that f[V(x)] C
U(f(z))Vf € H. The family H is simply equicontinuous iff H is equicontinuous in every x € X . For
an uniform space X and V independent of x we have a case of uniform equicontinuity

19.2 Examples

1.

and k,a € R% the Lipschitz continuous func-

For two metric spaces (X;d) resp. (Y;d')
) <k-d(x;y)* Vz,y € X} are equicontinuous since

tions Hy.q :=={f: X =Y : & (f(x); f(y) (
flVs(z)] CU(f(z)Vf € HANe>0withd = (§)=.

. For a < b and k € RY the family Hy := {f : [a;0] = R : |f'(z)| < kVzx € [a;b]} is equicontin-

uous since f [Vs(z)] C Ue (f(2))Vf € HAe>0 with 6 = .

The family (fn),cn @ [0;1] = R with f,(z) = n is uniformly equicontinuous but not
uniformly bounded although every single f, is bounded.

0 fir x < %
The family (fy),ey : [051] = R with f,(z) = n’ (SC - %) fir L <z < -1 is equicontin-

TL2
n—1
uous at every x (the choice of V is independent of f) and each f,, is uniformly continuous
(the choice of V' is independent of x) as well as bounded, but the family is neither uniformly
equicontinuous (there is no common V for all  and f) nor bounded with the exception of

x = 0. (counterexample to [10, Aufgabe 14.11]!)

The family (fn),cy @ [0;1] = [=1;1] with f,(z) = cos(nz) is not equicontinuous but uni-
formly bounded and all f,, are uniformly continuous.

. 1
fur n—1 <z

y y = cos (4x)
10+ y = cos ( 3$
0 ; // y= 005 (2z) y = cos (1zx)
6 7/
b 2
. 5f4 : S . :
S Iy :
[/ h - x
| /,/ D2
/
[/ L«
111 1 1
543 2

19.3 Characterization of equicontinuous families

For a topological space X and a uniform space Y the family H C F(X;Y)
is equicontinuous in x¢ € X iff the closure H in Fg(X;Y) is equicon-
tinuous in xg. In less abstract words: The pointwise limit of a family
of equicontinuous functions is again equicontinuous.

Proof: We only have to show =-: For a neighborhood U in Y there
is a neighborhood U’® C U and a neighborhood V(zg) of zo with
fIV (20)] € U (f(z0))Vf € H. For g € H and every x € V () there
s f € HOW ({z;2}:U7) (g) = H N W ({zo}:07) (9) 0 W ({a}5U7) (9)
# 0 with (f (z0);9(x0)) € U und (f(x);g(x)) € U'. From the above
stated (f (x0); f (z)) € U’ we infer (g(x9);g(x)) € U3, ie. g[V (z0)] C
U" (g(o))-
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19.4 Pointwise and compact convergence

On every equicontinuous family H C C(X;Y') between a topological space X and a uniform space
Y the neighborhood filters of compact convergence and of pointwise convergence are identical.

Proof: On account of 18.6.4 we only hace to show that Ci(X;Y) C Ce(X;Y): For every neighbor-
hood W (K;U) let U C U be a neighborhood in Y and (V (2;)),<;,, finitely many neighborhoods
in X with f[V (2;)] C U'(f (2;))Vf € H as well as K C Uj<;<, Vi. For an arbitrary f € W (E;U’)
with F := {x1;...;2,} and x,y € K there are z;,x; € F with x € V (z;) resp. y € V (z;) such that
(f (z3); f(x)) € U resp. (f (z5); f(y)) € U'. Onaccount of f € W (E;U’) we have (f (z;); f(z;)) € U’
and hence (f (z); f(y)) € U C U consequently W (E; V) C W (K;U) resp. W (E;U) D W (K;U).

19.5 Closure of equicontinuous families

For a topological space X and a uniform space Y the closures H of every equicontinuous family
H C C(X;Y) with reference to compact resp. pointwise convergence coincide.

Proof: On account of 18.6.4 for the closures of arbitrary families H C F (X;Y)we have Hg D H
with reference to W (£;U) C W (K;U). Due to 19.3 the closure Hg in Fe (X;Y) is equicontinuous and
in particularHx C Hg C C(X;Y) such that we can apply subsec:Pointwise-and-compact convergence
to He and hence obtain the proposition.

19.6 The Arzela-Ascoli theorem

For a locally compact space X and a separated space Y the closure H of a family H C C' (X;Y)
is compact in Cx (X;Y) iff H is equicontinuous and H(z) is compact in Y for every z € X.

Proof:

=: On account of 9.4 H(x) is compact in Y. In order to show the equicontinuity let U be a
neighborhood in Y, U’ symmetric with U’ C U and 29 € X. Due to the hypothesis for a compact
neighborhood K of z( there are finitely many (f;);<;<, With H C H C Uy<j<, W (K;U’) (fi). Since
the f; are continuous there are neighborhoods V; C K of o with f; [V; (z0)] € U’ (fi (x0)). For z €
V (wg) C K with V :=N1<;<, Vi and f € H there is a j with (f; (z0); f;j(x)) € U’, (f (x); f; (z)) € U,
(f (z0) ; fj (w0)) € U hence (f (z); f(z0)) € U™, ie. f[V (x0)] C U™ (f(0)) C U (f(z0)).

<: Due to 19.4 for equicontinuous H C C(X;Y) the neighborhood filters of compact and point-
wise convergence coincide such that H can be regarded as a subset of the product space YX =
[oex Y with H C H C [[,ex H(z) C [Iyex H(x) on account of 18.6.5. Since the components H (x)
are compact this transfers to the product [[,cy H(z) (c.f. 9.9) and hence to the closed subset H
(c.f. 9.4).

19.7 Examples

1. Due to 18.7.5 for metrizable Y and locally compact X being also o-compact the family
Ck(X;Y) is metrizable and owing to 10.13 the properties of being compact, countably
compact and sequentially compact are equivalent on Y as well as onCx(X;Y). Thus we
obtain the classical formulation of the Arzela-Ascoli theorem: A sequence (fy),cy C C(X;Y)
of continuous functions has a subsequence uniformly converging on compact sets to a
continuous f € C(X;Y) iff it is equicontinuous and the point sequences (f,(x)), ey o0 Y
have a convergent subsequence for every x € X. This variant is used in the proof of the
following theorem [15, th. 8.3] of Peano to show the existence of solutions for a wide class of
differential equations.
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2. For any open G C C the family F C C(G;C) is normal iff its closure F is compact resp.
sequentially compact (see above) in Ci (G;C). Due to 19.6 this is equivalent to F being
equicontinuous und F(x) being sequentially compact for every x € G. The Arzela-Ascoli
theorem together with Cauchy’s integral formula [15, th. 7.5] serve to prove Montel’s
theorem [15, th. 7.15] which states that the normal character of a family 7 C H(G;C) of
holomorphic functions is equivalent to it being locally bounded, i.e. that for every x € G there
is a neighborhood U (z) and an M > 0 such that |f ()| < M for every z € U () and f € F.

20 Manifolds

20.1 Atlases and charts

An atlas on a set M is a family 2 of charts
(U; p; X) each consisting of a subset U C M
with M C U{U : (U;p; X) € A} and an injec-
tive coordinate function ¢ : U — X into a
Banach space X such that for every pair of
charts (U;p; X) and (V;9;Y) € A the coordi-
nate sets o [UNV] C X resp. v [UNV] CY
are open and the change of coordinates or
transition map op =l : p[UNV] = [UNV]
is a homeomorphism. In particular ¢ [U] is o] e v
open in X and U is open in M for every
(U;p; X). Every chart (U;p; X) consisting of
a subset U C M and a bijection ¢ : U — ¢ [U]
onto an open ¢ [U] C X in some Banach space Y is admissible to the atlas 2 iff is satisfies the
above stated conditions for every other chart (V;¢;Y) € 2. Two atlases 2 and B are compatible
to each other if each chart of 2 is admissible to every chart of 8. The compatibility obviously defines
an equivalence relation and each equivalence class of atlases obviously is inductively ordered by
inclusion such that Zorn’s lemma [19, th. 41.2.4] implies the existence of a maximal atlas € (M)
on M. In [15, section 6] we examine differentiable manifolds of class C" with r times continuously
differentiable transition functions. The vector space of all admissible charts (U; p; X) € € (M) at a
point m € M is denoted as C,,, M and the corresponding family of neighborhoods U is U,,, M.

[V]

P
plwnv]]

Y

—
!

According to [16, th. 1.2] and due to @ + X = X the topology on the Banach space X is uniquely
determined by the local basis B (0) of the origin: a + U = t,[U] € U(a) & U € U (0). Hence
the homeomorphic coordinate changes 1) o ¢! : X — Y show that any two Banach spaces X and
Y of two charts (U; p; X) and (V;4;Y) with nonempty intersection U NV # () are homeomorphic
to each other. Furthermore the set of points m € M for which exist a chart (V;;Y") such that ¥
is homeomorphic to a given Banach space X is both open and closed. Consequently modulo linear
transformations there is a common Banach space X on each connected component of M and the
maximal class of all compatible charts on such a connected component is a topological X-manifold
on M. Up to further notice we will examine connected manifolds with coordinates on a common
Banach space X.

The manifold is furnished with the final topology O¢ ;) with regard to the parametrizations
el U] - M for (U;p; X) € €(M) according to 4.5. Hence a subset O C M is open iff
its coordinate set ¢ [ONU] in every chart (U;p) is open in ¢[U], hence open in X, and con-
versely the parametrizations ;' [0;] = ¢; ' [O; N ; [Ui]] of open coordinate sets O; C X; consti-
tute a basis of the open sets in M. The final topology is already determined by any subcollection
€ (M) = (Us; i3 Xi)ijer C €(M) of charts covering M = (J;c; U; since for any O € Og,(ar) and any
other admissible chart (V;1;Y) the relations ¥ [ONV] = U;er v (ONU; NV) and ¥ [ONU; N V]
= (wowi_logoi> onU;NV] = (wocpi_l) (pi [ONU; NV]) in the case of O = M imply that V €
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Og,(m) Whereas in the case of any O € Og, () we see that ¢ [O U V] is open in Y whence follows
O € Og¢,(mufvsy;yy- Since the definition of the final topology implies Og, (anugvieyy C O (ar) the
equality of the two topologies follows.

By the definition of the open sets in M every coordinate function ¢ : U — X is an open map
and also continuous since for every open O C X and every chart (V;4) the image [go_l 0]nV]
= (Yo 1) [O] N4 [V] is open in X whence ¢! [O] is open in M. Thus every coordinate function
¢ : U — ¢[U] is a homeomorphism with regard to the trace topologies Og ;) N U on the
manifold M and Oy N ¢ [U] on the Banach space (X; || ||) and since U resp. ¢ [U] are itself open the
homeomorphy extends to the topologies on M resp. X itself in accordance with the definitions.

In the case of a given topology O on M the restriction to continuous parametrizations implies
O C Og(ury and conversely if only continuous coordinate functions ¢ : M — X are admitted we
have Og(pr) C O since every open O € Og(yy) as the union O = U {p e [ONU]]: (U;¢) € € (M)}
of open preimages of open sets under continuous maps is also open in O.

Since every point m € M has a neighborhood which is homeomorphic to an open neighborhood of
¢ (m) in a Banach space X the manifold M is Hausdorff and according to 7.7 even regular. Note
that in this text second countability and connectedness are not included a priori in the definition

Examples:
1. Every open subset O C M is a manifold with the atlas {(O N U;¢|onv) : (Us; ) € €(M)}.
2. Every open subset O C X is a manifold with the atlas (O;id|p).

3. The torus group R"/Z" is a compact manifold with the atlas of the two charts (Ja;a + 1[;74)
and (Jb;b+1[;m) for a — b ¢ Z™ and the bijections 7, : ]Ja;a + 1] — R"/Z" defined by
Ta () = & + Z"™ and likewise for my.

20.2 Submanifolds

A subset N C M of a topological space M is locally closed iff every n € N has an

open neighborhood n € U, C M such that U, N N is closed in U,,. Hence N; and

Ny are locally closed but N3 is not since every neighborhood of the closed endpoint e U
of its boundary 0 N3 = N3\ N3 includes an open part of the upper half so that U. N N

can never be closed in Ue. In that case U, \ N is open in U,, and therefore open in M.
Consequently U,cy Un \ N C M \ N is open in M so that every locally closed N set is

the intersection of an open set (J,cy Uy, and a closed set N C M \ (U,en Un \ N)

= Npen M\ (U, \ N) in M. Since M is both closed and open we conclude that every

open set and also every closed set are locally closed. The converse is not true since the

open interval N is locally closed but neither closed nor open in R2.

NG
Ue
A Banach space Y splits iff there are two closed subspaces Y; and Y5 such that Y ‘M

= Y1 @ Ys. As a consequence of the closed graph theorem [16] the identity Y7 X Y3
— Y7 @ Y5 then is a homeomorphism such that the direct sum is furnished with the
product topology and in particular every open set O C Y; @ Y5 has the form O
= 01 X Oy with O; open in Y;. An injective continuous linear map f : X — Y
between topological vector spaces X and Y splits iff there exist topological vector spaces Y7 and
Y5 with an isomorphic homeomorphism « : Y — Y; ® Y5 such that o f : X — Yj is a
continuous isomorphism. In the finite-dimensional case with X = R™ and Y = R" with
n < m the passive basis vectors in a vector subspace Y7 x {0} C Y with Y7 = span {el; ..;e™} are
sometimes explicitely written down in the form 0 = 1" ., 0- e’ such that the projection has the
form m : Y7 X Y2 — Y7 x {0}. In the finite dimensional case every injective continuous linear map
splits since Y7 = f[X] is a vector subspace and the Steinitz basis exchange lemma [17] implies
the existence of the complementary space Y7 such that the product Y =Y, x Yo =Y, ®Ysis a
A

direct sum with the representing matrix M# (f) = ( 0 ) € M(mxn)and A€ M (n xn).
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A subset M7 of an X-manifold M is an X;-submanifold of M iff X = X; & X5 splits and for
every m € M exists a chart (U;¢) € C,, M such that ¢ [U] = U; x Uz and ¢ [U N M;] = U; for
some open U; C X;. In particular for every change of coordinates 1o o™ : @ [UNV N M;] —
Y [U NV N M) between charts (U; ) and (V) the intersection UNV NM; C M is homeomorphic
to its open coordinate sets ¢ [UNV NM;] C Uy C X; resp. ¥ [UNV NM;] C X. According to
[17] the homeomorphy of the neighborhoods extends to the entire vector spaces X resp. X; whence
the coordinates ¢ [U N M| of M; on every chart (U;¢) € CM lie in X;. Since ¢ [U] \ ¢ [U N M;]
= (U xUz) \ Uy = Uy x (U2 \ {0}) is open in ¢ [U] the set ¢ [U N M;] is closed in ¢ [U] for every
open U C M. Hence every intersection U N M7 is closed in U and consequently the submanifold M;
is locally closed in M. It is a closed submanifold if it is closed with regard to the topology of M.

Every Xj-submanifold M; of the X-
manifold M with charts (U;¢) for ¢ : U = (My;0p,) D (M1;Oncar,)  C (My; On 0 M)

¢ [U] C X is itself an X;-manifold with the o
charts (U N Mj;p o) for the injection ¢ : J/ !
My — M with ;1 [U] = 7 [U] = UnN M for ount, (M;Opp)
every subset U C M since the coordinate o
functions ¢ o) are still injective with the Jﬁp

. . -1 . LX
parametrization 7 o o~ : Uy — Mj. For (Xl; OH /N X1) 1 (X; OH ”)

another chart (V' N Mj;1 o 11) the change of
coordinates (o t1)o(pou) "t = oy t:

elUNVNM]CcU Cc Xy =9 UNnVNM]CV, CX;isahomeomorphism on X;. According
to 4.3 The resulting topology O, s of the X;-submanifold M; is generated by the sets U N M; with
open ¢ [U] C X and open ¢ [U N M;] = Uy = Uy x {0} C X; which are closed in X = X; x Xs.
It is also the final topology induced by the parametrizations o' : Uy — M for (U;p) € Cp, (M)
and m € Mj. According to the universal property 4.1 and due to the continuous character of
11 0@t : U; — M these functions are also continuous with regard to the trace topology Oy N M;
generated by all sets U N M; with open ¢ [U] C X which is also the initial topology induced by the
injection ¢1 : My; — M. Hence the submanifold topology Oy, C Op N M is weaker than the
subspace topology Oj; N M;. It is also included in the topology Oy, of the X;-manifold which is
the initial topology of all coordinate functions ¢; : Uy — X1 with (Uy;¢1) € Cp, (M1). Indeed since
every (UNMi;po0t1) € Cp (M1) we have Opr,c i € Opyy but the converse is not true since e.g. every
open ball B, (0) C R? contains three open pairwise disjoint subsets U; C L of the lemniscate L in
20.11 such that there is no open U € M = R? with ¢! [U] = U; N L whence U; € O¢ \ (R* N L) and

therefore in general we have Onr,cpr S Oy -

Due to 20.1 the two topologies coincide if we restrict the charts to continuous coordinate functions
with respect to the subspace topology Oj; N M; which then becomes the original topology such
that Oy N My = OM1~

Note that according to 4.1 the initial topology Oxs N M is uniquely

determined by the universal property: Any map f : N — M, (M;Opp)
between an Y-manifold N and a Xi-submanifold M; C M of an tiof
X-manifold M on a proper subspace X; & X is continuous with .

regard to Ops N My iff its injection ¢ o g : N — M is continuous (N;0On) *f> (My;Opp N M)
with regard to Oyy.

20.3 Product manifolds

The product (M x N;€ (M x N)) of the X-manifold (M; € (M)) and the Y-manifold (N;€ (N)) is
an X x Y-manifold provided with charts (U x V;¢ x ¢) with the product coordinates ¢ x ¢ =
(p;1) : UxV — X xY. Obviously every such product is admissible to € (M x N) and conversely the
two components 7x; 7y of every admissible chart n = (nx;ny) : U x V — X x Y must have the form
nx : U — X resp. ny : V — Y whence follows € (M x N) = € (M) x € (N). Consequently the initial
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topology induced on M x N by the product coordinates coincides with its product topology. The
standard example of a product manifold is given by the torus 20.16.

20.4 Quotient manifolds

For a fixed-point-free involution 7 : M — M on an X-manifold (M; € (M)), i.e. a continuous
bijection with 7 o7 = idys, 7 (m) # m Ym € M and for every chart (U; ) of m € M exists a neigh-
borhood m € Uy C U such that Uy N7 [Up] = 0 the quotient M/R with R = {(m;7(m)):m € M}
C M x M is an X-manifold. In that case its maximal atlas € (M/R) is uniquely determined by
the property that for every m € M exists a neighborhood U (m) such that the canonical projection
7:U — 7w[U] C M/R is a local homeomorphism. Furthermore if the original topology O on
M with a restriction to O-continuous charts (U; ) such that Oy C O is second countable and
Hausdorff the final topology O, g of the quotient space M/R is also second countable and
Hausdorff.

Proof: The uniqueness of an atlas 2 on M/R for which 7 :

(M;€(M)) — (M/R;2) is a local homeomorphism follows from M

the fact that the identity id : (M/R;;) — (M/R;23) between two / \
possible atlases with the required property regarding the projection

7 must be a local and hence global homeomorphism. Due to the (M/7); (M/1),
hypothesis for every chart (U;p) of m € M exists a neighborhood

m € Uy C U such that Uy N7 [Up] = (0. Hence the map g : 7 [Uy] — ¢ [Up] defined by (g o 7) (m) =
¢ (m) is bijective with ¢y ! (2) = m € Uy : ¢ (m) = 2 and for every other chart (V1) of m € M with
m € Vo C V such that Vo N 7[Vp] = 0 the coordinate change g o @51 cplUonN Vol = [UpgN V) is a
homeomorphism. Hence (7 [Up]; o) is a chart at = (m).

The Hausdorff-property of (M; O) extends to (M /R; Oy R) since in that case for any two distinct
points 7 (m) # 7 (n) exist neighborhoods U of m resp. V of n such that UNV =UNT[V] =0
whence follows 7 [U] N7 [V] = ). Likewise the second countability is carried over to the quotient
space since for the countable basis (Uy),,»; of O the sequence (7 [Uy]),,> is a basis of Opy/g.

20.5 Immersions

A map f: M — N between an X-manifold M and a Y-manifold NV is an immersion at m € M iff
one of the following equivalent conditions is satisfied:

1. The vector space Y = Y; @ Y5 splits and there are charts (U;¢) € C, M and (V; ) € C,, N with
n = f(m) and ¢ [U] = ¢ [V] C Y7 such that the downstairs map ¢ o fo ! : ¢ [U] = ¢ [V]
is an inclusion.

2. There is a chart (U;¢) € C,, M such that f: U — f[U] is a homeomorphism and its image
f[U] C N is a Yi-submanifold on a subspace Y; C Y.

Both conditions imply that f is continuous and that X is homeomorphic to Y;. The map f: M —
N is an immersion iff it is an immersion at every m € M Every X;-submanifold M C N of an
X-manifold N admits the injection ¢ : M — N as a trivial immersion. The local injectivity does
not imply global injectivity since two charts (U1;p1) € Copy M and (Us; p2) € Cpy M with disjoint
coordinate sets Uy N Uz = () may contain a common crossing point f (m1) = f (msg). The lemniscate
C' in 20.11 shows that even a continuous bijection f : M — f[M] may not be an open map such
that the X-manifolds M and f[M] may not be homeomorphic to each other. However due to 4.8
every immersion is a quotient map whence M/R; = f [M] via the equivalence relation given
by mRsn < f(m) = f(n). An immersion which is also a homeomorphism is an embeddingand
in that case f [M] is an Yi-submanifold.
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Proof:

1. = 2.: By the hypothesis there are charts (U;p) € CpM M /L‘
and (V;v¢) € C,N with n = f(m) such that the downstairs

map o fop 1 p[U] = ¢[V] coincides with the inclusion

t: X — Y1 @Y, and since we can assume ¢ [f[UNV] C V3

the map Yo fop~!: p[U] = ¥[f[U]NV] coincides with the wofop-l
identity id : X — Y7. Hence f = ¢ loidop =9~ top: U — — WV
fIU]INV is a homeomorphism such that we can assume f [U] o] X ‘ Y1
C V and for every chart (W;n) € C,N follows n[f [UNW] = |7u
oy~ to) [fIUINW] = (noyp~!) (¢ [f [U]NW]) C Vi since viFInV]

Y [f[U]N W] C Y1 and the transition function 7 ot ~! provides
a local homeomorphism which according to [16] extends to the entire vector space Y;. Hence f [U] is
a Yi-submanifold.

2. = 1.: According to the hypothesis there are charts (Up;¢) € C, M and (Vp;n) € C,N with n =
f (m) and n [Vp] = V1 x V4 for some open V; C Y; with ¢ € {1;2} in the product Y7 & Y2 =Y such that
n[f [Uo) N Vo] € V1. The map c,pof_1 f1Uo] = ¢ [Uo] C X is a homeomorphism into a vector space X
and its restriction ¢ = (@ o f~1) |y on the open set V = f[Up] NV is a chart on the Yi-submanifold
f [Uo] whence X is isomorphic to Y;. Hence for the open set U = Uy N f~! [Vy] the downstairs map
Yofopt:ip[U] —[V] C X coincides with the identitiy and due to X @Yo 2 YV, @Yo = YV we
can write it as an inclusion into Y.

20.6 Submersions

A map f: M — N is a submersion at m € M iff there are charts (U; ) € C,, M and (V;4) € C,N
at n = f(m) such that X = X; & X splits and the downstairs map fy.v : ¢ [U] — ¢ [V] coincides
with the projection m : X; ® Xo — X;. In that case the restriction f : U — V is a continuous
open map and the preimage f~! (n) is an X3-submanifold of M .

Proof: By the hypothesis there are charts (U;¢) € C,, M

and (V;v¢) € C,N with n = f(m) such that the down- fIM] =
stairs map o f o' : p[U] = 1 [V] coincides with the
projection 7y : X1® Xy — X;. This implies f [U] =V and
in particular f[U] is open in N. For every open O C M
of ¢

the coordinate set ¢ [U N O] is open in X, according to 4.2
its projection (Yo f)[UNO] = (m 0¢)[UNO] is open v
in Y, whence f [U N O] is open in N so that we have shown

U
that f is an open map. By 4.2 there are open U;C X for ¢ QO[ ] v w(n) =0
€ {1;2} such that ¢ [U]= U; x Us. For every open W C N v '
the coordinate set ¢ [V N W] is open in Y, its homeomor- o [F U]

phic preimage ¢ [f~1 [V N W]] C U; is open in X; whence
e[fTHVAW]] x Uy = @ [fL[VNW]NU] is open in X and finally f~1 [V N W]NU is open in
M with f[f~'[VNW]NU] c VNW which proves that f : U — V is continuous. By a simple
translation we can assume 1 (n) = 0 such that the bijective character of the coordinate functions
entails ¢ [U N f~1(n)] = ker fy,y C Uz C X2 whence f~!(n) is an Xo-submanifold of M.

20.7 Euclidean manifolds

Every Euclidean manifold over R” is locally compact with a countable basis of regular co-
ordinate balls , i.e. precompact open sets U = B" with a neighborhood V' > U such that V =
(1+ €)B"™ and compact closure U 22 B" since the coordinate vector ¢ (m) of every point m € M in
a chart (U;¢) has an open neighborhood ¢! [B, (x)] with rational radius ¢ € Q and rational centre
x € Q"
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20.8 Compact manifolds

For every compact Euclidean manifold M over R” exists a k € N such that M is homeomorphic
to a compact subset K C Rk,

Proof: By the hypothesis there is a finite cover (Uj;¢;);<;<; of charts with open coordinate sets
¢ [U;] C R™ and due to 8.5 and 9.5 exists a subordinate partition of unity (1;);<;<, such that the
composition F = (@1 - 15 ...; 0k - Vi U1 . U) : M — R™FF i continuous. Due to 3o, ¥; = 1
or every m,n € M with F (m) = F (n) there is a 1 < j < k with ¢, (n) = v; (m) > 0 whence follows
m;n € Uj. Since we also have ¢; (m) = ¢; (n) and the coordinate functions are bijective this implies
m = n. Hence F is injective and the closed map lemma enu:9.8.3 follows that F' is a topological
embedding onto the compact subset F [M] C R+,

20.9 Manifolds with boundary

The charts (U; ¢) of an X-manifold with boundary
M over a Banach space X consist of subsets U C
M and coordinate functions ¢ : U — ¢[U] C X
into positive halfspaces Xj\' = {ReX > 0} of some
functional A € X* such that the transition map o
el pUNV] = v [UNV] has a homeomorphic
extension f : Uy — Vj between open sets Uy; Vy C
X satisfying Uy N Xy = o[UNV] and Vy N X = 4,
Y [UNV] with flopny) = © o™t for every pair of Xt
charts (U;¢) and (V;9) € . These charts include : o puan|,

\j

interior charts as defined above with ¢ [U] open in UV >
X and boundary charts with ¢ [U] open in X, with o >y i
o [UIN XY # 0 for the kernel X{ = {\ = 0} of some ‘ ’

functional A € X™*. Note that the hyperplane X;\r is a

closed vector subspace of X and that the case A = 0 results in X;\" = X and hence an X-manifold
without boundary. The interior Int M consists of all points m € M with an interior chart at m
while the remaining set is called the manifold boundary OM = M \ Int M. Hence all boundary
points m € OM have a boundary chart (U;¢) at m such that ¢ (m) € X{ for some hyperplane X?.
The converse is far from obvious but still true as will be shown in 26.2. Note that the hyperplane Xf\)
= (5X§E is the topological boundary of the corresponding half planes X/j\E but that the existence of a
topological boundary dM of a manifold with a boundary itself and generally its possible topology
depend on the choice of the space of which it may be a subset. For example the closed disk B2
may be considered as an R?-manifold with the manifold boundary 9B% = S! but its topological
boundary may vary between B2 = () if B> C B? is regarded as a subset of itself, §B? = S = 9B? in
the case of B2 € R? and even 9B% = B? for B?> ¢ R3.

20.10 The circle

The circle S! = 9B? can be obtaind by gluing together any num-

ber of open intervals, e.g. both ends of the interval I = B! = T2 T2
]—1;1] in the quotient space I/R with R = {(t;t): -1 <t <1} ‘

U {(t—1;¢t):0<t<1}. Since due to its construction from equiv- — K\ -
alence classes containing up to two pairs of elements the quotient K

space needs at least two charts for covering. For easier parametriza- 301, oy ., Py
tion by R = {(t; t) e (I U12)2} U {(t —2mt) € (IlAIQ)z} we glue A )
together the two intervals I; = |—m;7[ and Iy = ]0;27] so that 1t 1
the two charts (7 [I;];7~!) given by the restrictions of the canon- S ‘ . ‘
ical projection 7 : I; — (I;UI) /R result in the R-manifold
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(I1 Ul) /R. Alternatively the two charts (p[[;];»!) with the

parametrizations ¢ (t) : I; — S! C R? given by ¢ (t) = (cost;sint)

on I; for i € {1;2} produce the circle S' as an R-manifold in R2. Tt can also be represented
as a closed R-submanifold of the manifold R? given by (R?jid). By the additional charts
(U 81\ ({0} x B ) ;4 1) with the e-neighbourhood U, (S!) = {z € R? : d (#;S!) < ¢} for any
0<e<land: B (1) x I; = R? given by 1 (r;t) = (rcost;rsint) we obtain ¥~ [SI N U, (S1)] =
{0} x I; € {0} x R. The initial topology Ogs: generated by the subbasis sets ¢ [U; N I;] for open
U; C R and i € {1;2} with respect to the charts (¢ [I;];¢~!) into R coincides with the trace topol-
ogy Og2NS! on S'NR?, i.e. with the initial topology with regard to the injection ¢ : S' — R2. The
existence of the R-submanifold S C R? also implies the trivial embedding idg: : S' — S' € R? of
the R-manifold S onto the R-submanifold S'. Finally S! can be obtained as an R-R?-embedding
f:(Lhul)/R — S! given by (pi_l ofom =1ids,. resp. fom = p;. In a geometric sense the
equivalence classes can be made visible by expanding them into two dimensions; conversely the circle
can be folded into a quotient space.

20.11 Lines in space

An atom {a} C X is an R’-manifold and a closed R’-submanifold of R.

Every open interval I C R is an R-manifold and an R-submanifold of R?
whereas a closed interval is a closed R-submanifold of R?. In its own right
a closed interval is an R-manifold with a boundary as defined in 20.9.

-
Every curve segment a + Ib = {a+b(t):t€ I} with a € X and b € T /:B\

C" (I; X) is an R-submanifold of X and in the case of an open interval I C R -
as in example A it is an R-manifold. Example B shows an R-manifold with
a boundary resp. a closed R-submanifold of R?.

By the single chart (I;¢) with I = ]0;27[ and parametrization ¢, ' (t) =
(sint;sin2t) we obtain the lemniscate L from 20.2 as an R-manifold with
the topology Of, consisting of all parametrizations ¢, ' [V] C L of open co-
ordinate sets V C I. In this topology the neighborhoods oy ' [U. ()] of the

origin ¢, ! (7) = 0 € L are isomorphic to open intervals in R? so that they

are locally closed but neither open nor closed in R?. Every neighborhood L

U. (0) C R? contains disjoint sections ¢ [U, (0)] resp. @2 [U. (27)] of the tails s
approaching 0 such that there is no open V' C R? with 5! [U. ()] =V NL. }
Hence the neighborhood 5! [Ue (7)] is not open in the trace topology Op2NL
of the closed subset L C R? such that ¢3 is not continuous with regard to ﬁ%@
Or2 N L C Op. Consequently the parametrization ¢y V. I = L from the R-

manifold I with the chart (I;id) into the R-manifold L with the chart (L; ¢2) and downstairs map
V2005 Loid; = id; is globally injective and continuous but not open at 7. It is an immersion but
not an embedding. Therefore resp. due to id [U (0) N L] & R the set L is not an R-submanifold of
R? with the chart (R?;id) € € (R?) and hence generally for € (R?). By extending the parametrization
to 3! : I — R3 with ¢3! (t) = (sint;sin 2¢; cost) the limit point (s (7) is removed into the third
dimension such that we obtain R-submanifold L3 of R with the embedding <pg1 I — L.

Similarly the union of two coordinate axes X = R x {0} U {0} x R C R? is a disconnected
R-manifold with coordinate functions " : R x {0} — I, = ]-1;1[ given by ¢ (z) = 7 and
YV {0} x R — Iyi = ]42; +3[ with Y (z) = ¢® (z) & 2. It has three connected components
and the corresponding immersion ¢! : I, U I; U, — X is globally injective and continuous
but not open at 0 whence it is not an embedding and X is not an R-submanifold of R?. Adding
a third dimension we obtain a disconnected R-manifold with coordinate functions n* : X’ =
R x {0} x {1} — R* given by n* () = ¢® on two connected components resp. an embedding

n~1:R\ {0} = X’ onto the corresponding R?-submanifold of R.
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20.12 The Madbius strip

The following examples are conveniently parametrized in polar coordi-
nates taken from rectangular products of the intervals I = |0;1[; Iy =
|—m;m[; Io = ]0;27[ and J = 1I,. The Mébius strip can be described as

the compact set My, = Q1ap [I_l X j} C R? parametrized by @uap (u;v)

= @ (u;v;w) = ((wa + vbsinu) - cos 2u; (wa — vhsinu) - sin 2u; vh cos u)
with radii @ > b > 0 and the additional parameter 1 — ¢ < w < 1 + ¢
which will be used later for the embedding. According to enu:4.8.2 this

b
parametrization is a quotient map whence M, is homeomorphic to /m‘é}s .
the quotient space (1:1 X j) /R, identifying the two vertical sides of \Tg
- = - A
the open rectangle I; x J with each other in inverted sense since
—a a

(0;v) Ry, (2m;1 —w) for v € J. The set My, = Qiap {1:1 X J} is also an
R2?-manifold with two charts (gpab [1; x J] ;(p;bl) for i € {1;2} which is i Pab
neither open nor closed but locally closed in R3. Similarly to 20.14 it
can be embedded as an R?-submanifold in R? with the canonical chart
(R3;id) and the additional two charts ((pab [I; x J x B (1)] ;cpgbl) of R3 — . T~ u
such that ¢, [pay [1i X J X Be (1)) N Mgy] = I; x J x {1} C R x R x {1}

~ R2. Its closure M, is an R’?-manifold with boundary with

the interior charts (gpab [I; x J];gogbl) and four boundary charts
(e [L:X15: 7)) s 00y’ ) resp. (pan [1 % [0: 50500 ) -

20.13 The double cone

The double cone C = {2? =22 +y?} = CT UC; C R? with C* = {(z;y;2) : 2 > 0} and C; =

{(x;y;2) : 2 < 0} by the charts (C*; nto w;ry) and (C;; n-o w;y) with the projections 7, : C* —

R? defined by 73, (z;y;2) = (2;y), the contraction n* : R? — B? with n* (z) = Tefsr and the

dilation 1~ : R2 — R?\ B? with n~ () = (|]&|| + 1) - Z; can be represented as a disconnected R2-

REl
manifold with two connected components. Note that the two cones C* and C; are disconnected
with regard to O¢ but not in Oz N C.

Y Cc- Y Y c—
cf Cy
T > T
R3 R3 x {+1} R3 x {-1}
4 z z

+
zy

~1
The corresponding immersion (ni o ) : R?2\ S! — O is injective and continuous but not

-1
open since it maps the open disk eB? onto the subset (7]+ o w;ry) [eB?] = (0B? x [0;8]) N C with §
= 1= which is not open in C. By removing the two parts from each other in the fourth (temporal)
dimension we may construct another disconnectedR2-manifold Cy = C; x {—1}UC™* x {1} with the

two charts (Ci; nt o wiy) into the same connected components as above. In this space the cones are

-1
disconnected with respect to both topologies Oc = Ors N C and the map (ni o w;ty) ‘R2\St = Cy

“1
is an embedding since the image of the critical neighborhood (n* o ﬂjy) [eB?] = (6B% x R*) N Cy

with § = 1= is open in Cj.
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20.14 The two-dimensional sphere

Due to the closed map lemma 2 the polar coordinates ¢; : I x J — S? given by ¢ (u;v)
(cosu - sinwv;sinu - sinv;cosv) define a quotient map whence the two-dimensional sphere S? is
homeomorphic to the quotient space (1:2 X j) /Ry, with (0;v) Ry, (2m;v) and (u;0) Ry, (w; ) for
0 <u<2rand 0 <u < w <0 identifying the opposite points on the vertical sides and collapsing
the horizontal sides each into one pole (0;0;=+1). Since the corresponding equivalence classes con-
tain infinitely many points there is no finite cover Iy x J = J;<;<;, Ur with injective restrictions of
the canonical projections 7|y, — S? and consequently no direct representation of the quotient space
(1_2 X J_> /Ry, as a manifold. The corresponding R2-manifold S? can be covered by four charts
(i [Li x J];97 1) with o2 (u;v) (cosu - sinv;cosv;sinu - sinv) and the closed R%.-submanifold S?of
R? is realized by the additional chart (v; [I; X J x B (1)];471) of R3 with ¥; (ujv;7) = r - ¢; (u;v)
such that 15 ' [1h; [I; x J x Bc(1)]NS§?] = I; x J x {1} C R x R x {1} = R2,

w2

ol B o1

Alternatively the quotient map 7 : B> — S? given by 7n(z;y) =
(—ry - cos (’;—Z) ; —Ty - sin (%) ;y) with 7, = /1 —y? for y # 1 and n(0;1) i
= (0;0; 1) provides the homeomorphic quotient space B2/ R, . Since n maps the T
upper left and right quarter circles ¢+ (u) = (Ecosu;sinu;0) with 0 <u < §
of B2 onto the front right quarter circle noy (u) = (sinu; 0, cos u) of S? while the
corresponding lower left and right quarter circles with —5 < u < 0 are folded
onto the back right quarter circle no ¢ (u) = (cosu;0;sinu; ) we conclude that
—xz R,z for every € S!. Since due to 9.11 the closed square I? is homeo-
morphic to the closed unit ball B? with 0I%> = 0B? = S' the quotient space
B2/R, by some 9 : I?/R = B?/R,, is also homeomorphic to the corresponding
quotient space I2/R with (u;0) R (0;u) and (u;1) R (1;u) for 0 < u < 1 identi-
fying adjacent sides in a corresponding sense. The equivalence classes of
this quotient space comprise at most a pair of two opposing points such that
this time we can find a finite cover I? = |J;«;<, U; with injective restrictions
of the canonical projections |y, — S?. The subsets U; = ]0;1[x]0;1]; Uy =
[0;1[x]0; 1[; Uz = ]0;1[x[0; 1] and Uy = ]0;1]x]0;1[ are open in I? and also D D
open in the halfspaces extending the corresponding boundaries but not in R? e
such that we arrive at a R>-manifold with boundary with the four charts

<(7701907r) U] (7]01907r|Ui>_1>. 71 _
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20.15 The n-dimensional sphere

The n-dimensional unit sphere S” = 9B""! can be represented
as an R"™manifold by the 2n charts (S™;m;) with the projection R
o+ ST B given by m (z1;..% . Tn1) = (215505 Tpy1) €o Rr+L

on the upper half-spheres S+ = S" N H'* with the upper half-
spaces H't = {x; > 0} and the corresponding lower half-spheres S'~.

@N

Rn
Since in this case the projections are continuous bijections with contin- K s
; -1 .0 - _ - 2, .
uous inverses m; © (1;..;0; .5 Tpq1) = <m1,...,\/1 — ||| ,...,an) for
x — eg

xr =

(x1;...;2n41) the half-spheres S™* are homeomorphic to the

open balls B”. The sphere can also be embedded onto the identi-
cal R"-submanifold S" of R"*! with the additional charts (S%*;7;) on open segments Si* =

{ra:

1.

r € B (1) Aw € S} such that m; [S" NSiF] = B" C R". Moreover S" is homeomorphic to

the quotient space B"/S"

. the adjunction space B" U, B" given by the injection ¢ : S*~! — B”
. the adjunction space B" U, {e,11} given by the projection 7 : S"~! — {e,}.

2
3
4.
5

the one-point-compactification R" = R" U {o0}

. the projective completion ® [RP"] = e, 41 + R™ of the affine space e, + R".

Proof:

1.

S" = B"/S" : According to enu:4.8.2 the continuous, open and surjective map ¢ : B” — S

given by ¢ (x) = (2\/1 — |- ;2 ||| - 1) with continuous partial inverse ! : S"\

. _ 2 2
{eni1} — B given by o1 (y; yni1) = ”an-\/% + $Ynt1 = ”Z\/% + 51/1 = [lyl” for ly[I*+v2 .

= 1is a quotient map whence its canonical bijection @ : B"/S™ — S™ is a homeomorphism.

S" 2 B" Uy, {€,41}: The surjective and continuous map ¢ : B” — S” from 1. is injective on
B" = S" \ {ep+1} with continuous inverse and maps its complete boundary onto the north

_ _ %
pole {e,} = ¢ [S"1] of the sphere. According to 4.12.3 follows B" U, {e,} = B" L {e,} =
S"\ {ent1} U {ent1} = S"

S* = B" U, B": The projection m, : S** - B" given by mi4 (x;2p41) = (2;0) for x =
(215 ...;zn)on the closed upper half-sphere S"* = S" N H"*! with the closed upper half-
space H"™! = {x,,1 > 0} is a continuous bijection with the continuous inverse +1 (z;0) =

(:L'; \/1— H:c||2) whence S"* is homeomorphic to B" and by the corresponding projection 77 i

S"~ — B"™ the lower open half-sphere S"~ is also homeomorphic to B". Both the projections
and their inverses are continuous maps into B” U, B” coinciding on the boundary oS™* = 9S"~
= S"! with 714 |gn-1 = m_|gn-1 = id|gn—1 such that the attaching lemma 4.11 applies in
both directions to yield a continuous extension 7 : S* = St US"™ — B" U, B" which is a
homeomorphism.

S™ = R"™: The desired homeomorphism is provided by the continuous stereographic projec-

tion p : S — R” given by p(s;sp41) = 172“ for (s;8,41) € S™\ {enr1} with [|s||* + S214

= 1 resp. p(ens1) = oo and its continuous inverse defined by p~! (x) = m (a:; 3 ||ac|]2)
4
resp. p ' (00) = ent1.

R™ = e,,,1 + R™ Obvious according to [17, th. 9.3] 9.1.
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20.16 The torus

Due to the closed map lemma 2 the map g : 1_22 — T? given
by @ab (u;v) = ap (u;v;1) with e (u;v;7) = ((a+ br - cosv) - cos u;
(a+br-cosv) -sinw; br - sinv) is a quotient map whence the two-
dimensional torus Tgb is homeomorphic to the quotient space .f22 /R,

with (0;u) Ry (1;u) and (u;0) Ry (u; 1) for 0 < w < 27 identifying op-
posed sides of the closed rectangle 1_22 in corresponding sense.
Each equivalence class comprises at most two distinct points such
that a parametrization on the open coordinate square I2 of an
R?-manifold can be obtained by the four charts (¢ [I; x I;];¢71) o

Hence by the canonical bijection @gp : 1_22 /Ry, — ’H‘Zb the torus is
embedded onto a closed R%2-submanifold sz in R3 with the ad- -7 j 27

ditional four charts (wab [I; x I x B (1)] ;1/1;1)1) of R3. The open o
neighborhoods U (T2,) = U, (T2,)\ (B UBS) resp. Uy (T2,) = Ue (T2,)\ (E;f UBS) satisfy the
submanifold condition 1, [tay [I; X I; x B (1)]NT2%] = I; x I; x {1} C Rx R x {1} = R,

Finally the torus can be represented as a closed R?-product manifold ']I‘gb =~ S x bS! according
to 20.3 and parametrized by the four charts ((ae x be) [I; x I;]; (ae x be)_l) with the exponential
quotient map ¢ : R — S' € C = R? defined by € (u) = ¢™. It describes the rotation of n coupled
bodies around fixed axes, e.g. for n = 2 a double pendulum. The restriction ¢| f, satisfies the
-1

conditions of the closed map lemma with R, = R, whence the compositiopn (g, o (ae\ i, X be| i )
aS! x bSt — ’]I‘gb is an embedding.

The n-dimensional torus T" = (S!)" is homeomorphic to the quotient space R"/27Z" = (R/27Z)"
since the exponential quotient map is continuous and surjective with continuous inverse
¢ !(s) = Ins whence its canonical bijection € = e o 71 : R/27Z — S! is a homeomorphism.

According to 4.2 the continuity of the components in both directions extends to the corresponding
products of the exponential quotient map.

The product representation also admits the embedding of the space-filling curve « on the torus ’]I‘gb
=~ S! x S} with the parametrizations (¢, X @p) 0 a : R — S* x S! given by the line a : R — (R/Z)? ~
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ng/R with « (t) = (¢; at) for an irrational o € R\ Q.

20.17 Affine and projective spaces

Every affine space (A4; X4;7) over a Banach space X4 as defined in [17] 8.1 is an X 4-manifold
by the single chart (¢; A) with coordinates given by ¢, (z) = of for some arbitrary origin o € A.
In the case of A = a + X4 C X with a = o6 € X it is an X p-submanifold of X with identical
coordinates which are usually translated to ¢, (z) = at.

The projective spaces RP" = PR = R?*1 /R = S"/R with R C R?*! x R?*! resp. R C S x S”
defined by xRy < Ja € R, : ax = y in [17] 9.1 are quotient spaces of cosets R.x obtained by

the action of the multiplicative group R, on the punctured vector space R?™! = R"*!\ {0} or
equivalently on S”.

Indeed the quotient space RP™ = PR"*! = R"*!/R of all open
double rays (7 lor)(z) = {tz:t € R,} given by zRy & It €
R, : to = y as defined in [17] 9.1 is homeomorphic to the quo-
tient space S"/R of all antipodal pairs (7r|§_n1 o w\gn) () = {£x}
= S"N (7' on) (z) on the n-dimensional sphere with the homeo-
morphism given by 7 o 7|l : S"/R — R?/R since the preimage
7 Blaje (rlon (22))] = {y € BRI : |y — y,| < ¢} with @, = 2
of an open neighborhood is an open double cone in R?*! whereas
(7T|§n1 o 77) [BHSCIIE (ac)} = (Be (xe) U Be (—x¢)) NS™ is the union of the
intersections of the balls around the two corresponding antipodal rep-
resentants +ax. with the sphere S™ which is an open subset of S™.

By the closed map theorem enu:9.8.2 the function v : B" — RP"
defined by ¢ (x) = [1‘1 Dt Tp /1 — ||m|\} for x = (z1;..;2,) is a
quotient map whence the projective space RP" is homeomorphic
to the quotient space B"/ Ry with —zRyx for x ¢ OB" identifying
the antipodal pairs on the boundary or equivalently gluing the two
halves of the boundary together in opposing sense. This is
equivalent to gluing the disk B? to the Moebius strip M from
20.16. Finally the homeomorphism 9 : B® — [—1;1]" given by ¥ (z)
= ag - x with oy = min{z% 1< < n} for ® = (1;...;x,) shows

SZ

that in particular the projective space RP? is homeomorphic to the
quotient space I2/R with I = [0;1] and the equivalence relation given
by (0;u) R(1;—u) resp. (u;0)R(—u;1) for 0 < u < 1 identifying (wlss! o) [Be (@)]
opposite sides in antiparallel sense.

According to [17] 9.3 the projective space RP" is isomorphic to the projective completion of

the affine spaces (e; + E;; R™;") over the infinitely distant hyperplane R" = e; + E; with E; =
{z; =0} and RP"\PE;, = e; + F; and dim RP" = dim R" +1 = dim PR" 4+ 2 = n with the bijections

®; : RP" \ PE;, — e; + E; given by ®; [ : ... : x41] = (%, o x;l;l; x;—tl, . %) and inverses
O (215 L ) = [w1 et 1t @)

The projective space RP" is also an R™-manifold covered by n + 1 charts (7w {x; # 0};¢;) with
coordinates given by the stereographic projections ¢; : m{z; # 0} — R"™ with ¢; [z1 : ... : Zpy1]
= (%, o m;—jl, x;—tl, o m’;—fl) and parametrizations ¢; ' (z1;...;2,) = [¥1 ¢ ... : 1 : ... : 2,,]. Note that

the projections 7 {z; # 0} = RP"\ PE;, of the saturated open sets {z; # 0} = R?*1\ E;, are open
in the quotient topology of RP" as described in 4.7. An argument analogous to the reasoning for
the homeomorphy of R?*1/R = S"/R shows that both the bijections ®; : RP" \ PE;, — e; + E;
and the charts ¢; : RP" \ PE;, — E; are homeomorphisms. According to 9.8 and 9.10 the
quotient space RP" = R""!/R = 1 [S"] is compact while every hyperplane F; is a locally compact
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closed vector subspace of R". Since the parametrization ¢; 1_[K | of every compact set K C E;
is compact and hence closed in RP"™ due to 9.4 the extension ®; : RP" — FE; onto the one-point-
compactification 10.2 E; = E; U {co} defined by ®; [PE;,] = {oo} is continuous. Likewise we may

extend the homeomorphism h : B" — R” given by h (x) = ﬁ with inverse h=! (y) = %HJH to a

continuous map h : B* — R” from the compact closure B”ﬁof the locally compact unit ball onto
the one-point-compactification R" = R" U co by defining h [S"7!] = {co}.

Hence the R”-manifold RP" can be immersed into R"*! or embedded onto R"-submanifolds of
R"+2. The projective subspaces {z; = 0} = S""!/R = RP""! ¢ RP" admit an immersion in R”
but an embedding is only possible in R"*!.

In the case of n = 1 the projective line RP = R2/R = S!/Rg: can be represented as an R-manifold
with two charts using coordinates ¢; : 7 {z; # 0} — R given by the stereographic projections
1]l : xe] = x9 and 9 [z1 : 1] = 1. These result in a change of coordinates s o cpl_l P
given by (@2 o gol_l) (r1) = ?11 It can also be embedded as a compact R-submanifold into R?

which is homeomorphic to the circle S'.
[
£ A RP! \ RP? = e; + By 2 R!

To T -
2 affine spaces

h
s ~
RP' \ RP? = e 4+ Ey = R! — B!
<
/: S
z1;1) - u ~ | |
S \ / =
—— (1. L :
(1’ 561) [ R
| (1;0) Ea 1 \g/ B = BO B! U, B® = §?
ifold
CW complex franto

RPTY

{71 # 0}
{72 # 0}

For n = 2 the projective plane RP? = R2/R = S? /R is an R?>-manifold with three charts for co-
ordinates ¢; : m {x; # 0} — E; 2 R? = B2 given by o1 [1 : x2 : 23] = (z2;73), pa[z1: 1: 23] = (215 23)
and 3 [x1 : x9 : 1] = (21; x2) where every chart describes the projection of an open halfsphere onto
the plane R?. An embedding onto an R2-submanifold in R? is not possible but there are several
immersions f : RP? — R? onto compact R2-manifolds in R? which are determined by the symme-
try floy 2o 23] = f[—21 : —29 : —x3]. In R? every such immersion has additional self intersect-
ing points f [z : x2 : 23] = f[y1 : Y2 : y3] such that R C Ry and consequently RP? = R3/R R3/R;
= f [RIP’Q}. Usually these immersions are expressed in polar coordinates (u;v) from 20.14 with
three charts being sufficient since the two poles (0;0;£1) are now equivalent in the class [0: 0 : 1].

3

afgl)ne space
A

! RP2\RP! ~e3+ B3 ~R2 b

B2

@0 (B2:1)
’ [ :l‘:_'_\_;‘: ) /. T3 T3

IERREAE
vector subspace

(ll.zz.z?,

-

Ll D)

' K o U
T (o) @

"1:"" projective space
RP?

,(LLQ.LO)
[x[? [x]’ [x]

RP? = §2/R = B2 U, S
crosscap
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20.18 The roman surface

The simplest representant of the projective plane in an algebraic
sense is the roman surface R = [y [RIP’Q} with frlr:y:z] =
(yz;zz;xy) in cartesian coordinates resp. (ido froy)(u;v) =
(cosu - sin 2v; sinwu - sin 2v; sin2u - sin? v) due to sin2a = 2cosa -
sina in polar coordinates restricted to half-spheres for 0 <
u < mand 0 < v < F to retain injectivity on the equiva-
lence pairs of antipodal points. The boundaries are (fr o ¢) (u;0)
= (0;0;0), (frow) (u;5) = (0;0;sin2u) and (fro ) (5 +5;v) =
(£sin2v;0;0) as well as the self-intersecting line (fro ¢) (5;v)
= (0;sin2v;0) which is crossed e.g. by the undulating circle
(frRop) (w; §) = <§ COS U; @ sinu; 1 sin 2u>. Exchanging the co-
ordinates by o, (x;y;2) = (2;y; ) and 0y, (2;y; 2) = (x;2;y) we obtain further parametrizations 7;;
=ido frooyj0p =idooyjo fr oy approaching the self-intersecting line along the y-axis from above
and providing the missing boundary lines on the other two axes with corresponding intersecting lines.
Thus the three charts (771'3' [%_[2 X %Jg} ;772-;1) with ij € {xz;yz; 22} define a compact R?-manifold

yil1l]
mn

in R? which on account of the intersecting surfaces is not an R?-submanifold in R3. Geometrically
it resembles a football which is squeezed together along the coordinate axes.

20.19 The crosscap

The crosscap C = f¢ {RPQ}

given by folr:y:z] =
(z2;yz;22 — 2%) is the sim-
plest representation of the
projective plane in a ge-
ometric sense. With 7;;
= id o 055 o fc o ¢ we
obtain the three charts
(m‘j [%Ig X %J2:| ;nl-;l) on the

12

coordinate sets from 20.14
defining a compact R?*-
manifold in R?® which on
account of the intersecting
surfaces is not an R2-
submanifold in R?:

The boundaries of the first

chart with 7,, = (cosu -
sin 2v; sinw - sin 2v; cos®u -
sin?v — cos?v) run along
the curve 7., (5 +%;v) =
(£sin 2v; 0; sin® v — cos?v),
fuse into the point 7,, (u;0)
= (0;0;—1) and approach
the self-intersecting line
Nz (u; 5) = (0;0; cos? w) cut
e.g. by n.. (§:v) = (@ sin 2v;
@ sin 2v; %singv —cos?v) at ., (5; %) = (O; 0; %) and meeting 7. (5;v) = (0;sin2v; — cos®v) at
Nz (333) = (0;0;0).

The boundaries of the second chart with 7., = (sin2u - sin

2v; sinw - sin 2v; (cos? u — sin? u) sin? v)
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run along the self-intersecting line n,. (5 + 5;v) = (0;0;sin?v) between 7,. (3 £ 5;0) = (0;0;0)
and 7, (g +3; g) = (0;0;1). The self-intersecting line is not part of the second chart but the trans-
verse orientation of the adjacent surfaces is visible e.g. in the undulating eight-line 7, (u; %) =

1 2

3 (sin 2u; sin u; cos® u — sin® u) approaching it from both sides at the point 7. (§ + 5; %) = (0; 0; %)

The other boundary line is 7. (u; Z) = (sin 2u; 0; cos® u — sin® u) passing two poles at 7. (5 + T; Z)
= (£1;0;0). Also of interest is 7, (%;v) = (0;sin2v; —sin® v) crossing the line 7. (u; T) from above
at e (3:5) = (0:1:-3)

The boundaries of the third chart with 7., = (cosu - sin 2v; sin 2u - sin? v; cos? v — cos? u - sin? v) are
Nez (5 £ 5;v) = (£5in2v;0; cos® v — sin? v), Nz (u;0) = (0;0;1) and 7, (u; 5) = (0;sin 2u; — cos? u).
The self-intersecting line runs along 7. (3;v) = (0;0;cos?v) and is crossed e.g. by 7y (u; F) =

(cos s 3 sin2u; § — 5 cos?u) at nes (55 5) = (0:053)-

20.20 The Klein bottle

The Klein bottle is parametrized by & (u;v) =
-cos2u - (1 —sin2u) + (2 — cos2u) - cos v - (2 e~ (mw)? 1)

6-sin2u+ 1 - (2 — cos2u) - sin2u - cosv - e~ (2u=37)
(2 — cos2u) - sinwv

resulting from gluing the opposite sides of a rect-
angle pairwise together in parallel sense for one
pair and in antiparallel sense for the other pair.
If we start with the parallel pair we obtain a
tube which can be closed to a sinusoidal torus
parametrized by ¢ (u;v) =

n<u<?2nm
n<v<2m

(a+b-cosv) - cos2u
(a+b-cosv) -sin2u
b-sinv-cosu

for 0 < u < 7 resp. 0 < v < 27 with the self-
intersecting line along the diagonal ¢ (§;7 4 w)
= (%(a+b~cosv);%(a+b-cosv);0) for 0 <
w < w. The same figure results if we start with
the Mobius strip and curl it together so that one
half of the open boundary meets the other half
with the self-intersecting line at the horizontal
section of the surface. By gluing together two
Moébius strips we obtain the eight-figure given
by ¢ (u;v) =

7
it
LA
ottt/
X

(a+0b-(cosu-sinv — sinu - sin 2v)) - cos 2u
(a+b-(cosu-sinv —sinwu - sin 2v)) - sin 2u
b- (cosu-sinv — cosu - sin 2v)

07
2%,

775070017

17

i
",

for 0 < u < mresp. 0 < v < 27 with the self-
intersecting line along the circle ¢ (5 £ w;m) =
(a-cosu;a-siny;0) for 0 < w < 7§ as another
homotopic version of the Klein bottle with a very
different geometric aspect but still consisting of
a one-sided surface with a single closed line of

self-intersection.
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21 Cell complexes

21.1 Cell complexes

An open resp. closed n-cell is a topological space homeomor-
phic to the open resp. closed n-dimensional unit ball B" = as = B?
BT (0) resp. B". A cell complex (X;&) is a cell decomposi- | ~p

tion, i.e. a partition £ of a Hausdorff space X = | | ¢ e into

open cells e such that for every e € £ of dimension n > 1 exists o | aNergoua;
= €0 1

a homeomorphism ¢, : a — e with an n-cell a extending to a v

continuous characteristic map ¢, : @ — X such that ¢, [0d] \

C X,—1 with the n-skeleton = | |{e € £ : dime <n}. Hence ao =B
we have X,, C X, 41 and X = {J,,>9 Xy. From the closed map
lemma 9.8 follows . [a] = & whence by 9.1 the e are precom-
pact but the closure € might not be a closed cell in X as
shown by ej3 of the example since the characteristic map ¢, need
not be injective on the boundary da. Conversely the open cells
e = . [a] are open in € = @, [a] but not necessarily open in X.
If the n-skeletons are endowed with the adjunction space X,
= Xn—1Us (LUicr @) = Xp—1 U (Lies, €) defined according to
4.12 with regard to a family of n-cells (a;);c; and the contin-
uous extension ® : X, 1 U (| |;c; @) = Xpn—1U (s ai) of the
characteristic maps @; : @; — X,,—1 the attached open n-cells
ei = e |a;] due to 4.12.2 are open in X,, and the subset X,,_; is a0 Uy a1 U, az U, as
closed in X, due to 4.12.1. Consequently the open (n — 1)-cells ~eolle; Ues L es

e € £,—1 are open in X,,_1 but not necessarily so in X,,. In the

example the open cell ey is open in ag Uy, a1 U, ag but not in ag U, a1 Uy, az U, as3.

21.2 CW complexes

A CW complex is a cell complex (X;&) with
1. Closure finiteness, i.e. the closure of each cell is contained in a union of finitely many cells.

2. Weak topology in this case meaning the coherent topology with respect to the family of
closures of all cells.

Every Hausdorff space X with a locally finite cell decomposition £ is a CW complex.

Note: Due to 11.4 the decomposition £ is locally finite iff the family £ = {¢: e € £} of its closures
is locally finite.

Proof: The closure finiteness is a consequence of the compactness of the closure of every cell.
For every x € O C X with ONe open in e for every e € £ exists an open x € U C O C X intersecting
only finitely many e and the finitely many intersections U N e are open in e such that in the case of
x € UNe exists an open U, C X with 2 € U.Ne C U Ne and the finite intersection x €, cyns Ue
C U C O is an open neighborhood of z in O. Since we can find such a neighborhood for every z € O
the set O is open in X and since this is true for every O with O N e open in every e the cell complex
(X; &) is coherent with respect to the family of closures of all cells.

Examples:
3. The set X = Uyen In C B2 with I = {0} x ]0;1[ and I, = {(w;nz) €R?:0 <z < 1} from
5.9 is a cell complex comprising the disjoint open cells I; (%, 1) for n > 1 and (0;0) with
characteristic functions ¢, : B! — I,, and v, : B — {(%7 1)} for n > 1 resp. 1= id|go whose

trace topology is obviously coherent with that of the I,,. But since the set A = (nz; n) nen- 18
closed in every I, but due to (0;0) € 9A \ X not in X this cell complex is not a CW complex.
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4. The set Y = B2 C R? is a cell complex comprising the disjoint open cells B2 and (COS %; sin %)
1

for n > 1 with characteristic functions ¢, : B — {(cos ﬁ;sin%)} for n > 1 resp. @o= id|g:

n’ n

obviously satisfies 21.2.1 but since OB ¢ (cos L. gin 1 ) n<i for any k < oo this cell complex is
<n<
not a CW complex.

21.3 Finite-dimensional CW complexes

A CW complex (X; &) containing cells with maximal dimension n > 0 is called finite dimensional
of dimension n. In that case every n-cell e € £ is open in X.

Proof: The closed map lemma 9.8 applied to its continuous and surjective characteristic map
@ : @ — € implies that every e € £ is open in € since ¢, ! [e] = a is open in a. The intersection eN g is
also open in g for every other cell g € £ since due to eNg = () we have e N g C dg, which is contained
in a finite and disjoint union of cells of dimension less than n while e is of dimension n whence it
cannot be part of this union such that e N g = 0, which is an open set. The assertion then follows
from 21.2.2.

Examples:

1. A graph is a CW complex exclusively composed of 0-cells or vertices and 1-cells called edges.
The bouquet of circles \/;,,, S! from 4.13 is a graph composed from one 0-cell for the basis
point p and a 1-cell for each of the original circles. The characteristic maps of these are the
compositions 7y o o my of the projection 7y from 4.8.4 and projection m, resp. the projection

from 4.13 in the sequence [0; 27] sty Li<i<n St X Vicicn St

2. The decomposition of S” = B" U, {ens1} = B" UBC from enu:20.12.3 is an n-complex.

21.4 Subcomplexes

A subcomplex Y C X of a CW complex X = | |;c;e; is a union of cells from X containing also
the closures of its members such that we have the form YV = | |;c;e; = U,c;y€; with J C I. Every
such subcomplex is itself a closed subset of X and also a CW complex with regard to the subspace
topology in X.

Proof: Condition 21.2.1 directly follows from the definition. Concerning 21.2.2 we consider a subset
S C Y such that every intersection S N e is closed in € for every e C Y. For every e C X \ Y follows
SNe = 0 whence SNe C de which is contained in a finite union of cells with some of them contained
in Y such that we have SNe C Ule e; C Y. This implies SNe = (Ule SN éi) Ne with every SNe;
closed in e; and consequently closed in the closed subset Ule e; C X whence Ule S Ne;is closed in
X and SNeis closed in e. Since this is true for every e € £ we conclude that .S is closed in X and
thus closed in Y. Since this argument also works with S = Y it implies that Y is closed in X.

21.5 n-skeletons
For every n > 0 the n-skeleton X, of a CW complex X is a subcomplex and X is coherent with
the family (Xy),>q of n-skeletons.

Proof: For any cell e € £ exists an n > 0 such that e C X,, and for any subset S C X whose
intersections S N X,, are closed in X,, for every n > 0 the intersection S N € is closed in the closed
subset X,, C X and hence closed in X. Since this is true for every e € £ the set S is closed in X.
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21.6 Regular cells

A cell is called regular iff its characteristic map ¢, : a — € is a homeomorphism in particular
preserving the boundary by the injective restriction ¢.|s,. Hence the closure € of every regular cell
is a closed cell but the converse is not true as the example B2 \ {(z;0) : 0 < yz < 1} shows. A CW
complex is regular iff each of its cells is regular.

Hence every discrete space is a regular 0-

dimensional CW complex. g1 B2

The decomposition of S from enu:20.12.2 can be ex- B B @( ] o < )
tended to a regular cell decomposition as follows: ( & } ./j—l>

By an induction starting with S = B? 1 BY = .. ... o

B° U, B? we assume a regular decomposition of S*~! s° =50 BO (D( B! ) ®

= | i<i<n (B~ UB™!) into n cell pairs of dimensions 72
0;...;n—1 and obtain S* = B"U, B" = B"US* ' LUB" st=B'usuUB'  S?=B2US'UB?

according to 4.12.3.

21.7 Connected CW complexes

For a CW complex X the following conditions are equivalent:
1. X is path-connected
2. X is connected
3. Every n-skeleton X,, of X is connected
4. Some n-skeleton X,, of X is connected
Proof:
1. = 2. : follows from 5.8

2. = 3.: Assuming a partition X,, = X U X,/ and since the boundary da = S™ of every (n + 1)-cell a
is connected, its continuous image ¢, [0a] C X, lies in either of the two components. Hence by X, 4
= X3, UUy, jgajcxy, and X, 1" = X7 UU,, (9a)ex We obtain a partition of Xp41 = X, UX7 ;. Then
X" = Upsn X, and X" = U, X{/ provide the desired partition X = X’ U X".

3. = 4. : obvious

4. = 1.: According to 5.8 for any = € X,, and every n-cell e C X,, the continuous image € = ¢, [a] is
path-connected and so lies in the path component P, (z) of z in X,, . Consequently P (z) is open
and closed in the closure e of every e C X,, and hence open and closed in X,,. Since X,, is connected
we infer P, (z) = X, i.e. X, is path-connected. Then the closure € of every (n + 1)-cell e C X, 11 is
a path-connected subset of X, 11 with € N X, # () whence follows e C X,, C P,4+1 (z) and therefore
Poi1 () = Xpy1, ice. X411 is also path-connected. The assertion then follows by induction.

21.8 Compact CW complexes

In a CW complex X
1. The closure e of each cell e C X is contained in a finite subcomplex.
2. A subset S C X is discrete iff its intersection with every cell is finite.

3. A subset S C X is compact iff it is closed in X and contained in a finite subcomplex. In
particular X is compact iff it is finite.

Proof:

82



1. For n = 0 the proposition is obvious and assuming it for all dimensions up to n > 0 condition
21.2.1 implies that the boundary de of a cell € C X with dimension n + 1 is contained in the
union of finitely many cells of dimension up to n each of which is contained in a finite subcomplex
due to the assumption. The finite union of these finite subcomplexes together with the cell e is
again a finite subcomplex.

2. The intersection of the closed discrete set S= S with the compact set € is compact and discrete,
hence finite. Conversely the hypothesis together with 1. imply that the intersection sNe is finite
and hence closed in € for every subset s C S and every cell e C X. Due to 21.2.2 every subset
s C S is closed in X whence follows the assertion.

3. Due to 9.4 every intersection SNe of a compact S C X with the compact closure of a cell e C X
is closed in e whence S is closed in X. Also S is covered by finitely many cells since every point
xe € SNe # () is closed in € and consequently closed in X such that the complements X \ z. are
open and cover S. Hence due to 1. it muss be contained in a finite subcomplex. Conversely we
conclude from 21.4 that every finite subcomplex is itself compact such that the assertion
follows from 9.4.

21.9 Locally compact CW complexes

A CW complex is locally compact iff it is locally finite.

Proof: = follows from 10.7 and 21.8.3. <« is a consequence of the local finiteness of the closures
&€ mentioned in 21.2 combined with 21.8.1 and 21.8.3 together with the closed character of the finite
subcomplex containing the open neighborhood of the chosen point x as explained in 21.4.

21.10 The structure of n-skeletons in a CW complex

Every n-skeleton X, = X;, 1 U|].c¢, € of a CW complex X is homeo-

morphic to the adjunction space X, 1 U, | |cg, ae formed by attach- e —e ¢
ing all n-cells a. with @ [a.] = e C X, \ X,—1 to X,—1 by the ex- X = X1 UL |
tension ¢ : |J.cg, Oae — X,_1 of the characteristic functions ¢|gz, =

@e’aae 100 — X1,

ee&n e

Y

=
Proof: According to the attaching lemma 4.11 the further extension
© @ Xp1 Uleeg, @e — Xy defined by ¢[x, , = id and ¢lzg, = @e is
continuous and for every closed saturated set ¢~ ![A] the intersections
0 ' [A] N X1 resp. ¢ '[A] N @, are closed in X, 1 resp. @ whence
their homeomorphic images AN X,,_1 resp. ANe are closed in X,,_1 resp.
e for e € &, hence closed in all e € £ and consequently closed in X,,.
Hence according to 4.8 the map ¢ is an identifying map which proves
the assertion.

Xn—l U‘P |—|e€5n de

— @™
Xn—1

Xp—1 U |—|e€£n Qe

21.11 The CW construction theorem

The union X = {J,,>9 X» of any ascending sequence (X,,),~, of topological spaces X, = X,_1 Uy,
Llecg, Ge for n > 1 obtained by subsequently attaching n-cells @. to X,,_; according to 21.land
starting with a nonempty discrete space Xy has a unique topology coherent with (X,), -, and a
unique cell decomposition £ such that (X;&) is a CW complex with n-skeletons X, for n > 0.

Example: By continuation of the process from 21.6 we obtain an infinite-dimensional CW-complex
5% = Up>oS" = Lp>oB" U B"™ with two cells in every dimension containing every sphere S"as a
subcomplex resp. n-skeleton.

Proof: By declaring a set A C X as closed in X iff AN X, is closed in X,, for every n > 0 we have
defined a topology on X which is obviously the only one coherent with (Xn)nZO‘ According to 4.12.1
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every X,_1 is a closed subspace of X,, whence for any set A C X,, being closed in X,, its intersection
AN X, is also closed in every other X,, and hence A is closed in X. Consequently every X, is also a
closed subspace of X. For each 0-cell e € X and every n-cell defined as e := ¢, [ac] C X, \ X,,—1 for
n > 1 by a composition of the identifying map ¢, with the injection ¢ : ac — X;,—1U| |ocg, ae and
the projection 7, : X,, — € we obtain a characteristic map ¢, = 7.0 py|a, ote : ae — €. According
to 21.1 the restriction ¢, |4 is & homeomorphism and this property extends to the composition ¢e|,, =
id o p|q, 0id : ac — e. Thus we obtain a cell decomposition of X for which X, is the n-skeleton
for each n > 0.

According to the second case in 9.12 for every x € e C X in the uniquely determined n-cell e = @, [a.]
C X, \ X1 exists a continuous function v : @, — [0;1] with =1 (0) = {¢-! (z)} and v [da.] =
{1}. The map ¥, : X;,_1 U|lecg, Ge — [0;1] defined by ¥, |z, = 1) and ¥ = 1 everywhere else for
n >0 with X_; := 0 in the case of n = 0 by 4.10 is continuous on the topological sum with W1 (0)
= {cpgl (z)}. Due to the universal property from 4.7 the continuity extends to the composition
fn="Yyo 77;711 : X, — [0;1] on the quotient space with with f,;!(0) = {z}. Assuming a continuous
fo1 s Xuo1 — [0;1] with £,1,(0) = {z} for € X,,_; for every e C X,, \ X,,_1 exists an ¢, > 0
such that the compact image (fn,—1 © 7y, ) [0ac] C [€c; 1] whence by the first case in 9.12 we obtain an
extension e : Ge — [€e; 1] of Wy_1]ga, = fn—1 07y, |08, : OGc — [€c;1]. In analogy to the induction
start by U, |z, = e and ¥, |x,_, = ¥,_1 we define a continuous map ¥, : X;, 1 U|l.ce, Ge — [0;1]
with ¥, 1(0) = {¢.! (2)} continuously descending to f, = ¥, o7} : X, — [0;1] with f, ! (0) =
{z}. The map f: X — [0;1] defined by f|x, = fn is continuous since for every open O C [0;1] the
intersection X, N f~1[0] = f,1]0] is open in X,whence f~1[O] is open in X. Since we can find a
such a continuous map f with f=!(0) = {x} for every z € X the space X is a Hausdorff space.

The continuous image of the compact boundary ¢, [0a] C | [{e € £ :dime <n} C X,_1 of an
n-cell e is compact and hence must be included in a union of finitely many cells of dimension less
than n which implies condition 21.2.1. For any set A C X whose intersections A N e are closed in the
closure € of every cell e € £ the intersection A N X is obviously closed in Xy. Assuming AN X, 1 =
o 1 [A] N X,,_1 closed in X,,_; every intersection o, ! [A] N X,,_1 is closed in @, whence due to 4.10
the saturated set ¢! [A] is closed in X, 1 U Uecee, Ge so that by 4.12 the set A is closed in X,,=
Xn-1Uyp, Ueeg, Ge- By induction this is true for every n > 0 so that the coherence of the chosen
topology with (X,),~, entails condition 21.2.2.

21.12 Paracompactness

Every CW-complex is paracompact.

Proof: According to 11.3 it is sufficient to show that for every open cover U = (U;),; exists a
subordinate partition of unity. By induction we construct a partition of unity (¥7'),.; for X,

subordinate to the open cover (U}"),.; of the intersections U]* = U; N X,,. We start with n = 0 by

7
choosing an x; € U for every nonempty U and setting ¢ (z;) = d;;.
Assuming partitions of unity (Q/Jf) o for X}, subordinate to the open cover (Uf) ‘elfor k < n with
(2 7
Vx, ., = wf_l and for every open Vj_1 C Xp_1 with 1/15"‘1 [Vi—1] = {0} an open V1 C Vi C Xi
with o [Vi] = {0} we define fe_l =Y o plaa, : Oa. — [0;1] and ﬁzne = ¢ 1 [U" C a, for the
identifying map ¢ : X;, 1 U|].c¢ a@c — X, and the characteristic map ¢, = ¢la, : ae = X, of
any n-cell e € &, and i € I. Also for any subset A C da. and 0 < € < 1 we define segments A, =
{:U €Cae:r €ANL—e< |lzf|, < 1} for some homeomorphism 3, : B® — @, and the image of the

[ER
euclidean norm defined by [|z]|, = ||8; " (2)|| for # € @.. Since the open cover (U"),., is locally

» )
finite the compact boundary da. meets only finitely many U?, with j € J C I.
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Because the sets suppi);‘.gl

pact there is an €¢; > 0 such that (supp 1;?.;1) -
k) 6]

C da. N (7]” are com-

UJ”E for every j € J. Hence we obtain an exten-

(Oac), — [0;1] defined by 7, (x) =
&Ze_l (ﬁ) for € = min{e; : j € J} on the circular
strip (Oae).. In order to cover the interior of a. we

: mn .
sion Yy

choose a partition of unity (ﬁz”e) o subordinate to
/

the open cover (ﬁﬁe)iel on the paracompact space
4. = B" C R” and a bump function o, : @, — [0; 1]
with supp o, = ac\ (0ac), 5 and o1 {1} = ae\(9ae) /o
according to 8.1.1. The continuous maps 1/;?6 =
Oc - Mo + (1= 0¢) - NZe;e : @ — [0;1] then obviously
satisfy 1/;26\3@5 = ~Z€—17 supp 15?8 C UZ"e and Y ;cr 1/71”6
= 1. Since these maps coincide on ¢~ ! (z) for ev-
ery © € X,_; the extensions ¢} : X,, — [0;1] given
by ¥?|x, , = w;l*l resp. Yl'le = ~Z.;6 o -1 are well
defined with supp v¢]' C U'. They are also continu-
ous owing to the universal property 4.5 of the final
topology on X,, with regard to the identifying map ¢
and the continuity of ¥] oy : Xy, 1U| J.cg, @e — [0;1].

According to the construction of the maps @fe resp.
~ 1—e€

G Uae Uas 2 BOUB! UB2

fre.c as described above for every open V,—1 C X;,—4
with 71 [V,_1] = {0} and every e € &, exists an

€; > 0 such that (f/n,l)e/2 C ae and 1[1? [(an)eﬂ] =

suppi3
(suppys)

{0}. The intersections (Vn,1> /2 N a. are open in a,
€

whence their homeomorphic images ¢, {(‘%1) /2} N ae are open in e and consequently the union V,,
€

= V1 U Oeegngoe {(Vn_l) 2} Na is open in X,, with ¥ [V,,] = {0}.

e/
Since the open cover (U),; is locally finite the compact closure a. meets only finitely many Uzne
such that for any z € X contained in some n-cell e C X,, there are most finitely many supp 1&2”6 C Qe
meeting the neighborhood ¢! (z) € a, such that only finitely many supp ¥ meet the neighborhood =
€ e which is open in X,,. In the case of z € X,,_; there is a neighborhood V"~! open in X,,_1 meeting
at most finitely many supp 77[);.“‘*1 C Xp,—1 and since for each such ¢ € K the induction hypothesis
implies the existence of a V"~ \ supp 1/117»‘_1 C V" open in X, the finite union V" = (J;cx Vi" is open
in X,, and contains the union (J;cx (V”_l \ supp 1/)?*1) = V™" I\ ek Supp @Df*l = V=1, This
completes the inductive construction of a partition of unity (v),.; for each X, subordinate to the
open cover (U[*),.; of the intersections U* = U; N X,.

Finally for each i € I we define ¢; : X — [0; 1] by ¢;|e = ¢} for e € &,. This function is continuous on
X since every ¢} is continuous on e C X, for e € &, and the topology on X is coherent with regard
to (€),ce- For every x € X there is an e € &, with x € e whence follows ;. (z) = Y ;e ¥} (x) =
1. Also we have supp ¥; C U,>osupp ¥}' C U,>o U* = U;. The family (1), is locally finite since
for every z € X with x € e for some e € &, the local finiteness of (¢/'),.; implies the existence of a
finite subset J C I and an open neighborhood z € V" C X,, with ¢} [V"] =0 for i € I \ J. Due to
the construction of the families (¢]');.; we also have ascending open neighborhoods V'™ C X, with
Vvmel c V™ oand ¢ [V™] = 0 for i € I\ J and every m > n such that V = | Vi is an open
neighborhood of z in X meeting only the same finitely many supp v; with j € J.

m>n
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21.13 CW complexes as manifolds

Every CW complex X is a manifold. If it has countably many cells and every point x € X is
locally Euclidean of dimension n with an n-cell neighborhood it is a connected n-dimensional
manifold and in that case the dimension of the CW complex is also n.

Note: In [8] p. 145 th 5.27 CW complexes are used to show that every 1-manifold is homeomorphic
to S if it is compact and homeomorphic to B! if not. The subsequent corollary 5.28 asserts that
every l-manifold with boundary is homeomorphic to B! if it is compact and homeomorphic to
Ra’ if not.

Examples:

1. The sphere due to enu:20.12.3 has a CW decomposition given by S = eg e, = B LUB"
which according to 21.6 can be extended to a regular CW decomposition 8" = | |,<; <, (IB%i U IB%i).
Apart from the trivial representation as the corresponding disconnected manifold it can

also be described as an n-dimensional connected manifold with 2n charts (S?i; W?Hi)

on the half spheres S"* = S" N H"*!'* in the open halfplanes H"'* = {z; > 0} and
H'™ = {2; <0} as defined in 21.12 with the projections #7""!'* . §* — prtl ~ Rr
given by mnt1E

i
~1
(ﬂg‘ﬂi) (Y1505 o3 Ynt1) = (yl; ey /1 — Hy”z; s yn+1>. By a simple extension of the di-

Szzdi; Trl”zrl) on the segments ngli ={l-e< |z <1+€N

(15 ;T35 5 Tpg1) = (215..50;...5241) with continuous inverse given by

mension in the additional charts (
H?Hi C R with 7132'1 (15 @i5 s Xpy1) = (21551 = ||| ;...; Tnt1) We obtain the corre-
sponding n-dimensional connected submanifold of R"*!.

2. The closed ball due to 1. has a CW decomposition given by B" = egUe,—1Ue, = S"UB"
~ BOUB" 1 LUB" resp. a regular CW decomposition S" 2| |, ,,, (B* UB*). Analogously to
1. it has a representation as an n-dimensional connected manifold with boundary with
the interior chart ((1 — §)B";id) and 2n boundary charts (SHZ%, p?i> on the segments

SHZ? = {1 —e< || <1} N H™ in the open halfplanes H"* with the homeomorphisms
p?i : B? — H?i given by p?i (X155 T ) = (xl;...;i (1 — HTlH) ;...;xn) with contin-
uous inverse given by (p?i)—l (Y153 Yiy o3 Yn) = (yl; o %;...;yn) By the additional
charts ((1— §)B""';id) and (SHZjli;p?Hi) we obtain the corresponding n-dimensional

connected submanifold with boundary of R"*1, Note that according to enu:20.12.2 the
closed half sphere S"* = S* N H"* = B" is homeomorphic to the closed ball.

3. he lemniscate L = ¢y Ll e; LI es may be constructed by attaching two
equal 1-cells a1 = B! and ay = B! to a 0O-cell ap = BY = B°. The @i‘ ;2
three cells may also be regarded as the connected components of a @ < 0y > a2
disconnected manifold with the charts ¢y : B® — eg; o : Bl — ¢ N
and o : B! — ey determined by the corresponding characteristic
functions. According to 20.11 the lemniscate may also be described as
a connected R-manifold in R? and as a connected R-submanifold
in R? but not in R2.

4. The double cone C = {22 =2?+y?} = CT UC; C R3 with C* 61< B > "
= {(z;y;2) : 2 >0} and C; = {(z;9;2) : 2 <0} from 20.13 can be
represented as a disconnected R?-manifold and as a disconnected
R2-submanifold in R* but not in R? each with two connected com-
ponents. However it does not have a CW decomposition.
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Proof: The n-cells and their homeomorphisms provide charts and assure the Hausdorff property.
According to 4.6 condition 21.2.2 implies that the injections ¢, : € = X for e € £ into the CW complex
(X; &) are open maps. Definition 4.10 implies that their continuous extension I : | | .ce — X is
also an open map and due to enu:4.8.2 it is a quotient map. According to the closed map lemma
enu:9.8.2 the continuous extension ®; : | | ..o ac — | ].c¢ € of the homeomorphisms ¢, : a. — €
is also a quotient map. Obviously the composition of two quotient maps is a quotient map and so
is the continuous extension of the characteristic maps ® = I o ®; : | |, cga. — X. Hence X
is homeomorphic to a quotient space on a countable disjoint union of closed cells which is second
countable. Due to 4.7 the quotient space is also second countable and so is X. According to 20.7
and 21.9 the CW complex X is locally finite and due to the Note in 21.2 for every x € X exists an
open neighborhood W intersecting only finitely many closures € of its cells. Then the intersection U
= W N e with one of these cells with maximal dimension k is nonempty and open in ey since W is
open in X. Thus U is an R¥-manifold. For every other cell e € £ with e N W # () we have eNey =
() and due to e\ e C Xi_1 and eg N X1 = O follows eN ey = @ and in particular eNU = (). Since
this is true for every e € £ \ {ep} condition 21.2.2 implies that U is open in X and therefore an
R™manifold. By the invariance of dimension 26.1 follows k¥ = n. Hence every neighborhood of
every x € X intersects a cell of dimension n but not larger whence follows that the dimension of the
CW complex is indeed n.

22 Simplicial complexes

22.1 Definitions

A k-simplex o = [ag; ...; ag] = co {ao;...;ar} = {Zogigk tia; i t; > 0; 3 gcicp ti = 1}
generated by the affinely independent vectors (a;),<;<;, C R" with linearly in-
dependent translations (a; — ag);<,«; is their convex hull as defined in [16]

1.6 and furnished with the subspace topology. The barycentric coordinates
(to;...;tx) € [0;1[F of & = Y y<;<k tia; represent the mass distribution of the
vertices a; if the center of grz_iv_ity is at the point z with the associated vec-
tor x = ag + Y g<;<i ti (@i — ap) in the affine space ag + R" as described in [17]

9.1. Any simplex o spanned by a subset of the vertices of a simplex o is called a
face of 0. Faces generated by two resp. k — 1 vertices are edges resp. boundary
faces. Due to 9.7 and 9.11 every k-simplex is a closed k-cell and consequently
a compact k-manifold with boundary. Its boundary is the union of its
faces and identical to the manifold boundary as defined in 20.9. A k-simplex
without its faces is called its interior resp. an open k-simplex and is defined
by {Zo<i<k tia; 1t > 05 geicr ti = 1}, i.e. the barycentric coordinates are not al-
lowed to vanish. Note that similarly to the manifolds with boundary except for
k = n an open k-simplex is not open in R" and its interior and boundary do not ot simplicial
coincide with its topological interior and boundary as subset of R™. complexes

| YR

simplices

Al

A simplicial complex K is a locally finite set of simplices including every
face of every o € K such that the intersection of every two simplices is either
empty or a face of each. Its dimension is the maximal dimension of the simplices simplicial
included in K and its union |J K = |K| is the polyhedron of K. A subset K’ C K complex

is a subcomplex of K iff it includes every face of every simplex 0 € K’ such that

every subcomplex is also a simplicial complex. The subcomplex comprising every

simplicial complex of dimension at most k is the k-skeleton of K. Obviously the set of all interiors
of the elements of a simplicial complex K is a regular cell decomposition of its polyhedron |K|.

b

Examples:

1. The set including an n-simplex together with all of its faces is an n-dimensional simplicial
complex whose polyhedron is homeomorpic to B"”.
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2. The set of all proper faces of an n-simplex constitutes an (n — 1)-dimensional simplicial com-
plex whose polyhedron is homeomorpic to S* 1.

3. The set of all vertices and edges of a convex m-polygon in R? with distinct vertices is a
1-dimensional simplicial complex whose polyhedron is homeomorpic to S!.

4. The set of all 1-simplices [n;n + 1] and all O-simplices {n} for n € Z is a 1-dimensional simplicial
complex whose polyhedron is homeomorpic to R.

5. The set of all 1-simplices [n;n + 1] and all O-simplices {n} for n € N is a 1-dimensional simplicial
complex whose polyhedron is homeomorpic to Rar .

22.2 Triangulation

A triangulation is a homeomorphism between a topological space and the polyhedron of some sim-
plicial complex. The proofs of the following theorems can be found in [9]:

1. Triangulation theorem for R2-manifolds: Every R?-manifold is homeomorphic to the poly-
hedron of a 2-dimensional simplicial complex, in which every 1-simplex is a face of exactly two
2-simplices.

2. Triangulation theorem for R3-manifolds: Every R3>-manifold is triangulable.

3. There are R*manifolds which are not triangulable.

22.3 Simplicial maps

According to [17] 9.3 an affine map F : a + E, — b + E} between affine

R"-spaces with a;b € R" and vector subspaces E,; E, C R" is given by ,_— =
F(a)=band F(a+x)—F(a) = f(x) resp. F'(a+x) =b+ f(x) for every _}i{
x € E, and some linear map f : E, — Ejp. Due to [16] th. 1.10 the linear map /

f is continuous and so is I’ with regard to the closed subsets a + E;, and e ——
b + Ey. According to [17] th. 3.7 for any two k-simplices ¢ = [ay;...; a] and simplicial map

7 = [bp;...; by] exists a unique affine extension F : a, + R" — b, + R" with o

F'lo] = 7 of the vertex map given by F'(a;) = b; for 0 < ¢ < n since there _/;
is a unique endomorphism f : R" — R" with f (a; — ag) = F (a;) — F (aop)
= b; — by such that F (Zogz‘gn tiai) = F(ayg) + f (Zogign tia; — ao): bo+ "~

I <Zo§i§n ti(a; — ao)) =bo+ Xo<i<n tif (@i —ao) = bo+>g<i<n i (bi —b0)  simplicial isomorphism

= D o<i<n tibi.

A simplicial map between simplicial complexes K and L is a continuous map F : |K| — |L|
whose restriction F|, to any simplex 0 € K is an affine map onto a simplex F'[o] € L . In the
case of a homeomorphism it is called a simplicial isomorphism . For any given vertex map
Fy : Ky — Loy between the 0-skeletons Ky and Lg of simplicial complexes K and L preserving ev-
ery simplex [ao;...;ax] € K such that its image [Fy (ao);...; Fo (ag)] is again a simplex in L exists a
unique simplicial map F : |K| — |L| coinciding on Ky with Fy = F|g,. If in addition the preim-
age [Fo_l (bo);..; FO_1 (bk)} of every simplex [bg;...;bg] € L is again a simplex in K the continuous
extension is a simplicial isomorphism. Indeed the map F' determined by the unique continuous ex-
tensions F|, : 0 — F'[o] of the vertex map on every closed cell o € K is continuous on the regular
CW complex |K|= |J,cx o since every preimage F|;1[0] = F~'[O] N o of an open set O C |L| is
open in o whence due to 21.2.2 F~1[0O] is open in |K|. A second application of this argument to the
inverse yields the asserted homomorphism.

22.4 The Hauptvermutung

A simplicial complex K’ is a subdivision of the simplicial complex K iff every simplex ¢’ € K’ is
contained in a simplex ¢/ C o € K and every simplex o € K is the union of simplices ¢/ € K’. Two
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simplicial complexes with a common subdivision are combinatorally equivalent and in that case
their polyhedra coincide: |K| = |K’|. The converse assertion is called the Hauptvermutung and
was conjectured by Ernst Steinitz and Heinrich Tietze in 1908. It is known to be true for all simplicial
complexes of dimension 2 and triangulated compact complexes of dimension 3 but false in
all higher dimensions.

23 Compact surfaces
24 Topological groups

24.1 Group actions

A topological group is a group (G;o) endowed with a topology such that the group operation
o: G xG — G is continuous. Obviously every subgroup H C G of a topological group is a
topological group with regard to the trace topology and every product (G x H;o x ©) of topological
groups (G;o) and (H;o) is a topological group with regard to the product topology. For every
continuous left action G x X — X of a group G on a topological space X defined according
to [17] Def. 1.13 by a map (g;z) — ¢ -« with the associative law ¢; - (g2 - ) = (g192) -  and
the conformity with the neutral element e - x = x for every x € X the left translations g - X
are homeomorphic to X since all maps = +— ¢ - x are obviously continuous and this implies the
continuity of their inverses g -z — x = (g~ 'g) - #. The same is true for the right actions defined by
x-g =g ! -z. The orbits G- of all z € X defined in [17] 1.14 form a partition of X = OzeXG T
since g-z=h-ye (G-2)N(G-y)= (hlg) e =y=>yeG-z= G yC G-z and vice versa.
The corresponding orbit space X/G is the quotient space with regard to Gy < g€ G: y=g¢- x.
The action is transitive iff G - x = X for every x € X and it is free iff g - * = x implies g = e.
According to [17] 1.7 in the case of a subgroup H C G acting on a topological group the orbits gH
of the left action are the right cosets and vice versa. The orbit space G/H is then called the left
coset space of G by H and in the case of coinciding cosets gH = Hg according to [17] 1.8 the orbit
space inherits the algebraic structure of a factor group.

Obvious examples of topological groups are provided by the real numbers (R};-) C (Ry;-) C (Cy; ), the
circle (S';-) C (C,;-) with the complex multiplication and the torus (T";-) = (S! x ... x S!;-)with
the direct group structure defined according to [17] 1.4 as componentwise multiplication xy =
(xi . yi)lgign for Ty Yi € C.

24.2 The general linear group

The continuity of the multiplication and addition on C?> — C, the resulting continuity of polynomials
on C?* — C resp. the continuity of the components of the matrix multiplication Cc® - C imply
the continuity of the matrix multiplication C2* — C" with regard to the corresponding product
spaces while Cramer’s rule [17] 4.3 assures the continuity of the inversion whence the general
linear groups GL (n;R) C GL (n;C) are topological group with regard to the product topology
on R" c C™°. Among its subgroups we have the orthogonal group O (n;R) C GL (n;R) and the
normal subgroup U (n) C GL (n;C) of the unitary matrices defined in [17] 6.6.

From the argument above follows that the general linear group
GL (n;R) by matrix multiplication continuously acts on the left
on R™. According to [17] Def. 3.10 for any pair x;y € R" with
z;7 0 and y;# 0 exists a Tgt = (Tg) ! x O * Ti € GL(n;R)
with regard to the bases A = (e1;...;€;-1;T;€i41;...;€,) and B = 1
(e1;...;€j-1;Y; €j11; ...; €,) with the coordinate systems Tf\ * X = .
e; resp. Tg * Yy = e; and the index exchange C;; * e; = e; which 0 1
implies Té‘l x x = y. Hence we have GL (n;R) x R? = R} and conse- Eij =
quently two orbits R} and {0} resp. the orbit space R}/GL (n;R)
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= {m(e1);7(0)}. Its quotient topology comprises the three sets
{m(e1);7(0)}, {7 (e1)} and ) whence it is not a Hausdorff space.
The corresponding orbits of the orthogonal group are the spheres
rS"~! with the orbit space R?/O (n;R) = {n (re1) :r > 0}. This
space is homeomorphic to R™ and hence a Hausdorff space.

24.3 The torus

The group ({#1};-) endowed with the discrete topology by multiplication freely and continuously
acts on the sphere S"™ with orbits consisting of pairs of antipodal points +e for e €S™ such that
its orbit space is homeomorphic to the projective space P" defined in [17] 9.1 as the orbit space of
(Ry;+) acting on R\ {0} resulting in the orbits R, - e for e €S™. The action of the additive group
(Z";+) endowed with the direct group structure, i.e. * +y = (z; + ¥i);<;<, PYg- =g+ on
R™ results in the orbit space R"/Z"™ which due to the commutativity of the componentwise addition
due to [17] 1.8 inherits the algebraic structure of a factor group. The exponential quotient map
€ : R® — S~ defined by € (r) = (62“"’@)1<k<n is continuous, open and surjective so that according
to 7?7 it is a quotient map and its canonical bijection € : R"/Z" — S"~! is a homeomorphism.

25 Homotopy

Two continuous maps f;g : X — Y are homotopic iff there is a continuous F : X x I — Y
with I = [0;1] such that F (¢;0) = f(¢t) and F (t;1) = g (¢t) for every t € I. Obviously homotopy
is an equivalence relation and the set X is simply connected iff any two closed paths are
homotopic.

26 Homology

26.1 Invariance of dimension

The dimension n of a finite-dimensional manifold is uniquely determined.

Proof: [8] p. 379 problem 13-3

26.2 Invariance of the boundary

Every manifold with a boundary is the disjoint union of its interior and its boundary..
Proof: [8] p. 379 problem 13-4

26.3 Brouwer’s fixed point theorem

Every continuous map f : B® — B" has a fixed point « with f (z) = .

Proof: [8] p. 379 problem 13-7
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LP-norm, 8

n-cell, 33, 80
n-dimensional torus, 75
n-skeleton, 80-83
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absolute convergence, 10

absolute value, 13, 15
accumulation point, 9, 12, 23, 30, 36, 46
addition, 16

adjacent of order U, 41

adjunction space, 19, 20, 74, 80, 83
admissible chart, 65

affine map, 88

affine space, 74, 76, 87, 88

affinely independent, 87
Alexander’s theorem, 31
Alexandrov compactification, 34, 51, 57, 59, 62
Alexandrov’s theorem, 37

almost all, 9

almost everywhere, 8

amount function, 61

antipodal points, 90

Arzela-Ascoli theorem, 64
associative law, 89

atlas, 65

atom, 23, 25

attaching lemma, 19, 83

axiom of choice, 8

Axioms of countability, 11

Baire category, 54

Baire set, 56

Baire space, 52, 54

Baire’s theorem, 55, 56
Banach space, 14, 76
Banach’s category theorem, 56
Banach-Steinhaus theorem, 56
barycentric coordinates, 87
base points, 20

basis, 10, 65

basis point, 81

big union, 8
Bolzano-Weierstrass, 30
boundary, 12

boundary chart, 70, 72, 86
boundary faces, 87

boundary of a simplex, 87
boundary point, 12, 16, 21
bounded, 59, 63

bounded from above, 54
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bouquet of circles, 20, 81
Brouwer fixed point theorem, 90
bump function, 28, 85

canonical bijection, 17

canonical injection, 16

canonical projection, 17, 70
Cantor set, 13, 54

category theorem, 55, 56

Cauchy filter, 46

Cauchy sequence, 9, 49, 50, 58
Cauchy’s integral formula, 65

cell complex, 80

cell decomposition, 80

change of coordinates, 65, 77
characteristic map, 80, 81, 84, 87
chart, 65, 86

circle, 70, 77, 89

closed ball, 86

closed function, 49

closed graph theorem, 56, 66
closed map lemma, 32, 70, 73, 75, 81, 87
closed map theorem, 76

closed mapping, 14

closed set, 9

closed sets, 10

closed submanifold, 67
closed-map lemma, 33

closure, 12, 21, 22, 38, 48, 58, 64
Closure finiteness, 80

cluster point, 23

cofinite topology, 26

coherent topology, 17, 80
combinatorally equivalent, 89
commutative, 90

compact, 30, 41, 43, 51, 56, 57, 62, 64, 76, 82
compact convergence, 34, 60, 61
compact manifold, 70

compact open topology, 61
compatible atlas, 65

complement, 9

complete, 9, 46, 49, 52, 57, 59, 60, 62
complete closure, 57

completely metrizable, 55
completely regular, 24, 26, 35, 40, 58
complex conjugate, 62

complex valued sequences, 51
complex-valued function, 8, 61, 62
component, 15, 44

components, 32

composition, 13, 43



connected, 20, 82 edge, 81, 87

connected component, 65 eight-figure, 79
Connected components, 21 embedding, 16, 19, 32, 40, 48, 58, 68, 71
connectedness, 66 entourage, 41
constant term, 62 e-neighbourhood, 71
continuous, 9, 13, 24, 30, 34, 43 eqgivalence class, 8
continuous at a point, 13 equicontinuous, 63, 64
continuous complex valued functions, 51 equivalence relation, 17
continuous image, 20 equivalent metrics, 9
contractible, 22 Fuclidean manifold, 69
contraction, 22 Fuclidean norm, 8, 15
Contraction principle, 50 euclidean norm, 10
convergence, 9, 23 Fuclidean topology, 16
convergent subsequence, 64 exponential quotient map, 75, 90
convex, 33, 56 extended addition, 35
convex hull, 87 extended multiplication, 35
coordinate axes, 71 extension, 28, 48, 58
coordinate function, 65
coset space, 89 face, 87
cosets, 76, 89 factor group, 89, 90
countable, 29, 33 field, 8

filter, 23

countable at infinity, 35
countable basis, 59

countable neighborhood basis, 52
countably compact, 36, 64

cover, 16, 29, 37, 55, 58 finite partition, 42, 46

first category, 54-56

crosscap, 78 first countable, 11-13, 37, 39, 45, 60
curve, 32 first countable, 36

CW complex, 80, 88 fixed PO%H’G, 50
cylinder sets, 15 fixed-point-free, 68

filter basis, 23
final topology, 17-19, 37, 65, 67, 68
finite dimensional CW complex, 81

Cramer’s rule, 89

cadlag, 14, 51 floor function, 33
free action, 89
decreasing, 49 free filter, 23
dense, 12, 33, 44, 47, 52, 55, 62 Fréchet filter, 23
diagonal, 41, 42, 57 Fréchet space, 56
diameter, 49, 53 function, 17, 20
differentiable manifold, 65 functional, 70

differential equation, 64
Dilation principle, 49
dimension of a CW complex, 81
dimension of a simplicial complex, 87
Dini’s theorem, 34

direct group structure, 89, 90
direct sum, 66

discrete space, 82

discrete topology, 10, 42, 46, 52
disjoint, 19, 20, 53

disjoint covering, 21

distance between sets, 39
distribution function, 14
double cone, 72, 86

double pendulum, 75
downstairs map, 68

Gauss bracket, 33
general linear group, 89
geometric series, 10
gluing lemma, 68
graph, 20, 28, 81

half plane, 21

half sphere, 86

halfplane, 86
Hauptvermutung, 89
Hausdorff, 66, 68

Hausdorff property, 8
Hausdorff space, 24, 34, 36, 84
Heine’s theorem, 43
Heine-Borel theorem, 32

93



Heine-Borel-theorem, 33

Hilbert cube, 52

holomorphic, 65

homeomorphic, 14

homeomorphism, 14, 16, 18, 48, 51, 52, 66
homotopic, 90

hyperplane, 76

identification topology, 17
identifying map, 83, 84
identity, 13

image of a filter, 24

image sequence, 9

imaginary part, 62

imaginary part, 15

immersion, 68, 71

Index notation, 8

index set, 8

indiscrete topology, 10, 26, 42
induction, 45, 61

inductive, 23

inductively ordered, 65

initial neighborhood filter, 43, 46, 60
initial topology, 15, 45, 67, 71
injection, 17, 44, 46

injective, 33, 54

interior, 12

interior chart, 70, 72, 86
interior of a manifold with a boundary, 70
interior of a simplex, 87
interior point, 12, 16

interior points, 54
intermediate value theorem, 20
interval, 20

Invariance of dimension, 90
invariance of dimension, 87
Invariance of the boundary, 90
involution, 68

irrational number, 33

kernel, 29, 70
Klein bottle, 79
Kronecker’s approximation theorem, 33

Lebesgue measure, 54
Lebesgue number, 34
Lebesgue’s Lemma, 34
left action, 89

left-limits, 14
lemniscate, 67, 68, 71, 86
limit, 50

limit point, 9, 12, 23
Lindel6f space, 36

line, 16
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linear order, 23, 30, 50

linearity, 8

linearly independent, 87

Lipschitz continuous, 63

local basis, 65

locally closed, 66, 71, 72

locally compact, 34, 35, 41, 55, 57, 60, 64, 69,
76, 83

locally Euclidean, 86

locally finite, 16, 29, 37, 83, 87

locally path connected, 22

loop, 22

lower semicontinuous, 14

manifold, 77, 86

manifold boundary, 70, 87

manifold with a boundary, 71, 90

manifold with boundary, 70, 72, 86

manifolds, 22

T;-space, 24

Ts-space, 24

Tg,-space, 24

T3-space, 24

Ty4-space, 24

F,-set, 29, 53

Fy-set, 39

Gs-set, 29, 51, 53, 54

Gs-set, 40, 52

LP -spaces, 51

LP-space, 54

Ts-space, 42

maximal element, 23

Magzurkiewicz’ theorem, 51

meager, 54

measure, 54

measure space, 8

meromorphic function, 35

Meromorphic functions, 35

metric, 8

metric space, 8, 10, 39, 44, 49, 56, 59

metric spaces, 25

metrizable, 41, 45, 50-52, 60, 62, 64

metrization theorem (Bing, Nagata, Smirnow),
40

Metrization theorem for uniform spaces, 45

minimal Cauchy filter, 47

Minimum, 50

mirror image, 41

Moebius strip, 76

multiplication, 16

Mbobius strip, 19, 72

natural numbers, 50
natural topology, 10



neighborhood, 9, 11, 29, 41 product of uniform spaces, 44

neighborhood basis, 11, 35, 42—44 product space, 27, 32, 41, 64
neighborhood filter, 23, 28, 41 product topology, 15, 51, 68
neighborhood system, 11 projection, 17, 32, 44, 46, 51, 60, 66, 69
neutral element, 89 projections, 15

norm, 8 projective completion, 74, 76

normal, 24, 31, 36, 41 projective line, 77

normal family, 65 projective plane, 77

normal subgroup, 89 projective space, 76, 90

nowhere dense, 12, 54 pruned tree, 52

pseudometric, 8, 44

one-point-compactification, 74, 77 punctured vector space, 76

open ball, 9

open cover, 30 quasi-compact, 30

open disc, 16 quotient manifold, 68

open map, 17 quotient map, 17, 32, 37, 68, 72-76, 87, 90
open mapping, 14 quotient space, 27, 73, 74

open mapping theorem, 56 quotient spaces, 76

open set, 9, 10 quotient topology, 17, 76

open simplex, 87
open spiral, 16 random variable, 14

orbit, 89 random variables, 51
rational numbers, 54

real part, 15, 62

reciprocal, 13

refinement, 37

refinemet, 38

regular, 24, 31, 39, 41, 52, 66

orbit space, 89

order topology, 59
ordinal numbers, 59
origin, 65
orthogonal group, 89

paracompact, 37, 40 regular cell, 82

partition, 80 regular cell decomposition, 87
partition of unity, 30, 38, 70, 84 regular coordinate ball, 69
path, 52 regular CW complex, 82, 86
path component, 22, 82 relation, 17

path connected, 22 restriction, 16, 25
path-connected, 82 right action, 89

point at infinity, 34 right-limits, 14

point finite, 29 roman surface, 78

pointwise convergence, 9, 34, 63

polar coordinates, 72, 73, 77 S-convergence, 60
pole, 35 saturated, 17, 76

polish, 62 saturated set, 17, 37

second category, 54, 55

second countability, 66

second countable, 12, 35, 36, 41, 50, 52, 57, 68,
69, 87

second countable, 11

segments, 84, 86

Polish space, 50
polish space, 57
polyhedron, 87
polynomial, 62
positive definiteness, 8
positive halfspace, 70

precompact, 30, 56, 57, 69, 80 seminorm, 9
principal filter, 23 separable, 8, 12, 41, 47, 52

principal ultrafilter, 23 separated, 42, 45, 48, 57, 60, 64
probability space, 14 separating function, 29
product, 8 separation axioms, 8, 24, 42, 60

product manifold, 67 sequence, 9, 23, 31
product metric, 10 sequentially compact, 36, 64
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o-compact, 35, 37, 41, 51, 60, 62, 64
o-locally finite, 38

simple chain, 21

simplex, 87

simplicial complex, 87

simplicial isomorphism, 88
simplicial map, 88

simply connected, 22

sinusoidal torus, 79

skeleton of a simplicial complex, 87
Skorokhod metric, 51

small of order U, 41, 46

Sorgenfrey line, 12, 21

sphere, 73

splitting map, 66

splitting space, 66

stereographic projection, 74, 76, 77
stochastic processes, 51

Stone Weierstrass theorem, 62
Stone’s theorem, 39
Stone—éech—compactiﬁcation, 58
Stone—éech—compaotiﬁcation, 26
strictly increasing, 14

stronger, 10, 23, 43

subbasis, 10, 13, 15, 31
subcomplex, 81

subcomplex of a simplicial complex, 87
subdivision of a simplicial complex, 88
subgroup, 89

submanifold, 67

submersion, 69

subspace, 25

subspace topology, 16

support, 30

supremum metric, 59

supremum norm, 8, 9

supremum property, 50

surjective, 17, b4

symmetric, 41, 64

symmetry, 8

tails, 23

Ts4-space, 45

Tietze’s extension theorem, 29
topological boundary, 70
topological embeddings, 18
topological group, 89

topological manifold, 65

topological space, 10

topological sum, 18

topology, 10

topology of compact convergence, 60
topology of the uniform space, 42
topology of uniform convergence, 59
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torus, 19, 68, 75, 89

torus group, 66

totally bounded, 56, 58
totally disconnected, 20, 21, 52
trace filter, 24, 44, 47

trace topology, 16, 18, 67, 71
trajectory, 20

transition map, 65, 70
transitive action, 89

Trees, 52

triangle inequality, 8
triangulation, 88
Tychonov’s theorem, 32, 58

ultrafilter, 23, 30-32, 57

Uniform convergence, 59

uniform convergence, 9, 60

uniform equicontinuous, 63

uniform neighborhood, 43

uniform space, 41

uniform structure, 11

uniformizable, 42, 45

uniformly continuous, 16, 43, 47, 48, 53
unit circle, 16, 18

unit sphere, 18

unitary matrices, 89

universal property, 15, 17, 18, 67, 84, 85
upper half-space, 74

upper half-sphere, 74

upper semicontinuous, 14

Urysohn’s lemma, 28, 35, 40

Urysohn’s metrization theorem, 26, 52
Urysohn’s metrization theorems, 41
Urysohns metrization theorem, 51

vanishing at infinity, 62
vector space, 8

vertex, 81, 87

vertex map, 88

weak topology, 15
weaker, 10, 23, 43
wedge sum, 20
well-ordering, 50

Zorn’s lemma, 23, 30, 56, 65
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