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Preface

Topology is the branch of mathematics concerned with generalized concepts of distance which are the
foundation for the study of convergence, continuity and differentiation of functions in complex
and functional analysis, differential geometry as well as probability theory. There is a close
relationship between topology and measure theory, which is dedicated to the understanding of
volume in mathematics leading to the theory of integration in the above mentioned fields..

Apart from minor alterations and reorganisations this text follows the classical expositions by those
von Querenburg [10] and J. Kelley [3]. The required basic facts of set theory can be found in
e.g. [19] and are not included in this text. Results from measure theory and complex analysis which
are needed in the latter parts are dealt with in [18] resp. [15] or alternatively in the standard books
[13] resp. [12] by W. Rudin and [6] resp. [4] by S. Lang. The introductory first chapter revises
topological facts in metric spaces which are familiar from calculus. Since different metrics result in
equivalent properties concerning convergence and continuity these fundamental qualities of functions
obviously depend on simpler concepts. After this motivation chapters 2 - 5 develop these fundametal
concepts of topology: Open sets, neighborhoods, axioms of countability, continuous and
open functions, construction of topological spaces on subsets, products, quotients and sums
of topologicals spaces as well as connectedness. During the early 20th century E. H. Moore
introduced nets resp. directed sets to generalize the concept of convergence from well ordered
sequences to less structured sets. Nets were further developd by american mathematicians a.o. J.
W. Tukey and G. Birkhoff ; J. Kelley bases his classical work [3] on nets. In chapter 6 of this
text, however, the theory of convergence is instead built on the concept of a filter developed in the
1940’s by french mathematicians around H. Cartan and J. Dieudonné under the pseudonym of N.
Bourbaki [2]. It is more abstract than nets but leads to the same results via very short and elegant
proofs. The subsequent parts 7 - 8 deal with separation axioms, standard theorems of Urysohn
and Tietze about the extension of continuous functions on normal spaces and partitions of unity.
In 9 - 14 the next steps follow in canonical order: compactness, uniformization, metrization
and completion of topological spaces. The basic characteristics of Polish and Baire spaces are
developed in chapters 15 and 16. Chapter 17 presents the Stone-Čech-compactification. Further
results about function spaces required in complex and functional analysis are presented in
the next chapters: In chapter 18 the topology of compact convergence leads to the Stone-
Weierstrass-theorem while in chapter 19 the concept of equicontinuity leads to the theorem of
Ascoli with applications in differential equations and complex analysis. The last section returns
to the geometrical origins of topology in the form of topological manifolds, i.e. sets which locally
can be described as topological vector spaces. The classification of their global structures leads the
notions of homotopy and homology; a very general construction method for manifolds is given by
cell complexes leading to the characterisation of topological properties in the language of algebraic
topology and combinatorics. Theses topics are drawn from [7] and as far as possible adapted to
infinite-dimensional Banach spaces following [5] and [11]. The necessary prerequites from functional
analysis can be found in [16].
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1 Metric Spaces

1.1 Index notation

The axiom of choice (cf. [19, p. 14.2.1]) postulates the existence of a choice function x with
x(i) ∈ i for every set i. Thus for every set I there is a product

∏
I := {x : I → ⋃

I : x(i) ∈ i∀i ∈ I}
where x to each element i of the index set I assigns an element x(i) of the set i. The big union⋃
I is the set of all elements x (i) of elements i from I. To emphasize the set character of the indices

i in this rather terse notation we usually write Xi := i and arrive at the common index notation∏
i∈I Xi := {x : I → ⋃

i∈I Xi : x(i) := xi ∈ Xi}.

1.2 Metrics

The essential characteristics of our notion of distance on a set X are given by the metric d : X2 →
[0; ∞[ with the following conditions:

1. d(x; y) = 0 ⇔ x = y (positive definiteness)

2. d(x; y) = d(y;x) for all x, y ∈ X (symmetry)

3. d(x; y) + d(y; z) ≤ d(x; z) for all x, y, z ∈ X (triangle inequality)

One of the principal interests of topology consists in the research for necessary and sufficient condi-
tions for the existence of a metric. The study of these conditions (cf. section 12) has revealed that
the separability of two points as expressed by positive definiteness 1.2.1 is quite independent of the
problem of measuring of distances in general. Consequently the necessary minimum requirement for
a quantification of distance is the pseudometric which differs from the metric by reducing 1.2.1 to
1.2.1’: d (x, x) = 0. The separability of points is postulated independently by the separation ax-
ioms T1 resp. T2 (ch.7.1). In most cases of practical interest these axioms are satisfied anyway or
can at least be achieved by identifying inseparable objects as eqivalence classes (cf. 1.3) thereby
restoring positive definiteness. For this reason and the sake of simplicity we will presume the Haus-
dorff property T2 almost throughout the text with the exception of an exemplary consideration of
pseudometrization of non-Haussdorff-spaces in section 13. The ordered pair (X; d) is called a metric
space.

1.3 Normed vector spaces

A function ∥∥ : X → [0; ∞[ on the vector space X over the field K ∈ {R;C} is a norm iff it satisfies
the following conditions:

1. ∥x∥ = 0 ⇔ x = 0 (positive definiteness)

2. ∥λ · x∥ = |λ| · ∥x∥ for all λ ∈ K (linearity with respect to multiplication)

3. ∥x+ y∥ ≤ ∥x∥ + ∥y∥ for all x, y ∈ X (triangle inequality).

Via d(x; y) := ∥x− y∥ the norm induces a metric on X.

Examples:

1. The Euclidean norm ∥(x1; ...;xn)∥ :=
√∑

1≤i≤n xi · xi on a vector space X = Cn.

2. The Supremum norm ∥f∥ := sup {|f(x)| : a ≤ x ≤ b} on the vector space of all continuous
complex-valued functions X = C ([a; b];C) on a closed interval [a; b].

3. The Lp-norm ∥f∥p := (
∫ |f |p dµ)

1
p on the vector space Lp = Lp/R of all p-integrable func-

tions on a measure space (X;µ) with Lp =
{
f : (X;µ) → (R;λ) : ∥f∥p < ∞

}
and fRg ⇔

f = g almost everywhere ( i.e. everywhere except on a set with measure zero).
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The last item provides an important example for a seminorm ∥f∥p on Lp with weakened condition
1.3.1’: ∥x∥ = 0 which is extended to a full norm with restored positive definiteness by reducing
Lpto the quotient space Lp = Lp/R, i.e. by identifying formerly inseparable functions as common
equivalence classes.

1.4 Topological concepts on metric spaces

On a metric space (X; d) a neighborhood of x is defined as a set including an open ball Br(x) :=
{y ∈ X : d(x; y) < r} with center x and radius r. A subset A ⊂ X is open iff it is a neighborhood for
each of its elements. A is closed iff its complement X \A is open. A function f : (X; d) → (X ′; d′)
is continuous iff the inverse images f−1 [O] of open sets O ⊂ X ′ are again open in X. For every
ϵ > 0 there is a δ > 0 such that f [Bδ(x)] ⊂ B′

ϵ (f(x)). A sequence (xn)n∈N on a metric space
X converges to a limit point x = lim

n→∞
xn ∈ X iff every neighborhood of x contains almost all

members: ∀ϵ > 0∃n(ϵ) ∈ N : ∀n ≥ n(ϵ) : xn ∈ Bϵ(x). A point y ∈ X is an accumulation point iff
every neighborhood of y contains infinitely many members: ∀ϵ > 0∀n ∈ N∃m ≥ n : xm ∈ Bϵ(y).
The sequence is a Cauchy sequence iff for each ϵ > 0 almost all members have a distance less
than ϵ to each other: ∀ϵ > 0∃k ∈ N : ∀n,m ≥ k : d (xn;xm) < ϵ. A Cauchy sequence converges
to all of its accumulation points. X is complete iff every Cauchy sequence converges to a limit
point in X. Q is not complete since e.g. (xn)n∈N with x0 := 1 and xn+1 := 1

2

(
xn + 2

xn

)
is a

Cauchy sequence converging to
√

2∈ R \ Q. A function f : (X; d) → (X ′; d′) is continuous iff
for every sequence (xn)n∈N with xn

n→∞→ x ∈ X the image sequence f (xn) n→∞→ f(x) ∈ X ′.
The function sequence (fn)n∈N : N → (X ′; d′) converges uniformly resp. with reference to the
supremum norm to f : X → X ′ iff every neighborhood of f contains almost all members:
∀ϵ > 0∃m ∈ N : ∀n ≥ m∀x ∈ X : fn(x) ∈ Bϵ (f(x)). The following well-known theorem from analysis
provides a good example for the usefulness of these concepts and will appear in a generalized form as
theorem 18.3 :

1.5 Uniform convergence of continuous functions

If all fn : (X; d) → (X ′; d′) are continuous and converge uniformly to f then f is also continuous.

Proof: ∀x ∈ X ∧ ϵ > 0∃δ > 0 ∧ m ∈ N : ∀n ≥ m ∧ y ∈ Bδ(x) : f(y) ∈ Bϵ/3 (fn(y)) for a
δ independently of the chosen y on account of the uniform convergence of thefn, furthermore
fn(y) ∈ Bε/3(fn(x)) because fn is continuous in x ∈ X and finally fn(x) ∈ Bϵ/3 (f(x)) due to the
convergence of the fn at the point x. The triangle inequality yields f(y) ∈ Bε (f(x)).

Example: The continuous parabolae fn(x) = xn converge in [0; 1] pointwise but not uniformly
to f with f(x) = 0 for 0≤ x < 1 and f(1) = 1. Obviously f is discontinuous in x = 1.

1.6 Equivalent metrics

On a metric space (X, d) the metric d′ := d
1+d < 1 is equivalent to d: A set O ⊂ X is open with

reference to d iff it is open with reference to d′.

Proof : The positive definiteness and symmetry of d′ are a direct result of the corresponding properties
of d. To check the triangle equality let a := d(x; z), b := d(x; y) and c := d(y; z). Then due
to the the premise a ≤ b + c and because of x → x

1+x being monotone for x ≥ 0 we can infer
a

1+a ≤ b+c+bc
1+b+c+bc ≤ b+c+2bc

1+b+c+bc = b
1+b + c

1+c . From d′
2+d < d′ < d follows Bϵ ⊂ B′

ϵ ⊂ Bδ(ϵ) with δ(ϵ) = 2ϵ
1−ϵ

and ϵ < 1 and thus the equivalencce of the topologies induced bei the neighborhood systems Bϵ und
B′
ϵ.
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1.7 Product metrics

On a finite product
∏
i∈I Xi of metric spaces (Xi; di) the following three metrics are equivalent:

1. d′(x; y) := ∑
i∈I di(xi; yi)

2. d′′(x; y) :=
√∑

i∈I d
2
i (xi; yi)

3. d′′′(x; y) := maxi∈Idi(xi; yi)

Proof: From 0 ≤ (di − dj)2 ⇔ 2didj ≥ 2didj follows
(∑

1≤i≤n di
)2

= ∑
1≤i,j≤n didj ≤ 1

2
∑

1≤i,j≤n(d2
i +

d2
j ) = n

∑
1≤i≤n d

2
i . This yields the estimate d′′ ≤ d′ ≤ √

n·d′′⇔ B′
r(x) ⊂ B′′

r (x) ⊂ B′√
n·r(x). Obviously

we also have d′′′ ≤ d′ ≤ n · d′′′ ⇔ B′
r(x) ⊂ B′′′

r (x) ⊂ B′
n·r(x).

1.8 Countable products of metric spaces

On a countably infinite product
∏
n∈NXn of metric spaces (Xn; dn) with dn < 1∀n ∈ N the

expression d(x; y) := ∑
n∈N

dn(xn;yn)
2n+1 defines a metric.

Proof: Due to the absolute convergence of the geometric series the properties 1.2.1 - 3 transfer
from the single summands resp. the partial sums to the limit.

The existence of different equivalent metrics for a common topology leads to the insight that the metric
is not fundamental for the concepts of space and distance. Consequetly the follwowing parts develop
the concepts of open sets, neighborhoods and continuity independently of a metric. After having
established a general theory for these ideas we will return to the metric and determine necessary and
sufficient conditions for its existence.

2 Topological Spaces

2.1 Open and closed sets

A set family O ⊂ 2X on a space X is a topology iff it is closed under arbitrary unions and finite
intersections. Every topology contains the sets ∅ = ⋃ ∅ and X := ⋃O. The ordered pair (X; O)
is a topological space. The elements O ∈ O are the open sets and their complements X \ O are
the closed sets. On a given set X the indiscrete topology {∅;X} is the minimal and the discrete
topology 2X the maximal topology. For two topologies O1 ⊂ O2 means O2 is stronger than O1 und
O1 weaker than O2.

2.2 Bases and subbases

A subfamily B ⊂ O is a basis of the topology O iff for each O ∈ O and x ∈ O exists a Bx ∈ B with
x ∈ Bx ⊂ O. A subfamily B ⊂ 2X is a basis for a unique topology O = τ (B) iff ⋃B = X and every
open set O = ⋃

x∈O {Bx : x ∈ Bx ∈ B} is a union of basis sets i.e. iff the intersection of every nonempty
finite subfamily from B is equal to the union of elements from B. In a metric space (X; d) the open
balls Br(x) for r > 0 and x ∈ X constitute a basis for the open sets. The natural topology τ (d)
on Rn is generated by the euclidean norm resp. the euclidean metric according to 1.3.

A family S ⊂ 2X is a subbasis of the topology O iff the system of all intersections from finite
subfamilies from S constitutes a basis B of the topology O. For example the intervals ] − ∞; a[ and
]a; ∞[ for a ∈ R are a subbasis of the natural topology on R.
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2.3 Neighborhoods

A family U(x) is a neighborhood system of a point x ∈ X and the sets U ∈ U(x) are neighbor-
hoods of x iff the following conditions are satisfied:

1. Every U ∈ U(x) contains x and another neighborhood V ∈ U(x) such that U ∈ U(y) for all
y ∈ V ⊂ U .

2. With U every overlying set U ′ ⊃ U belongs to U(x).

3. With finitely many sets U1; ...;Un their intersection ⋂1≤i≤n Ui also belongs to U(x).

A subfamily B(x) of a neighborhood system U(x) is a neighborhood basis iff for every U ∈ U(x)
there is a B ∈ B(x) with B ⊂ U . The following theorem desribing the generation of a uniquely
determined topology by a neighborhood system will reappear in a simplified and generalized form as
Th. 12.3 relating to uniform structures

2.4 Equivalence of neighborhood systems and topologies

1. For a given set of neighborhood systems U(x) for each point x of a set X the family O of all
sets which are a neighborhood for each of their points constitutes a topology on X.

2. For a given topology O on a set X the families U(x) of sets U ∈ X which contain an open set
O ∈ O with x ∈ O ⊂ U constitute for each x ∈ X a neighborhood system.

3. The neighborhood systems U(x) of 2. are uniquely determined by condition 1.

4. The topology O of 1. is uniquely determined by condition 2.: U (x)
1.
44 O

2.rr

Proof:

1. Due to 2.3.1 arbitrary unions of subsets and the whole set X belong to O and on account of
2.3.3 this is also true for finite intersections. The empty set ∅ belongs to O because it contains
no point and the condition is satisfied in a trivial way.

2. The conditions 2.3.1. - 3. are trivially satisfied with V = O .

3. We have to show: The construction U (x) −→ O −→ U ′ (x) leads back to the same neighborhood
system U ′ (x) = U (x) it started with. Assume U ′(x) for each x ∈ X is another neighborhood
system satisfying condition 1. For x ∈ X and U ′ ∈ U ′(x) it follows from 2.3.1 that

o
U :=

{y ∈ U ′ : U ′ ∈ U ′(y)} contains at least one element. Again with 2.3.1 there is a V ′ ∈ U ′(y) for
a y ∈

o
U with U ′ ∈ U ′(z) for all z ∈ V ′ ⊂ U ′. But this implies V ′ ⊂

o
U and with 2.3.2 we get

o
U ∈ U ′(y). Consequently

o
U is a neighourhood for each of its points and according to 1. it is the

desired open set over x in U ′.

4. We have to show: The construction O −→ U (x) −→ O′ leads back to the same topology O′ = O
it started with. Assume O′ is a second topology on X satisfying condition 2. and choose a set
O′ ∈ O′. But then O′ is a neighborhood for each of its points and hence belongs to O according
to 1.

2.5 Axioms of countability

A topological space (X; O) is first countable resp. satisfies the first axiom of countability iff
every point has a countable neighborhood basis. Every metric space (X; d) is first countable with the
open balls B1/n(x) for n ∈ N∗ and x ∈ X. A topological space (X; O) is second countable resp.
satisfies the second axiom of countability iff O has a countable basis. According to 2.4.2 and 2.4.3
the second axiom of countability includes the first.
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2.6 Closure and interior

Let A be a subset of the topological space (X; O). A point x ∈ X is an accumulation point
or limit point of A iff every neighborhood of x intersects A. The set of all accumulation points
of A is the closure A of A. If a subset A of a topological space X is closed then it contains every
accumulation point of every sequence in A. The converse is only true ifX is first countable. The closure
A = ⋂ {F ⊃ A : X \ F ∈ O} is the minimal closed set including A. A point x ∈ X is an interior
point of A iff A is a neighborhood of x. The set of all interior points of A is the interior

o
A of A. The

interior
o
A = ⋃ {O ⊂ A : O ∈ O} is the maximal open set included in A. We have ⋃i∈I Ai ⊃ ⋃

i∈I Ai
and ⋂i∈I Ai ⊂ ⋂

i∈I Ai resp. ˚⋃
i∈I Ai ⊃ ⋃

i∈I Åi and ˚⋂
i∈I Ai ⊂ ⋂

i∈I Åi with equality for finite index
sets I.

2.7 Boundary points, dense and nowhere dense sets

A point x ∈ X is a boundary point of A iff x is a limit point of A as well as of the complement
X \A. The set of all boundary points is the boundary ∂A = A \

o
A of A. Since X \ ∂A =

o
A ∪X \A

is open the boundary is always closed. A is dense in X iff every point in X is an accumulation point
of A: A = X. A is nowhere dense in X iff

o

A = ∅. In this case A has no interior points and
the complement X \ A is dense. Conversely the complement of a dense set need not be nowhere
dense: Both Q and R\Q are dense in R. For a dense set A its interior Å is dense too: A = Å = X;
for every nowhere dense set A its closure A obviously is nowhere dense. Note that in general
o

A ̸= Å and A ̸= Å: E.g. R =
o

Q ̸= Q̊ = ∅ and R = Q ̸= Q̊ = ∅. The equality
o

A = Å holds if the
interior is nonempty. In that case for any x ∈

o

A there is an open O with x ∈ O ⊂ A and since
x ∈ ∂A would yield the contradiction O ∩ X \ A ̸= ∅ we infer x ∈ Å, i.e.

o

A ⊂ Å. For open A the
boundary ∂A lies outwards of A and for closed A it lies inside A. In this case ∂A is nowhere dense
in X. A topological space is separable iff it contains a countable dense subset. Obviously every
second countable space is separable and every separable and metric space is second countable.
The following paragraph presents a space which is first countable and separable but not second
countable.

2.8 Natural topologies and the Sorgenfrey line

Obviously N is closed and nowhere dense in R. Q is neither open nor closed in R since between two
rational numbers n

m and n+1
m assuming w.l.o.g. n < m we find an irrational number n

r

√
2 with r < n

such that r
m <

√
2 < r+1

m . The rational numbers have no interior points and are dense in R:
o
Q = ∅

and ∂Q = Q = R. The same is true for the irrational numbers R \ Q. The natural topology
on Rn satisfies the second axiom of countability since Qn is a countable dense subset and the open
balls B1/n(x) with n ∈ N∗ for x ∈ Qn are a basis for the open sets. The half open intervals [a; b[ with
a < b ∈ R generate the topology Oτ of the Sorgenfrey line R := (R; Oτ ) (cf. [14, example 51]) which
on account of ]a; b[ = ⋃

n∈N

[
a+ 1

n ; b
[

is stronger than the euclidean topology but weaker than
the discrete topology since atoms {a} contain no half open intervals. The rational numbers Q are a
countable and dense subset since every basis set contains a rational number. The sets

[
a; a+ 1

n

[
form a countable neighborhood basis for every a ∈ R. R is separable and first countable, but
not second countable, since for every countable family B := ([an; bn[)n∈N there is an a ∈ R with
a /∈ {an; bn} ∀n ∈ N such that no interval [a; b[ with b > a can be a union of basis sets.

12



2.9 The Cantor set

Let f : {0; 2}N → [0; 1] be defined by f(x) = ∑
n≥1

xn
3n for every sequence x = (xn)n≥1 with xn ∈ {0; 2}.

Then f is injective and the set T := f
[
{0; 2}N

]
is non countable , closed and nowhere dense in

[0; 1].

0 1

0 1
3

2
3 1

0 1
9

2
9

3
9

6
9

7
9

8
9 1

1

Proof: Since on the one hand ∑
1≤n<m

xn
3n + 0

≤ ∑
n≥1

xn
3n ≤ ∑

1≤n<m
xn
3n + 0

3m + ∑
n>m

2
3n =∑

1≤n<m
xn
3n + 1

3m and on the other hand ∑1≤n<m
xn
3n +

2
3m = ∑

1≤n<m
xn
3n + 2

3m + ∑
n>m

0
3n ≤ ∑

n≥1
xn
3n ≤∑

1≤n<m
xn
3n + ∑

n≥m
2

3n = ∑
1≤n<m

xn
3n + 1

3m−1 the
set T = ⋂

n≥0
⋃

0≤m< 1
2 (3n−1)

[
2m
3n ; 2m+1

3n

]
is generated

starting with [0; 1] by subsequently removing the mid-
dle third

]∑
1≤n<m

xn
3n + 1

3m ;∑1≤n<m
xn
3n + 2

3m

[
from

the intervals
[∑

1≤n<m
xn
3n + 0;∑1≤n<m

xn
3n + 1

3m−1

]
.

From this construction we infer that T is closed. For
all x ∈ {0; 2}N and m ∈ N there is an a = ∑

n≥1
an
3n ∈

[0; 1] \ T with |f(x) − a| = 1
3m . Simply choose an = xn for n ̸= m and am = 1. Consequently T has

no interior points and the closed character implies being nowhere dense in [0; 1]. Since f is injective
and {0; 2}N is not countable (cf. [19, Satz 17.9]) this is also true for the image T .

3 Continuous functions

3.1 Continuous functions

f : (X; OX) → (Y ; OY ) is continuous iff the inverse images of open sets in (Y ;OY ) under f are
open in (X;OX): ∀O ∈ OY : f−1(O) ∈ OX . Since f−1(Y \ O) = X \ f−1(O) the function f is
continuous iff the inverse images of closed sets in (Y ;OY ) under f are closed in (X;OX). Since
f−1[⋂

i∈I Ai
]

= ⋂
i∈I f

−1[Ai] and f−1[⋃
i∈I Ai

]
= ⋃

i∈I f
−1[Ai] the function f is continuous iff the

inverse images of a subbasis S of OY are open in (X; OX). (X; OX) carries the discrete topology and
(Y ; OY ) carries the indiscrete topology iff every function f : (X; OX) → (Y ; OY ) is continuous. O1 is
stronger than O2 iff the identity id : (X; O1)→ (X; O2) is continuous. For two continuous mappings
f : (X; OX) → (Y ; OY ) and g : (Y ; OY ) → (Z; OZ) the composition g ◦ f : (X; OX)→ (Z; OZ) is
also continuous. Hence for every continuous function f : X → C the reciprocal value 1

f for f(x) ̸= 0,
the absolute value |f | and the multiple α · f with α ∈ C are again continuous.

3.2 Continuity at a point

f : (X; OX) → (Y ; OY ) is continuous at x ∈ X iff the inverse images of neighborhoods of
f(x) under f are neighborhoods of x: ∀U ∈ U(f(x)

)
: f−1(U) ∈ U(x). Due to 2.2 the function

f is continuous at x ∈ X iff the inverse images of a neighborhood basis B(f(x)
)

are included
in the neighborhood system B(x): ∀B ∈ B(f(x)

)
: f−1(B) ∈ B(x). f is continuous on X iff f is

continuous at every x ∈ X. On a first countable space X the function f is continuous at x ∈ X iff
for every convergent sequence (xn)n∈N ⊂ X with lim

n→∞
xn = x follows lim

n→∞
f (xn) = f (x)

13



3.3 Semicontinuity

x

y

Upper Semicontinuity

y = f (x)

x

y

Lower Semicontinuity

y = f (x)

x

y

right continuous
left limits

y = f (x)

1

f : (X; O) → R is upper semicon-
tinuous at a point x ∈ X iff ∀ϵ > 0
∃U ∈ U(x): U ⊂ {f < f(x) + ϵ} and
upper semicontinuous on X iff it
is continuous relative to the topology
O+ = {]−∞; a[ : a ∈ R} ∪ {∅;R}. Cor-
respondingly f is lower semicontin-
uous at x ∈ X iff ∀ϵ > 0 ∃U ∈ U(x) :
U ⊂ {f > f(x) − ϵ} resp. onX iff it is continuous with regard to O− = {]a; ∞[ : a ∈ R}∪{∅;R}. A spe-
cial case of an upper semicontinuous function is a cumulative distribution function f : R→ [0; 1] with
f (x) = p (X ≤ x) for a random variable X : Ω → R on a probability space (Ω; p). Such a function
is strictly increasing with existing left-limits limx→a− f (x) and right-limits limx→a+ f (x) = f (a)
for a ∈ R or in short càdlàg (continue à droite, limite à gauche).

3.4 Homeomorphisms

f : (X; OX) → (Y ; OY ) is open resp. closed iff the images of open resp. closed sets from OX

are again open resp. closed in OY . Since f
[⋃

i∈I Ai
]

= ⋃
i∈I f

[
Ai
]

(cf. [19, p. 9.2.1]) f is open
iff the images of a basis B of OX are open in OY . Corresponding to 3.2 the mappimg f is open
iff for all x ∈ X the images of neighborhoods of x under f are again neighborhoods of f(x)
⇔ ∀x ∈ X ∀U ∈ U(x) : f [U ] ∈ U (f(x)). f is a homeomorphism iff it is continuous, open
and bijective. A continuous function f : (X; OX)→ (Y ; OY ) is a homeomorphism iff the inverse
f−1 : (Y ; OY )→ (X; OX) exists and is continuous. The topological spaces (X; OX) and (Y ; OY ) then
are homeomorphic to each other. For example the open ball B1 (0) ⊂ X in every Banach space
X is homeomorphic to X by means of p : B1 (0) → X given by p (x) = x

1−∥x∥ and p−1 (y) = y
1+∥y∥ .

3.5 Continuous and open functions

For f : (X; OX) → (Y ; OY ) the following statements hold:

1. f is continuous ⇔ f
[
A
]

⊂ f [A] ∀A ⊂ X ⇔ f−1
[
B
]

⊃ f−1 [B] ∀B ⊂ Y .

2. f is open ⇔ f
[
A
]

⊃ f [A] ∀A ⊂ X ⇔ f−1
[
B
]

⊂ f−1 [B] ∀B ⊂ Y .
Proof:

1. ⇒: Assume there is an x ∈ A with f(x) ∈ Y \ f [A]. Since Y \ f [A] is open there is an
U ∈ U (f (x)) with U ⊂ Y \ f [A]. Since f is continuous we have f−1 [U ] ∈ U(x). Since x is an
accumulation point of A we have ∅ ≠ f−1 [U ] ∩ A and hence ∅ ≠ f

[
f−1 [U ] ∩A

] ⊂ U ∩ f [A]
contrary to U ⊂ X \ f [A]. ⇐: Assuming f is not continuous there is a x ∈ X and an
U ∈ U (f(x)) with ∅ ̸= V ∩ (X \ f−1 [U ]

) ∀V ∈ U(x), i.e. x ∈ A resp. f(x) ∈ f
[
A
]

with
A := X \ f−1 [U ]. On the other hand because of U ∈ U (f(x)) open and [19, Satz 9.2.3]
f(x) /∈ Y \ U = f [X] \ f [f−1 [U ]] ⊃ f [X \ f−1 [U ]] = f [A], i.e. f

[
A
]
⊈ f [A]. The second

equivalence follows with A := f−1 [B] resp. B := f [A] and A ⊂ f−1 [f [A]].
2. ⇒: Assume there is a x ∈ X \ f−1 [B] with f(x) ∈ B. Since X \ f−1 [B] is open there is

an U ∈ U(x) with U ⊂ X \ f−1 [B]. On account of f being open we have f [U ] ∈ U (f(x)).
Since f(x) is an accumulation point of B we have f [U ] ∩ B ̸= ∅ and thus f−1 [f [U ] ∩B] =
U ∩ f−1 [B] contrary to U ⊂ X \ f−1 [B]. ⇐: Assuming f is not open there is an x ∈ X and
an U ∈ U (x) with f [U ] /∈ U (f(x), i.e. ∅ ≠ V ∩ Y \ f [U ] = V ∩ f [A] ̸= ∅ ∀V ∈ U (f(x)) with
B := Y \ f [U ] and so f(x) ∈ B resp. x ∈ f−1

[
B
]
. On the other hand because of U ∈ U (x)

is open we have x /∈ X \ U = f−1 [Y ] \ f−1 [f [U ]] = f−1 [B]. The first equivalence follows as
above with A := f−1 [B] resp. B := f [A] and A ⊂ f−1 [f [A]].
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3.6 Closed maps

Let f : (X; OX)→ (Y ; OY ) be a closed map. Then for each B ⊂ Y and open U ⊂ X with f−1 [B] ⊂ U
there is an open V ⊃ B with f−1 [V ]⊂ U .
Proof: V := Y \ f [X \ U ] is open and so from X \ U ⊂ f−1[f [X \ U ]] follows f−1[V ] = X \
f−1 [f [X \ U ]] ⊂ U . Furthermore we have f−1 [B] ⊂ U ⇒ B ⊂ f [U ] ⇒ Y \B ⊃ Y \ f [U ] ⊃ f [X \ U ]
⇒ B ⊂ Y \ f [X \ U ] = V .

4 Initial and final topologies

4.1 The initial topology

(Yi; Oi)i∈I

Z
g //

fi◦g
::

(X; τ)

(fi)i∈I

OO

The initial or weak topology τ (fi : i ∈ I) on a set X with reference to the
functions fi : Ui → Yi from subsets Ui ⊂ X covering X = ⋃

i∈I Ui into the
topological spaces (Yi; Oi) with i ∈ I is the minimal resp. weakest topology
on X such that all fi are continuous. On account of 3.1 the inverse images
f−1
i [Oi] of open sets Oi ∈ Oi form a subbasis for the initial topology. The

initial topology is uniquely determined by the following universal property:
any map g : Z → X is continuous iff all compositions fi ◦ g : g−1 [Ui] → Yi are
continuous.
Proof : For every element f−1

i [Oi] of the subbasis with open Oi ∈ Oi we have g−1
[
f−1
i [Oi]

]
=

(fi ◦ g)−1 [Oi] whence by 3.1 follows the universal property. Conversely the case g = id : (X; τ) →
(X; τ) shows that the universal property implies the continuity of all fi and in particular that τ must
contain all f−1

i [Oi] with Oi ∈ Oi. For any other topology σ on X satisfying the universal property the
case id : (X;σ) → (X; τ) shows that τ ⊂ σ while id : (X; τ) → (X;σ) implies σ ⊂ τ whence follows
that τ is uniquely determined by the universal property.

4.2 The product topology

The product topology
⊗

i∈I Oi = τ (πi : i ∈ I) on the product space ∏i∈I Xi of the topological
spaces (Xi; Oi)i∈I is the initial topology of the projections πi : ∏i∈I Xi → Xi. On account of 3.4
and πj

(⋂
i∈I π

−1
i [Oi]

)
= Oj for j ∈ I resp. = X for j /∈ J the projections πi are open. Owing to 3.1

the mapping f : Y → ∏
i∈I Xi is continuous iff the inverse images f−1

[
π−1
i [Oi]

]
= (πi ◦ f)−1 [Oi] of

subbasis sets are open in (Y ;O).

x

y

U

πx (U)

πy (U)

πx (U) × πy (U)

Hence f is continuous iff all components πi ◦ f : (Y ; O) → (Xi; Oi)
are continuous. The open sets of the product topology are unions
of finite intersections of subbasis sets, i.e. the basis sets have the
structure of cylinder sets O = OT ×∏

i∈I\T Xi with OT ∈ ⊗i∈T Oi

and finite T ⊂ I. The drawing on the right hand shows that an open
set in the product topology (the circle) is included in the product of
its components (the square) but may be much smaller. Conversely it
can be shown that infinite products of open sets need not be open in
the product algebra.

1. Due to ∏1≤k≤nBϵ/
√
n(xk) ⊂ Bn

ϵ (x) ⊂ ∏
1≤k≤nBϵ·

√
n(xk) with x = (x1, ..., xn) the euclidean

norm ∥x∥ =
√
x2

1 + ...+ x2
n generates a topology on Rn which is identical to the product of the

topologies on R induced by the absolute values |xk|.
2. Regarding the complex numbers C ≃ R2 as a product of R we infer from 3.1 that the real part

Ref = pRe ◦ f and the imaginary part Imf = pIm ◦ f of a continuous mapping f : C → C
are again continuous.
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3. Due to
{

(u+ v) : u ∈ Bϵ/3(x) ∧ v ∈ Bϵ/3(y)
}

⊂ Bϵ(x+y) and {(u · v) : u ∈ Bδ(x) ∧ v ∈ Bδ(y)} ⊂
Bϵ(x · y) with δ = ϵ

3 max{∥x∥;∥y∥;1} the addition + : C2n → Cn and multiplication : C2n → Cn
are continuous mappings such that the sum f + g resp. the product f · g of continuous
f, g : Cn → Cn are continuous again.

4. Owing to d (x; y) ≤ d (x;u) + d (u; v) + d (v; y) the metric d : X ×X → [0; ∞[ is an uniformly
continuous mapping on the product O1 (d)⊗O2 (d) generated by the squaresB1/n (x)×B1/n (y)
with n ∈ N∗ since for any (u; v) ∈ Bδ (x)×Bδ (y) we have |d (x; y) − d (u; v)| ≤ d (x;u)+d (y; v) ≤
2δ and consequently d (u; v) ∈ B2δ (d (x; y)). It is also uniformly continuous on the initial
topology τ (d) ⊂ O1 (d) ⊗ O2 (d) induced by the diagonal strips d (x; y) < 1

n with n ∈ N∗.
Due to 1.7 the product topology is identical to the Euclidean topology O′′ defined by the
product metric d′′ ((x; y) ; (u; v)) =

√
d2 (x; y) + d2 (u; v) via the open discs B′′

1/n (x; y) with
n ∈ N∗. (cf. 11.13)

4.3 The subspace topology

The subspace or trace topology OA = τ (iA) on a subset A of the topological space (X; OX)
is the initial topology with reference to the canonical injection ιA : A → X and consists of the
intersections ι−1

A [O] = O∩A with open sets O ∈ O. Hence a map g : (Y ; OY ) → (A; OA) is continuous
iff ιA ◦ g : (Y ; OY ) → (X; OX) is continuous.

1. Due to 3.1 for every continuous f : (X; OX) → (Y ; OY ) its restriction f ◦iA := f |A : (A; OA) →
(Y ; OY ) is continuous too.

2. The converse holds only if the subsets (Ai)i∈I on which the restrictions f |Ai : (Ai; OAi) →
(Y ; OY ) are continuous form a cover of X so that every open set O ∈ OY can be represented
as a union f−1 [O] = f−1 [O] ∩⋃i∈I Ai = ⋃

i∈I f
−1 [O] ∩Ai = ⋃

i∈I f |−1
Ai [O].

3. For all Ai open the covering condition is already sufficient since in that case every set O ∩ Ai
open in OAi is also open in OX .

4. For all Ai closed the covering has to be at least locally finite i.e. for every x ∈ X there is
a neighborhood U ∈ U(x) and a finite subset J ∈ I with U ⊂ ⋃

i∈J Ai. We can assume that
x ∈ Ai∀i ∈ J because in the case of x /∈ Aj for a j ∈ J one may exclude the Aj from the local
covering by reducing the neighborhood from U to U ∩ X \ Aj . For a given V ∈ U(f(x)) there
is for each i ∈ J an Ui ∈ U(x) with f |Ai [Ui] ⊂ V and W := ⋂

i∈J Ui ∩ U ∈ U(x) is the desired
neighborhood with f [W ] ⊂ V since for each y ∈ W there is an i ∈ J with y ∈ Ui ∩ Ai and
therefore f(y) = f |Ai(y) ∈ V .

4.4 Topological embeddings

A map f : X → Y is an embedding of (X; OX) into (Y ; OY ) iff f is a homeomorphism from X
onto the subspace f [X]. For example the parametrization f : I → I × {0} ⊂ R2 of a line I = [0; 2π[
given by f(t) = (t; 0) is a toplogical embedding. In particular it is open with regard to the trace
topology on I × {0} ⊂ R2 whereas the same map f : I → R2 is still continuous but not open any
more since f [I] is not open in R2. The corresponding movement on the unit circle g : I → S1 ⊂ R2

with g(t) = (cos t; sin t) is not a topological embedding because the image of the (locally) open time
interval [0; a[⊂ I with a < 2π is neither open nor closed in S1. The starting time {0} ∈ I as well
as its image f (0) = (0; 0) ∈ I × {0} on the line are boundary points but the corresponding image
g (0) = (1; 0) ∈ S1 on the unit circle is an interior point. The parametrization of the open spiral
h : R → C with h(t) = eit+t is a topological embedding.
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4.5 The final topology

Y
g // Z

Xi

fi

OO

g◦fi

>>

The final topology on a set Y with respect to a family (fi)i∈I of maps fi : Xi → Y
is the maximal or strongest topology so that all fi are continuous. Hence a set
O ⊂ Y is open resp. closed with regard to the final toplogy iff all inverse images
f−1
i [O] are open resp. closed in Xi. In general a topology on Y is the final topology

with respect to the fi iff it satisfies the universal property: Any map g : Y → Z
is continuous iff all g ◦ fi : Xi → Z are continuous for i ∈ I.

Proof : The final topology satisfies the universal property since due to 3.1 every map g : Y → Z
is continuous iff the inverse images f−1

i

[
g−1 [O]

]
= (g ◦ fi)−1 [O] of open sets O ⊂ Z are open in

Xi. Then ⇒ follows since all fi are continuous and ⇐ is a consequence of the definition since if all
f−1
i

[
g−1 [O]

]
are open in Xi their image g−1 [O] is open in Y . Conversely the universal property

uniquely determines the final topology since ⇐ implies the continuity of all fi and therefore that
all f−1

i [O] for open O ⊂ Y be open in Xi whereas the direction ⇒ demands that no other sets be
included.

4.6 The coherent topology

The coherent topology on a set X = ⋃
j∈J Xj with a covering (Xj)j∈J is the final topology with

regard to the injections ij : Xj → X. Hence a set O ⊂ X is open resp. closed with regard to the
coherent toplogy iff all intersections O ∩Xi are open resp. closed in the subspace topology of Xi.

4.7 The quotient topology

Let (X; OX) a topological space and R an equivalence relation on X with the equivalence classes
x = {y ∈ X : xRy} forming the quotient set X/R = {x : x ∈ X}. The quotient topology is the final
topology with regard to the canonical projection π : X → X/R defined by π (x) = x. It comprises
exactly the images O =

(
π ◦ π−1) [O] of all open saturated sets π−1 [O] but since there may be other

open resp. closed sets in OX apart from the saturated ones the canonical projection π : X → X/R
in general is not an open map.

4.8 Quotient maps

A map f : X → Y may be decomposed into the surjective projection πf : X → X/Rf , the
canonical bijection f := f ◦ π−1

f : X/Rf → f [X] and the injection ιf : f [X] → Y by means
of the equivalence relation Rf ⊂ X × X defined by xRfy ⇔ f(x) = f(y). Note that π−1

f is only a
relation but the composition f ◦π−1

f is a function. Since a set πf [O] is open resp. closed in X/R iff(
π−1
f ◦ πf

)
[O] =

(
f−1 ◦ f) [O] is open resp. closed in X the quotient topology consists exactly of the

projections πf [O] of saturated open sets of the form O =
(
f−1 ◦ f) [O] and its closed sets are the

projections of their complements, i.e. projections of saturated closed sets. According to 4.3 resp.
4.7 the continuity of f extends to all three components with regard to the quotient topology on
X/Rf and the trace topology on f [X] ⊂ Y . A map f : X → Y is a quotient map iff one of the
following three equivalent conditions is satisfied:

1. f is continuous and its canonical bijection f is open and therefore a homeomorphism
between X/Rf and f [X]⊂ Y .

2. f is continuous and every open resp. closed saturated set O =
(
f−1 ◦ f) [O] has an image

f [O] which is open resp. closed in f [X].

3. The trace topology OY ∩ f [X] on f [X] ⊂ Y coincides with its final topology Of which is
then called the identification topology .
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Proof :

1. ⇒ 2.: Directly follows from the definition of the quotient topology in ??. Due to the surjectivity
of f with regard to f [X] the conditions fort open and closed sets are equivalent.

2. ⇒ 3.: Due to the continuity the trace topology on f [X] contains at most those O ⊂ f [X] for
which f−1 [O] is open while the open character of the canonical bijection f̄ implies that it contains
all of these sets.

3. ⇒ 1.: The continuity of f is equivalent to OY ∩ f [X] ⊂ Of while Of ⊂ OY ∩ f [X] implies that
every

(
f̄ ◦ πf

)
[O] = f [O] ⊂ f [X] with saturated open O =

(
f−1 ◦ f) [O] ⊂ X is open in f [X]

whence f̄ : X/Rf → f [X] is an open map.

Examples:

1. f : [0; 2π] → S1 ⊂ R2 with f(x) = (cosx; sin x) is continuous, surjective and closed but not
open since f [ ]x; 2π] ] is not open in S1 for 0 ≤ x < 2π. But due to its bijective character f is
open and consequently the loop [0; 2π]/Rf with regard to xRfy ⇔ f (x)= f (y) is homeomorphic
to the unit circle (cf 4.4).

2. g : R3
∗ = R3 \ {0} → S2 with g(x) = x

∥x∥ is continuous, surjective and open such that the
space R3

∗/Rg of all open rays π−1
g (x) = {tx : t > 0} defined by the equivalence relation xRgy

⇔ g (x)= g (y) is homeomorphic to the unit sphere.

4.9 The restriction of a quotient map

The restriction f |U : U → f [U ] of the quotient map f : X → Y to a saturated open or closed set
U ⊂ X is again a quotient map and the trace topology OY ∩ f [U ] coincides with the induced final
topology Of |U on f [U ]

Proof : For every saturated U ⊂ X and open O ⊂ Y the inverse image f |−1
U [f [U ] ∩O] = U∩f−1 [O]

is open in U whence f [U ] ∩ O is open in the final topology such that we have shown OY ∩ f [U ] ⊂
Of |U . For an open saturated U ⊂ X and every O ∈ Of |U with open inverse image f |−1

U [O] =
f−1 [O] ⊂ U this inverse image is also open and saturated in X whence O = f

[
f |−1
U [O]

]
⊂ f [U ] is

open in Y and consequently O ∈ OY ∩ f [U ]. In the case of a closed saturated U ⊂ X there is an
open f−1 [O] ⊂ V0 ⊂ X with f |−1

U [O] = f−1 [O] = U ∩V0 and the enlarged set V = V0 ∪X \U is open
as well as saturated with f |−1

U [O] = U ∩V whence f [V ] is open in Y and consequently O = f [V ∩ U ]
= f [V ] ∩ f [U ] ∈ OY ∩ f [U ] such that we have shown Of |U ⊂ OY ∩ f [U ].

Note: If the restrictions of a the canonical projction to the subset U ⊂ X is injective every open set
O ∩U = f |−1

U [f |U [O ∩ U ] ] is saturated such that f |U is a homeomorphism and the subset U can
be identified with its image f [U ].

4.10 The topological sum

The topological sum
⊔
i∈I Xi is defined as the union ⋃̊

i∈IXi of the disjoint topological spaces
(Xi,Oi)i∈I endowed with the final topology of the injections ιi : Xi → ⋃

i∈I Xi, i.e. the strongest
topology such that all ιi are continuous. Owing to (⋃i∈I Xi) \O = ⋃

i∈I (Xi \O) a set O ⊂ ⊔
i∈I Xi is

open resp. closed iff all O∩Xi are open resp. closed in Oi for every i ∈ I. In particular the injections
are open as well as closed maps, hence topological embeddings. Due to the universal property
4.5 a map f : ⊔i∈I Xi → Y is continuous iff every restriction f |Xi = f ◦ ιi is continuous. In the case
of the Xi not being disjoint they are placed in separate dimensions via indexing and are treated in the
form (Xi × {i} , {⋃x∈O (x; i) : O ∈ Oi})i∈I such that the trace topology on Xi ⊂ ⊔

i∈I Xi coincides
with the original topology Oi.
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4.11 The attaching lemma

For continuous maps fi : Ai → Y coinciding on the intersections fi|Ai∩Aj = fj |Ai∩Aj with i; j ∈ I
of either an open or a finite closed cover (Ai)i∈I of a common space X ⊂ ⋃

i∈I Ai exists a unique
continuous extension f : X → Y with f |Ai= fi.

Note: The attaching lemma is tacitly applied in the construction of the Möbius strip 20.12, the
torus 20.16 and related manifolds by attaching suitable neighborhoods with corresponding parametriza-
tions.

Proof: f is well defined by f (x) = fi (x) for x ∈ Ai and for open O ⊂ Y and open Ai all f−1
i [O] are

open in Ai, hence open in X and so is the the preimage f−1 [O] = ⋃
i∈I f

−1
i [O]. In the case of closed

Ai we consider a closed A ∈ Y with f−1
i [A] closed in all Ai, hence closed in X and so is the finite

union f−1 [A] = ⋃
i∈I f

−1
i [A].

4.12 Adjunction spaces

Y ⊔ (X \A)

φ [A]
Y X \A

Y ∪φ X

Y X

A
φ [A]

φ

Y ⊔X

Φ

Φ̄

πΦ

πΦ [Y ] πΦ [X]
= X \A

πΦ [A]
= φ [A)= Y

Two disjoint topological spaces X and Y are attached by means of
a continuous map φ : A → Y on a closed set A ⊂ X in the form of
the adjunction space X ∪φ Y := (X ⊔ Y ) /RΦ with regard to the
canonical extension Φ : X ⊔ Y → (X \A) ⊔ Y defined by Φ|A = φ
and Φ|X\A⊔Y = id. Hence according to 4.10 a set πΦ [O] is open resp.
closed in X∪φY iff X∩O is open in X and Y ∩O is open in Y . Then

1. The restriction πΦ|Y : Y → X ∪φ Y is an embedding and
πΦ [Y ] is closed in X ∪φ Y .

2. The restriction πΦ|X\A : X \A → X ∪φ Y is an embedding
and πΦ [X \A] is open in X ∪φ Y .

3. The adjunction space X∪φY is the disjoint union of πΦ [Y ]
and πΦ [X \A] and it is homeomorphic to the topological
sum (X \A)⊔Y . In particular the sum topology coincides
with the final topology of the canonical extension Φ.

Proof :

1. The restriction of the canonical projection πΦ|Y is obviously continuous, injective and it is
also a closed map since for every closed B ⊂ Y the intersection π−1

Φ [πΦ [B] ] ∩ Y = B is closed
in the closed subset Y while the intersection π−1

Φ [πΦ [B] ] ∩X = φ−1 [B] is closed in the closed
subset X whence according to 4.8 the saturated set π−1

Φ [πΦ [B] ] is closed in the disjoint union
X ⊔ Y such that according to 4.8 πΦ [B] is closed in the quotient topology of X ∪φ Y .

2. Follows from π−1
Φ [πΦ [C] ] = C for every C ⊂ X \A.

3. Obvious since πΦ [A] ⊂ πΦ [X]. The homeomorphy is a consequence of 1. and 2.
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4.13 The wedge sum

x1

x2

x3

x2

x3

x1

The wedge sum
∨
i∈I Xi = (⊔i∈I Xi) ∪g {p} of the disjoint topological spaces

(Xi,Oi)i∈I with regard to the base points pi ∈ Xi is the adjunction space of
the topological sum

⊔
i∈I Xi and the base point p attached to each other by

g : (pi)i∈I → {p} with g (pi) = p for every i ∈ I. All open sets Oi ⊂ X with pi /∈ Oi
are still open in ∨

i∈I Xi but the neighborhood system of the base point consists
of all unions

⋃
i∈I Oi of open sets containing pi ∈ Oi. For example the wedge

sums ∨1≤i≤nRi resp. ∨1≤i≤n S1 are homeomorphic to the union of the coordinate
axes

⋃
1≤i≤n {xj = 0 ∀j ̸= i} ⊂ Rn resp. to a subset of the bouquet of circles⋃

1≤i ̸=j≤n Si;j ⊂ Rn with Si;j= ∂B̄n
1 (ei) ∩ {xk = 0 ∀k ̸= i ∨ k ̸= j} each furnished

with the trace topology in Rn.

5 Connected spaces

5.1 Connectedness

A topological space (X; O) is connected iff it cannot be decomposed into two disjoint open sets.
Hence it is connected iff there are no other sets being open as well as closed apart from ∅ and X. It
is totally disconnected iff every set in X is open as well as closed. (X; O) is connected iff there is a
surjective mapping on a discrete space containing at least two points. The continuous image f [X]
of a connected space X obviously stays connected. A connected set A stays connected if boundary
points are added: any B satisfying A ⊂ B ⊂ A is still connected. If a connected set A contains
interior and exterior points of a set B it also must contain boundary points of B since otherwise

o
B

and X \
o
Bwould constitute an open disjoint covering of A. The union A ∪B of two connected sets A

und B is connected iff A ∩B ̸= ∅.

5.2 Intervals and the intermediate value theorem

Every interval I ⊂ R is connected with reference to the natural topology. In particular every
continuous function f : X → R on a connected set X with s, t ∈ f [X] assumes every value between s
and t.
Proof: Assume I is open. Let O1 and O2 be open disjoint sets in R both meeting I with I ⊂ O1 ∪O2.
Let u ∈ O1 ∩ I, v ∈ O2 ∩ I with u < v and s := sup {w ∈ I : [u;w] ⊂ O1}. Hence u < s < v and due
to the definition of an interval we have s ∈ I so either x ∈ O1 or x ∈ O2. Since I is open there is an
ϵ > 0 with either B2ε(s)⊂ I ∩O1or O1 or in B2ε(s) ⊂ I ∩O2. In the first case we have [u; s+ ϵ] ⊂ O1
and s is not an upper bound. In the second case it follows that [u; s− ϵ] ⊈ O1 and s is not the least
upper bound. On account of 5.1 the connectedness extends to arbitrary intervals.

5.3 Connected graphs

1

−1

1

x

y y = sin
(
1
x

)

1

In set theory a function is defined as a set of ordered pairs such that the second
coordinate y = f (x) ∈ Y is uniquely determined by the first coordinate x ∈ X
(cf [19, p. 9.1]). In analysis a (not necessarely existing) algebraic expression
f (x) determining the value of the second coordinate from a given value of
the first coordinate is usually being referred to as the function in contrast
to its graph Gf = {(x; f(x)) : x ∈ X} ⊂ X × Y illustrating the geometric
aspect of f . Although set theory does not distinguish between graph and
function this text will follow the analytical fashion:. Hence the “graph” Gf =
{(x; f(x)) : x ∈ I} ⊂ R2 of a continuous real-valued function f : I → R on the interval I ⊂ R is itself
connected in R2 since it is the continuous image of the trajectory k : I → R2 with k(t) = (t; f(t))
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which in turn is continuous according to 4.2. An interesting case is I =]0; 1] and f(x) = sin
(

1
x

)
.

Due to 5.1 the closure Gf = Gf ∪ {0} × [−1; 1] is also connected but for I = [−1; 1] \ {0} this is
not true any more because the right half plane H+ =

{
(x; y) ∈ R2 : x > 0

}
and the left half plane

H− =
{
(x; y) ∈ R2 : x < 0

}
form an open disjoint covering of Gf . By adding an arbitrary boundary

point (0; a) with −1 ≤ a ≤ 1 the connectedness can be restored. The Sorgenfrey line from 2.8
is totally disconnected since all basis sets [a, b[ = R \ (]−∞; a[ ∪ [b; ∞[) are closed on account of
]−∞; a[ = ⋃

n∈N [a− n; a[ resp. [a,∞[ = ⋃
n∈N [a; a+ n[.

5.4 Connected components

A simple chain between two points a and b in a topological space X is a finite sequence of open
sets U1, ..., Un, so that only the first set contains a, only the last set contains b and each set intersects
only the directly adjacent sets. a and b are connected iff every open covering U of X contains
a simple chain between a and b. Since this definition refers to every possible open covering the
elements of a simple chain must be connected and since the union of two open connected sets is again
connected the union of a chain is an open connected set. For a given open covering U the union KU (a)
of all chains in U containing a is an open connected set and consequently if a and b are connected there
is an open connected set containing both points. The converse is also true for in the case of an
open covering U such that b /∈ KU (a) and vice versa we have a partition of X into disjoint open sets
KU (a), KU (b) and possibly X \ (KU (a) ∪KU (b)) such that every open set O containing both a and
b admits an open partition of the corresponding intersections. The connectedness between two points
is an equivalence relation and the equivalence class of a point x is the connected component K(x)
i.e. the union of all connected open sets containing x. The connected components form a disjoint
covering of X. Every K (x)is closed since y /∈ K(x) must have a neighborhood U ∈ U (y) contained
in X \K (x). Hence if the number of connected components is finite, they are open as well as closed.
In general every open as well as closed set containing x also contains K(x). Consequently K(x) lies
in the intersection of alle open as well as closed sets containig x. But K (x)is not equal to this
intersection:

5.5 Connected components in the plane

x

y

b

b

u

v

1

The set X ⊂ R2 contains the points u = (0; 0), v = (0; 1) and the lines sn ={
1
n

}
× [0; 1] for n ∈ N⋆ with the trace topology in R2. Since all sn are disjoint,

connected, open and closed sets it follows that K(u) = {u} and K(v) = {v}. But
any open and closed set M containing u meets infinitely many sn and must contain
all of these lines since each of them is connected. Hence v is a boundary point of M
and so belongs to M . K(u) = {u} and K(v) = {v} are closed but not open.

5.6 Connected products

X1

a1

b1

X2

a2

b2
X3

a3

b3
X4

a4

b4

X5

a5

b5

E3

1

X = ∏
i∈I Xi is connected iff all Xi are connected

Proof: ⇒ follows from the continuity of the components
resp. 5.1. Concerning ⇐ we show that the connected
component K(a) of an arbitrary point a = (ai)i∈I ∈ X
is dense in X and apply 5.1. Let U = ⋂

k∈K p
−1
k (Uk)

with Uk open in Xk and finite K ⊂ N an arbitrary ba-
sis set of the product topology on X. W.l.o.g. let K =
{1; ...;n}, choose bk ∈ Uk for k ∈ K and define E1 =
{x ∈ X : x1 ∈ X1 and xi = ai else}, E2 = {x ∈ X : x1 = b1, x2 ∈ X2 and xi = ai else},..., En =
{x ∈ X : x1 = b1, ..., xn−1 = bn−1, xn ∈ Xn and xi = ai else}. The Ei are homeomorph to the Xi and
connected due to 5.1. Also we have Ei ∩ Ei+1 ̸= ∅ and again due to 5.1 the set A = ⋃

1≤i≤nEi is
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connected. On account of a ∈ E1 ⊂ A we have A ⊂ K(a) and hence ∅ ≠ U ∩En ⊂ U ∩A ⊂ U ∩K(a).
Consequently K(a) intersects every basis set U and so is dense in X.

5.7 Connected components of products

For every x = (xi)i∈I ∈ ∏i∈I Xi is K(x) = ∏
i∈I K (xi).

Proof: Due to 5.6 the product ∏i∈I K (xi) is connected and contains x so that ∏i∈I K (xi) ⊂ K(x).
On the other hand with K(x) every pi (K (x)) is connected too and contains xi. Hence pi (K (x)) ⊂
K (xi) for all i ∈ I and hence K(x) ⊂ ∏

i∈I K (xi).

5.8 Path connectedness

A continuous map f : I → X on the closed interval I = [0; 1] ⊂ R into the topological space X is a
path and X is path connected iff for any two points x, y ∈ X there is a path f with f(0) = x and
f(1) = y. Since with I the continuous image f [I] is connected every path connected space is
connected. The converse is not true since for example the closure f of 5.3 is connected but not path
connected. A map g : [0; 1] → f with g(0) = (0; 0) and g(0) ̸= g(1) ∈ f cannot be continuous in x = 0
since for any δ > 0 there is a x < δ with ∥g(x) − g(0)∥ = ∥g(x)∥ > 1. This example also shows that
the closure of a path connected space is not necessarily path connected. Connected open subsets
O ⊂ X of metric spaces (X; d) are path connected, since in that case the path connected open
neighborhoods Bϵ (x) form a neighborhood basis for every x ∈ X whence the path component
P (x) of all points being path connected to x is open such that the path components constitute
a disjoint open partition of O.

5.9 Local path connectedness

x

y

b

b

u

v

1

A topological space X is locally path connected iff for every x ∈ X and every
neighborhood U of x there is a subordinate path connected neighborhood V ⊂ U of
x. A connected as well as locally path connected X is also (globally) path connected
since from the open cover of X by the path connected neightbourhoods of all points
x, y ∈ X we can choose a finite chain of path connected sets whose union is again
path connected and contains x as well as y.

For example the set X = {0}× [0; 1]∪⋃n∈N⋆

{
(x;nx) ∈ R2 : 0 ≤ x ≤ 1

n

}
⊂ R2 is connected and path

connected (cf. 5.8) but not locally path connected since every neighborhood of a point (0; t) with
0 ≤ t < 1 on the vertical line meets infinitely many of the skewed lines and thus can only be path
connected if it contains the node (0; 0) of these lines.

5.10 Simple connectivity

g
x

f

X

A loop in a topological space X based at x ∈ X is a closed path f with
f (0) = f (1) = x and it is contractible iff there is a continuous contraction
F : I2 → X with I = [0; 1] such that F (t; 0) = f (t) and F (t; 1) = x for every
t ∈ I. The space X is simply connected iff it is connected and every loop
in X is contractible. Thus simple connectivity indicates holes in manifolds
as e.g. the torus X which is connected as well as locally path connected.
The loop f on its side is contractible while the loop ag round its hole is not.
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6 Filters and convergence

6.1 Filter

A Filter F on a set X is a family of subsets of X containing for every member F1 its nonempty
intersection F1∩F2 with any other member F2 as well as every overlying set F3 ⊃ F1 and especially
X. A subfamily B ⊂ F is a filter basis of F iff every element of F includes an element of B. Hence
a family of subsets is a filter basis iff every nonempty intersection of two members of B includes a
member of B. For every nonempty subset A ⊂ X the family of all overlying sets F with A ⊂ F ⊂ X
is a filter. For an atom A = {x} this filter includes the neighborhood system U(x) which is itself a
filter, namely the neighborhood filter. For a sequence (xi)i∈N⊂ X the tails Bk := {xi : i ≥ n} for
k ∈ N form a basis for the filter induced by the sequence.

6.2 Ultrafilter

A filter F1 is included in a filter F2 resp. F1 ⊂ F2 iff every member of F1 contains a member of F2.
We say that F1 is weaker than F2 and F2 is stronger than F1. A filter is an ultrafilter iff there
is no stronger filter on X. Every filter is included in an ultrafilter since every linearly ordered
subfamily Φ0 of the family Φ of all filters containing the given filter F has the upper bound ⋃Φ0 ∈ Φ
whence Φ is inductive with regard to the inclusion ⊂. By applying Zorn’s lemma [19, p. 14.2.4]
we obtain a maximal element G of Φ which is the desired ultrafilter.

6.3 Characterization of ultrafilters

F is an ultrafilter on X iff for any subset A ⊂ X either A ∈ F or X \A ∈ F .
Proof: Due to A ∩ X \ A = ∅ the filter F cannot contain two sets F1 ⊂ A and F2 ⊂ X \ A: All
elements of F intersect either A or X \A. W.l.o.g. assuming the first case {F ∩A : F ∈ F} is a basis
for a filter G which is stronger than F and contains A. Since F is an ultrafilter it follows F = G and
consequently A ∈ F . Conversely let F be a filter containing every subset of X or its complement.
Then for any filter G ⊋ F there exists a set A ∈ G \ F but applying the hypothesis we also have
X \A ∈ F ⊂ G so G cannot be a filter.

6.4 Free and principal filters

The principal filter of a given set A is the family of all sets including A. A filter F is free iff ⋂F = ∅.
Hence every free filter is nonprincipal but the converse is not true since a nonprincipal filter may be a
proper subset of a principal filter. A filter F is a principal ultrafilter iff F = {F ⊂ X : x ∈ F} for
a x ∈ X.

6.5 Convergence

A filter F → x converges to the limit point x ∈ X iff it includes the neighborhood filter of x.
The element x ∈ X is an accumulation point of F iff x is an accumulation point for every element
F ∈ F . The set of accumulation points of F is ⋂F∈F F . (cf. 2.6)
Examples:
The Fréchet filter induced by B={]a; ∞[: a ∈ R} is free and does not have any accumulation points.
A point is an accumulation point or cluster point of a sequence iff it is an accumulation point
of the filter induced by the sequence. The closure A a of a nonempty set A is the set of all ac-
cumulation points of its principal filter F = {F ⊂ X : A ⊂ F}. A point x is an accumulation
point of a filter F iff there is a stronger filter G converging to x. G is generated by the basis
B = {F ∩ U : F ∈ G ∧ U ∈ U(x)}. Hence an ultrafilter converges to its accumulation points.
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6.6 Continuity

The image f (F) of a filter F under the mapping f : X → Y is the filter generated by B :=
{f [F ] : F ∈ F} on Y . Due to f [F ] ∩ f [G] ⊃ f [F ∩G] the family B is a filter basis. The image f (F)
of an ultrafilter F on X is again an ultrafilter on Y since for every set A ⊂ Y holds either f−1 (A) ∈
F ⇒ A = i

(
i−1 (A)

) ∈ i (F) or X \ f−1 (A) ∈ F ⇒ f
(
X \ f−1A

)
= f (X) \ A ⊂ Y \ A ∈ f (F). The

following three statements are equivalent:

1. f : X → Y is continuous in x ∈ X .

2. U(f (x)) ⊂ f (U (x)).

3. F → x ⇒ f (F) → f(x) .

6.7 Convergence on initial topologies

A filter F on the space X with the initial topology O with reference to the mappings fi : X → (Yi; Oi)
converges to x = ⋂

i∈I f
−1
i (xi) ∈ X iff the image filter fi (F) converges to xi for all i ∈ I.

Proof: ⇒ follows from fi being continuous and 6.6. In order to show ⇐ we choose for every i ∈ I
and Ui ∈ U(xi) a Fi ∈ F with fi [Fi] ⊂ Ui and for a basis set U = ⋂

i∈E f
−1
i [Ui] ∈ U(x) with finite E

follows that F = ⋂
i∈E Fi ∈ F with F ⊂ U hence U(x) ⊂ F resp. F → x.

6.8 Trace filter

The trace F ∩ A = {F ∩A : F ∈ F} of a filter F on a nonempty set A ⊂ X is a trace filter on A
iff A intersects every filter set F . For an ultrafilter the trace F ∩A is a filter on A iff A ∈ F and in
this case F ∩A is an ultrafilter on A. The following three statements are equivalent:

1. x ∈ A.

2. The trace U(x) ∩A is a filter.

3. There is a filter on A whose image under the injection j : A → X converges to x.

7 Separation axioms

7.1 Separation axioms (Trennungseigenschaften)

A topological space X is a

• T1-space iff two distinct points in X have neighborhoods which do not meet the respective other
point.

• T2- or Hausdorff space iff two distinct points in X have disjoint neighborhoods .

• T3-space iff every closed set A ⊂ X and every x ∈ X \ A have disjoint neighborhoods and
regular iff T1 holds as well.

• T3a-space iff for every closed set A ⊂ X and for every x ∈ X \A there is a continuous function
f : X → [0; 1] with f [A] = {0} as well as f(x) = {1} and completely regular iff T1 is satisfied
as well .

• T4-space iff any two disjoint closed sets have disjoint overlying open sets and normal iff it
complies with T1 as well.
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7.2 Separation axioms in metric spaces

In metric spaces all separation axioms are valid and furthermore two disjoint closed sets A and B can
be separated by a continuous function f : X → [0; 1] with f [A] = {0} and f [B] = {1}.

Proof: We only need to show T4: Let A and B be closed and disjoint. For every x ∈ A there is an
ϵ(x) > 0 with B2ε(x)(x) ∩ B = ∅ and for each x ∈ B an ϵ(x) > 0 such that B2ε(x)(x) ∩ A = ∅. The
sets ⋃x∈ABε(x) resp. ⋃x∈B Bε(x) separate A and B. For every (not necessarily closed) A ⊂ X we
have dA : X → R+ with dA(x) := inf {d(x; y) : y ∈ A} continuous since for x0 ∈ d−1

A [ ]a; b[ ] there is an
ϵ > 0 with a + 2ε < a+ 2ϵ < dA (x0) < b− 2ϵ and consequently Bε(x0) ⊂ d−1

A [ ]a; b[ ], i.e. d−1
A [ ]a; b[ ]

is open in X. Due to 3.3 the function f(x) := dA(x)
dA(x)+dB(x) is still continuous with f [A] = {0} and

f [B] = {1}. On account of dA(x) = 0 ⇔ x ∈ A the sets A resp. B need not be closed but they cannot
have a common boundary point.

7.3 Separation axioms in subspaces

All separation axioms with exception of T4 are inherited by arbitrary subspaces. T4 extends to closed
subspaces only.

Proof: The validity of T1 and T2 is trivial since every neighborhood in the subspace X ⊂ Y is the
intersection of a neighborhood in Y with X. In order to show T3 let A be closed in X ⊂ Y and
x ∈ X \ A. There is a neighborhood U of x in the superordinate space Y which does not meet A i.e.
x is not a boundary point of A in Y either. Hence the closure A in Y can be separated from x by
open sets in Y and the intersections of these open sets with X separate A and x in X. The proof of
T3a is analogous: There is a continuous function f : Y → [0; 1] with f

[
A
]

= {0} and f(x) = {1}.
Due to 4.3.1 its restriction f |X is still continuous on X with f |X [A] ⊂ {0} as well as f |X(x) = 1.
Concerning T4 we note the fact that any set A being closed with reference to a closed subspace X ⊂ Y
is still closed in the superordinate space Y .

7.4 T1-spaces

The following statements are equivalent:

1. X is a T1-space.

2. Every atom {x} is a closed set.

3. Every set is the intersection of all of its neighborhoods.

7.5 T2-spaces

The following statements are equivalent:

1. X is a T2-space.

2. Every convergent filter on X has exactly one limit point.

3. Every point on X is the intersection of all of its closed neighborhoods.

4. The diagonal ∆ is closed in X2.

Proof:

1. ⇒ 2. : Two limit points would have two disjoint neighborhoods which both would belong to F .

2. ⇒ 3. Assuming the intersection of all closed neighborhoods contains another point y this point
would also be a boundary point of the neighborhood filter of x and according to 6.6 there
would exist a stronger Filter converging to x as well as to y.
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3. ⇒ 4. : Assuming ∆ is not closed there would exist two points x ̸= y so that (x; y) /∈ ∆ were
a boundary point of ∆. Consequently every neighborhood U × V with U ∈ U(x) and
V ∈ U(y) meets ∆ i.e. every neighborhood of x meets every neighborhood of y. But then
y is a boundary point of all neighborhoods of x and thus it lies in the intersection of all
closed neighborhoods, i.e. x = y.

4. ⇒ 1. Assuming there are two points x ̸= y with every neighborhood of x meeting every neigh-
borhood of y then (x; y) /∈ ∆ is a boundary point of the diagonal ∆.

7.6 The cofinite topology

Every T2-space is T1 but the converse is not true: Given an infinite set X with the cofinite topology
consisting of all complements of finite sets for two points x, y ∈ X the set X \{x; y} is a neighborhood
of x as well as of y not meeting the corresponding other point. Since in this topology no complement
of an open set contains another open set there are no open disjoint sets separating x and y. Hence
the cofinite topology satisfies T1 but not T2.

7.7 T3-spaces

A topological space X satisfies T3 iff the closed neighborhoods of every point x ∈ X form a
neighborhood basis. A look at the indiscrete topology shows that a T3-space needs neither
be T1 nor T2. Regular spaces are Hausdorff on account of 7.4.2. In T3-spaces the closure
A = ⋂ {O ⊃ A : O ∈ O} of a set A is equal to the intersection of all open sets containing A and
the interior

o
A = ⋃ {F ⊂ A : X \ F ∈ O} is the union of all open sets being included in A. (cf. 2.6)

7.8 T3a-spaces

For a topological space (X; O) with the family C (X; [0; 1]) of all continuous functions f : X → [0; 1]
the following statements are equivalent:

1. (X; O) is a T3a-space.

2.
{
f−1 [O] : O ∈ O; f ∈ C (X; [0; 1])

}
is a basis of the topology in X.

3. Every closed set A has the representation A =
{
f−1 (0) : f ∈ C (X; [0; 1])

}
.

Proof:

1. ⇒ 2. : Any open set can be represented as the union ⋃x∈O f
−1
x ]0; 1] of open sets produced by the

continuous functions fx : X → [0; 1] with fx [X \A] ⊂ {0} and f (x) = 1.

2. ⇒ 3. Let A be closed in X. According to the hypothesis there is a point x ∈ X \ A, an open
set Ux ⊂ [0; 1] and a fx ∈ C (X; [0; 1]) with x ∈ f−1

x [Ux] ⊂ X \ A. Since R is completely
regular there exists a gx ∈ C (R; [0; 1]) with gx [R \ Ux] ⊂ {0} and gx(x) = 1. Thus
we get A ⊂ X \ f−1

x [Ux] = f−1
x [R \ Ux] ⊂ f−1

x

(
g−1
x (0)

)
= (gx ◦ fx)−1 (0). Consequently

A = ⋂
x∈X\A (gx ◦ fx)−1 (0).

3. ⇒ 1. : Let A be closed in X and x0 ∈ X\A. Accoording to the hypothesis there is a g ∈ C (X; [0; 1])
with g [A] = {0} and g (x0) ̸= 0. Take f(x) := g(x)

g(x0) .

The following theorem 7.9 is fundamental for Urysohn’s metrization theorems 11.12 as well as
for the Stone-Čech-compactification 17.7:
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7.9 Embedding of a T3a- space

A T3a- space can be embedded in a product
∏
φ∈C∗(X) Iφ of real intervals.

Proof: The image φ [X] of every φ : X → R taken from the set Φ := C∗ (X) of real con-
tinuous bounded functions on X lies in a minimal closed interval Iφ ⊂ R. The mapping
e : X → ∏

φ∈C∗(X) Iφ with e(x) := (φ(x))φ∈C∗(X) is injective since for x ̸= y there is a φ ∈
C∗ (X) with φ(x) ̸= φ(y) and consequently e(x) ̸= e(y). The components pφ ◦ e : X → Iφ with
(pφ ◦ e) (x) = φ(x) are continuous and so is e due to 4.1. The mapping e is open since the inverse
images (pφ ◦ e)−1 [U ] = φ−1 [U ] with U open in Iφ constitute a basis for the topology on X owing to
7.8.2 and their images e

[
(pφ ◦ e)−1 [U ]

]
= e [X] ∩ p−1

φ [U ] are open in e [X].

7.10 Separation axioms in product spaces

All separation axioms with the exception of T4 transfer to the product space.
Proof: T1 and T2 follow from the fact that ⋂i∈K p−1

i [Ui] with Ui ∈ U(xi) and finite K form a
neighborhood basis for every x = (xi)i∈I ∈ ∏

i∈I Xi. For the proof of T3 we apply 7.7 two times:
Since the components satisfy T3 for every basis set ⋂i∈K p−1

i [Ui] with Ui ∈ U(xi) we have closed Ai
and open Vi ∈ U(xi) with Vi ⊂ Ai ⊂ Ui. Hence ⋂i∈K p−1

i [Ai] ⊂ ⋂
i∈K p

−1
i [Ui] is closed and includes⋂

i∈K p
−1
i [Vi] ∈ U(x) i.e. it is a closed neighborhood of x. Concerning T3a let ⋂i∈K p−1

i [Ui] be a
neighborhood of x which does not intersect A. The continuous fi : Xi → [0; 1] with fi [Xi \ Ui] ⊂ {0}
and fi(xi) = 1 can be combined e.g. via f(y) := min {(fi ◦ pi) (y) : i ∈ K} to form a continuous
f : ∏i∈I Xi → [0; 1] with f [A] ⊂ {0} and f(x) = 1. According to 3.3 the composition off needs only
to maintain the continuity and the values 0 resp. 1. Hence other possible compositions include the
maximum or the mean value of thefi.

7.11 Separation axioms in quotient spaces

Let R be an equivalence relation on X and π : X → X/R the canonical projection.
1. X/R is a T1-space iff the equivalence classes π−1 (π (x)) are closed in X for every x ∈ X.
2. X/R is a T2-space if π is open and R is closed in X2.
3. X/R is a T2-space if π is open as well as closed and X is regular.
4. X/R is a T4-space resp. normal if π is closed and X is a T4-space resp. normal.

Proof:
1. ⇒ follows from the continuity of the projection π and ⇐ is obvious from 7.4.2.
2. For π(x) ̸= π(y) ∈ X/R we have π−1 (π (x)) × π−1 (π (x)) ⊂ X2 \ R and due to R closed in X2

there are open U, V ⊂ X with π−1 (π (x)) × π−1 (π (x)) ⊂ U × V ⊂ X2 \R. Since π is open the
images π (U) resp. π (V ) are open disjoint neighborhoods of π (x) resp. π (y).

3. For (x; y) ∈ X2 \ R we have x /∈ π−1 (π (y)). On account of T1 the point x is closed in X
and since π is continuous as well as closed its image π(y) is closed and so is the inverse image
π−1 (π (y)). Due toT3 there are open and disjoint sets U and V with x ∈ U and π−1 (π (y)) ⊂ V .
According to 3.6 we have an open neighborhood W of π(y) with π−1 (π (y)) ⊂ π−1 [W ] ⊂ V .
Thus U ×π−1 [W ] is a neighborhood of (x; y) which does not meet R. Consequently R ist closed
in X2 and the proposition follows from 2.

4. For closed disjoint sets A and B in X/R the inverse images π−1 [A] and π−1 [B] are closed and
disjoint in X due to the continuity of π. Owing to the hypothesis there are open disjoint UA and
UB in X with π−1 [A] ⊂ UA and π−1 [B] ⊂ UB. On account of 3.6 there are open neighborhoods
VA of A with π−1 [VA] ⊂ UA and VB of B with π−1 [VB] ⊂ UB. Since VA and VB are disjoint the
proposition then follows. In the case of X satisfying T1 every point x ∈ X is closed and since π
is closed every equivalence class π(x) ∈ X/R is closed too so that the proposition follows from
7.4.2.
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7.12 Continuous functions into Hausdorff spaces

The graph {(x; y) ∈ X × Y : y = f(x)} of a continuous f : X → Y into a Hausdorff-space Y is closed
in X × Y since it is the inverse image of the closed diagonal ∆ ⊂ Y 2 (cf. 7.5.4) under the continuous
mapping (f ; id) : X×Y → Y 2 (cf. 4.2). For injective f the domain X is Hausdorff too since it is the
continuous inverse image of the Hausdorff-space f [X] ⊂ Y (cf. 7.3). This precondition can be forced
upon X by substituting it with the quotient space X/R under xRy ⇔ f(x) = f(y).

7.13 Extension of continuous functions in Hausdorff spaces

For two continuous functions f, g : X → Y into a Hausdorff space Y the set {x ∈ X : f(x) = g(x)} is
closed in X. Especially f and g are identical iff they coincide on a dense subset of X.

7.14 Extension of continuous functions in regular spaces

A continuous mapping f : D → Y on a dense set D ⊂ X into the regular space Y can be extended
to a continuous mapping f : X → Y iff for every x ∈ X the imagef (U(x) ∩D) of the neighborhood
filter converges in Y .

Proof: Let f(x) be the uniquely determined (cf. 7.5.2 and 7.7) limit point of f (U(x) ∩D). f coincides
with f on D since for any x ∈ D the image filter f (U(x) ∩D) = f (U(x) ∩D) converges to f(x) due
to 6.6. We show that f is continuous: For x ∈ X and U ∈ U

(
f (x)

)
⊂ f (U(x) ∩D) there is an open

V ∈ U(x) with f [V ∩D]⊂ U . On account of 7.7 we can assume U closed so that even f [V ∩D] ⊂ U .
For every y ∈ V holds V ∈ U(y) and so f [V ∩D] ∈ f (U(y) ∩D). Since the limit point f(y) is an
accumulation point it follows that f(y) ∈ f [V ∩D] ⊂ U hence f [V ] ⊂ U , i.e. f is continuous.

8 Normal spaces

8.1 Urysohn’s lemma

A topological space X is a T4-space iff any pair of disjoint closed sets A and B can be separated by
a continuous f : X → [0; 1] with f [A] = {0} and f [B] = {1}.

Corollaries:

1. For every closed set A ⊂ O ⊂ X in an open set O in a normal space X exists a continuous
bump function f : X → [0; 1] on A supported in O with f−1 {1} = A and {f ̸= 0} ⊂ O.

2. A normal space is completely regular.

bG 1
2

bA bG0

bG 1
8

bG 1
4

bG 3
8

bBbG1

bG 7
8

bG 3
4

bG 5
8

1

Proof: In a T4-space for any open set Gj and an underlying closed
set Gi ⊂ Gj exists an open set G(i+j)/2 lying with its closure be-
tween them: Gi ⊂ G(i+j)/2 ⊂ G(i+j)/2 ⊂ Gj . We begin with
A ⊂ X \ B and apply this nesting two times to obtain G0 and
G1 with A ⊂ G0 ⊂ G0 ⊂ G1 ⊂ G1 ⊂ X \ B. Subsequently
we proceed as above for any pair Gi ⊂ Gj and obtain for each
i; j ∈

{∑
1≤m≤n

z(m)
2m : z(m) ∈ {0; 1} ∧ n ∈ N

}
an open set Gi with

Gj ⊂ Gi ⇔ j < i. We define f : X → [0; 1] by f(x) = inf {t ∈ R : x ∈ Gt} if x /∈ G1 and f(x) = 1
if x ∈ G1. Hence we obtain the desired properties f [A] = {0}, f [B] = {1} and f(x) ≤ i ⇔ x ∈ Gi.
f is continuous in x ∈ X since for any ϵ > 0 we have f

[
Gf(x)+δ \Gf(x)−δ

]
⊂ Bε (f (x)) and

Gf(x)+δ \ Gf(x)−δ ∈ U(x) for 0 < δ < ϵ. Conversely if such an f exists the corresponding open
disjoint sets are given in the form of A ⊂ f−1 [Bε(0)] resp. B ⊂ f−1 [Bε(1)] with ϵ < 1

2 .
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8.2 Gδ- and Fσ-sets

A subset A of a topological space X is a Gδ-set iff it is the countable intersection A = ⋂
n∈NGn of

open sets Gn and it is a Fσ-set iff it is the countable union A = ⋃
n∈N Fn of closed sets Fn. (G =

Gebiet; F = fermé ; σ = Summe ; δ = Durchschnitt ).

A nonempty closed set A in a T4-space X is a kernel A = f−1 {0} of a continuous f : X → [0; 1]
iff it is a Gδ-set. Correspondingly the closure of a nonempty open set O = {f ̸= 0} is the support of
a continuous f : X → [0; 1] iff it is a Fσ-set.

Proof:

⇒: Assuming the open sets Gn from the preceding definition and the separating functions fn :
X → [0; 1] with fn [A] = {0} and fn [X \Gn] = {1} according to 8.1 we obtain the desired function
by f(x) = ∑

n∈N
fn(x)

2n which is continuous due to the continuity of the partial sums (1.6).

⇐: The given f provides the desired open sets by means of Gn = f−1
[
B1/n (0)

]
.

8.3 Tietze’s extension theorem

A topological space X is a T4-space iff every real-valued continuous function on a closed subset A ⊂ X
can be extended to X.

Proof:

−0.5

−1.0

0.5

1.0

x

y

f

f0
f0 + f1
f0 + f1 + f2
f0 + f1 + f2 + f3

1

⇐: Let A be closed in X and since R is homeomorph to
]−1; 1[ (cf. 3.4) we assume a continuous f : A →]−1; 1[. Ac-
cording to 8.1 there is a continuous f0 : X →

[
−1

3 ; 1
3

]
with

f0
[{
f ≤ −1

3

}]
=
{

−1
3

}
and f0

[{
f ≥ 1

3

}]
=
{

1
3

}
. This

approximation of order n = 0 satisfies |f(x) − f0(x)| ≤
2
3 . Applying 8.1 again we improve this approximation for
every n ≥ 1 by means of fn : X →

[
−1

3

(
2
3

)n
; 1

3

(
2
3

)n]
with fn

[{
f −∑

0≤i≤n−1 fi ≤ −1
3

(
2
3

)n}]
=

{
−1

3

(
2
3

)n}
and fn

[{
f −∑

0≤i≤n−1 fi ≥ 1
3

(
2
3

)n}]
=
{

1
3

(
2
3

)n}
. Due

to 1.6 the limit f := ∑
n∈N fn is continuous with

∣∣∣f(x)
∣∣∣ ≤∑n∈N

1
3

(
2
3

)n
= 1 and coincides with fon

A. Finally we remove the remainig values ±1 by means of a 8.1 yet again: Let g : X → [0; 1] be
continuous with g

[{∣∣∣f ∣∣∣ = 1
}]

⊂ {0} and g [A] = 1. Then g ◦ f : X →] − 1; 1[ is the desired continuous
extension of f .

⇒: For disjoint closed sets A and B the function f : A∪B →]1; 1[ with f [A] =
{

−1
2

}
and f [B] =

{
1
2

}
is continuous on the closed set A∪B since the connected components A and B are both open as well
as closed on A∪B. Hence it can be extended to a continuous f : X →] − 1; 1[. The sets f−1 [ ]−1; 0[ ]
und f

−1 [ ]0; 1[ ] are open and disjoint sets separating A and B.

8.4 Open covers

A set family (Ui)i∈I on a topological space X is open resp. closed iff the corresponding property is
assumed by all Ui and finite resp. countable referring to the index set I. It is point finite resp.
locally finite iff every point x ∈ X meets only finitely many Ui resp. has a neighborhood which
meets only finitely many Ui.

For every closed set A in a normal space X and a point finite open cover (Ui)i∈I of A there is a
further open cover (Oi)i∈I of A with Oi ⊂ Ui for all i ∈ I.
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Proof: Let M be the family of all open covers of A of the form (Ok)k∈K ∪ (Ul)l∈L with K ∪ L = I,
K ∩ L = ∅ and Ok ⊂ Uk for k ∈ K. For two covers C = (Ok)k∈K ∪ (Ul)l∈L ∈ M and C′ = (O′

k)k∈K′ ∪
(Ul)l∈L′ ∈ M let C ≤ C′ iff K ⊂ K ′ and Ok = O′

k for all k ∈ K. For a linearly ordered subfamily
(Cs)s∈S = (Osk)k∈Ks ∪ (Ul)l∈Ls ⊂ M let K := ⋃

s∈SK
s, L := ⋂

s∈S L
s and C := (Osk)k∈K ∪ (Ul)l∈L.

Since K ∪ L = I and K ∩ L = ∅ the family C is well defined. It is also a cover: Assume x ∈ A
and P (x) := {i ∈ I : x ∈ Ui}. In the case of P (x) ∩ L = ∅ and since (Ui)i∈I is a cover there is an i
with x ∈ Ui ∈ C. If P (x) ⊂ K and since P (x) is finite there is an s with P (x) ⊂ Ks and due to
the linear order of (Cs)s∈S and the covering property of the Cs there is an i ∈ K with x ∈ Oi ∈ C.
Hence C is a cover of A and consequently the upper bound of (Cs)s∈S . Zorn’s lemma (cf. [19, Satz
14.2.4]) then delivers a maximal element C∗ = (Ok)k∈K∗ ∪ (Ul)l∈L∗ . Assuming L∗ ̸= ∅ for an i ∈ L∗

the set B := A \
(⋃

k∈K∗ Ok ∪⋃l∈L∗\{i} Ul
)

must be closed and is included in an open set Ui. Since
X is normal there is an open Oi with B ⊂ Oi ⊂ Oi ⊂ Ui and substituting Ui with Oi results in
C∗∗ = (Ok)k∈K∗∪{i} ∪ (Ul)l∈L∗\{i} ∈ M with C∗ < C∗∗ contrary to the maximality of C∗. Hence we
conclude L∗ = ∅ which completes the proof.

8.5 Partitions of unity

The support of a continuous function f : X → R is the closure A of the set A = {x ∈ X : f(x) ̸= 0}.
A system (fi)i∈I of continuous functions fi : X → R∗ is a partition of unity subordinate to
the open cover (Ui)i∈I iff the supports of the fi form a locally finite system, are contained in the
Ui for all i ∈ I and satisfy ∑i∈I fi(x) = 1 for all x ∈ X. Since the supports are locally finite the sum∑
i∈I fi(x) is well defined and continuous even without the latter condition.

In a normal space X every locally finite cover U = (Ui)i∈I has a subordinate partition of unity.

Proof: Due to 8.4 there is an open cover O = (Oi)i∈I with Oi ⊂ Ui for all i ∈ I. Since X is normal we
can find open sets Ci with Oi ⊂ Ci ⊂ Ci ⊂ Ui and according to 8.1 continuous functions gi : X → [0; 1]
with gi [X \ Ci] = {0} and gi

[
Oi
]

= {1}. The supports of the gi lie in Ci and therefore in Ui. Since U
is locally finite the function g(x) := ∑

i∈I gi(x) is well defined and continuous. Because O is a cover of
X we have g(x) ≥ 1. The functions fi(x) := gi(x)

g(x) are continuous again and form the desired partition
of unity subordinate to U .

9 Compact spaces

9.1 Definitions

A topological space X is quasi-compact iff every open cover (Ui)i∈I of X has a finite subcover of X.
The space X is compact iff it is also Hausdorff. A subset A ⊂ X is (quasi)compact iff this property
holds for the subspace A. The set A ⊂ X is precompact iff the closure A is compact.

9.2 Properties of compact spaces

The following statements are equivalent:

1. X is quasi-compact.

2. Every family of closed sets with empty intersection has a finite subfamily with empty intersection.

3. Every filter on X has an accumulation point. (Bolzano-Weierstrass)

4. Every ultrafilter on X is convergent.
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Proof:

1. ⇒ 2.: by taking the complements.

2. ⇒ 3.: with 6.5.

3. ⇒ 4.: with 6.2.

4. ⇒ 1.: If an open cover of X had no finite subcover every finite subfamily of the closed complements
would have a nonempty intersection and consequently these intersections would form the basis of an
ultrafilter converging to an x ∈ X. But then the ultrafilter would include every neighborhood of x
and consquently an element of the open cover as well as its complement.

9.3 Sequences on quasi-compact spaces

According to 9.2.3 every sequence on a quasi-compact space has an accumulation point. The converse
is not always true: Let X = {0; 1}R the set of all functions f : R → {0; 1} with the product topology
and A the subspace of all functions f ∈ X with countably many zeroes. Fo every sequence (fn)n∈N ⊂ A
with countable zero sets In the function f ∈ A with f(x) = 0 for x ∈ ⋃

n∈N In (a countable union of
countable sets is again countable, cf. [19, p. 17.6]) and f(x) = 1 else is an accumulation point since the
sets {0}I × {1}J × {0; 1}R\(I∪J) with finite I ⊂ ⋃

n∈N In and J ⊂ R \ ⋃n∈N In form a a neighborhood
basis for f in A and contain every fn. But A is not compact since the open sets {0}x × {0; 1}R\{x} for
x ∈ R and {1}0 × {0; 1}R\{0} cover X and especially A but no finite subfamily covers A.

9.4 Compact subsets

Every compact subset K ⊂ X in a Hausdorff space X can be separated from any point x ∈ X \K
by disjoint open neighborhoods. Hence every compact subset of a Hausdorff space is closed and
since every closed subset of a quasi-compact space is obviously quasi-compact we conclude that
compact spaces are regular.

Proof : Every point y ∈ K has a neighborhood U(y) disjoint from the open neighborhood Uy(x).
These U(y) cover K and the union of the finite subcover is an open set containing K which does not
meet the finite and therefore open intersection of the corresponding Uy(x) .

9.5 Compact spaces are normal

Proof: Due to 9.4 the closed disjoint sets A and B are compact and on account of X being regular
every y ∈ B has a neighborhood U(y) disjoint from an open neighborhood Uy(A) of A. The U(y)
cover B and the union of the finite subcover is an open set containing B which does not meet the
finite and therefore open intersection of the corresponding Uy(A).

9.6 Alexander’s theorem

X is quasi-compact iff every cover of X by sets from a subbasis S has a finite subcover.

Proof: Assuming there is an ultrafilter F which does not converge. Then for each x ∈ X there
is a neighborhood Ux ∈ U (x) not included in F . Due to 2.2 there is a basis set Bx ⊂ Ux with
Bx = ⋂

k∈Kx
{Sxk} and w.l.o.g. x ∈ Sxk ∈ S for finite Kx and k ∈ Kx. There is a kx ∈ Kx with

Sxkx /∈ F since otherwise with all Sxk their finite intersection Bx and especially Ux ⊃ Bx were included
in F contrary to the hypothesis. Again under the hypothesis there is a finite subcover (Sxkx)x∈X with
the corresponding complements belonging to F . Their intersection is empty in contradiction to 6.1.
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9.7 The Heine-Borel theorem for one dimension

Every closed and bounded subset of R is compact.
Proof: On account of 9.4 and 9.6 we only have to show that every cover U of a closed interval [a; b] ⊂ R
by half open intervals [a; c[ and ]d; b] possesses a finite subcover. For c′ := sup {c ∈ R : [a; c[∈ U} > b
there is a c′′ < b with [a; c′′[∈ U which already covers [a; b[. In the case of c ≤ b there is a d′ < c′

with ]d′; b] ∈ U since otherwise c′ cannot be covered. Furthermore there is a c′′ with d′ < c′′ < c′ and
[a; c′′[∈ U such that [a; b] ⊂ [a; c′′[∪]d′; b].

9.8 The closed map lemma

For every map f : X → Y from a compact space X into a Hausdorff space Y we have the following
inclusions:

1. f is continuous ⇒ f is a closed map.
2. f is continuous and surjective ⇒ f is a quotient map.
3. f is continuous and injective ⇒ f is an open map onto f [X] and hence a topological

embedding.
4. f is continuous and bijective ⇒ f is a homeomorophism.

Corollary:
Every curve f

[
Ī
]

⊂ Rn parametrized by a continuous f without intersections on a closed
interval Ī ⊂ R is homeomorphic to this interval.
Proof :

1. Due to 9.4 every closed subset A of a compact space X is compact and its continuous image
f [A] is obviously compact, hence closed in the Hausdorff space Y .

2. Due to enu:4.8.2.
3. Due to [19] th. 9.2.5 and enu:4.8.2.
4. obvious.

9.9 Tychonov’s theorem

A nonempty product space X = ∏
i∈I Xi is quasi-compact iff all components Xi are quasi-

compact.
Proof:
⇒: follows from 9.8 and from the projections πi : X → Xi being continuous.
⇐: On account of 6.3 the image πi (F) of an ultrafilter F is again an ultrafilter since for every Ai ⊂ Xi

either the π−1
i [Ai] or π−1

i [X \Ai] are included in F and consequently either Ai = πi
[
π−1
i [Ai]

]
or

X \ Ai = πi
[
π−1
i [X \Ai]

]
are part of pi (F). Due to 9.2.4 the πi (F) converge to a xi ∈ Xi and on

account of 6.7 the filter F converges to (xi)i∈I ∈ X.

9.10 The Heine-Borel theorem

A subset of Rn is compact iff it is bounded and closed.
Proof:
⇒: Due to 9.4 a compact subset of the Hausdorff-space Rn is closed. The open cover {Bn(0) : n ∈ N}
shows that the set is bounded.
⇐: On account of 9.7 and 9.9 every bounded and closed subset of Rn is compact since it is the subset
of the compact cube [−m;m]n.

32



9.11 Open and closed cells

For every p ∈ K̊ in the nonempty interior of a compact convex set K ⊂ Rn exists a homeomor-
phism φ : B̄n → D with φ (0) = p and φ [Bn] = K̊ with regard to the unit ball Bn = Bn

1 (0). In
particular K is a closed n-cell, i.e. homeomorphic to B̄n and its interior K̊ is an open n-cell, i.e.
homeomorphic to Bn.

ex

Bn
1−λ (λx)

Bn

0

xz

y

K

Proof : The hypothesis implies the existence of an ϵ > 0 such
that Bn

ϵ (p) ⊂ K̊ and by referring to the homeomorphisms x 7→
x − p resp. x 7→ 1

ϵx we may assume p = 0 and Bn ⊂ K̊. Due
to the preceding closed-map lemma 9.8 resp. the Heine-
Borel-theorem 9.10 for every x ∈ Bn the compact ray Rx =
{tx : t ≥ 0} ∩ K has a uniquely determined endpoint ex ∈ Rx

with ∥ex∥ = max {∥y∥ : y ∈ Rx} since y 7→ ∥y∥ is continuous
such that according to 5.1 the set of all norms of ray vectors is
bounded, closed and connected, i.e. it is a closed interval
{∥y∥ : y ∈ Rx} = [0; ∥ex∥] ⊂ R. Obviously we have ex ∈ ∂K and for every y ∈ Bn

1−λ (λex) exists a z

∈ K with y − z = λ (ex − z) resp. z = 1
1−λ (y − λex) whence follows ∥z∥ < 1 resp. z ∈ Bn ⊂ K̊. By

the convexity of K and ex ∈ K we conclude y ∈ K̊ whence follows Bn
1−λ (λex) ⊂ K̊ and in particular

λex ∈ K̊ for every 0 ≤ λ < 1. Hence the map φ : Bn → K̊ is well defined by φ (x) = ∥x∥ ex. Moreover
the preceding construction shows that it is injective, surjective and also continuous whence by
the closed-map lemma follows the assumption.

9.12 Extension of continuous maps on the unit ball

Bn

p

x

xp

For every p ∈ B, c ∈ R and every real continuous map f : ∂B → R on the
compact boundary of the unit ball B = B1 (0) ⊂ Rn exists a continuous
extension fp : B → R with fp (p)= c and fp (x) = c + βxp · (f (xp) − c) for

x ∈ B \ {p} with γxp =
√

1−∥p∥2

∥x−p∥2 and xp = p + γxp · (x − p) ∈ ∂B. According
to 5.2, 5.8 and 9.10 the image f [∂B] = [a; b] is a closed interval on the real
line such that in the case of a ≤ c ≤ b the above construction satisfies fp [B] =
[a; b] while for c ≤ a follows f−1

p (c)= {p} and fp [B] = [c; b].

9.13 Kronecker’s approximation theorem

For every irrational γ ∈ [0; 1[ let f : N → [0; 1] be defined by f(n) := nγ − [nγ] with the Gauss
bracket or floor function [a] denoting the greatest integer not exceeding a. Then f is injective
and the countable set f [N] is dense in [0; 1].
Proof: f is injective since nγ − [nγ] = mγ − [mγ] ⇔ γ = [nγ]−[mγ]

m−n ∈ Q. Since the f(n) are different
from each other 9.3 yields that the sequence has at least one accumulation point in the compact (cf.
9.7) interval [0; 1] and hence for every ϵ > 0 there are natural numbers w.l.o.g. n > m with δ :=
|nγ − [nγ] − (mγ − [mγ])| < ϵ. With k = n−m and z = [nγ] − [mγ] we get |kγ − z| < ϵ ⇒ z = [kγ] if
kγ > z resp. z = [kγ]+1 if kγ < z. In the first case it follows that 0 < δ = f(k) = kγ−[kγ] < ϵ and for
ν ·δ < 1 we get [νkγ] = ν[kγ] so that the subsequence (f(νk))ν∈N∗ with f(νk) = ν (kγ − [kγ]) = ν ·δ
is increasing in [0; 1] with increments f ((ν + 1)k) − f(νk) = δ < ϵ. In the second case we have
1 − ϵ < 1 − δ := f(k) = kγ − [kγ] < 1 and for ν · δ < 1 it follows that [νkγ] = ν[kγ] + 1 so that
the subsequence (f(νk))ν∈N∗ is decreasing in [0; 1] starting with f (k) = 1 − δ and decrements
f(νkγ) − f ((ν + 1)kγ) = δ < ϵ. In both cases the subsequence will meet the open neighborhood
Bδ (x) of every x ∈ [0; 1].
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9.14 Dini’s theorem

If the continuous real-valued functions (fn)n∈N ⊂ C(X;R) on a topological space X converge point-
wise to a continuous f ⊂ C(X;R) they also converge uniformly on compact sets to f .
Proof : Due to the hypothesis the increasing sequence (infk≥n fk)n∈N with infk≥n fk < fk < f
converges pointwise to f . Hence for every ϵ > 0 and every x ∈ K there is δx > 0 and a nx ∈ N with
|f (y) − infk≥nx fk (y)| ≤ |f (y) − fnx (y)| ≤ |f (y) − f (x)| + |f (x) − fnx (x)| + |fnx (x) − fnx (y)| <
ϵ
3 + ϵ

3 + ϵ
3 = ϵ for y ∈ Bδx (x). The finite subcover (Bδx (xi))i∈K yields a m = max {nxi : i ∈ K} with

|f (y) − infk≥m fk (y)| ≤ ϵ for every y ∈ K and hence the uniform convergence of (infk≥n fk) to f
on K. With an analogous argument we obtain the uniform convergence of the decreasing sequence(
supk≥n fk

)
n∈N

to f and hence the proposition.

9.15 Lebesgue’s Lemma

For every open cover ⋃i∈I Ui ⊂ K of a compact set in a metric space (X; d) there exists a positive
Lebesgue number λ > 0 such that for every set A ⊂ X with A ∩ K ̸= ∅ and diameter δ (A) < λ
there is an i ∈ I with A ⊂ Ui.

Proof : The open balls
(
Bϵx/2 (x)

)
x∈K

with ϵx > 0 and Bϵx (x) ⊂ Ui include a finite subcover over
x ∈ J such that λ := min {ϵx/2 : x ∈ J} clearly satisfies the assertion.

10 Locally compact spaces

10.1 Locally compact spaces

A Hausdorff space is locally compact iff every point has a compact neighborhood. Due to 9.10
the most important representant is Rn.

10.2 The Alexandrov compactification

A locally compact space X can be extended to a compact space X = X ∪ {∞} by adding a single
point at infinity ∞ as well as the complements of all compact sets in X united with {∞}. Every
compact space which is homeomorphic to X up to a single point x is homeomorphic to X.

Proof: The complements of compact sets in X united with {∞} already form a topology since
arbitrary intersections and finite unions of compact sets are compact. Due to 9.4 the added sets are
compatible with the existing topology as they are open in the subspace X. X is Hausdorff since
X is Hausdorff and every x ∈ X can be separated from ∞ by a compact neighborhood. X is quasi-
compact since every open cover must include the complement of a compact set X. Let X ′ be a further
space with infinite point ∞′ such that X ′ := X

′\{∞′} is homeomorph to X. Then according to 9.4 the
complements X ′ \U ′ = X ′ \U ′ of open neighborhoods U ′ of ∞′ must be compact and consequently the
homeomorphism f : X → X ′ can be extended to f : X → X

′ by means of f |X := f resp. f(∞) := ∞′.
It remains to show that f is continuous and open in ∞, i.e. ∀U ′ ∈ U(∞′) : f−1 [U ′] ∈ U(∞) and
∀U ∈ U(∞) : f [U ] ∈ U(∞′). But this is evident from f being bijective together with 9.8 and 9.4 since
the neighborhoods of ∞′ must be the complements of compact sets in X ′.
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10.3 The continuity of extended addition and multiplication

For δ = n + 2 ∥a∥ for all n ≥ 2 we have
{

(u+ v) : u ∈ B1/δ(a) ∧ v ∈ C \Bδ(0)
}

⊂ C \ Bn(0) whence
the extended addition from 4.2.3 + : C2 → C for a ∈ C is continuous at the added points
(a; ∞) resp. (∞; a) as well as (∞; ∞) and therefore on the entire extended plane C2. Since we
have

{
(u · v) : u ∈ B1/δ(a) ∧ v ∈ C \Bδ(0)

}
⊂ C \ Bn(0) with δ = n+2

∥a∥ for all n ≥ 3 the extended

multiplication · : C2 \ {(0; ∞); (∞; 0)} → C is continuous.

10.4 Meromorphic functions

A function f̄ : C → C is continuous iff its restriction f := f̄ |{|f̄ |<∞} : C → C is continuous and for every
x ∈ f̄−1(∞) and n ∈ N there is a δ > 0 such that f̄ [Bδ(x)] ⊂ C\Bn(0), i.e., ∥u− x∥ < δ ⇒ ∥f(u)∥ > n.
Therefore all meromorphic functions are continuous at their poles with reference to the Alexandrov
compactification.

10.5 Complete regularity

A locally compact space X is completely regular owing to 7.3 since it is the subspace of the
completely regular Alexandrov compactification X.

10.6 Compact neighborhoods

Due to 7.7, 9.4 and subsec:Alexandrov-compactification the compact neighborhoods of every point
in a locally compact space form a neighborhood basis. Consequently in a locally compact space
open resp. closed subsets as well as their finite intersections are locally compact with reference
to their trace topology.

10.7 Regularity

For every compact set K and an open neighborhood V ⊃ K in a locally compact space X there
is a continuous g : X → [0; 1] with g−1 ({1}) = K and g−1 ({0}) ⊃ X \V . In particular two disjoint
and compact sets can be separated by disjoint and open neighborhoods. Moreover due to 7.7 and
9.4 the compact neighborhoods form a neighborhood basis.

Proof : Due to 10.6 every x ∈ K possesses open neighborhoods with compact closures x ∈ Ux ⊂ Ux
with Ux ⊂ V such that the union U := ⋃

x∈J Ux with finite J ⊂ K of the subcover (Ux)x∈J of K
is open with K ⊂ U ⊂ V and compact closure U = ⋃

x∈J Ux. Due to 9.5 we can apply Urysohn’s
lemma 8.1 to find a g′ : U → [0; 1] with g′−1 ({1}) = K and g′−1 ({0}) = U \U which can be extended
by g (x) := 0 for every x ∈ X \ U ⊃ X \ V to obtain the desired function.

10.8 σ-compact spaces

A locally compact space is σ-compact or countable at infinity iff it is a countable union of compact
sets resp. iff the point at infinity has a countable neighborhood basis. A locally compact space X is
σ-compact if it is second countable since every compact neigbourhood K (x) includes an open basis
set Un (x) as well as its compact closure Un (x) and the resulting cover

(
Un (x)

)
x∈X

⊃ X consists of
a countable number of compact sets.
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10.9 Normal character of σ-compact spaces

Every locally and σ-compact space is normal.
Proof: Due to 9.4 the intersections A ∩ Ki resp. B ∩ Ki of disjoint closed sets A,B ⊂ X with the
sets of a w.l.o.g. increasing compact cover (Ki)i∈N of X are closed and with 9.5 there are w.l.o.g.
increasing sequences (Vi)i∈N resp. (Wi)i∈N of open sets with Vi ⊃ A ∩ Ki resp. Wi ⊃ B ∩ Ki as
well as Vi ∩ Wi ∩ Ki = ∅. But then V = ⋃

i∈N Vi ⊃ A resp. W = ⋃
i∈NWi ⊃ B are open disjoint

neighborhoods of A bzw. B in X: Assuming x ∈ Vi ∩Wj ̸= ∅ with w.l.o.g i ≤ j due to the ascending
character of all set sequences concerned follows x ∈ Vk ∩Wk ̸= ∅ ∀k ≥ j but also x ∈ Kk for k ≥ l and
some l ∈ N contrary to the hypothesis Vi ∩Wi ∩Ki = ∅.

10.10 Countably compact spaces

A Hausdorff space is countably compact, i.e., every countable open cover has a finite subcover,
iff every sequence has an accumulation point.
Proof:

⇒: Assume the sequence (xi)i∈N does not have an accumulation point. Then every point has a
neighborhood meeting only finitely many members. In a Hausdorff space this neighborhood can be
reduced to an open neighborhood meeting no members at all and consequently the complement of
the sequence is an open set which taken together with the neighborhoods mentioned above forms a
countable open cover of X. Since every set of the cover contains at most a single member a finite
subcover is obviously impossible.
⇐: Let (Oi)i∈N an open cover of the Hausdorff spaceX and xn ∈ X\⋃0≤i≤nOi. Then the accumulation
point y of the sequence (xn)n∈N lies in an open set Oi which consequently contains infinitely many xn
contrary to the construction of the sequence..

10.11 Lindelöf spaces

A topological space is a Lindelöf space iff every open cover has a countable subcover. Consequently
every second countable space is Lindelöf. A topological space is compact iff it is countably
compact and Lindelöf.

10.12 Sequentially compact spaces

A Hausdorff space is sequentially compact iff every sequence has a convergent subsequence.
In a first countable space every accumulation point of a sequence allows the selection of a convergent
subsequence. Such a space is sequentially compact iff it is countably compact.

10.13 Compactness on metric spaces

compact
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Lindelöf countably compact

and Lindelöf

_LR
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�lr
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compact

_��
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locally compact
countable at ∞

_��countably
compact

1.
A

C _LR

locally compact

1

In a metric space the properties of being compact, countably compact
and sequentially compact are equivalent.
Proof: Due to 10.10, 10.11 and 10.12 it remains to show that se-
quentially compact metric spaces are second countable. For
an arbitrary x0,n ∈ X choose x1,n ∈ X \ B1/n (xo,n) and for xi,n ∈ X
subsequently choose xi+1,n ∈ X \ ⋃0≤j≤iB1/n (xj,n). Because X is se-
quentially compact the sequence must end after finitely many xi,n and
the corresponding B1/n (xj,n) obviously cover X. The set of all xi,n
then is a countable dense subset of X and the B1/m (xi,n) for m ∈ N∗

form a countable base of X.
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10.14 Alexandrov’s theorem

Every path connected locally compact metric space is separable
and hence second countable.
Proof : In the case of rx = sup

{
ϵ : Bϵ (x) is compact

}
= ∞ the space X is σ-compact disks. The

assertion the follows from the facts that metric spaces are first countable and that compact metric
spaces are separable. Due to 9.4 we have rx ≥ ry − d (x; y) such that rx< ∞ for one x ∈ X entails
ry< ∞ for every other y ∈ X as well. Since X is path connected every y ∈ X can be connectd
to x by a path which is covered by finitely many Brz/4 (z) such that the sequence defined inductively
by A1 = Brx/2 (x) and An+1 = ⋃

y∈An
Bry/2 (y) covers X = ⋃

n≥1An. The set A1 is compact and
assuming a compact An for every sequence (xk)k≥1 ⊂ An+1 exists a sequence (yk)k≥1 ⊂ An with xk

∈ Bryk/2 (yk) and a subsequence
(
yk(i)

)
i≥1

converging to an y = lim
i→∞

yk(i) ∈ An. Due to d (y;xk) ≤
d (y; yk) + d (yk;xk) ≤ d (y; yk) + 1

2ryk
≤ 3

2d (y; yk) + 1
2ry and lim

i→∞
d (y; yk) = 0 there is a K ∈ N such

that xk ∈ Bry (y) for all k ≥ K. According to 10.12 a subsequence
(
xk(j)

)
j≥1

converges to an x =
lim
j→∞

xk(j). Again the preceding inequality and lim
i→∞

d (y; yk) = 0 imply x ∈ Bry/2 (y) ⊂ An+1 whence
An+1 is compact by 10.13. Hence we have again proved that X is σ-compact and the assertion
follows by the same argument as above.

10.15 Products of quotient maps with the identity

Every product f × idK : X × K → Y × K of a quotient map f : X → Y and the identity on a
locally compact space K is a quotient map.
Proof : For every

(
f−1 (y0) ; k0

) ∈ (f × idK)−1 [U ] exists an open neighborhood
(
f−1 (y0) ; k0

) ⊂
W0 × J0 ⊂ (f × idK)−1 [U ]. According to 10.6 there is a precompact neighborhood x ∈ J ⊂ J̄⊂ J0
and due to f−1 [f [W0] ] × J̄ ⊂ (f × idK)−1 [U ] for every x ∈ f−1 [f [W0] ] and every k ∈ J̄ exists
a neighborhood (x; k) ∈ Vk × Jk ⊂ (f × idK)−1 [U ]. Finitely many of the Jk cover J̄ and if Vx is
the open intersection of the corresponding Vk we obtain a common neighborhood (x; k) ∈ Vx × J ⊂
(f × idK)−1 [U ] and W1 × J̄ ⊂ (f × idK)−1 [U ] with the open set W1 = ⋃

x∈f−1[f [W0] ] Vx including
f−1 [f [W0] ]. Repeating this construction yields a sequence (Wi)i≥0 of open sets Wi ⊂ f−1 [f [Wi] ]
⊂ Wi+1 and Wi × J̄ ⊂ (f × idK)−1 [U ] for i ≥ 0. Then the open set W = ⋃

i≥0Wi is obviously
saturated, i.e. W= f−1 [f [W ] ] whence its image f [W ] is open in the final topology of f on Y .
Therefore (y0; k0) ∈ f [W ] × J ⊂ U is an open neighborhood whence U is open in the final topology
on Y and consequently f is an open map.

11 Metrization

11.1 Paracompact spaces

A Hausdorff-space X is paracompact iff for every open cover U = (Ui)i∈I of X there is a locally
finite refinement V = (Vj)j∈J such that every Vj is contained in an Ui.

11.2 A paracompact space is normal.

Proof : The assertion follows with regard to 7.4.2 from applying the following property twice: Two
disjoint closed sets A and B in a paracompact space X have disjoint open neighborhoods iff every
x ∈ A can be separated from B by disjoint open neighborhoods Ux of x and Vx of B. In order to find
these neighborhoods we take a look at the locally finite refinement (Ti)i∈I subordinate to the open
cover of X provided by the set X \A together with the system of the supposed neighborhoods Ux for
x ∈ A with Ux ∩ Vx = ∅:
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For A ∩ Ti ̸= ∅ there is an xi ∈ A with Ti ⊂ Uxi and T := ⋃
A∩Ti ̸=∅ Ti

is an open cover of A. For every y ∈ B there is an open neighborhood
Wy such that Jy := {i ∈ I : A ∩ Ti ̸= ∅ ≠ Wy ∩ Ti} is finite. For each
of these finitely many j ∈ Jy there are open neighborhoods Vxj of B
with Tj ∩ Vxj = ∅ such that none of the open neighborhood W ′

y :=
Wy ∩⋂j∈Jy Vxj of B meets any Ti. Then W := ⋃

y∈BW
′
y is the desired

open neighborhood of B with T ∩W = ∅.

11.3 Partitions of unity in paracompact spaces

A topological space X is paracompact iff it is Hausdorff and every open cover has a subordinate
partition of unity.
Proof :
⇒: On account of 11.1 and 8.5 we already have a partition of unity (gj)j∈J subordinate to the locally
finite refinement V = (Vj)j∈J of the given cover U = (Ui)i∈I . In order to extend this partition to U
we choose for every j ∈ J a ϕ (j) ∈ I with Vj ⊂ Ui and combine the gj assigned to Vj ⊂ Ui into a
sum fi := ∑

ϕ(j)=i gj if ϕ−1 (i) ̸= ∅ and fi = 0 if ϕ−1 (i) ̸= ∅. The fi are continuous, their supports are
included in the ⋃ϕ(j)=i Vj ⊂ Ui and we have ∑i∈I fi = ∑

i∈I
∑
ϕ(j)=i gj = ∑

j∈J gj = 1.
⇐: According to 8.5 the open sets Vj= {gj > 0} for a partition of unity (gj)j∈J subordinate to the
given open cover U = (Ui)i∈I are a locally finite refinement of U .

11.4 Closures of a locally finite systems

For a locally finite system V on a topological space X the family of the closures V is again locally
finite and ⋃V = ⋃V.
Proof : For x ∈ ⋃V and the neighborhood U ∈ U (x) meeting only finitely many V1, ..., Vn ∈ V we
have x ∈ ⋃

1≤m≤n V m ⊂ ⋃V since otherweise U \ ⋃1≤m≤n V m were an open neighborhood of x not
meeting any V ∈ V. Thus we have shown ⋃V ⊂ ⋃V and since the converse is always true the equation
follows.

11.5 Characterization of paracompact spaces

A topological space is paracompact iff it is regular and for every open cover U = (Ui)i∈I of X
exists a σ-locally finite open refinemet S = ⋃

n∈N Sn. Note that the subfamilies Sn are open and
and locally finite but not necessarily a cover.
Proof : Note that in the following ⋃n∈N Sn is the family of all sets included in any Sn whereas ⋃Sn
is the union of the sets contained in the single family Sn. On account of 11.2 we only have to show
⇐. This argument is split into three steps by demonstrating the equivalence of the following four
statements for a regular space X with an open cover U = (Ui)i∈I :

1. There is a σ-locally finite open refinement cover S = ⋃
n∈N Sn of U .

2. There is a locally finite refinement cover V of U .
3. There is a closed locally finite refinement cover A of U .
4. There is an open locally finite refinement cover O of U .

1. ⇒ 2.: V := (Yn ∩ S)n∈N,S∈Sn
with Xn := ⋃

0≤m≤n
⋃Sm, Y0 := X0 and Yn := Xn \Xn−1 is a cover

since for any x ∈ X there is a n with x ∈ Yn ⊂ ⋃Sn because (Xn)n∈N covers X and furthermore
there is a Sx ∈ Sn with x ∈ Sx because Sn covers ⋃Sn. Since Sm is locally finite for 0 ≤ m ≤ n and
Xn is open there is a neighborhood Wm ⊂ Xn of x meeting only finitely many sets from Sm. Then
W := ⋂

0≤m≤nWm is a neighborhood of x which intersects only a finite number of sets from V because
for k > n we have V ∩ Yk = ∅. Hence V is locally finite.
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2. ⇒ 3.: Since X is regular for every x ∈ X and U ∈ U with x ∈ U there
is an open neighborhood Wx ∈ U (x) with x ∈ Wx ⊂ W x ⊂ U . According
to the hypothesis there is a locally finite refinemet cover V of the open cover
W := (Wx)x∈X . The family of the closures A := V =

{
V : V ∈ V

}
of V

is again a refinement cover of W and hence of U . It is locally finite since
for x ∈ X and a neighborhood U ∈ U (x) intersecting only finitely many V1, ..., Vn ∈ V the point x
cannot be an accumulation point for any of the remaining V ∈ V, i.e., x /∈ ⋃(V \

{
V 1, ..., V n

})
=⋃V \ {V1, ..., Vn} due to 11.4 and U \⋃V \ {V1, ..., Vn} is an open neighborhood intersecting only the

closures V 1, ..., V n ∈ V.

3. ⇒ 4.: Let V be a locally finite refinement cover of U ,W := (Wx)x∈X the cover formed by the
open neighborhoods Wx of x ∈ X each intersecting each finitely many V ∈ V and finally let A be
a closed locally finite refinement cover of W. For V ∈ V let V ′ := X \ ⋃ {A ∈ A : A ∩ V = ∅}.
Since the A are closed and the system A is locally finite the V ′ must be open due to 11.4. On account
of V ⊂ V ′ the family V ′ := (V ′)V ∈V is an open cover of X. In order to show that V ′ is locally finite
let Tx be a neighborhood of x ∈ X inersecting only finitely many A1, ..., An ∈ A. Since A is a cover it
follows that Tx ⊂ A1 ∪ ...∪An. In the case of Tx intersecting a V ′ we have Ak∩V ′ ̸= ∅ for some k with
1 ≤ k ≤ n and from the definition of the V ′ we infer Ak ∩ V ̸= ∅. Since A is a refinement of W every
Ak meets only finitely many V ∈ V and consequently Tx meets only finitely many V ′. We finally fit
V ′ into U by choosing for every V ∈ V a UV ∈ U with V ⊂ UV and defining O := (UV ∩ V ′)V ∈V . Due
to V ⊂ UV ∩ V ′ this is the desired open refinement cover of U .

11.6 Countability of paracompact spaces

1. A first countable and regular space is paracompact.

2. The countable union of closed sets in a paracompact space is again paracompact.

11.7 Open sets in regular spaces with a σ-locally finite basis

In a regular space with σ-locally finite basis every open set is a Fσ-set.

Proof : Since X is regular and due to 7.7 for every x there is an open O⊂ X and a neighborhood
Vx with x ∈ Vx ⊂ V x ⊂ O as well as elements Snx,ix of the basis S = ⋃

n∈N Sn with locally finite Sn
satisfying x ∈ Snx,ix ⊂ Vx and therefore Snx,ix ⊂ V x ⊂ O. Since the Sk are locally finite and due to
11.4 the Sk = ⋃{

Snx,ix : x ∈ O,nx = k
}

are closed and we have ⋃k∈N Sk = O.

11.8 The distance between sets in metric spaces

In a metric space (X; d) we define the distance d(x;A) := inf {d(x; y) : y ∈ A} between a point x ∈ X
and a set A ⊂ X and correspondingly d(A;B) := inf {d(x;B) : x ∈ A}. The triangle inequality takes
the form d(x;A) ≤ d(x; y) + d(y;A) since for all z ∈ A we have d(x;A) ≤ d(x; z) ≤ d(x; y) + d(y; z)
and consequently d(x;A) ≤ inf {d(x; y) + d(y; z) : z ∈ A} = d(x; y) + d(y;A).

11.9 Stone’s Theorem

Ui B0,i

B1,i

B2,i

B3,i⋃
j<i

Uj

In a metric space (X; d) every open cover U = (Ui)i∈I has a locally
finite open refinement cover O.

Proof: We fill the Ui starting with the core A0,i :=
{x ∈ Ui : 1 ≤ d (x;X \ Ui)} and proceeding towards the rim with in-
creasing layers An,i :=

{
x ∈ Ui : 2−n ≤ d (x;X \ Ui) ≤ 2−n+1} with

n ∈ N∗. Since the Ui are open we have ⋃n∈NAn,i = Ui. From
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2−n ≤ d (x;X \ Ui) for all x ∈ An,i and d (y;X \ Ui) ≤ 2−n−k+1 for all y ∈ An+k,i together
with 11.8 we infer d(x; y) ≥ d (x;X \ Ui) − d (y;X \ Ui) ≥ 2−n

(
1 − 21−k

)
≥ 2−n−1 and hence

d (An,i;An+k,i) ≥ 2−n−1 for k ≥ 2.

In a second stage we remove the overlapping parts of the Uj by means of taking Bn,i := An,i \⋃j<i Uj
to achieve the locally finite property. Since the Bn,j are not yet open we add narrow perimeters by
means of Cn,i :=

{
x ∈ Ui : d (x;Bn,i) < 2−n−3} so that only adjacent Cn,i intersect each other, i.e.

Cn,i ∩Cm,i = ∅ if |n−m| > 1 because d (Cn,i;Cn+k,i) ≥ d (Bn,i;Bn+k,i) − 2 · 2−n−3 ≥ d (An,i;An+k,i) −
2−n−2 ≥ 2−n−1 − 2−n−2 = 2−n−2. In order to demonstrate the covering property of the Bn,i and
especially the Cn,i we can assume a well-ordered index set I (cf. [19, p. 14.2]). For a x ∈ X let i ∈ I
be the smallest index with x ∈ Ui. On account of ⋃n∈NAn,i = Ui there is a n ∈ N with x ∈ An,i but
due to the choice of i we have x /∈ Uj for all j < i and hence x ∈ Bn,i ⊂ Cn,i.

The Cn,i are locally finite since for the above mentioned x ∈ Bn,i ⊂ Cn,i due to the construction of
the Bn,i we have x /∈ Bm,j for all j < i resp. m ∈ N and according to the choice of i ∈ I and because
of x ∈ Ui this extends to all j > i. Especially we have x /∈ Cm,j for j ̸= i and m ∈ N. Due to
d (Cm,i;Cm+2,i) ≥ 2−m−2 for m ∈ N the neighborhood B2−n−3(x) apart from Cn,i meets at most the
two neighbours Cn−1,i and Cn+1,i. Hence the system O := (Cn,i)n∈N,i∈I is the desired locally finite
refinement cover of U .

11.10 The metrization theorem of Bing, Nagata and Smirnow

A topological space X is metrizable iff it is regular and has a σ-locally finite basis.

Proof :

⇒: On account of 11.9 for every n ∈ N and the cover Un = (B2−n (x))x∈X there is a locally finite
refinement cover On. The desired σ-locally finite base then is given by O := (On)n∈N since for every
open O and x ∈ O there is a n ∈ N and an open ball B2−n (x) ⊂ O as well as a k ∈ N with another
open ball B2−n−2−k (x) intersecting only finitely many sets of On+2 all of them included in a B2−n−2 (y)
and therefore in B2−n (x) ⊂ O.

⇐: Due to 11.5 X is paracompact: For an open cover U = (Ui)i∈I the basis S = (Sn)n∈N with locally
finite Sn = (Sn;i)i∈In

yields locally finite refinement systems Vn := {V ∈ Sn : ∃i ∈ I : V ⊂ Ui} whose
union V := ⋃

n∈N Vn covers X since S is a basis. Due to 11.7 the Sn,iare Fσ, the X \ Sn,i are Gδ and
so with 11.2 and 8.2 a continuous function ϕn;i : X → [0; 1] exists with Sn,i = {ϕn;i > 0} . Since Sn
is locally finite the function ψn;i := 2−nϕn;i

1+
∑

i∈In
ϕn;i

is well defined and continuous with 0 ≤ ψn;i ≤ 2−n,
Sn;i = {ψn;i > 0} as well as 0 ≤ ∑

i∈In
ψn;i ≤ 2−n. Thus d (x; y) := ∑

n∈N
∑
i∈In

|ψn;i (x) − ψn;i (y)|
is the desired metric: For x ̸= y and due to T1 there is a Sn;i ∈ U (x) with y /∈ Sn;i and hence
ψn;i (x) − ψn;i (y) ̸= 0 resp. d (x; y) ̸= 0. For x = y we have of course d (x; y) = 0. Symmetry and
triangle inequality directly follow from the definition. This metric is not uniquely determined but we
have to show that it leads back to the given topology (cf. 1.8). For any x ∈ X and a Sn;i ∈ S with
x ∈ Sn;i we have δ := ψn;i (x) > 0. Hence for all y ∈ Bδ (x) the estimate |ψn;i (x) − ψn;i (y)| < δ holds
and therefore ψn;i (y) > 0 and consequently y ∈ Sn;i resp. Bδ (x) ⊂ Sn;i. Thus d induces a topology
which is stronger than the given topology. Conversely for any x ∈ X the limit d (x; ) : X → R+ of a
uniformly convergent sequence of continuous functions (cf. 18.3) is again continuous with reference to
the given topology, i.e. for δ > 0 there is a basis set Sm;j with d (x; y) < δ for all y ∈ Sm;j , especially
x ∈ Sm;j and hence Sm;j⊂ Bδ (x) which shows that the given topology is stronger than the topology
induced by d.

Remark: The construction of the metric is based on Urysohn’s lemma 8.1 and its extension in
8.2. Urysohn’s approach is based on the following improvement of theorem 7.9 on the embedding of
a completely regular space into a product ∏φ∈Φ Iφ of real and therefore metrizable intervals:
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11.11 Embedding of normal spaces in product spaces

A normal space X with basis B = (Vj)j∈J can be embedded into a product space [0; 1]J .

Proof : For every basis set Vj ∈ B = (Vj)j∈J there is an Uj ∈ B with U j ⊂ Vj ⊂ X and a continuous
fj : X → [0; 1] with fj

[
U
]

= {0} resp. fj [X \ V ] = {1}. The mapping e : X → [0; 1]J with
e (x) := (fj (x))j∈J is continuous due to 4.2 and injective owing to T1. It is also open since for
open O ⊂ X and x ∈ O there is are Uj , Vj ∈ B with x ∈ Uj ⊂ U j ⊂ Vj ⊂ O as well as corresponding fj
as described above so that the cylinder set {fj < 1} = π−1

j [0; 1[ ∩ e [X] is open in e [X] and contained
in e [O].

11.12 Metrizable product spaces

The product
∏
j∈J Yj of metric spaces Yj is metrizable iff the index set J is countable.

Proof : Due to 4.2 the locally finite property of the basis sets Sn;j = (Sn;i;j)i∈In;j
on the Xj is

transferred to the subbasis sets Bn;j :=
(
π−1
j (Sn;i;j)

)
i∈In;j

on the product ∏j∈J Yj . On account of [19,
p. 17.6] the family (Bn;j)n∈N;j∈J is countable iff J is countable. Due to 7.10 the regular character is
transferred to the product in any case and hence the assertion follows from 11.11.

11.13 Urysohn’s metrization theorems:

1. A topological space is metrizable and separable iff it is regular and second countable.

2. A compact space is metrizable iff it is second countable.

3. A locally compact space is metrizable and σ-compact iff it is second countable.

Proof :

1. ⇒ follows from 2.7 and 7.2 whereas ⇐ follows from 11.11 resp. 11.12.

2. ⇒ follows from 10.2 whereas ⇐ follows from 9.5 resp. 11.10.

3. ⇒: The countable basis is provided by the open balls B1/n (xn,m) which for every n ∈ N and
1 ≤ m ≤ mn form a finite refinement cover of the open cover

(
B1/n (x)

)
x∈Kn

of the compact
sets Kn covering themselves X. Indeed for any open O ⊂ X and any x ∈ O there is a n ∈ N
with B1/n (x) ⊂ O and a k ≥ 2n with a 1 ≤ m ≤ mk such that x ∈ B1/k (xk,m) ⊂ B1/n (x) ⊂ O.
⇐ follows from 10.9 resp. since the sets Kn := X \⋃k>n Uk provided by the basis (Un)n∈N of X
are compact and cover X.

12 Uniform spaces

12.1 Uniform structures

For arbitrary sets A,B ⊂ X2 we define A−1 = {(x; y) ∈ X : (y;x) ∈ A} and AB = {(x; z) ∈ X : ∃y ∈
X : (x; y) ∈ A∧(y; z) ∈ B} with A2 := AA. A is symmetric iff A−1 = A. We have (AB)−1 = B−1A−1

and (AB)C = A (BC); from A ⊂ B follows A−1 ⊂ B−1 and AC ⊂ BC for arbitrary C. The symmetry
of A entails the symmetry of all An for n ∈ N∗. A neighborhood filter U on a set X is a filter on
the product X2 whose neighborhoods or entourages U ∈ U contain the diagonal ∆ and with
every entourage U its mirror imageU−1as well as another entourage V with V 2⊂ U . The pair (X; U)
then is a uniform space. Two points x and y in X are adjacent of order U ∈ U iff (x; y) ∈ U ;
analogously a set V ⊂ X is small of order U ∈ U iff V 2 ⊂ U . On account of ∆ ⊂ U ∈ U we have
U ⊂ Un ∈ U for n ∈ N∗.

41



12.2 Neighbourhood basis

A subfamily B of a neighborhood filter U is a neighborhood basis iff every neighborhood from U
contains a member of B. With B the systems B′ :=

{
B ∩B−1 : B ∈ B} and Bn := {Bn : B ∈ B} are

also neighborhood bases for the neighborhood filter U .

12.3 Uniformization

For a neighborhood filter U on a set X the family U(x) = {y ∈ X : (x; y) ∈ U} for U ∈ U and
x ∈ X is a neighborhood system defining a topology O on X according to 2.4. Correspondingly
for a neighborhood basis B the sets B(x) with B ∈ B define a neighborhood basis of x. The
topology O induced by B (x) resp. U (x) is the topology of the uniform space. A topology O is
uniformizable iff there is a neighborhood filter U which induces O.

12.4 The discrete uniform structure

The indiscrete topology is induced by the set X2 itself. The discrete topology on the one hand
is generated by the set of all subsets of X2 including the diagonal ∆. One the other hand it is
generated by the neighborhood filter of the finite partitions: Indeed for every finite partition
P = {A1, ..., An} of X the neighborhoods UP = {(x; y) : ∃Ai ∈ P : x, y ∈ Ai} satisfy the conditions
12.1 with UP ⊃ UP ′ iff every set from P is the union of sets from P ′ and UP ∩UP ′ is the neighborhood
generated by all intersections of sets from P with sets from P ′. Since every partition is a disjoint cover
we also have U2

P = UP .

12.5 Open interiors and closures of a neighborhood filter

The open interiors resp. the closures of a neighborhood filter with reference to the product X2 are
again a neighborhood filter in X.
Proof: According to 12.1 for any neighborhood U there is a symmetric neighborhood V with V 3 ⊂ U .
For (x; y) ∈ V the set V (x) ×V (y) is open in X2 and included in V 3. Hence V 3 is a neighborhood for
each of its points, i.e. it is an open set in X2. Consequently V 3 ⊂

o
U and

o
U is also a neighborhood in

X. For (x; y) ∈ V we have V (x) × V (y) ∩ V ̸= ∅ and there is a pair (x′; y′) ∈ V with (x;x′) ∈ V resp.
(y; y′) ∈ V and on account of the symmetry of V follows (x; y) ∈ V 3. Especially we have V ⊂ V 3 ⊂ U
which proves the statement with respect to the closures.

12.6 Separation axioms

The concepts introduced in section 7 tacitly refer to the topology induced by the uniform structure.
An uniform space is separated iff it satisfies T1 or equivalently T2 (cf. 12.1).

1. An uniform space is separated iff the diagonal ∆ is the intersection of all its neighborhoods.
2. Every uniform space is a T3-space.

Proof:
1. ⇒: For x ̸= y there is a neighborhood U with U(x) ∩ U(y) = ∅ ⇒ (x; y) /∈ U . Hence the

intersection of all neighborhoods does not contain (x; y) and since this is true for arbitrary x ̸= y
the statement follows. ⇐: For x ̸= y there is a neighborhood U with (x; y) /∈ U . Due to 12.1
there is another neighborhood V with V 2 ⊂ U and especially V (x) ∩ V (y) = ∅.

2. The propsition follows from 7.7 since owing to 12.1 for every neighborhood U there is a symmetric
neighborhood V with V 2 ⊂ U and V (x) ⊂ V 2(x) ⊂ U(x). Note that in this instance we mean
the closure V (x) ⊂ V 2(x) with respect to X whereas in 12.5 we refer to the closure V ⊂ V 3 in
X2.
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12.7 Compactness

For a neighborhood U and a subset A the set V (A) := ⋃
x∈A V (x) is the uniform neighborhood of

A. In a uniform space the two following statements hold:

1. Every neighborhood of a compact subset contains an uniform neighborhood.

2. Two disjoint sets K and A can be separated by uniform neighborhoods if K is compact and
A is closed.

Proof:

1. For the neighborhood U of the compact subset K ⊂ X and every x ∈ K there is a neighborhood
Ux with Ux(x) ⊂ U and a second neighborhood Vx with V 2

x ⊂ Ux. The Vx(x) cover K and
let V be the finite intersection of those Vx whose corresponding neighborhoods Vx(x) cover K.
For everyy ∈ V (K) there is a z ∈ K with (y; z) ∈ V . This z is located in one of the Vx(x),
i.e. (z;x) ∈ Vx such that (y;x) ∈ VVx ⊂ V 2

x ⊂ Ux. Hence y ∈ Ux(x) ⊂ U and consequently
V (K) ⊂ U .

2. On account of 12.6.1 the set K can be separated by a uniform neighborhood U (K) from A.
Then the uniform neighborhoods V (K) and V (A) with V 2 ⊂ U are disjoint.

12.8 Uniformly continuous functions

A function f : X → Y between uniform spaces (X,UX) and (Y,UY ) is uniformly continuous iff(
f2)−1 [U ] ∈ UX∀U ∈ UY . For every neighborhood U ∈ UY there is a neighborhood V ∈ UX with(
f2) [V ] ⊂ U . Obviously it is sufficient to show this property for sets of a neighborhood basis.

The composition g ◦ f : X → Z of two uniformly continuous f : X → Y and g : Y → Z is again
uniformly continuous. Obviously every uniformly continuous function is continuous with reference
to the induced topologies.

12.9 Heine’s theorem

A continuous function f : X → Y on a compact uniform space (X,UX) into a uniform space (Y,UY )
is uniformly continuous.

Proof: For any U ∈ UY we choose a symmetric V ∈ UY such that V 2 ⊂ U . Since f is continuous for
every x ∈ X there is a Vx ∈ UX with f [Vx(x)] ⊂ V (f(x)) and subsequently another symmetrc Wx ∈
UX with W 2

x ⊂ Vx. The Wx(x) possess a finite subcover and the intersection W of the corresponding
Wx constitutes the desired neighborhood with (f × f) [W ] ⊂ U . For (y; z) ∈ W there is a Wx(x) of the
finite subcover with y ∈ Wx(x) ⊂ W 2

x (x) ⊂ Vx(x) and therefore z ∈ WWx(x) ⊂ W 2
x (x) ⊂ Vx(x). On

account of f [Vx(x)] ⊂ V (f(x)) it follows that f(y), f(z) ∈ V (f(x)) and hence (f(y); f(z)) ∈ V 2 ⊂ U .

12.10 Initial neighborhood filter

The notations of stronger resp. weaker topologies are extended to neighborhood filters: U1 ⊂ U2
is denoted as U2 stronger than U1 resp. U1 weaker than U2. These relationships obviously transfer
to the induced topologies. The identity id : (X; U1) → (X; U2) is uniformly continuous iff U1 is
stronger than U2. The weakest filter U on a set X such that the functions fi : (X,U) → (Yi,Ui)
into the uniform spaces (Yi,Ui)i∈I are uniformly contiuous is the initial neighborhood filter with
reference to the fi. The finite intersections

⋂
i∈E

(
f2
i

)−1 [Ui] of inverse images of neighborhoods
Ui ∈ Ui for finite E ⊂ I form a neighborhood basis of U since

(
f2
i

)−1 [
U−1
i

]
=
((
f2
i

)−1 [Ui]
)−1

and for V 2
i ⊂ Ui follows

(⋂
i∈E

(
f2
i

)−1 [Vi]
)2

⊂ ⋂
i∈E

(
f2
i

)−1 [
V 2
i

] ⊂ ⋂
i∈E

(
f2
i

)−1 [Ui]. The initial
neighborhood filter U induces the initial topology with reference to the fi : (X,O) → (Yi,Oi)
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with the topologies O resp. Oi induced by U resp. Ui. Indeed the sets
(⋂

i∈E
(
f2
i

)−1 [Ui]
)

(x) =⋂
i∈E

((
f2
i

)−1 [Ui]
)

(x) = ⋂
i∈E f

−1
i [Ui (fi(x))] form a neighborhood basis of the topology induced

by U . The topology induced by these neighborhoods is is the weakest topology so that all fi are
continuous.

12.11 Product of uniform spaces: Analogous to 4.2 the product filter on the product
∏
i∈I Xi

of the uniform spaces (Xi, Ui)i∈I is the initial neighborhood filter with reference to the projec-
tions πi : ∏i∈I Xi → Xi. It is generated by the finite intersections ⋂i∈E (π2

i

)−1 [Ui]. The func-
tion f : Y → ∏

i∈I Xi is uniformly contiuous iff the inverse images
(
f2)−1 [⋂

i∈E
(
π2
i

)−1 [Ui]
]

=⋂
i∈E

(
(πi ◦ f)2

)−1
[Ui] of basis neighborhoods are again neighborhoods in (Y,U). Hence f is uni-

formly continuous iff all components πi ◦ f : (Y,U) → (Xi,Ui) are uniformly continuous.

12.11 Uniform subspaces

Analogous to 4.3 the trace filter on the subset A ⊂ X of the uniform space (X; U) is the initial
neighborhood filter with reference to the injection j : A → X. It is constituted by the intersections(
j2)−1 [U ] = U ∩ (A2) of neighborhoods U ∈ U with A2.

12.12 Dense subsets

For a dense subset A in X the closures with reference to X2 of neighborhoods of the uniform subspace
A form a basis for the neighborhoods in X.

Proof: For an open neighborhood U of X we have U ⊂ U ∩A2 since for (x; y) ∈ U every neighbor-
hood V (x) ×W (y) w.l.o.g. contained in U intersects A2 and hence (x; y) is an accumulation point of
U ∩A2. Especially U ∩A2 is itself a neighborhood and contained in U . The proposition then follows
from 12.5.

13 Uniformization

13.1 Uniformization of metric spaces

In a metric space (X; d) the sets U1/n :=
{

(x; y) ∈ X2 : d(x; y) < 1
n

}
=
{
d < 1

n

}
for n ∈ N∗ form a

countable neighborhood basis of the corresponding neighborhood filter. This property is already
sufficient in the general case for the construction of a pseudometric (cf. 1.2):

13.2 Uniformization of first countable spaces

A uniform space (X; U) is induced by a pseudometric iff it has a countable neighborhood basis.

yx

B1 : 1
2B2 : 1

4
B3 : 1

8

B4 : 1
16

1
8 < g (x; y) < 1

4

Proof: Owing to 12.2 we can assume that all ele-
ments Bn of the countable neighborhood basis (Bn)n∈N∗

of the neighborhood filter U are symmetric and decreas-
ing with B3

n+1 ⊂ Bn. For x, y ∈ X let g(x; y) :={
1 for (x; y) /∈ B1

min
{

2−k : (x; y) ∈ Bk : k ∈ N∗
} with Mxy be the set of

all finite sequences (xi)i∈K with index set K = {0; 1; ...;n}
for an n ∈ N, starting point x0 = x and endpoint xn = y.

The desired pseudometric is then given by d(x; y) := inf
{∑

0≤i≤n−1 g (xi;xi+1) : (xi)i∈K ∈ Mxy

}
. The

properties 1.2.1 resp. 1.2.2 are trivial and the triangle inequality results from the fact that the paths
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from x to z via y are a subset of all paths from x to z. In order to show that d actually generates the
Bn = {g ≤ 2−n} we prove the estimate 1

2g(x; y) ≤ d(x; y) ≤ g(x; y) for (x; y) ∈ B1. The right hand
part directly follows from the definition.

The left hand part is equivalent to 1
2g(x; y) ≤ ∑

0≤i≤n−1 g (xi;xi+1) for (xi)i∈K ∈ Mxy and will be
demonstrated by induction over n. The base case n = 1 is trivial. Now let x0 = x; ...;xn+1 = y
and a = ∑

0≤i≤n−1 g (xi;xi+1) ̸= 0. In the case of a ≥ 1
2 the induction step immediately follows from

g(x; y) ≤ 1. So let a < 1
2 and m the greatest index such that ∑0≤i≤m−1 g (xi;xi+1) ≤ a

2 . Then we
have ∑0≤i≤m g (xi;xi+1) > a

2 and hence the remaining sum is ∑m+1≤i≤n g (xi;xi+1) ≤ a
2 . Applying

the induction hypothesis to the partial sums on the left and the right hand sides of m we obtain
1
2g(x;xm) ≤ a

2 and 1
2g(xm+1; y) ≤ a

2 . As before he definition of a yields 1
2g(xm;xm+1) ≤ a

2 . Let k be
the smallest integer with 2−k ≤ a, then g (x;xm) , g (xm;xm+1) and g (xm+1; y) are less than or equal
to 2−k, i.e. (x;xm) , (xm;xm+1) and (xm+1; y) are in Bk and hence in (x; y) ∈ B3

k ⊂ Bk−1. Especially
we get g (x; y) ≤ 2−(k−1) resp. 1

2g (x; y) ≤ 2−k ≤ a. In the case of ∑0≤i≤n−1 g (xi;xi+1) = 0 all
(xi;xi+1) are in Bk+n and therefore (x; y) in Bk for all k ∈ N∗, i.e. g(x; y) = 0.

The above proved estimate entails Bk ⊂ d−1
[ [

0; 2−k
[ ]

⊂ Bk−1, i.e. the given neighborhood basis
(Bn)n∈N∗ is generated by d. Conversely the pseudometric d generates a countable neighborhood basis
(Bn)n∈N∗ with Bn := d−1

[ [
0; 2−k

[ ]
for the neighborhood filter induced by d.

13.3 The metrization theorem for uniform spaces

A uniform space is metrizable iff it is separated and first countable.

13.4 Uniformization by a system of pseudometrics

Every uniform space can be induced by a system of pseudometrics.

Proof: For every neighborhood V of the given neighborhood filter U there is a sequence of symmetric
neighborhoods Bn such that B1 ⊂ V and B3

n+1 ⊂ Bn for all n ∈ N∗. Each of these sequences is
the basis for a neighborhood filter UV which is induced by a pseudometric dV as shown in 13.2. On
account of UV ⊂ U∀V ∈ U and ⋃V ∈U UV = U the filter U is the weakest filter being stronger then any
of the UV . Then B :=

{⋂
V ∈E⊂U d

−1
V [ [0; a[ ] : |E| ∈ N; a ∈]0; 1]

}
=
{
d−1 [ [0; a[ ] : a ∈]0; 1]

}
for d(x; y)

:= min {dV (x; y) : V ∈ E ⊂ U ; |E| ∈ N}is a neighborhood basis for U . The dV are pseudometrics on
the topological space induced by U but they generate only a part of the neighborhoods in UV whereas
the function d : X2 → [0; 1] generates the system U by means of its inverse images but in general it is
not a pseudometric any more.

13.5 Uniformization of T3a-spaces

A topological space X is uniformizable iff it satisfies T3a.

Proof:

⇒: On account of 13.4 for a closed A ⊂ X , x0 ∈ X \ A and V ∈ U with V (x0) ⊂ X \ A there
is a pseudometric dV and an a ∈]0; 1] such that d−1

V [[0; a]] ⊂ V . The function f : X → [0; 1] with
f(x) := sup

{
0; 1 − 1

adV (x;x0)
}

is continuous since d−1
V [[0; a[] ∈ UV ⊂ U and furthermore we have

f [A] = {0} as well as f (x0) = 1.

⇐: Let (X; O) be a T3a-space and I the set of continuous functions f : X → [0; 1]. On account of
7.8.2 the topology O is the initial topology with reference to the f ∈ I. The initial neighborhood
filter U with reference to the f ∈ I induces a topology O′ coinciding with O on account of 12.2.
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13.6 Metrization and Uniformization
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As shown in 1.4 and 12.4 the relation metric → neighborhood filter →
topology is not injective. Especially a topology O can be induced by dif-
ferent neighborhood filters U and U ′ not each of them being necessarily
metrizable. E.g. the metric d with d(x;x) = 0 resp. d(x; y) = 1 generates
the discrete neighborhood filter U and subsequently the discrete topol-
ogy O. The neighborhood filter U ′ of the finite partitions described
in 12.4 also induces the discrete topology. But for an infinite set X the
uniform structure U ′ is not metrizable since in that case there would exist
a countable neighborhood basis (Pn)n∈N owing to 13.3 , i.e. every set in a
finite partition P of X would be the union of sets from a single partition
Pn ⊂ P . But by means of unions a single partition Pn can only generate
a finite number of weaker partitions and hence the set of partitions of the
infinite set X would be countable contrary to e.g. [19, p. 17.9].

14 Completion

14.1 Cauchy filter

A subset A of an uniform space (X; U) resp. metric space (X; d) is small of order V ∈ U resp. ϵ > 0
iff A2 ⊂ V resp. A2 ⊂ d−1 [ [0; ϵ[ ]. A filter F on X is a Cauchy filter iff for every neighborhood V
there is a F ∈ F small of order V .

1. Every convergent filter F is a Cauchy filter since for every V ∈ U the neighborhood filter
U(x) ⊂ F contains an element U(x) ∈ U(x) ⊂ F with U2 ⊂ V , i.e. U(x) is small of order V .

2. Every Cauchy filter converges to its accumulation points since for every accumulation point
x and U(x) ∈ U(x) there is a F ∈ F small of order V ∈ U with V 2 ⊂ U and F ∩ V (x) ̸= ∅,
hence F ⊂ U(x) and therefore U(x) ∈ F .

3. The image f (F) of a Cauchy-filter F under the uniformly continuous function f : (X; UX) →
(Y ; UY ) is again a Cauchy filter since for every V ∈ UY we have

(
f2)−1 [V ] ∈ UX such that there

is a F ∈ F with F 2 ⊂ (
f2)−1 [V ] and therefore f2 [F 2] = (f [F ])2 ⊂ V .

4. A filter F on X is a Cauchy filter with reference to the initial neighborhood filter U for the
functions fi : X → (YiUi) iff its filter images fi (F) are Cauchy filters. Indeed on the one hand
for a given neighborhood basis set B = ⋂

i∈E
(
f2
i

)−1 [Ui] with Ui ∈ Ui, finite E ⊂ I (cf. 12.10)
and if all filter images are Cauchy there are Fi ∈ F with fi (Fi) ∈ fi (F) with f2

i

(
F 2
i

) ⊂ Ui∀i ∈ E
and the filter set F := ⋂

i∈E Fi satisfies f2
i

(
F 2) ⊂ Ui∀i ∈ E. Hence F 2 ⊂ B such that F must

be a Cauchy filter. The converse follows from 12.8.

14.2 Complete spaces

An uniform space (X; U) is complete iff every Cauchy filter F on X converges to a limit x ∈ X.

1. The product X = ∏
i∈I Xi of complete spaces Xi is complete since the images πi (F) of a

Cauchy filter F under the projections πi : X → Xi are again Cauchy filters on the Xi and
converge each to an xi ∈ Xi such that F converges to (xi)i∈I ∈ X.

2. Every closed subspace A of a complete space X is again complete since the image filter i (F)
of a Cauchy filter F under the injection i : A → X is again a Cauchy filter on X and converges
to an x ∈ X which because of U (x) ⊂ i (F) is an accumulation point of the set A as well as of
the filter F on A so that under the hypothesis F converges to x ∈ A.
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3. Conversely every complete subspace A of a separable space X is closed since for every
accumulation point x of A the nonempty intersections U(x) ∩ A of a neighborhood basis U(x)
with A generate a Cauchy filter on A which on account of T2 has a single accumulation point x
and converges to x due to 14.1. Since A is complete x must lie in A.

14.3 Minimal Cauchy filter:

For every Cauchy filter F on a uniform space (X; U) there is a unique minimal Cauchy filter F0 ⊂ F .

Proof: F0 is generated by B := {U (F ) : U ∈ U , F ∈ F}. On account of (U1 ∩ U2) (F1 ∩ F2) ⊂
U1 (F1) ∩ U2 (F2) the family B is a filter basis. F0 is Cauchy-filter since for U ∈ U there is a V ∈ U
with V 3 ⊂ U and due to the hypothesis a F ∈ F with F ×F ⊂ V such that V (F ) ×V (F ) ⊂ V 3 ⊂ U .
Obviously we have F0 ⊂ F and for every other Cauchy filter F ′

0 ⊂ F we have F0 ⊂ F ′
0 since for every

U (F ) ∈ B there is a F ′ ∈ F ′
0 with F ′2 ⊂ U and F ′ ∩ F ̸= ∅ such that F ′ ⊂ U (F ) and hence F0 ⊂ F ′

0.

14.4 Properties of minimal Cauchy filters

1. Every neighborhood filter U(x) is a minimal Cauchy filter.

2. A minimal Cauchy filter containing the filter set F also contains its interior F̊ .

3. The basis B of a Cauchy filter F is a basis for the corresponding minimal Cauchy filter F0.

14.5 Characterization of complete spaces by Cauchy filters

A uniform space X is complete iff the trace F ∩ A of every Cauchy filter F on a dense subset
A ⊂ X converges to an x ∈ X.

Proof: Due to 14.4.2 the minimal Cauchy filter F0 of F with every set F ∈ F0 also contains its
nonempty open interior F̊ ∈ F0 intersecting the dense subset A. Consequently F0 ∩ A is again a
Cauchy filter converging to a x ∈ X due to the hypothesis, i.e. U (x) ∩ A ⊂ F0 ∩ A. Hence x is also
accumulation point of F0 and owing to 14.1.2 F0 converges to x and so does F .

14.6 Extension of uniformly continuous functions

A uniformly continuous function f : A → Y on a dense subset A of the uniform space (X; UX)
into the complete and separated space (Y ; UY ) can be extended to a unique and uniformly continuous
f : X → Y .

Proof: Every neighborhood of an arbitrary x ∈ X intersects the set A and hence the trace U(x) ∩A
is a Cauchy filter on A. According to the hypothesis the uniformly continuous image f (U(x) ∩A) =
(f ◦ i) (U(x)) is again a Cauchy filter converging on Y to a uniquely determined f(x) := lim (f ◦ i) (U(x))
with the canonical injection i : A → X. f is uniformly continuous since for U ∈ UY there is a V ∈ UY
wit V 3 ⊂ U and on account of f being uniformly continuous a W ∈ UX with f2 [W ∩ (A2)] ⊂ V .
For (x; y) ∈ M with M3 ⊂ W there are neighborhoods Mx resp. My w.l.o.g. small of order M and
points xA ∈ Mx(x) ∩ A resp. yA ∈ My(y) ∩ A with f (xA) ∈ f [Wx(x) ∩A] ⊂ V

(
f(x)

)
resp. f (yA)

∈ f [Wy(y) ∩A] ⊂ V
(
f(y)

)
. So we have (xA; yA) ∈ M3 ⊂ W , hence (f (xA) ; f (yA)) ∈ V and finally(

f(x); f(x)
)

∈ V 3 ⊂ U . According to 6.6.3 the extension f coincides on A with f . The uniqueness
follows from 7.13.
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14.7 Completion of separated spaces

A separated space (X; U) can be embedded into a complete separated space
(
X̃; Ũ

)
. The space(

X̃; Ũ
)

is unique up to homeomorphism and every uniformly continuous f : X → Ỹ into another
complete separated space Ỹ can be extended to a uniformly continuous f̃ : X̃ → Ỹ such that f = f̃ ◦i
with the embedding i : X → X̃. The image e [X] is dense in X̃, i.e. the completion is its closure:
e [X] = X̃. In particular every closed subset of a completely regular space is complete.

X̃
f̃ // Ỹ

X

i

OO
f

??

Proof: Let X̃ be the set of all minimal Cauchy filters on X with the uniform
structure Ũ generated by the neighborhoods Ṽ of the pairs (F ; G) having a common
set M small of order V ∈ U with symmetric V . On account of 6.1 the filters F
and G then coincide on all sets including M such that possible limit points must
be adjacent of order V . The symmetry of the V transfers to the Ṽ and they all
include the diagonal ∆ since every Cauchy filter contains a set small of order V .
From W 2 ⊂ V follows W̃ 2 ⊂ Ṽ since for (F ; G) , (G; H) ∈ W̃ there is a M ∈ F ∩ G
and N ∈ G ∩ H with M2, N2 ⊂ V such that M ∪ N ∈ F ∩ H and (M ∪N)2 ⊂ V . In an analogous
way we see that from U ⊂ V ∩W follows Ũ ⊂ Ṽ ∩ W̃ .

X̃ is separated since assuming (F ; G) ∈ Ṽ for all V ∈ U the sets M ∪ N with M ∈ F and N ∈ G
induce a Cauchy filter included in F as well as in G and since F and G are minimal it follows that
F = G.

The mapping i : X → X̃ with i(x) := U(x) ∈ X̃ is well defined on account of 14.1.1 and also injective
for U(x) = U(y) ⇒ x = y due to Y being separated. i is uniformly continuous since for every
Ṽ ∈ Ũ there is a symmetric W ∈ U with W 3 ⊂ V and for (x; y) ∈ W the set W (x)∩W (y) ∈ U(x)∩U(y)
is small of order W 3, i.e. (i(x); i(y)) ∈ Ṽ . i is open since for every open O ⊂ X and U (x) ⊂ i [O]
we have x ∈ O and hence U (x) ⊂ O for a U ∈ U such that Ũ (U (x)) ⊂ i [O], i.e. i [O] open in i [X].
The set i [X] of all neighborhood filters is dense in the set X̃ of all minimal Cauchy filters
since for F ∈ X̃ and every neighborhood Ṽ (F) there is a w.l.o.g. open U ∈ F (cf. 14.4.2) small
of order V , i.e. U(x) ∈ Ṽ (F) for all x ∈ U ∈ F . But that means i [U ] ⊂ Ṽ (F) and since for every
Ṽ (F) ∈ Ũ (F) there exists a U ∈ F small of order V we conclude that the image i (F) of the minimal
Cauchy filter F converges to F ∈ X̃.

X̃ is complete: Due to
(
i2
)−1 [

Ṽ
]

⊂ V ∀V ∈ U for every Cauchy filter G̃ on X̃ the inverse image
i−1

(
G̃
)

forms a basis for a Cauchy filter F ′on X including a minimal Cauchy filter F . The uniformly
continuous image i (F) is again a Cauchy filter converging to the element F ∈ X̃ as shown above.
On account of 14.4.3 we have i−1

(
G̃
)

⊂ F ⇒ G̃ = i
(
i−1

(
G̃
))

⊂ i (F) and due to U (F) ⊂ i (F) the
element F is an accumulation point of G̃; hence the Cauchy filter G̃ also converges to F and is in
fact identical to i (F).

For a uniformly continuous f : X → Ỹ into a second complete and separated space Ỹ we may
define f̃0 : i(X) → Ỹ by means of f̃0 (x) := lim f (U(x)) on account of the completeness of Ỹ and
the uniform continuity of f . We have f = f̃0 ◦ i and f̃o is uniformly continuous since for every
neighborhood Ũ in Ỹ there is a symmetric neighborhood V in X with

(
f2)−1 [

Ũ
]

⊂ V such that for
(i(x); i(y)) ∈ Ṽ ⇒ (x; y) ∈ V ⇒ (f(x); f(y)) =

(
f̃0 (i(x)) ; f̃0 (i(y))

)
∈ Ũ . The mapping f̃0 is uniquely

determined by f = f̃0◦i and due to 14.6 it can be extended in an unique way to a uniformly continuous
f̃ : X̃ → Ỹ with f = f̃ ◦ i.
Finally let

(
X̃ ′; i′

)
be a second pair satisfying the hypothesis. By applying the above proved extension

to i′ := f : X → Ỹ := X̃ ′ we get ĩ′ : X̃ → X̃ ′with i′ = ĩ′ ◦ i on the one hand and on the other hand
by applying it a second time to i := f : X → Ỹ := X̃ we obtain ĩ : X̃ ′ → X̃ with i = ĩ ◦ i′. We can
substitute to ĩ′ ◦ ĩ = id

X̃′ as well as to ĩ ◦ ĩ′ = id
X̃

, i.e. X̃ ′ is homeomorphic to X̃.
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14.8 Completion of metric spaces

Every metric space (X; d) is homeomorphic to a dense subset of a complete metric space(
X̃; d̃

)
.

Proof: Let
(
X̃; Ũ

)
be the complete closure of the uniform space (X; U) induced by the metric d

according to 14.7. The image i2 [X] := i [X] × i [X] is dense in X̃2 and the function d ◦ (i−1)2 :
i2 [X] → R is uniformly continuous since for ϵ > 0 and a neighborhood base set Uϵ = {d < ϵ} ∈ U
(in this instance d is regarded as a metric on X!) resp. the corresponding neighborhood basis
set Ũϵ =

{
(F ; G) ∈ X̃2 : ∃M ∈ F ∩ G ∧M2 ⊂ Uϵ

}
∈ Ũ we have

(
d ◦ (i−1)2) [Ũϵ] = d̃

[
Ũϵ ∩ i2 [X]

]
<

ϵ. According to 14.6 the function d ◦ (i−1)2 can be extended to a uniformly continuous function
d̃ : X̃2 → R with d̃

[
Ũϵ
]

= d̃
[
Ũϵ ∩ i2 [X]

]
⊂ d̃

[
Ũϵ ∩ i2 [X]

]
≤ ϵ due to 3.5.1. We show that d̃ is metric

on X̃: As to the positive definiteness from the assumption d̃ (F ; G) < ϵ∀ϵ > 0 follows that F ∩G is a
basis for a Cauchy filter including both F and G which then must be equal due to 14.3. Concerning the
triangle inequality let ϵ > 0 and Uϵ/3 resp. Ũϵ/3 as above defined. For F ,G,H ∈ X̃ there are x, y, z ∈
X with (U(x); F), (U(y); G), (U(z); H) ∈ Ũϵ/3 since i2 [X] is dense in X̃2 and d̃

[
Ũϵ/3

]
≤ ϵ

3 . On account
of d̃ (U(x); U(y)) = d ◦ (i−1)2 (U(x); U(y)) = d(x; y) ∀x, y ∈ X follows d̃ (F ; G) + d̃ (G; H) − d̃ (F ; H) >
d̃ (U(x); U(y))+ d̃ (U(y); U(z))− d̃ (U(x); U(z))+2ϵ = d(x; y)+d(y; z)−d(x; z)+2ϵ > 2ϵ and this being
true for every ϵ > 0 proves the triangle inequality. The symmetry is obvious. Finally we must show
that the neighborhood filter Ũ d̃ induced by the the metric d̃ is identical to Ũ . In both cases we will use
12.5: The definition of d̃ already yielded d̃

[
Ũϵ
]

≤ ϵ ⇔ Ũϵ ⊂
{
d̃ ≤ ϵ

}
⇔ Ũ d̃ ⊂ Ũ . On the other hand

with {d < ϵ} ∩ i2 [X] < ϵ =
{
d ◦ (i−1)2 < ϵ

}
dense in

{
d̃ < ϵ

}
we obtain

{
d̃ < ϵ

}
⊂ {d < ϵ} ∩ i2 [X]

= {(U(x);U(y)) ∈ i2(X) : (x; y) ∈ Uϵ} = Ũϵ ∩ i2 [X] = Ũϵ ∈ Ũ , hence Ũ ⊂ Ũ d̃.

14.9 Complete metric spaces

In a metric space (X; d) the diameter of a set A ⊂ X is defined as δ(A) := sup {d(x; y);x, y ∈ A}.
Then the following statements are equivalent:

1. X is complete.

2. The intersection of a decreasing sequence (An)n≥1 of nonempty closed sets An+1 ⊂ An ⊂ X
for all n ≥ 1 with inf

n≥1
δ (An) = 0 contains exactly one point: ⋂n≥1An = {x} ⊂ X.

3. Every Cauchy sequence converges.

Proof:

1. ⇒ 2.: On account of inf δ (An) = 0 the An form the basis for a Cauchy filter converging to a single
point owing to the hypothesis and 7.5.2.

2. ⇒ 3.: The closures of the tails An := ⋃
m≥n {xn} satisfy the conditions of 2. and the intersection⋂

n≥1An = {x} contains the limit point x = lim (xn)n≥1.

3. ⇒ 1.: A Cauchy filter F includes a nonempty set ∅ ̸= Fn ∈ F with δ (Fn) < 1
n for every n ∈ N.

Every sequence (xn)n≥1 with xn ∈ Fn is a Cauchy sequence and converges to a point
x = lim (xn)n≥1 ∈ ⋂

n≥1 Fn which is an accumulation point and hence resp. due to 14.1.2
and 7.5.2 the single limit point of the whole filter F .

14.10 The dilation principle

A continuous function f : X → (Y ; d2) on a complete metric space (X; d1) into an arbitrary metric
space (Y ; d2) being dilated with d2 (f(x); f(y)) ≥ d1 (x; y) for all x, y ∈ X is closed.
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Proof: For a closed set A ⊂ X and every y ∈ f [A] there is a sequence (xn)n∈N ⊂ A with lim
n→∞

f (xn) =
y. Owing to the hypothesis (xn)n∈N is a Cauchy sequence on the complete set A (cf.14.2.2) and
hence converges to an x ∈ A. Since f is continuous we infer y = f(x) ∈ f [A].

14.11 The contraction principle

For every contracting function f : X → X on a complete metric space (X; d) with d (f(x); f(y)) ≤
K ·d (x; y) for some 0 < K < 1 and all x, y ∈ X exists a uniquely determined fixed point z = f (z) =
lim
n→∞

fn (x) ∈ X for every x ∈ X.

Proof : According to the hypothesis for x ∈ X we have d
(
fn+1(x); fn(x)

) ≤ Kn · d (f (x) ;x) whence
(fn (x))n≥1 is a Cauchy sequence converging to a z ∈ X. Then for every ϵ > 0 there is an
n ≥ 1 such that d

(
fn+1(x); f(z)

)
< d (fn(x); z) ≤ ϵ

3 , d
(
fn+1(x); fn(x)

) ≤ ϵ
3 and consequently

d (f(z); z) ≤ d
(
f(z); fn+1(x)

)
+ d

(
fn+1(x); fn(x)

)
+ d (fn(x); z) < ϵ. Hence f(z) = z and for every

other u = f (u)we have d (u; z) = d (f(u); f(z)) < d (u; z) = 0 whence z = u.

14.12 Isometric embeddings

A continuous map f : X → Y from a complete metric space (X; dX) into a metric space (Y ; dY )
is an isometric homeomorphism iff its restriction f |X0 is an isometry from a dense subset
X0 ⊂ X into a dense subset f [X0] ⊂ Y .

Proof : Due to the isometry of f on the dense subset X0 and the continuity of (f ; f) : X2 →
Y 2 resp. dX : X2 → R+ and dY : Y 2 → R+ for every x; y ∈ X with approximating sequences
(xn)n≥1 ⊂ X0 and (yn)n≥1 ⊂ X0 such that lim

n→∞
xn = x resp. lim

n→∞
yn = y we have dY (f (x) ; f (y)) =

dY
(

lim
n→∞

f (xn) ; lim
n→∞

f (yn)
)

= dY
(

lim
n→∞

(f (xn) ; f (yn))
)

= lim
n→∞

dY (f (xn) ; f (yn)) = lim
n→∞

dX (xn; yn)

= dX
(

lim
n→∞

xn; lim
n→∞

yn
)

= dX (x; y). Hence f is an isometry on X. Since f [X0] is dense in Y for
every y ∈ Y there is a sequence (xn)n≥1 ⊂ X0 with lim

n→∞
f (xn) = y. Since (f (xn))n≥1 is Cauchy

in Y and f is an isometry (xn)n≥1 is Cauchy in X whence exists a limit lim
n→∞

xn = x ∈ X since
X is complete. From the continuity of f follows lim

n→∞
f (xn) = f (x) = y which shows that f is

surjective.

14.13 The supremum property

Every bounded set (xi)i∈I in a linearly ordered complete metric space X has a supremum
sup
i∈I

xi.

Proof : Due to the hypothesis and the well-ordering of the natural numbers for every n ∈ N there
is a Minimum pn of the set of all natural numbers p ∈ N such that p

2n is an upper bound of (xi)i∈I .
The upper bounds

(pn

2n

)
n∈N form a decreasing Cauchy sequence with limit x ∈ X which clearly

is the minimum of all upper bounds, i.e. x = sup
i∈I

xi.

15 Polish spaces

15.1 Definitions

A topological space X is polish iff it is completely metrizable and second countable.

1. On account of 14.2 these properties extend to closed subsets and countable products.

50



2. Open subsets O ⊂ X are also polish: If we pair all points x ∈ O with the inverse 1
d(x;X\O) of

their distance to the boundary we obtain the set f−1 {1} =
{

(t;x) : d (x;X \O) = 1
t

}
⊂ R×X

which as the reverse image of the closed set {1} under the continuous mapping f : R×X → R
with f(t;x) = t · d (x;X \O) is closed and hence polish. Due to the uniqueness off the distance
d (x;X \O) of a given point x the projection π2 : R × X → X is injective on the subset
f−1 {1} ⊂ R×X and hence a homeomorphism due to 4.2. Thus the image O = π2

[
f−1 {1}] ⊂

X is polish. Note that π2 is continuous and open on the set R×X but obviously not closed
since it is not injective for arbitrary pairs (t, x).

3. The most important representants of polish spaces besides Cn are the family CN of all complex
valued sequences and the continuous complex valued functions C (I,C) ⊂ CI (cf. remark
18.12) on a compact interval I ⊂ R resp. the subspace of sequences (Xn (ω))n∈N of random
variables Xn : Ω → C resp. families (Xt (ω))t∈I of continuous random variables occurring
as realisations of stochastic processes for a given event ω ∈ Ω. By means of the Skorokhod
metric ([1, ch. 3, p. 121]) the càdlàg (vgl. 3.3) real valued functions D (I,R) are provided
with a topology of a polish space coinciding with the trace of the product topology on
C (I,C) ⊂ D (I,C) ⊂ CI . Due to [20, th. 6.7 and 6.8] the spaces Lp of real valued p-
integrable functions are polish too.

15.2 Locally compact polish spaces

Every locally compact and second countable space X is polish.

Proof : Owing to 10.8 the space X is σ-compact whence the Alexandrov compactification 10.2 X
is second countable and due to Urysohns metrization theorem 11.14.2 metrizable. According
to 10.13, 10.10 and 14.1.2 the compact metric space X is complete and consequently polish. Since
X ⊂ X is an open subspace the assertion follows from the preceding section 15.1.2.

Note: The three equivalent metrics d,d′ and d′′ defined by d (x; y) := |x− y|, d′ = d
1+d and

d′′ (x; y) =
∣∣∣ x

1+|x| − y
1+|y|

∣∣∣ for x; y ∈ R illustrate the fact mentioned in [12, p. 21 and ex. 12 on p. 39]
that different metrics may induce the same topology with ot without completeness depending
on their translation invariance: d and d′ are translation invariant and produce the same complete
topology on R; d′ by d′ (x; ∞) = 1 for every x ∈ R also covers the Alexandrov compactification
R = R ∪ {∞}. The metric d′′ generates the same topology on R = R ∪ {∞} with d′′ (x; ∞) = 1 for
every x ∈ R but as the d′′-Cauchy sequences (n)n∈N → ∞ ∈ R and (−n)n∈N → −∞ /∈ R show neither
space is complete any more. For (x; y) close to the origin d′ and d′′ behave similarly to d, i.e. they
generates the same neighborhood basis; with increasing distance from the origin d′ and d′′ tend to 1
so that ∞ ∈ B′′

ϵ (x) for |x| > 1
ϵ − 1. The distances d′ (0;n) and d′′ (0;n) both tend to 1 as n → ∞

but due to the translation invariance d′ (n;n+ 1) = 1
2 stays constant while d′′ (n;n+ 1) → 0 whence

(n)n∈N is d′′-Cauchy but not d′-Cauchy.

15.3 Mazurkiewicz’ theorem

A subspace of a polish space is polish iff it is Gδ.

Proof:

⇒: For a polish subspace A ⊂ X and n ∈ N∗ let An =
{
x ∈ A : ∃U ∈ U (x) : δA (U ∩A) < 1

n

}
.

Obviously we have A ⊂ ⋂
n∈N∗ An ⊂ A and for an x ∈ ⋂

n∈N∗ An the family U (x) ∩ A generates a
Cauchy filter on A converging to a unique x′ ∈ A with x′ = x and consequently A = ⋂

n∈N∗ An. Every
An is open in A and Un = ⋃{

U : ∃x ∈ A : U ∈ U (x) : δA (U ∩A) < 1
n

}
is open in X with Un∩A = An.

The neighborhoods Vn =
{
x ∈ X : d

(
x;A

)
< 1

n

}
of A are open in X with A = ⋂

n∈N∗ Vn. Hence
A = ⋂

n∈N∗ (Un ∩ Vn) provides the desired representation as a Gδ-set.
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⇐: Let A = ⋂
n∈NOn with open On ⊂ X which are already polish according to 15.1. The function

f : ⋂n∈NOn → ∆ ⊂ ∏
n∈NOn with f(x) = (x)n∈N is bijective and with its componentspn ◦ f = id

being continuous as well as open these additional properties transfer to f . Thus f : A → ∆ is a
homeomorphism on the diagonal ∆ which is closed due to 7.5.4 and therefore a polish subset of the
polish space ∏n∈NOn according to 15.1. Hence A is polish..

15.4 Homeomorphism to a Gδ-set in the Hilbert cube

A topological space X is polish iff it is homeomorphic to a Gδ-set in the Hilbert cube H := [0, 1]N.

Proof :

⇒: Follows directly from 7.2, Urysohn’s metrization theorem 11.11 and Mazurkiewicz 15.3.
The following alternative proof provides the construction of a concrete embedding: Assume (X, d)
polish with a dense subset (zn)n∈N ⊂ X and (H, d′) with the product metric d′(x; y) := ∑

n∈N
|xn−yn|

2n+1

for x = (xn)n∈N , y = (yn)n∈N ∈ H according to 1.8. Due to 1.6 we can assume d < 1 and define f :
X → [0, 1]N by means of f (x) = (d (x; zn))n∈N. On account of d (f (x) ; f (y)) = ∑

n∈N
|d(x;zn)−d(y;zn)|

2n+1

≤ ∑
n∈N

|d(x;y)|
2n+1 = 1

2d(x; y) the function f is continuous. f is open and especially injective since
for every x ∈ X there is an m ∈ N with d (x; zm) < ϵ and for d (f (x) ; f (y)) < ϵ

2m+1 we have
|d(x; zm) − d(y; zm)| < ϵ hence d (y; zm) < 2ϵ and therefore d (x; y) ≤ d (x; zm) + d (y; zm) ≤3ϵ.

⇐: Consider again Mazurkiewicz 15.3 resp.15.1.

15.5 The Baire space N

The Baire space N := NN is the set of all sequences of natural numbers furnished with the product
of the discrete topologies induced by the basis B =

{
Us : s ∈ N<N

}
with N<N = ⋃

n∈NNn and
Us := {x ∈ N : s ⊂ x}. Since a countable union of countable sets is again countable (cf. [19, th 17.6])
this construction already yields the 2nd axiom of countability. N is regular (cf. 7.10) and therefore
metrizable as well as separable (cf. 11.14.1). A (Ultra)metric is given by means of d (x, y) = 1

2n(x,y)

with n (x, y) = min {n ∈ N : xn ̸= yn} whereas D = {x ∈ N : ∃m ∈ N : xn = 0∀n ≥ m} provides a
countable and dense subset. N is complete since a given Cauchy family (xn)n∈N ⊂ N for every
m ∈ N must possess a finite subsequence sm ∈ Nm with nm ∈ N such that xn ∈ Usm∀n ≥ nm and hence
converges to the uniquely determined limit x := ⋃ {sm : m ∈ N}. Thus N is polish and according to
11.12 resp. 14.2.1 resp. the above mentioned argument concerning the second axiom of countability
these properties transfer to countable products NN. Every x ∈ N has a countable neighborhood
basis constituted by the sets Un (x) := {y ∈ N : y|n ⊂ x} with x|n := {x0; ...;xn−1} for n ∈ N. Their
complements N \ Un (x) = {y ∈ N : ∃k ∈ N : yk ̸= xk} include the neighborhood U{yk} ∈ U (y) of
every y ∈ N \ Un (x) and hence are open too, i.e. N is totally disconnected (cf. 5.1). A mapping
f : N → N is continuous iff for every n ∈ N there is an mn ∈ N such that the images f (y) of all
sequences y ∈ N coinciding on the first m coordinates with x on the first n coordinates coincide
with f (x). This pleasantly computational space is extremly useful for the study of the function spaces
mentioned in 15.1 since in 15.8 we will show that every polish space is the continuous image of a
closed subset of N . To this end we need the following definitions and two lemmas being of interest
in their own right:

15.6 Trees and paths

A tree is a family T ⊂ N<N with t ⊂ s ⇒ t ∈ T for all s ∈ T and a path through T is a
sequence x ∈ N with x|n ∈ T∀n ∈ N. Then [T ] ⊂ N is the set of all paths trough T and for
s = {x0; ...;xn} ∈ N<N resp. k ∈ N we abbreviate ŝ k := {x0; ...;xn; k}. A tree is pruned iff for
every s ∈ T there is a k ∈ N with ŝ k ∈ T resp. iff for every s ∈ T there is an x ∈ [T ] with s ⊂ x.
Hence in a figurative sense a pruned tree doesn’t have dead ends. For a tree T ⊂ N<N the subtree
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T ′ := {s ∈ T : ∃x ∈ [T ] : s ⊂ x} is a pruned tree with T ′ ⊂ T and [T ′] = [T ]. For a closed set F ⊂ N
every x ∈ X \F possesses a finite subsequence s ⊂ x with Us ⊂ X \F resp. for x ∈ F and every s ⊂ x

there is a y ∈ F with s ⊂ y, i.e. TF :=
{
s ∈ N<N : ∃x ∈ F : s ⊂ x

}
is a pruned tree with F = [TF ].

Thus we have the following lemma:

15.7 Characterization of open and closed sets

1. U ⊂ N is open iff there is a family S ⊂ N<N of finite sequences with U = ⋃
s∈S Us.

2. F ⊂ N is closed iff there is a pruned tree T ⊂ N<N with F = [T ].

15.8 Coverings

In a polish space (X; d) for every ϵ > 0 and every

1. open set O ⊂ X there is a cover O := (On)n∈N of open sets with diameter δ
(
On
)
< ϵ and

O = ⋃
n∈NOn = ⋃

n∈NOn.

2. Fσ-set A ⊂ X there is a coverA := (An)n∈N of disjoint Fσ-sets with diameter δ
(
An
)
< ϵ and

A = ⋃
n∈NAn = ⋃

n∈NAn.

Particularly in a polish space every open set is Fσ and every closed set is Gδ.

Proof :

1. Choose O =
{
B 1

n
(y) : y ∈ Y ∩O ∧B 1

n
(y) ⊂ O ∧ 1

n <
ϵ
2

}
with a countable dense subset

Y ⊂ X. Then for each x ∈ O there is an n ∈ N with 1
n < ϵ and B 1

n
(x) ⊂ O as well as a

y ∈ Y with x ∈ B 1
3n

(y) ⊂ B 1
3n

(y) ⊂ B 1
n

(x) ⊂ O, i.e. B 1
3n

(y) ∈ O. Concerning the diameter
we note that in metric spaces δ

(
A
)

= δ (A).

2. For A = ⋃
n∈NCn with closed Cn we obtain closed disjoint Bn := Cn \ ⋃0≤k<nCk with A =⋃

n∈NBn. According to 1. for every n ∈ N we can find open sets On,m with δ (On,m) < ϵ and
X \ ⋃0≤k<nCk = ⋃

m∈NOn,m = ⋃
m∈NOn,m. Hence the sets An,m := Cn ∩ On,m \ ⋃0≤i<mOn,i

are disjoint with δ (An,m) < ϵ and Bn = ⋃
m∈NAn,m = ⋃

m∈NAn,m. The An,m are Fσ since
they are formed by intersections of the closed sets Cn∩X \⋃0≤i<mOn,i with the open sets On,m
which are Fσ according to 1.

15.9 Characterization of polish spaces as closed subsets of the Baire space

Every polish space X is the image of a closed set F ⊂ N under a uniformly continuous bijection
Φ : F → X.

X

X1 ∪ X2 ∪ X3 ∪ ...

X21 ∪ X22 ∪ X23 ∪ ...

Proof: According to 15.8 there is a family
{
Xσ ⊂ X : σ ∈ N<N

}
of Fσ-sets on X with the following properties:

1. X∅ = X

2. Xσ = ⋃
n∈NXσ̂n = ⋃

n∈NXσ̂n

3. δ
(
Xσ

)
< 1

|σ|

4. σ ⊂ τ ⇒ Xτ ⊂ Xσ

5. n ̸= m ⇒ Xσ̂n ∩Xσ̂m = ∅
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Due to 14.9.3 the set F =
{
f ∈ N : ∃x ∈ X : x ∈ ⋂n∈NXf |n

}
is not empty and Φ : F → X is well

defined by means of Φ (f) ∈ ⋂n∈NXf |n . On account of 5. the mapping Φ is injective. It is surjective
since for every x ∈ X and every σ ∈ N<N with x ∈ Xσ due to 2. and 5. there is a unique n ∈ N
with x ∈ Xσ̂n so that we find an increasing sequence ∅ = σ0 ⊂ σ1 ⊂ ... of finite sequences σn ∈ Nn
and a corresponding decreasing sequence X = X∅ ⊃ Xσ1 ⊃ ... of Fσ-sets with x ∈ ⋂

n∈NXσn . The
mapping Φ is uniformly continuous since for f, g ∈ F with d (f ; g) < 1

2n we have f |n = g|n and
hence d (Φ (f) ; Φ (g)) < 1

n on due to 3. and 4. According to 3.1 the set F = Φ−1 [X] is open
and closed. For a better understanding of the mapping Φ it is useful to demonstrate the closed
character of F directly: Let (fn)n∈N ⊂ F be a Cauchy sequence converging to a f ∈ N , i.e.,
∀n ∈ N∃m ∈ N : fk|n = f |n∀k ≥ m. According to 14.1.3 Φ (fn)n∈N ⊂ X is again a Cauchy sequence
converging to a x ∈ X, i.e. ∀n ∈ N ∃m ∈ N : d (x; Φ (fk)) < 1

n ∀k ≥ m ⇔ ∀n ∈ N ∃m ∈ N :
x ∈ Xfk|n = Xf |n ∀k ≥ m ⇒ x ∈ ⋂n∈NXf |n ⇒ x = Φ (f) ⇒f ∈ F whence F is closed and also open
due to 15.5.

16 Baire spaces

16.1 Baire Categories

A set A ⊂ X is meager or of first category in the space X iff it is a countable union A = ⋃
n∈NAn

of nowhere dense sets An resp. iff its complement X \ A = ⋂
n∈NX \ An is the countable

intersection of dense sets X \An and not meager resp. of second category otherwise.

1. If a subset A ⊂ B ⊂ X is of first category in a set B ⊂ X then it is also of first category in
X since for a An not nowhere dense in X there is an x and a neighborhood U with x ∈ U ⊂ An
such that x cannot be a boundary point and especially x ∈ U ∩An ̸= ∅. Since An ⊂ B it follows
that x ∈ U ∩B ⊂ An ∩B hence An is not nowhere dense in B.

2. The first category of any set obviously extends to subsets, finite intersections und count-
able unions.

3. The rational numbers Q are of first category in R and likewise the Cantor set T in [0; 1]
(cf. 2.9). Both have the Lebesgue measure λ (Q) = λ (T ) = 0. On the other hand there are
sets U ⊂ R of first category with Lebesgue measure λ (U) = 1. (cf. [19, p. 3.7])

4. For a measure µ being bounded from above, i.e. µ(A) < M∀A ∈ A the space Lq is of first
category in Lp for p < q: According to [19, p. 6.6.1]) in this case we have ∥f∥p ≤ ∥f∥q ·M

1
p

− 1
q .

The closures Bq
n (with reference to ∥∥p) of the balls Bq

n =
{
f ∈ Lq : ∥f∥q ≤ n

}
⊂ Lq ⊂ Lp have

no interior points with reference to ∥∥p since for every m ≥ 2n there is an h = nα|[0;m−pn−αp]

with α = q+p
q−p · ln(m)

ln(n) such that on the one hand ∥h∥q = (nαq ·m−p · n−αp)
1
q =

(
nα(q−p)m−p

) 1
q

=
(
mq+p ·m−p) 1

q = m > 2n and on the other hand ∥h∥p = (nαp ·m−p · n−αp)
1
p = 1

m . Hence
for every f ∈ Bq

n in every neighborhood Bp
1

2m

(f) there is a g ∈ Bq
n ∩ Bp

1
2m

(f) and a further

g + h ∈ Bp
1

2m

(g) ⊂ Bp
1
m

(f) with g + h /∈ Bq
n so that f cannot be an interior point of Bq

n. Thus
Lq = ⋃

n≥1B
q
n is of first category in Lp.

16.2 Baire spaces

A topological space X is a Baire space iff it satisfies one of the following equivalent conditions:

1. Every set of first category is nowhere dense.

2. A countable intersection of open and dense sets ist again dense.

3. A countable intersection of dense Gδ-sets is again dense and Gδ.

54



4. Every nonempty open subset is of second category.

5. The complement of every set of first category is dense.

Proof:

1. ⇒ 2. : Consider the complements.

2. ⇒ 3. : If the intersection An = ⋂
m∈N Um,n is dense the Um,n must be dense too.

3. ⇒ 4. : For a nonempty, open and meager O = ⋃
n∈NAn ̸= ∅ the open sets X \An are dense and due

to the hypothesis the intersection ⋂n∈N

(
X \An

)
= X \⋃n∈NAn ⊂ X \⋃n∈NAn = X \O

is dense too. Since X \O is closed X \O = X contrary to the assumption.

4. ⇒ 5. : Assuming the complement X \A of the meager set A is not dense the open set Å ⊂ A would
be nonempty and due to 16.1.2 be of first category contrary to 4. again.

5. ⇒ 1. : For a meager A = ⋃
n∈NAn the set X \A = ∅ and hence A is nowhere dense.

16.3 Baire’s category theorem

For a nonempty Baire space X the following statements hold:

1. Every countable closed cover (An)n∈N contains at least one An with Ån ̸= ∅.

2. Every nonempty open subset O ⊂ X is Baire.

3. The complement of every set of first category is Baire and hence of second category.

Proof:

1. Follows directly from 16.2.1.

2. Assuming there is a nonempty open subset ∅ ̸= U = ⋃
n∈NAn ⊂ O of first category in O with

nowhere dense An in O. Since U is nonempty and open in X and X is Baire one of the An must
contain a neighborhood V ∈ U(x) in X of an interior point x ∈ Ån ⊂ An of the closure An in
X. But then V ∩ O is a nonempty neighborhood in O and x would be an interior point of the
closure An ∩O in O contrary to the assumption.

3. According to 16.2.5 the complement X \ A of a set A ⊂ X of first category in a Baire space
X is dense in X. Due to 16.1.1 a subset B ⊂ X \ A being of first category in X \ A is also
of first category in X. From 16.1.2 we infer that A ∪ B is of first category in X such that the
complement (X \A) \B = X \ (A ∪B) is dense in X and especially in X \A.

16.4 Baire’s theorem

A topological space X is Baire if it is

1. completely metrizable or

2. locally compact.

Proof:

1. For a countable intersection O = ⋂
n∈NOn ̸= ∅ of w.l.o.g. decreasing open dense sets (On)n∈N

and an arbitrary open U ⊂ X there is a a decreasing sequence (Bn)n∈N with δ (Bn) < 1
n+1

und Bn+1 ⊂ Bn ⊂ On ∩ U . Due to 14.9.2 we have ∅ ̸= ⋂
n∈NBn ⊂ U ∩ O and the statement

follows from 16.2.2.

2. On account of 10.6 and 9.4 the Bn from above may be chosen as closed and compact sets such
that the proposition follows from 9.2.2.
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16.5 Banach’s category theorem

In any topological space the union of open sets of first catogory is again of first category.
Proof : On account of 16.2.4 the topological space is not a Baire space. Let G be the union of a
family G of nonempty open sets of first category. According to Zorn’s lemma (cf.[19, p. 14.2.4]) there
is a maximal family F := (Uα)α∈A of disjoint, nonempty and open sets Uα such that each of them
is included in a set from G and that any set of any other such family is included in a set of F . Then the
closed set G \⋃α∈A Uα is nowhere dense since any interior point could be added to an Uα contrary to
the maximality of G. For Uα = ⋃

n∈NNα,n with nowhere dense Nα,n let Nn := ⋃
α∈ANα,n. Any open

set U intersecting Nn particularly meets a Nα,n such that ∅ ≠ (U ∩ Uα)\Nα,n ⊂ U \Nn. Hence Nn does
not include any open set and consequently is nowhere dense and the set G ⊂

(
G \⋃α∈A Uα

)
∪⋃α∈A Uα

=
(
G \⋃α∈A Uα

)
∪⋃n∈NNn is of first category.

16.6 Decomposition into sets of first and second category

Every topological space con be decomposed into an open set G of first category and a closed
Baire set X \G.
Proof : The system of all families G of nonempty open sets of first category is inductively ordered with
regard to inclusion such that on account of Zorn’s lemma (cf. [19, p. 14.2.4]) there is a maximal
family with open union G of first category owing to the preceding theorem16.5. On account of the
maximal character of G and 16.2.4 the closed complement X \G is Baire.

16.7 Examples

Q is dense and if first category in R and R is not dense but still of first category in C. Q is not Baire
since (r)r∈Q is a countable closed cover without interior points; Rn is Baire owing to 16.4.2. The
category theorem 16.3 and Baire’s theorem 16.4 in suitable situations may reduce the proof of a
proposition for a Baire space X to the case of a single element An of a closed cover (An)n∈N:

16.8 Continuous functions on Baire spaces

For a family (fi)i∈I of real valued, continuous and pointwise bounded functions on a Baire
space X for every open U ⊂ X there is a nonempty and open set V ⊂ U so that the fi are
uniformly bounded on V .
Proof : On account of 16.3.2 the set U is Baire and with An := {supi∈I fi ≤ n} we obtain a closed
cover (An)n∈N containing at least one An with nonempty interior V due to 16.3.1.
Note: The statement of 16.8 can be extended to the whole space X in the case of X being compact
and convex (cf. [16, th. 4.3]). Further applications of the Baire theorem are the Banach-Steinhaus
theorem [16, th. 4.1], the open mapping theorem [16, th. 4.4] and the closed graph theorem
[16, th. 4.6] concerning continuity and open character of linear mappings between Fréchet
spaces.

17 Compactification

17.1 Precompact spaces

A uniform space is precompact iff for every neighborhood V on X there is a finite cover of X with
sets small of order V . A subset A ⊂ X is precompact iff the uniform subspace A is precompact.
Metric precompact spaces are denoted as totally bounded.
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17.2 Separated precompact spaces

For a separated space X the following statements are equivalent:
1. X is precompact.
2. The complete closure X̃ is compact.
3. Every ultrafilter on X is a Cauchy filter.

Proof:
1. ⇒ 2. : For an ultrafilter F̃ and a w.l.o.g. (cf. 12.5) closed neighborhood Ṽ on the complete closure

i (X) = X̃ (cf. 14.7) there is a finite cover X = ⋃
1≤k≤nAk with A2

k ⊂ (
i−1)2 [Ṽ ]. Hence

we have i (X) = ⋃
1≤k≤n i (Ak) with i2 (Ak) ⊂ Ṽ and consequently X̃ =

n⋃
k=1

i (Ak) with

i (Ak) × i (Ak) ⊂ Ṽ since Ṽ is closed. Because of ⋂1≤k≤nX \Ak = ∅ the ultrafilter F̃ must
contain one of the i (Ak) and since this is true for every Ṽ the filter F̃ is Cauchy converging
on the complete space X̃ which must be compact due to 9.2.4.

2. ⇒ 3. : Due to 6.6 the continuous image i (F) of an ultrafilter F on X is again an ultrafilter on X̃
converging on account of 9.2.4. Hence for every V ⊂ X2 the image i (F) contains a filter
set F̃ ∈ F̃ with F̃ 2 ⊂ i2 (V ) and agin owing to 6.6 there is a F ∈ F with i (F ) ⊂ F̃ . Hence
i2(F ) ⊂ i2 (V ) ⇒ F 2 ⊂ V and consequently F is a Cauchy filter.

3. ⇒ 1. : Assuming there is a neighborhood V and no finite covering X with sets Ai small of order V
the sets X \⋃i∈LAi with finite L and Ai small of order V constitute a basis for an ultrafilter
F containing every X \Ai and hence none of the Ai. Thus F does not contain any set small
of order V and cannot be a Cauchy filter.

17.3 Complete precompact spaces

A separated space is compact iff it is precompact and complete.
Proof: ⇒: A separated compact space X is obviously precompact (cf. 17.1), as a compact subspace
of the separated complete closure X̃ it is closed (cf. 14.7 and 9.4) and hence itself complete owing to
14.2.2. ⇐: Follows directly from 17.2.2.

17.4 Neighbourhood filters of compact spaces

The uniquely determind neighborhood filter U of a compact space X consists of all neighbor-
hoods of the diagonal ∆ in X2.
Proof: Due to 9.5 and 8.1.2 the space X is completely regular, complete (cf. 17.3) and uni-
formizable (cf. 13.5). For every neighborhood V ∈ U in the uniform space (X,U) there is a neighbor-
hood W with W (W ) ⊂ V . Then we have ∆ ⊂ ⋃

x∈X (W ×W ) (x;x) ⊂ V and ⋃x∈X (W ×W ) (x;x)
is open in the product space

(
X2,U2), i.e. V is a neighborhood of ∆ in X2. Assuming there is a

neighborhood V of ∆ with V /∈ U then the sets
{
U ∩ (X2 \ V ) : U ∈ U} are the basis for a neighbor-

hood filter F stronger than U . The product space
(
X2,U2) is compact (Tychonov 9.9) such that F

and particularly U must have an accumulation point (x, y) ∈ ⋂U∈U U with (x, y) /∈ ∆ according to its
construction (cf. 9.2.3). But according to 12.5 and 12.6.1 we have ∆ = ⋂

U∈U U since X is separated.

17.5 Locally compact spaces with a countable basis

Every locally compact space with a countable basis is polish.
Proof: On account of 10.8 the Alexandrov compactification X ∪ {∞} of the locally compact
space X is second countable, hence metrizable due to 11.14.3 and complete owing to 17.3. Thus
X ∪ {∞} is polish as well as the open subset X ⊂ X ∪ {∞} due to 15.1.
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17.6 Totally bounded spaces

For a metric space (X; d) the following statements are equivalent:
1. X is totally bounded.
2. For every ϵ > 0 there is a finite cover (Uk)1≤k≤n of X with δ (Uk) ≤ ϵ.
3. Every sequence has a partial Cauchy sequence.

Proof:

1. ⇒ 2.: In a metric space a set A is small of order ϵ iff δ (A) ≤ ϵ.
2. ⇒ 3.: For every k ∈ N there is at least one set Uk of every finite cover of sets small of order 1

k
containing infinitely many members of the given sequence (xn)n∈N. W.l.o.g. choose n0 := 0,
n1 := 1 and V1 := U1 such that it contains infinitely many members xn with n ≥ 1. For
already chosen xn1; ...;xnk and V1; ...;Vk take Uk+1 such that Vk+1 := Uk+1 ∩Vk contains in-
finitely many members xn with n ≥ nk and nk+1 := min {n ∈ N : xn ∈ Vk+1 \ {xn1; ...;xnk}}.
Thus we get a partial Cauchy sequence (xnk)k∈N with xnk ∈ Vk0 for k > k0 and Vk+1 ⊂ Vk
as well as δ (Vk) = 1

k .
3. ⇒ 1.: Assuming there is an ϵ > 0 such that no finite union of sets small of order ϵ covers the

set X. Choose an arbitrary x0 ∈ X and U0 := Bϵ(x0). For already chosen x1, ..., xn and
U1, ..., Un take xn+1 ∈ Un \Un and Un+1 := Un ∪Bϵ (xn+1) such that the sequence (xn)n∈N
satisfies d (xn;xk) ≥ ϵ for all k, n ∈ N with k < n and consquently does not contain a partial
Cauchy sequence.

17.7 The Stone-Čech-compactification

Every completely regular space X has an embedding e : X → βX into a compact space βX which
is uniquely determined up to homeomorphism and allows the unique extension of any continuous
f : X → Y into a compact space Y to a continuous βf : βX → Y with f = βf ◦ e. The image e [X]
is dense in X̃, i.e. the compactification is its closure: e [X] = X̃. In particular every closed subset
of a completely regular space is compact.
Proof: For every φ : X → R from the set C∗ (X) of real-valued, continuous and bounded functions on
X the image φ [X] lies in a minimal closed interval Iφ ⊂ R. According to 7.9 the evaluation function
e : X → ∏

φ∈C∗(X) Iφ with e(x) := (φ(x))φ∈C∗(X) is an embedding and βX := e [X] is compact owing
to 9.4 and Tychonov’s theorem 9.9.

∏
φ∈C∗(X) Iφ

F // ∏
ψ∈C∗(Y ) Iψ

βX

∪
βf // βY

∪

X

e

OO

f // Y

a

OO

Let Y be compact with a continuous f : X → Y and an em-
bedding a : Y → ∏

ψ∈C∗(Y ) Iψ with a(y) := (ψ(y))ψ∈C∗(Y )
into βY = a [Y ] = a [Y ]. Now we simply change coor-
dinates by means of F : ∏φ∈C∗(X) Iφ → ∏

ψ∈C∗(Y ) Iψ with
F (e(x)) := a (f(x)) resp. (pψ ◦ F )

(
(tφ)φ∈C∗(X)

)
:= tψ◦f . Thus

the functions ψ ∈ C∗ (Y ) are identified with φ = ψ ◦ f ∈ C∗ (X)
such that the φ-th coordinate tφ of ∏φ∈C∗(X) Iφ can be assigned
to the ψ-th coordinate tψ of a [Y ] ⊂ ∏

ψ∈C∗(Y ) Iψ. The mapping
F is continuous since F−1

[
p−1
ψ [Uψ]

]
= (pψ ◦ F )−1 [Uψ] = p−1

ψ◦f [Uψ◦f ] is open in∏φ∈C∗(X) Iφ. There-
fore and since F (e(x)) = a (f(x)) we obtain F [βX] = F

[
e [X]

]
⊂ F [e [X]] = a [f [X]] ⊂ a [Y ] = βY .

The desired continuous extension is βf := a−1 ◦ F |βX with (βf ◦ e) (x) =
(
a−1 ◦ F |βX ◦ e) (x) =(

a−1 ◦ a ◦ f) (x) = f(x). The restriction F |e[X] = a ◦ f ◦ e−1 resp. βf |X = f ◦ e−1 is determined
by F |e[X] ◦ e = a ◦ f resp. f = f̂ |X ◦ e and on account of 7.13 the continuous extension βf is
uniquely determined. The uniqueness of the compactification βX := e [X] follows as in the proof
of 14.7 by invoking twice the uniqueness of the extension with regard to an alternative embedding
f := e′ : X → βX ′.
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17.8 Application to the ordinal numbers

Due to the request for a continuous extension the Stone-Čech-compactification in general needs a
lot more additional points than the Alexandrov compactification according to 10.2. The exact
cardinality even of apparently simple examples like N is still the subject of current research. But
there are also simple cases: On the set ω of the ordinal numbers (vgl. [19, p. 11.1]) with the order
topology generated by the open intervals ]a; b[with a ⊊ b ∈ ω we have the smallest infinite ordinal
ℵ0 = N and smallest non countable ordinal ℵ1. Every ordinal x ∈ ω represents a half open interval
[∅, x[ (cf. [19, p. 11.3.3]). It can be shown that the Stone-Čech-compactification of the subset of the
countable ordinals ℵ1 = [∅; ℵ1[ is achieved by simply adding ℵ1 itself: βℵ1 = ℵ1 ∪ {ℵ1}.

18 Compact convergence

18.1 Uniform convergence

For a family F (X;Y ) of functions f : X → Y on a set X into a uniform space (Y ; U) the finite in-
tersections of the sets W (U) :=

{
(f ; g) ∈ F 2(X;Y ) : (f(x); g(x)) ∈ U ∀x ∈ X

}
for U ∈ U generate the

neighborhood filter W (U) of uniform convergence. The resulting topology OX of uniform con-
vergence on X is induced by the finite intersections of W (U)(f) := {g ∈ F (X;Y ) : g(x) ∈ U (f(x))}
and the topological space is denoted as FU (X;Y ) := (F (X;Y ) ; OX).

18.2 Examples

On a metric space (Y ; d) the neighborhood filters W
(
U1/n

)
=
{
D(f ; g) < 1

n

}
with the supremum

metricD(f ; g) := sup {d (f(x); g(x)) : x ∈ X} constitute a countable basis for W (U). For compact
X the continuous image f [X] is compact (cf. 9.8) and hence bounded with reference to the metric
d on Y . On account of 12.9 the continuous functions f ∈ CU (X;Y ) are uniformly continuous for
compact X.

18.3 Uniform limits of continuous functions

CU (X;Y ) is closed in FU (X;Y ). Particularly every limit function of a uniformly convergent
filter of continuous functions is again continuous.

Proof: For every filter F on X the familyAF of all f ∈ FU (X;Y ) with f(F) being a Cauchy filter is
closed in FU (X;Y ): For an accumulation element g on AF and V 3 ⊂ U ∈ U there is an f ∈ AF with
(f, g) ∈ V and a filter set F ∈ F with f [F ] × f [F ] ⊂ V such that g [F ] × g [F ] ⊂ V 3 ⊂ U , i.e. g(F)
is a Cauchy filter too and hence g ∈ AF . For a Cauchy filter f (U (x)) and every neighborhood V on
Y there is a neighborhood U (x) ∈ U (x) with f [U (x)] × f [U (x)] ⊂ V , i.e. f [U (x)] ⊂ V (f (x)) so
that we have U (f (x)) ⊂ f [U (x)] and due to 6.6.2 we infer ⋂x∈X AU(x) ⊂ CU (X;Y ). The converse
inclusion is trivial and the closed character of the AU(x) extends to their intersection CU (X;Y ).

18.4 Completeness of spaces of uniform convergence

Completeness transfers from Y to FU (X;Y ).

Proof: For a Cauchy filter F on FU (X;Y ) and every x ∈ X the sets F (x) := {g(x) : g ∈ F} for
F ∈ F constitute a Cauchy filter F(x) on Y uniformly converging to a f(x) := y ∈ Y . The resulting
function f : X → Y is the limit element of F since for every neighborhood U ∈ U there is an F ∈ F
with F (x) ⊂ U (f(x)) ∀x ∈ X, i.e. F ⊂ W (U)(f) ∈ F .
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18.5 Uniform S-convergence

For a subsystem S ⊂ P (X) let W (S; U) be the initial neighborhood filter on the set F (X;Y ) with
reference to the projections pS : F (X;Y ) → FU (S;Y ) with pS(f) := f |S for S ∈ S. According to
12.10 this neighborhood filter of uniform S-convergence W (S; U) is generated by finite inter-
sections of sets W (S;U) :=

(
p2
S

)−1 [W (U)] =
{
(f ; g) ∈ F 2(X;Y ) : (f(x); g(x)) ∈ U ∀x ∈ S

}
for U ∈ U

and S ∈ S while the finite intersections of sets p−1
S [U(f)] = {g ∈ F (X;Y ) : g(x) ∈ U (f(x)) ∀x ∈ S}

induce the topology OS of uniform S-convergence. Note that for particular sets S1 ⊂ S2 we have
W (S1;U) ⊃ W (S2;U) but for set families S1 ⊂ S2 the inclusion is converse: W (S1; U)⊂ W (S2; U)
and OS2 is stronger than OS1 .

18.6 Examples

1. For the set S = E of finite subsets on X we obtain the neighborhood filter W (E ; U) resp.
the topology OE of pointwise convergence coinciding with the product filter generated by
the sets W ({x} ;U) := (πx × πx)−1 [U ] on ∏x∈X Y = Y X . A filter converges on FE(X;Y ) iff
every component πx (F) = F(x) := {f(x) : f ∈ F} converges pointwise.

2. For a topology on X and the family S = K of compact subsets we get the neighborhood filter
W (K; U) resp. the topology OK of compact convergence. A filter converges with reference to
the corresponding topology of compact convergence on FK(X;Y ) iff it uniformly converges
on every compact subset of X. The subspace CK(X;Y ) ⊂ FK(X;Y ) contains the functions that
are uniformly continuous on compact sets (cf. 12.9)

3. For S={X} we have the neighborhood filter W (U) resp. the topology OX of uniform con-
vergence on X.

4. Due to E ⊂ K and W (X;U) ⊂ W (K;U) ⊂ W ({x} ;U) ∀U ∈ U , x ∈ K ∈ K the inclusion
W (E ; U) ⊂ W (K; U) ⊂ W (U)holds. (cf. 18.5): Uniform convergence ist stronger than compact
convergence which is stronger than poitwise convergence.

5. On account of 4. the projections πx : F (X;Y ) → Y with πx(f) := f(x) are not only continuous
on W (E ; U) but also on W (K; U) and W (U). Hence for any set A ⊂ F (X;Y ) we have A(x) =
πx
[
A
]

⊂ πx [A] = A(x) owing to 3.5.

18.7 Properties of the function spaces FS(X; Y )

For a set X and a uniform space Y the following statements hold:.

1. For a separated Y and a cover S of X the function space FS(X;Y ) is separated too since
for f ̸= g ∈ FS(X;Y ) there is a x ∈ S ⊂ S with f(x) ̸= g(x) and hence U, V ∈ UY with
U (f(x)) ∩ V (g(x)) = ∅ so that W (S;U) (f) ∩W (S;V ) (g) = ∅.

2. For a family S of subsets whose interiors already cover X the continuous functions C(X;Y )
are closed in FS(X;Y ) since owing to 18.3 the set CU (S;Y ) is closed in FU (S;Y ) and on
account of the projections pS : F (X;Y ) → FU (S;Y ) being continuous this is also true for
C(X;Y ) = ⋂

S∈S p
−1
S [CU (S;Y )]. Note that due to the hypothesis f−1 [O] is open in X iff(

f−1 [O]
) ∩ S̊ is open in X for all S ∈ S, cf. 4.3.3.

3. The completeness of Y transfers to FU (S;Y ) due to 18.4 and hence to FS(X;Y ) on account of
6.7 since for a Cauchy filter F ⊂ FS(X;Y ) every projection pS (F ) ⊂ FU (S;Y ) is again a Cauchy
filter converging to a fS ∈ FU (S;Y ) such that F converges to f := ⋂

S∈S p
−1
S (fS) ∈ FS(X;Y ).

4. All separation axioms with the exception of T4 transfer to FE(X;Y ) due to 7.10.

5. For X locally compact as well as σ-compact and Y metrizable the function spaces FK(X;Y )
and CK(X;Y ) are metrizable: Each f has a countable neighborhood basis p−1

Kn

[
B1/m (f)

]
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with compact Kn ⊂ X for n ∈ N, Kn ⊂ Kn+1 and ⋃n∈NKn = X resp. B1/m =
{
d < 1

m

}
. Fur-

thermore it is separated due to 18.7.1 and hence metrizable on account of 13.3. A metric on
FK(X;Y ) is provided byD(f ; g) := max

n∈N
dn(f ;g)

n(1+dn(f ;g)) with dn(f ; g) := sup {d (f(x); g(x)) : x ∈ Kn}:
As in 1.6 the triangle inequality follows from the corresponding relation of the components:
D(f ; g) + D(g;h) = max

n∈N
dn(f ;g)

n(1+dn(f ;g)) + max
n∈N

dn(g;h)
n(1+dn(g;h)) ≥ max

n∈N

(
dn(f ;g)

n(1+dn(f ;g)) + dn(g;h)
n(1+dn(g;h))

)
≥

max
n∈N

dn(f ;h)
n(1+dn(f ;h)) = D(f ;h). On the one hand for every ϵ > 0 and nϵ =

[
ϵ−1] the basis set

{D < ϵ} =
nϵ⋂
n=0

{
dn <

nϵ
1−nϵ

}
=

nϵ⋂
n=0

W
(
Kn;

{
d < nϵ

1−nϵ

})
∈ W (K; U) and on the other hand for

every neighborhood W (K;U) ∈ W (K; U) there is an n ∈ N with K ⊂ Kn and an ϵ > 0 with
{d < ϵ} ⊂ U such that

{
D < ϵ

n(1+ϵ)

}
⊂ W (K;U).

18.8 The compact open topology

For a topological space X and a uniform space Y the sets (K;O):= {f : X → Y : f [K] ⊂ O} for
compact K ⊂ X and open O ⊂ Y form a subbasis for the compact open topology on the
set of continuous functions C(X;Y ). Due to 18.6.2 the compact open topology is identical with the
topology OK of compact convergence on the subspace CK(X;Y ) ⊂ FK(X;Y ).

Proof:

For an arbitrary (K;O), f ∈ (K;O) and every y ∈ f [K] there is a neighborhood Vy(y) ⊂ O and a
finite E ⊂ f [K] with f [K] ⊂ ⋃

y∈E Uy(y) and U2
y ⊂ Vy since f [K] is quasi-compact due to 9.8. For

U := ⋂
y∈E Uy we have U (f [K]) ⊂ O such that for g ∈ W (K;U)(f) with f [K] × g [K] ⊂ U follows

g [K] ⊂ U (f [K]) ⊂ O , i.e. g ∈ (K;O). Hence we have shown that W (K;U)(f) ⊂ (K;O).

Conversely for an arbitrary W (K;U)(f) there is a closed and symmetric V 3 ⊂ U as well as a finite
E ⊂ f [K] with f [K] ⊂ ⋃

i∈E V (f(xi)). On account of 3.1 and 9.4 the setsKi := K∩f−1 (V (f(xi)))are
again compact and cover K. For g ∈ ⋂

i∈E (Ki;Oi) and x ∈ K there is an i ∈ E with x ∈ Ki

such that g(x) ∈ Oi := ˚V 2 (f(xi)) and since f(x) ∈ V (f(xi)) we infer (f(x); g(x)) ∈ V 3 hence⋂
i∈E (Ki;Oi) ⊂ W (K;U)(f).

18.9 Uniform approximation of the absolute value function by real polynomials

1. The polynomials pn : R → R defined by p0(t) := 0 and pn+1(t) := pn(t) + 1
2
(
t− p2

n(t)
)

uniformly
converge on [0; 1] to f(t) =

√
t since for t ∈ [0; 1] we have

√
t − pn+1(t) =

(√
t− pn(t)

)
·(

1 − 1
2

(√
t+ pn(t)

))
and by means of induction over n it is easily shown that 0 ≤

√
t− pn(t)

≤ 2
√
t

2+n
√
t

≤ 2
n whence follows uniform convergence.

2. The polynomials qn : R → R defined by qn(t) := a · pn
(
t2

a2

)
uniformly converge on [−a; a] to

h(t) = |t| since for t ∈ [−a; a] we have ||t| − qn(t)| =
∣∣∣∣a√ t2

a2 − qn(t)
∣∣∣∣ ≤

2a
√

t2
a2

2+n
√

t2
a2

≤ 2a
n .

18.10 Algebrae of continuous functions on compact spaces

The closure A of a subalgebra A ⊂ C (K;C) of continuous complex-valued functions on a
compact space K with regard to uniform convergence has the following properties:

1. A is again a subalgebra since for f, g ∈ A in every ϵ-neighbourhood there are fϵ, gϵ ∈ A such
that |∥α · f∥ − ∥α · fϵ∥| ≤ |α| · ∥f − fϵ∥ ≤ |α| ϵ ⇒ α · f ∈ A; ≤ ∥f − fϵ + g − gϵ∥ ≤ 2ϵ ⇒ f + g ∈
A and finally |∥f + g∥ − ∥fϵ + gϵ∥| ≤ |∥f · g∥ − ∥fϵ · gϵ∥| ≤ |∥g∥ · ∥f − fϵ∥ + ∥fϵ∥ · ∥g − gϵ∥| ≤
∥g∥ · ϵ+ (∥f∥ + ϵ) · ϵ ⇒ f · g ∈ A since f and g are bounded on K due to 9.8 and 9.10.
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2. For every f ; g ∈ A we have |f | ∈ A, max {f ; g} = 1
2 ((f + g) + |f − g|) ∈ A and min {f ; g} =

1
2 ((f + g) + |f − g|) ∈ A since with a := ∥f∥ we can apply 18.9.2, i.e. for every ϵ > 0 there is
a polynomial pϵ without constant term satisfying ∥|f(x)| − pϵ (f(x))∥ < ϵ and pϵ (f(x)) ∈ A on
account of 1.

18.11 The Stone Weierstrass theorem on compact spaces

The subalgebra A (D) generated by a subfamily D ⊂ C (K;C) of continuous complex-valued
functions on a compact space K by means of polynomials without constant term is dense in
C (K;C) with regard to uniform convergence if D satisfies the following conditions:

1. D separates every point in K from 0: ∀y ∈ K ∃gy ∈ D : gy (y) ̸= 0.

2. D separates points in K: ∀y, z ∈ K ∃g ∈ D : g (y) ̸= g (z)

3. With every f ∈ D we also have the complex conjugate f ∈ D.

Proof: Owing to condition 3. and on account of g + h = g + h resp. g · h = g · h the subalgebra
A (D) can be decomposed into a real part ReA (D) =

{
1
2

(
h+ h

)
: h ∈ A (D)

}
and an imaginary

part ImA (D) =
{

1
2

(
h− h

)
: h ∈ A (D)

}
. For a given f ∈ C (K;C) we have Ref ∈ C (K;R) and

for every y, z ∈ K due to condition 1. we obtain gy; gz ∈ A (D) with gy (y) = gz (z) = 1 and
hence a gyz = gy + gz − gy · gz ∈ A (D) with gyz (y) = gyz (z) = 1. Thus the function hyz =
Ref(y)(g−g(z)·gyz)−Ref(z)(g−g(y)·gyz)

g(y)−g(z) ∈ A (D) satisfies hyz (y) = Ref (y) and hyz (z) = Ref (z) for g ∈
A (D) being either the real part or the imaginary part of the separating function for y und z depending
on which part actually separates the two points according to condition 2. For every z ∈ K the
neighborhoods Uzϵ (y) = {hyz − Ref < ϵ} cover the compact set K for finitely many y ∈ L ⊂ K and
hzϵ = max {hyz : y ∈ L} ∈ A (D) with hzϵ (x)−Ref (x) < ϵ∀x ∈ K due to 18.10.2. The neighborhoods
Uϵ (z) = {hzϵ − Ref > −ϵ} again cover K for finitely many z ∈ M ⊂ X and as above we have
Rehϵ := max {hzϵ : z ∈ M} ∈ A (D) with |Rehϵ − Ref | < ϵ. In the same way we find Imhϵ ∈ A (D)
with |Imhϵ − Imf | < ϵ and hence for hϵ = Rehϵ + iImhϵ ∈ A (D) we have ∥hϵ − f∥ <

√
2ϵ.

18.12 Properties of C (K;C)

The algebra A (D) induced by the three functions D = {x 7→ 1;x 7→ x;x 7→ x} has the same cardinality
as the set of all finite subsets of N and hence is countable due to [19, p. 17.6]. According to the
preceding theorem it is also dense in C (K;C). Due to 18.7.5 the topological vector space C (K;C)
is metrizable whence on account of 11.14.1 it is second countable. Finally because of 18.7.3 it is
complete and hence a polish space.

18.13 The Stone-Weierstrass theorem for locally compact spaces

Let X be a σ-compact space X and C0 (X;C) the algebra of all continuous functions vanishing
at infinity, i.e. lim

|x|→∞
|f (x)| = 0 ∀f ∈ C0 (X;C). Then the subalgebra A (D)

1. generated by D ⊂ C (X;C) is dense in C (X;C) with regard to compact convergence.

2. generated by D ⊂ C0 (X;C) on is dense in C0 (X;C) with regard to uniform convergence.

if D satisfies the conditions 1. - 3. from 18.11.

Proof :

1. This is just a paraphrasing of 18.11.

2. By the Alexandrov compactification 10.2 and the contintuous extension f (∞) = 0 for
every f ∈ C0 (X;C) by he conditions for 18.11 are obviously satisfied.
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19 Equicontinuity

19.1 Equicontinuity

For a topological space X and a uniform space Y the family H⊂ F (X;Y ) is equicontinuous in
x ∈ X iff for evey neighborhood U in Y there is a neighborhood V (x) of x such that f [V (x)] ⊂
U (f(x)) ∀f ∈ H. The family H is simply equicontinuous iff H is equicontinuous in every x ∈ X . For
an uniform space X and V independent of x we have a case of uniform equicontinuity

19.2 Examples

1. For two metric spaces (X; d) resp. (Y ; d′) and k, α ∈ R∗
+ the Lipschitz continuous func-

tions Hk;α := {f : X → Y : d′ (f(x); f(y)) ≤ k · d (x; y)α ∀x, y ∈ X} are equicontinuous since
f [Vδ(x)] ⊂ Uϵ (f(x)) ∀f ∈ H ∧ ϵ > 0 with δ =

(
ϵ
k

) 1
α .

2. For a < b and k ∈ R∗
+ the family Hk := {f : [a; b] → R : |f ′(x)| ≤ k ∀x ∈ [a; b]} is equicontin-

uous since f [Vδ(x)] ⊂ Uϵ (f(x)) ∀f ∈ H ∧ ϵ > 0 with δ = ϵ
k .

3. The family (fn)n∈N : [0; 1] → R with fn(x) = n is uniformly equicontinuous but not
uniformly bounded although every single fn is bounded.

4. The family (fn)n∈N : [0; 1] → R with fn(x) =


0 für x < 1

n

n3
(
x− 1

n

)
für 1

n < x < 1
n−1

n2

n−1 für 1
n−1 < x

is equicontin-

uous at every x (the choice of V is independent of f) and each fn is uniformly continuous
(the choice of V is independent of x) as well as bounded, but the family is neither uniformly
equicontinuous (there is no common V for all x and f) nor bounded with the exception of
x = 0. (counterexample to [10, Aufgabe 14.11]!)

5. The family (fn)n∈N : [0; 1] → [−1; 1] with fn(x) = cos(nx) is not equicontinuous but uni-
formly bounded and all fn are uniformly continuous.

1
2

1
3

1
4

1
5

1

5

10

x

y

f1
f2

f3
f4

f5
f6

1

π
2

π 3π
2

2π

−1

1

x

y y = cos (1x)y = cos (2x)
y = cos (3x)

y = cos (4x)

1

19.3 Characterization of equicontinuous families

U ′

U ′

U ′

x x0

g (x)

f (x)

f (x0)

g (x0)

g ∈ H
f ∈ H

1

For a topological space X and a uniform space Y the family H ⊂ F (X;Y )
is equicontinuous in x0 ∈ X iff the closure H in FE(X;Y ) is equicon-
tinuous in x0. In less abstract words: The pointwise limit of a family
of equicontinuous functions is again equicontinuous.
Proof: We only have to show ⇒: For a neighborhood U in Y there
is a neighborhood U ′3 ⊂ U and a neighborhood V (x0) of x0 with
f [V (x0)] ⊂ U ′ (f(x0)) ∀f ∈ H. For g ∈ H and every x ∈ V (x0) there
is a f ∈ H ∩W ({x0;x} ;U ′) (g) = H ∩ W ({x0} ;U ′) (g) ∩ W ({x} ;U ′) (g)
̸= ∅ with (f (x0) ; g (x0)) ∈ U ′ und (f (x) ; g (x)) ∈ U ′. From the above
stated (f (x0) ; f (x)) ∈ U ′ we infer (g (x0) ; g (x)) ∈ U ′3, i.e. g [V (x0)] ⊂
U ′3 (g(x0)).

63



19.4 Pointwise and compact convergence

On every equicontinuous family H ⊂ C(X;Y ) between a topological space X and a uniform space
Y the neighborhood filters of compact convergence and of pointwise convergence are identical.

Proof: On account of 18.6.4 we only hace to show that CK(X;Y ) ⊂ CE(X;Y ): For every neighbor-
hood W (K;U) let U ′3 ⊂ U be a neighborhood in Y and (V (xi))1≤i≤n finitely many neighborhoods
in X with f [V (xi)] ⊂ U ′ (f (xi)) ∀f ∈ H as well as K ⊂ ⋃

1≤i≤n Vi. For an arbitrary f ∈ W (E;U ′)
with E := {x1; . . . ;xn} and x, y ∈ K there are xi, xj ∈ E with x ∈ V (xi) resp. y ∈ V (xj) such that
(f (xi) ; f(x)) ∈ U ′ resp. (f (xj) ; f(y)) ∈ U ′. On account of f ∈ W (E;U ′) we have (f (xi) ; f(xj)) ∈ U ′

and hence (f (x) ; f(y)) ∈ U ′3 ⊂ U consequently W (E;V ) ⊂ W (K;U) resp. W (E ; U) ⊃ W (K; U).

19.5 Closure of equicontinuous families

For a topological space X and a uniform space Y the closures H of every equicontinuous family
H ⊂ C(X;Y ) with reference to compact resp. pointwise convergence coincide.

Proof: On account of 18.6.4 for the closures of arbitrary families H ⊂ F (X;Y )we have HE ⊃ HK
with reference to W (E ; U) ⊂ W (K; U). Due to 19.3 the closure HE in FE (X;Y ) is equicontinuous and
in particularHK ⊂ HE ⊂ C(X;Y ) such that we can apply subsec:Pointwise-and-compact convergence
to HE and hence obtain the proposition.

19.6 The Arzela-Ascoli theorem

For a locally compact space X and a separated space Y the closure H of a family H ⊂ C (X;Y )
is compact in CK (X;Y ) iff H is equicontinuous and H(x) is compact in Y for every x ∈ X.

Proof:

⇒: On account of 9.4 H(x) is compact in Y . In order to show the equicontinuity let U be a
neighborhood in Y , U ′ symmetric with U ′3 ⊂ U and x0 ∈ X. Due to the hypothesis for a compact
neighborhood K of x0 there are finitely many (fi)1≤i≤n with H ⊂ H ⊂ ⋃

1≤i≤nW (K;U ′) (fi). Since
the fi are continuous there are neighborhoods Vi ⊂ K of x0 with fi [Vi (x0)] ⊂ U ′ (fi (x0)). For x ∈
V (x0) ⊂ K with V := ⋂

1≤i≤n Vi and f ∈ H there is a j with (fj (x0) ; fj(x)) ∈ U ′, (f (x) ; fj (x)) ∈ U ′,
(f (x0) ; fj (x0)) ∈ U ′ hence (f (x) ; f(x0)) ∈ U ′3, i.e. f [V (x0)] ⊂ U ′3 (f(x0)) ⊂ U (f(x0)).

⇐: Due to 19.4 for equicontinuous H ⊂ C(X;Y ) the neighborhood filters of compact and point-
wise convergence coincide such that H can be regarded as a subset of the product space Y X =∏
x∈X Y with H ⊂ H ⊂ ∏

x∈X H(x) ⊂ ∏
x∈X H(x) on account of 18.6.5. Since the components H(x)

are compact this transfers to the product
∏
x∈X H(x) (c.f. 9.9) and hence to the closed subset H

(c.f. 9.4).

19.7 Examples

1. Due to 18.7.5 for metrizable Y and locally compact X being also σ-compact the family
CK(X;Y ) is metrizable and owing to 10.13 the properties of being compact, countably
compact and sequentially compact are equivalent on Y as well as onCK(X;Y ). Thus we
obtain the classical formulation of the Arzela-Ascoli theorem: A sequence (fn)n∈N ⊂ C(X;Y )
of continuous functions has a subsequence uniformly converging on compact sets to a
continuous f ∈ C(X;Y ) iff it is equicontinuous and the point sequences (fn(x))n∈N on Y
have a convergent subsequence for every x ∈ X. This variant is used in the proof of the
following theorem [15, th. 8.3] of Peano to show the existence of solutions for a wide class of
differential equations.
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2. For any open G ⊂ C the family F ⊂ C(G;C) is normal iff its closure F is compact resp.
sequentially compact (see above) in CK (G;C). Due to 19.6 this is equivalent to F being
equicontinuous und F(x) being sequentially compact for every x ∈ G. The Arzela-Ascoli
theorem together with Cauchy’s integral formula [15, th. 7.5] serve to prove Montel’s
theorem [15, th. 7.15] which states that the normal character of a family F ⊂ H(G;C) of
holomorphic functions is equivalent to it being locally bounded, i.e. that for every x ∈ G there
is a neighborhood U (x) and an M > 0 such that |f (x)| < M for every x ∈ U (x) and f ∈ F .

20 Manifolds

20.1 Atlases and charts

U
V

ψφ

ψ ◦ φ−1

φ [U ∩ V ] ψ [U ∩ V ]φ [U ]
ψ [V ]

M

X Y

An atlas on a set M is a family A of charts
(U ;φ;X) each consisting of a subset U ⊂ M
with M ⊂ ⋃ {U : (U ;φ;X) ∈ A} and an injec-
tive coordinate function φ : U → X into a
Banach space X such that for every pair of
charts (U ;φ;X) and (V ;ψ;Y ) ∈ A the coordi-
nate sets φ [U ∩ V ] ⊂ X resp. ψ [U ∩ V ] ⊂ Y
are open and the change of coordinates or
transition map ψ◦φ−1 : φ [U ∩ V ] → ψ [U ∩ V ]
is a homeomorphism. In particular φ [U ] is
open in X and U is open in M for every
(U ;φ;X). Every chart (U ;φ;X) consisting of
a subset U ⊂ M and a bijection φ : U → φ [U ]
onto an open φ [U ] ⊂ X in some Banach space Y is admissible to the atlas A iff is satisfies the
above stated conditions for every other chart (V ;ψ;Y ) ∈ A. Two atlases A and B are compatible
to each other if each chart of A is admissible to every chart of B. The compatibility obviously defines
an equivalence relation and each equivalence class of atlases obviously is inductively ordered by
inclusion such that Zorn’s lemma [19, th. 41.2.4] implies the existence of a maximal atlas C (M)
on M . In [15, section 6] we examine differentiable manifolds of class Cr with r times continuously
differentiable transition functions. The vector space of all admissible charts (U ;φ;X) ∈ C (M) at a
point m ∈ M is denoted as CmM and the corresponding family of neighborhoods U is UmM .

According to [16, th. 1.2] and due to a + X ∼= X the topology on the Banach space X is uniquely
determined by the local basis B (0) of the origin: a + U = ta [U ] ∈ U (a) ⇔ U ∈ U (0). Hence
the homeomorphic coordinate changes ψ ◦ φ−1 : X → Y show that any two Banach spaces X and
Y of two charts (U ;φ;X) and (V ;ψ;Y ) with nonempty intersection U ∩ V ̸= ∅ are homeomorphic
to each other. Furthermore the set of points m ∈ M for which exist a chart (V ;ψ;Y ) such that Y
is homeomorphic to a given Banach space X is both open and closed. Consequently modulo linear
transformations there is a common Banach space X on each connected component of M and the
maximal class of all compatible charts on such a connected component is a topological X-manifold
on M . Up to further notice we will examine connected manifolds with coordinates on a common
Banach space X.

The manifold is furnished with the final topology OC(M) with regard to the parametrizations
φ−1 : φ [U ] → M for (U ;φ;X) ∈ C (M) according to 4.5. Hence a subset O ⊂ M is open iff
its coordinate set φ [O ∩ U ] in every chart (U ;φ) is open in φ [U ], hence open in X, and con-
versely the parametrizations φ−1

i [Oi] = φ−1
i [Oi ∩ φi [Ui] ] of open coordinate sets Oi ⊂ Xi consti-

tute a basis of the open sets in M . The final topology is already determined by any subcollection
CI (M) = (Ui;φi;Xi)i∈I ⊂ C (M) of charts covering M = ⋃

i∈I Ui since for any O ∈ OCI(M) and any
other admissible chart (V ;ψ;Y ) the relations ψ [O ∩ V ] = ⋃

i∈I ψ (O ∩ Ui ∩ V ) and ψ [O ∩ Ui ∩ V ]
=
(
ψ ◦ φ−1

i ◦ φi
)

[O ∩ Ui ∩ V ] =
(
ψ ◦ φ−1

i

)
(φi [O ∩ Ui ∩ V ]) in the case of O = M imply that V ∈
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OCI(M) whereas in the case of any O ∈ OCI(M) we see that ψ [O ∪ V ] is open in Y whence follows
O ∈ OCI(M)∪{V ;ψ;Y }. Since the definition of the final topology implies OCI(M)∪{V ;ψ;Y } ⊂ OCI(M) the
equality of the two topologies follows.
By the definition of the open sets in M every coordinate function φ : U → X is an open map
and also continuous since for every open O ⊂ X and every chart (V ;ψ) the image ψ

[
φ−1 [O] ∩ V

]
=
(
ψ ◦ φ−1) [O] ∩ ψ [V ] is open in X whence φ−1 [O] is open in M . Thus every coordinate function

φ : U → φ [U ] is a homeomorphism with regard to the trace topologies OC(M) ∩ U on the
manifold M and O∥∥ ∩ φ [U ] on the Banach space (X; ∥ ∥) and since U resp. φ [U ] are itself open the
homeomorphy extends to the topologies on M resp. X itself in accordance with the definitions.
In the case of a given topology O on M the restriction to continuous parametrizations implies
O ⊂ OC(M) and conversely if only continuous coordinate functions φ : M → X are admitted we
have OC(M) ⊂ O since every open O ∈ OC(M) as the union O = ⋃{

φ−1 [φ [O ∩ U ] ] : (U ;φ) ∈ C (M)
}

of open preimages of open sets under continuous maps is also open in O.
Since every point m ∈ M has a neighborhood which is homeomorphic to an open neighborhood of
φ (m) in a Banach space X the manifold M is Hausdorff and according to 7.7 even regular. Note
that in this text second countability and connectedness are not included a priori in the definition
Examples:

1. Every open subset O ⊂ M is a manifold with the atlas {(O ∩ U ;φ|O∩U ) : (U ;φ) ∈ C (M)}.
2. Every open subset O ⊂ X is a manifold with the atlas (O; id|O).
3. The torus group Rn/Zn is a compact manifold with the atlas of the two charts (]a; a + 1[ ;πa)

and (]b; b + 1[ ;πb) for a − b /∈ Zn and the bijections πa : ]a; a + 1[ → Rn/Zn defined by
πa (x) = x + Zn and likewise for πb.

20.2 Submanifolds

U
N1

N2

N3 e
Ue

N

MU1

U2

U3

A subset N ⊂ M of a topological space M is locally closed iff every n ∈ N has an
open neighborhood n ∈ Un ⊂ M such that Un ∩ N is closed in Un. Hence N1 and
N2 are locally closed but N3 is not since every neighborhood of the closed endpoint e
of its boundary δN3 = N3 \N3 includes an open part of the upper half so that Ue ∩N
can never be closed in Ue. In that case Un \N is open in Un and therefore open in M .
Consequently ⋃n∈N Un \N ⊂ M \N is open in M so that every locally closed N set is
the intersection of an open set ⋃n∈N Un and a closed set N ⊂ M \ (⋃n∈N Un \N)
= ⋂

n∈N M \ (Un \N) in M . Since M is both closed and open we conclude that every
open set and also every closed set are locally closed. The converse is not true since the
open interval N1 is locally closed but neither closed nor open in R2.
A Banach space Y splits iff there are two closed subspaces Y1 and Y2 such that Y
= Y1 ⊕ Y2. As a consequence of the closed graph theorem [16] the identity Y1 × Y2
→ Y1 ⊕ Y2 then is a homeomorphism such that the direct sum is furnished with the
product topology and in particular every open set O ⊂ Y1 ⊕ Y2 has the form O
= O1 × O2 with Oi open in Yi. An injective continuous linear map f : X → Y
between topological vector spaces X and Y splits iff there exist topological vector spaces Y1 and
Y2 with an isomorphic homeomorphism α : Y → Y1 ⊕ Y2 such that α ◦ f : X → Y1 is a
continuous isomorphism. In the finite-dimensional case with X = Rm and Y = Rn with
n ≤ m the passive basis vectors in a vector subspace Y1 × {0} ⊂ Y with Y1 = span

{
e1; ...; em

}
are

sometimes explicitely written down in the form 0 = ∑m
i=n+1 0 · ei such that the projection has the

form π1 : Y1 × Y2 → Y1 × {0}. In the finite dimensional case every injective continuous linear map
splits since Y1 = f [X] is a vector subspace and the Steinitz basis exchange lemma [17] implies
the existence of the complementary space Y1 such that the product Y = Y1 × Y2 = Y1 ⊕ Y2 is a

direct sum with the representing matrix MA
B (f) =

(
A
0

)
∈ M (m× n) and A ∈ M (n× n).
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A subset M1 of an X-manifold M is an X1-submanifold of M iff X = X1 ⊕ X2 splits and for
every m ∈ M1 exists a chart (U ;φ) ∈ CmM such that φ [U ] = U1 × U2 and φ [U ∩M1] = U1 for
some open Ui ⊂ Xi. In particular for every change of coordinates ψ ◦ φ−1 : φ [U ∩ V ∩M1] →
ψ [U ∩ V ∩M1] between charts (U ;φ) and (V ;ψ) the intersection U ∩V ∩M1 ⊂ M is homeomorphic
to its open coordinate sets φ [U ∩ V ∩M1] ⊂ U1 ⊂ X1 resp. ψ [U ∩ V ∩M1] ⊂ X. According to
[17] the homeomorphy of the neighborhoods extends to the entire vector spaces X resp. X1 whence
the coordinates φ [U ∩M1] of M1 on every chart (U ;φ) ∈ CmM lie in X1. Since φ [U ] \ φ [U ∩M1]
= (U1 × U2) \ U1 = U1 × (U2 \ {0}) is open in φ [U ] the set φ [U ∩M1] is closed in φ [U ] for every
open U ⊂ M . Hence every intersection U ∩M1 is closed in U and consequently the submanifold M1
is locally closed in M . It is a closed submanifold if it is closed with regard to the topology of M .

(M1; OM1)

φ1

  

⊃ (M1; OM⊂M1)

φ◦ιM1

��

⊂ (M1; OM ∩M1)
ιM1
��

(M ; OM )

φ
��(

X1; O∥ ∥ ∩X1
) ιX1 //

(
X; O∥ ∥

)

Every X1-submanifold M1 of the X-
manifold M with charts (U ;φ) for φ : U →
φ [U ] ⊂ X is itself an X1-manifold with the
charts (U ∩M1;φ ◦ ι1) for the injection ι1 :
M1 → M with ι−1

1 [U ] = π1 [U ] = U ∩M1 for
every subset U ⊂ M since the coordinate
functions φ ◦ ι1 are still injective with the
parametrization π1 ◦ φ−1 : U1 → M1. For
another chart (V ∩M1;ψ ◦ ι1) the change of
coordinates (ψ ◦ ι1)◦ (φ ◦ ι1)−1 = ψ ◦φ−1 :
φ [U ∩ V ∩M1] ⊂ U1 ⊂ X1 → ψ [U ∩ V ∩M1] ⊂ V1 ⊂ X1 is a homeomorphism on X1. According
to 4.3 The resulting topology OM1⊂M of the X1-submanifold M1 is generated by the sets U ∩M1 with
open φ [U ] ⊂ X and open φ [U ∩M1] = U1 = U1 × {0} ⊂ X1 which are closed in X = X1 × X2.
It is also the final topology induced by the parametrizations φ−1 : U1 → M1 for (U ;φ) ∈ Cm (M)
and m ∈ M1. According to the universal property 4.1 and due to the continuous character of
ι1 ◦φ−1 : U1 → M these functions are also continuous with regard to the trace topology OM ∩M1
generated by all sets U ∩M1 with open φ [U ] ⊂ X which is also the initial topology induced by the
injection ι1 : M1 → M . Hence the submanifold topology OM1⊂M ⊂ OM ∩M1 is weaker than the
subspace topology OM ∩M1. It is also included in the topology OM1 of the X1-manifold which is
the initial topology of all coordinate functions φ1 : U1 → X1 with (U1;φ1) ∈ Cm (M1). Indeed since
every (U ∩M1;φ ◦ ι1) ∈ Cm (M1) we have OM1⊂M ⊂ OM1 but the converse is not true since e.g. every
open ball Bϵ (0) ⊂ R2 contains three open pairwise disjoint subsets Ui ⊂ L of the lemniscate L in
20.11 such that there is no open U ⊂ M = R2 with φ−1 [U ] = Ui ∩L whence Ui ∈ OC \ (R2 ∩ L

)
and

therefore in general we have OM1⊂M ⊊ OM1 .

Due to 20.1 the two topologies coincide if we restrict the charts to continuous coordinate functions
with respect to the subspace topology OM ∩M1 which then becomes the original topology such
that OM ∩M1 = OM1 .

(M ; OM )

(N ; ON ) f //

ι1◦f
77

(M1; OM ∩M1)

ι1

OO

Note that according to 4.1 the initial topology OM ∩M1 is uniquely
determined by the universal property: Any map f : N → M1
between an Y -manifold N and a X1-submanifold M1 ⊂ M of an
X-manifold M on a proper subspace X1 ⊊ X is continuous with
regard to OM ∩M1 iff its injection ι1 ◦ g : N → M is continuous
with regard to OM .

20.3 Product manifolds

The product (M ×N ;C (M ×N)) of the X-manifold (M ;C (M)) and the Y -manifold (N ;C (N)) is
an X × Y -manifold provided with charts (U × V ;φ× ψ) with the product coordinates φ × ψ =
(φ;ψ) : U ×V → X×Y . Obviously every such product is admissible to C (M ×N) and conversely the
two components ηX ; ηY of every admissible chart η = (ηX ; ηY ) : U × V → X × Y must have the form
ηX : U → X resp. ηY : V → Y whence follows C (M ×N) = C (M) ×C (N). Consequently the initial
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topology induced on M ×N by the product coordinates coincides with its product topology. The
standard example of a product manifold is given by the torus 20.16.

20.4 Quotient manifolds

For a fixed-point-free involution τ : M → M on an X-manifold (M ;C (M)), i.e. a continuous
bijection with τ ◦ τ = idM , τ (m) ̸= m ∀m ∈ M and for every chart (U ;φ) of m ∈ M exists a neigh-
borhood m ∈ U0 ⊂ U such that U0 ∩ τ [U0] = ∅ the quotient M/R with R = {(m; τ (m)) : m ∈ M}
⊂ M × M is an X-manifold. In that case its maximal atlas C (M/R) is uniquely determined by
the property that for every m ∈ M exists a neighborhood U (m) such that the canonical projection
π : U → π [U ] ⊂ M/R is a local homeomorphism. Furthermore if the original topology O on
M with a restriction to O-continuous charts (U ;φ) such that OM ⊂ O is second countable and
Hausdorff the final topology OM/R of the quotient space M/R is also second countable and
Hausdorff.

M

π

{{

π

##
(M/τ)1

id // (M/τ)2

Proof : The uniqueness of an atlas A on M/R for which π :
(M ;C (M)) → (M/R;A) is a local homeomorphism follows from
the fact that the identity id : (M/R;A1) → (M/R;A2) between two
possible atlases with the required property regarding the projection
π must be a local and hence global homeomorphism. Due to the
hypothesis for every chart (U ;φ) of m ∈ M exists a neighborhood
m ∈ U0 ⊂ U such that U0 ∩ τ [U0] = ∅. Hence the map φ0 : π [U0] → φ [U0] defined by (φ0 ◦ π) (m) =
φ (m) is bijective with φ−1

0 (x) = m ∈ U0 : φ (m) = x and for every other chart (V ;ψ) of m ∈ M with
m ∈ V0 ⊂ V such that V0 ∩ τ [V0] = ∅ the coordinate change ψ0 ◦ φ−1

0 : φ [U0 ∩ V0] → ψ [U0 ∩ V0] is a
homeomorphism. Hence (π [U0] ;φ0) is a chart at π (m).

The Hausdorff-property of (M ; O) extends to
(
M/R; OM/R

)
since in that case for any two distinct

points π (m) ̸= π (n) exist neighborhoods U of m resp. V of n such that U ∩ V = U ∩ τ [V ] = ∅
whence follows π [U ] ∩ π [V ] = ∅. Likewise the second countability is carried over to the quotient
space since for the countable basis (Un)n≥1 of O the sequence (π [Un])n≥1 is a basis of OM/R.

20.5 Immersions

A map f : M → N between an X-manifold M and a Y -manifold N is an immersion at m ∈ M iff
one of the following equivalent conditions is satisfied:

1. The vector space Y = Y1 ⊕Y2 splits and there are charts (U ;φ) ∈ CmM and (V ;ψ) ∈ CnN with
n = f (m) and φ [U ] = ψ [V ] ⊂ Y1 such that the downstairs map ψ ◦ f ◦ φ−1 : φ [U ] → ψ [V ]
is an inclusion.

2. There is a chart (U ;φ) ∈ CmM such that f : U → f [U ] is a homeomorphism and its image
f [U ] ⊂ N is a Y1-submanifold on a subspace Y1 ⊂ Y .

Both conditions imply that f is continuous and that X is homeomorphic to Y1. The map f : M →
N is an immersion iff it is an immersion at every m ∈ M Every X1-submanifold M ⊂ N of an
X-manifold N admits the injection ι : M → N as a trivial immersion. The local injectivity does
not imply global injectivity since two charts (U1;φ1) ∈ Cm1M and (U2;φ2) ∈ Cm2M with disjoint
coordinate sets U1 ∩U2 = ∅ may contain a common crossing point f (m1) = f (m2). The lemniscate
C in 20.11 shows that even a continuous bijection f : M → f [M ] may not be an open map such
that the X-manifolds M and f [M ] may not be homeomorphic to each other. However due to 4.8
every immersion is a quotient map whence M/Rf ∼= f [M ] via the equivalence relation given
by mRfn ⇔ f (m) = f (n). An immersion which is also a homeomorphism is an embeddingand
in that case f [M ] is an Y1-submanifold.
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M

U

X
φ [U ]

φ

N

f [M ]

V

Y

Y1

Y2
ψ [V ]

f

f [U ]

ψ ◦ f ◦ φ−1

ψ [f [U ] ∩ V ]

Proof :

1. ⇒ 2.: By the hypothesis there are charts (U ;φ) ∈ CmM
and (V ;ψ) ∈ CnN with n = f (m) such that the downstairs
map ψ ◦ f ◦ φ−1 : φ [U ] → ψ [V ] coincides with the inclusion
ι : X → Y1 ⊕ Y2 and since we can assume ψ [f [U ] ∩ V ] ⊂ Y1
the map ψ ◦ f ◦ φ−1 : φ [U ] → ψ [f [U ] ∩ V ] coincides with the
identity id : X → Y1. Hence f = ψ−1 ◦ id ◦ φ = ψ−1 ◦ φ : U →
f [U ] ∩V is a homeomorphism such that we can assume f [U ]
⊂ V and for every chart (W ; η) ∈ CnN follows η [f [U ] ∩W ] =(
η ◦ ψ−1 ◦ ψ) [f [U ] ∩W ] =

(
η ◦ ψ−1) (ψ [f [U ] ∩W ]) ⊂ Y1 since

ψ [f [U ] ∩W ] ⊂ Y1 and the transition function η ◦ ψ−1 provides
a local homeomorphism which according to [16] extends to the entire vector space Y1. Hence f [U ] is
a Y1-submanifold.

2. ⇒ 1.: According to the hypothesis there are charts (U0;φ) ∈ CmM and (V0; η) ∈ CnN with n =
f (m) and η [V0] = V1 ×V2 for some open Vi ⊂ Yi with i ∈ {1; 2} in the product Y1 ⊕Y2 = Y such that
η [f [U0] ∩ V0] ⊂ V1. The map φ◦f−1 : f [U0] → φ [U0] ⊂ X is a homeomorphism into a vector space X
and its restriction ψ =

(
φ ◦ f−1) |V on the open set V = f [U0] ∩ V0 is a chart on the Y1-submanifold

f [U0] whence X is isomorphic to Y1. Hence for the open set U = U0 ∩ f−1 [V0] the downstairs map
ψ ◦ f ◦ φ−1 : φ [U ] → ψ [V ] ⊂ X coincides with the identitiy and due to X ⊕ Y2 ∼= Y1 ⊕ Y2 = Y we
can write it as an inclusion into Y .

20.6 Submersions

A map f : M → N is a submersion at m ∈ M iff there are charts (U ;φ) ∈ CmM and (V ;ψ) ∈ CnN
at n = f (m) such that X = X1 ⊕ X2 splits and the downstairs map fU ;V : φ [U ] → ψ [V ] coincides
with the projection π1 : X1 ⊕ X2 → X1. In that case the restriction f : U → V is a continuous
open map and the preimage f−1 (n) is an X2-submanifold of M .

M

Y
φ

f [M ] = N

U

Y

Y1

Y2
φ [U ]

f

f−1 (n)

ψ ◦ f ◦ φ−1

φ
[
f−1 (n) ∩ U

]
ψ (n) = 0

n

f−1 (n) ∩ U

ψ

Proof : By the hypothesis there are charts (U ;φ) ∈ CmM
and (V ;ψ) ∈ CnN with n = f (m) such that the down-
stairs map ψ ◦ f ◦ φ−1 : φ [U ] → ψ [V ] coincides with the
projection π1 : X1⊕X2 → X1. This implies f [U ] = V and
in particular f [U ] is open in N . For every open O ⊂ M
the coordinate set φ [U ∩O] is open in X, according to 4.2
its projection (ψ ◦ f) [U ∩O] = (π1 ◦ φ) [U ∩O] is open
in Y , whence f [U ∩O] is open in N so that we have shown
that f is an open map. By 4.2 there are open Ui⊂ Xi for i
∈ {1; 2} such that φ [U ]= U1 ×U2. For every open W ⊂ N
the coordinate set ψ [V ∩W ] is open in Y , its homeomor-
phic preimage φ

[
f−1 [V ∩W ]

] ⊂ U1 is open in X1 whence
φ
[
f−1 [V ∩W ]

] × U2 = φ
[
f−1 [V ∩W ] ∩ U

]
is open in X and finally f−1 [V ∩W ] ∩ U is open in

M with f
[
f−1 [V ∩W ] ∩ U

] ⊂ V ∩ W which proves that f : U → V is continuous. By a simple
translation we can assume ψ (n) = 0 such that the bijective character of the coordinate functions
entails φ

[
U ∩ f−1 (n)

]
= ker fU ;V ⊂ U2 ⊂ X2 whence f−1 (n) is an X2-submanifold of M .

20.7 Euclidean manifolds

Every Euclidean manifold over Rn is locally compact with a countable basis of regular co-
ordinate balls , i.e. precompact open sets U ∼= Bn with a neighborhood V ⊃ Ū such that V ∼=
(1 + ϵ)Bn and compact closure Ū ∼= B̄n since the coordinate vector φ (m) of every point m ∈ M in
a chart (U ;φ) has an open neighborhood φ−1 [Bϵ (x)] with rational radius ϵ ∈ Q and rational centre
x ∈ Qn.
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20.8 Compact manifolds

For every compact Euclidean manifold M over Rn exists a k ∈ N such that M is homeomorphic
to a compact subset K ⊂ Rnk+k.

Proof : By the hypothesis there is a finite cover (Ui;φi)1≤i≤k of charts with open coordinate sets
φ [Ui] ⊂ Rn and due to 8.5 and 9.5 exists a subordinate partition of unity (ψi)1≤i≤k, such that the
composition F = (φ1 · ψ1; ...;φk · ψk;ψ1; ...;ψk) : M → Rnk+k is continuous. Due to ∑1≤i≤n ψi = 1
or every m,n ∈ M with F (m) = F (n) there is a 1 ≤ j ≤ k with ψj (n) = ψj (m) > 0 whence follows
m;n ∈ Uj . Since we also have φj (m) = φj (n) and the coordinate functions are bijective this implies
m = n. Hence F is injective and the closed map lemma enu:9.8.3 follows that F is a topological
embedding onto the compact subset F [M ] ⊂ Rnk+k.

20.9 Manifolds with boundary

V0

U

V
ψ

φ

ψ ◦ φ−1

U0

U ∩ V

φ [U ]

ψ [V ]

M

X+
λ2

X−
λ1

x1

x2 x2

x1

V

f

φ [U ∩ V ]

ψ [U ∩ V ]

The charts (U ;φ) of an X-manifold with boundary
M over a Banach space X consist of subsets U ⊂
M and coordinate functions φ : U → φ [U ] ⊂ X+

λ

into positive halfspaces X+
λ = {Reλ ≥ 0} of some

functional λ ∈ X∗ such that the transition map ψ◦
φ−1 : φ [U ∩ V ] → ψ [U ∩ V ] has a homeomorphic
extension f : U0 → V0 between open sets U0;V0 ⊂
X satisfying U0 ∩ X+

λ = φ [U ∩ V ] and V0 ∩ X+
λ =

ψ [U ∩ V ] with f |φ[U∩V ] = ψ ◦ φ−1 for every pair of
charts (U ;φ) and (V ;ψ) ∈ A. These charts include
interior charts as defined above with φ [U ] open in
X and boundary charts with φ [U ] open in X+

λ with
φ [U ] ∩X0

λ ̸= ∅ for the kernel X0
λ = {λ = 0} of some

functional λ ∈ X∗. Note that the hyperplane X+
λ is a

closed vector subspace of X and that the case λ = 0 results in X+
λ = X and hence an X-manifold

without boundary. The interior Int M consists of all points m ∈ M with an interior chart at m
while the remaining set is called the manifold boundary ∂M = M \ Int M . Hence all boundary
points m ∈ ∂M have a boundary chart (U ;φ) at m such that φ (m) ∈ X0

λ for some hyperplane X0
λ.

The converse is far from obvious but still true as will be shown in 26.2. Note that the hyperplane X0
λ

= δX±
λ is the topological boundary of the corresponding half planes X±

λ but that the existence of a
topological boundary δM of a manifold with a boundary itself and generally its possible topology
depend on the choice of the space of which it may be a subset. For example the closed disk B̄2

may be considered as an R2-manifold with the manifold boundary ∂B̄2 = S1 but its topological
boundary may vary between δB̄2 = ∅ if B̄2 ⊂ B̄2 is regarded as a subset of itself, δB̄2 = S1 = ∂B̄2 in
the case of B̄2 ⊂ R2 and even ∂B̄2 = B̄2 for B̄2 ⊂ R3.

20.10 The circle

x1

x2

t

r

φ2 ◦ φ−1
1 = τπ

φ1

φ2r

t

x2

x1

Φ2Φ1

The circle S1 = ∂B2 can be obtaind by gluing together any num-
ber of open intervals, e.g. both ends of the interval I = B1 =
]−1; 1[ in the quotient space I/R with R = {(t; t) : −1 < t < 1}
∪ {(t− 1; t) : 0 < t < 1}. Since due to its construction from equiv-
alence classes containing up to two pairs of elements the quotient
space needs at least two charts for covering. For easier parametriza-
tion by R =

{
(t; t) ∈ (I1 ∪ I2)2

}
∪
{

(t− 2π; t) ∈ (I1∆I2)2
}

we glue
together the two intervals I1 = ]−π;π[ and I2 = ]0; 2π[ so that
the two charts

(
π [Ii] ;π−1) given by the restrictions of the canon-

ical projection π : Ii → (I1 ∪ I2) /R result in the R-manifold
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(I1 ∪ I2) /R. Alternatively the two charts
(
φ [Ii] ;φ−1) with the

parametrizations φ (t) : Ii → S1 ⊂ R2 given by φ (t) = (cos t; sin t)
on Ii for i ∈ {1; 2} produce the circle S1 as an R-manifold in R2. It can also be represented
as a closed R-submanifold of the manifold R2 given by

(
R2; id

)
. By the additional charts(

Uϵ
(
S1) \

(
{0} × R±

0

)
;ψ−1

i

)
with the ϵ-neighbourhood Uϵ

(
S1) =

{
x ∈ R2 : d

(
x;S1) < ϵ

}
for any

0 < ϵ < 1 and ψ : Bϵ (1) × Ii → R2 given by ψ (r; t) = (r cos t; r sin t) we obtain ψ−1 [S1 ∩ Uϵ
(
S1)] =

{0} × Ii ⊂ {0} × R. The initial topology OS1 generated by the subbasis sets φ [Ui ∩ Ii] for open
Ui ⊂ R and i ∈ {1; 2} with respect to the charts

(
φ [Ii] ;φ−1) into R coincides with the trace topol-

ogy OR2 ∩S1 on S1 ∩R2, i.e. with the initial topology with regard to the injection ι : S1 → R2. The
existence of the R-submanifold S1 ⊂ R2 also implies the trivial embedding idS1 : S1 → S1 ⊂ R2 of
the R-manifold S onto the R-submanifold S1. Finally S1 can be obtained as an R-R2-embedding
f : (I1 ∪ I2) /R → S1 given by φ−1

i ◦ f ◦ πi = idIi . resp. f ◦ πi = φi. In a geometric sense the
equivalence classes can be made visible by expanding them into two dimensions; conversely the circle
can be folded into a quotient space.

20.11 Lines in space

A

B

An atom {a} ⊂ X is an R0-manifold and a closed R0-submanifold of R.

Every open interval I ⊂ R is an R-manifold and an R-submanifold of R2

whereas a closed interval is a closed R-submanifold of R2. In its own right
a closed interval is an R-manifold with a boundary as defined in 20.9.

Every curve segment a + Ib = {a + b (t) : t ∈ I} with a ∈ X and b ∈
Cr (I;X) is an R-submanifold of X and in the case of an open interval I ⊂ R
as in example A it is an R-manifold. Example B shows an R-manifold with
a boundary resp. a closed R-submanifold of R2.

L
x

x

y

z

y

L3

By the single chart (I;φ) with I = ]0; 2π[ and parametrization φ−1
2 (t) =

(sin t; sin 2t) we obtain the lemniscate L from 20.2 as an R-manifold with
the topology OL consisting of all parametrizations φ−1

2 [V ] ⊂ L of open co-
ordinate sets V ⊂ I. In this topology the neighborhoods φ−1

2 [Uϵ (π)] of the
origin φ−1

2 (π) = 0 ∈ L are isomorphic to open intervals in R2 so that they
are locally closed but neither open nor closed in R2. Every neighborhood
Uϵ (0) ⊂ R2 contains disjoint sections φ2 [Uϵ (0)] resp. φ2 [Uϵ (2π)] of the tails
approaching 0 such that there is no open V ⊂ R2 with φ−1

2 [Uϵ (π)] = V ∩ L.
Hence the neighborhood φ−1

2 [Uϵ (π)] is not open in the trace topology OR2 ∩L
of the closed subset L ⊂ R2 such that φ2 is not continuous with regard to
OR2 ∩ L ⊊ OL. Consequently the parametrization φ−1

2 : I → L from the R-
manifold I with the chart (I; id) into the R-manifold L with the chart (L;φ2) and downstairs map
φ2◦φ−1

2 ◦idI = idI is globally injective and continuous but not open at π. It is an immersion but
not an embedding. Therefore resp. due to id [Uϵ (0) ∩ L] ⊊ R the set L is not an R-submanifold of
R2 with the chart

(
R2; id

) ∈ C
(
R2) and hence generally for C

(
R2). By extending the parametrization

to φ−1
3 : I → R3 with φ−1

3 (t) = (sin t; sin 2t; cos t) the limit point φ2 (π) is removed into the third
dimension such that we obtain R-submanifold L3 of R3 with the embedding φ−1

3 : I → L.

Similarly the union of two coordinate axes X = R × {0} ∪ {0} × R ⊂ R2 is a disconnected
R-manifold with coordinate functions ψx : R × {0} → Ix = ]−1; 1[ given by ψx (x) = x

|x|+1 and
ψ±y : {0} × R± → I±

y = ]±2; ±3[ with ψ±y (x) = ψx (x) ± 2. It has three connected components
and the corresponding immersion ψ−1 : Ix ∪ I+

y ∪ I−
y → X is globally injective and continuous

but not open at 0 whence it is not an embedding and X is not an R-submanifold of R2. Adding
a third dimension we obtain a disconnected R-manifold with coordinate functions η± : X ′ =
R×{0}×{±1} → R± given by η± (x) = ±ex on two connected components resp. an embedding
η−1 : R \ {0} → X ′ onto the corresponding R2-submanifold of R3.
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20.12 The Möbius strip

b

z

z

x

−a

−b

a

−π 2π

π

v

u

φab

The following examples are conveniently parametrized in polar coordi-
nates taken from rectangular products of the intervals I = ]0; 1[; I1 =
]−π;π[; I2 = ]0; 2π[ and J = 1

2I2. The Möbius strip can be described as
the compact set M̄ab = φ1ab

[
Ī1 × J̄

]
⊂ R3 parametrized by φwab (u; v)

= φab (u; v;w) = ((wa+ vb sin u) · cos 2u; (wa− vb sin u) · sin 2u; vb cosu)
with radii a > b > 0 and the additional parameter 1 − ϵ < w < 1 + ϵ
which will be used later for the embedding. According to enu:4.8.2 this
parametrization is a quotient map whence M̄ab is homeomorphic to
the quotient space

(
Ī1 × J̄

)
/Rφ identifying the two vertical sides of

the open rectangle Ī1 × J̄ with each other in inverted sense since
(0; v)Rφ (2π; 1 − v) for v ∈ J̄ . The set Mab = φ1ab

[
Ī1 × J

]
is also an

R2-manifold with two charts
(
φab [Ii × J ] ;φ−1

ab

)
for i ∈ {1; 2} which is

neither open nor closed but locally closed in R3. Similarly to 20.14 it
can be embedded as an R2-submanifold in R3 with the canonical chart(
R3; id

)
and the additional two charts

(
φab [Ii × J ×Bϵ (1)] ;φ−1

ab

)
of R3

such that φ−1
ab [φab [Ii × J ×Bϵ (1)] ∩Mab] = Ii × J × {1} ⊂ R × R × {1}

∼= R2. Its closure M̄ab is an R2-manifold with boundary with
the interior charts

(
φab [Ii × J ] ;φ−1

ab

)
and four boundary charts(

φab
[
Ii×]π2 ;π]

]
;φ−1

ab

)
resp.

(
φab

[
Ii × [0; π2 [

]
;φ−1

ab

)
.

20.13 The double cone

The double cone C =
{
z2 = x2 + y2} = C+ ∪ C−

∗ ⊂ R3 with C+ = {(x; y; z) : z ≥ 0} and C−
∗ =

{(x; y; z) : z < 0} by the charts
(
C+; η+ ◦ π+

xy

)
and

(
C−

∗ ; η− ◦ π−
xy

)
with the projections π±

xy : C± →
R2 defined by π±

xy (x; y; z) = (x; y), the contraction η+ : R2 → B2 with η+ (x) = x
∥x∥+1 and the

dilation η− : R2
∗ → R2 \ B̄2 with η− (x) = (∥x∥ + 1) · x

∥x∥ can be represented as a disconnected R2-
manifold with two connected components. Note that the two cones C+ and C−

∗ are disconnected
with regard to OC but not in OR3 ∩ C.

x

y

z

C+
0

C−

R3

x

y

z

C+
0

R3 × {+1}

x

y

z

C−

R3 × {−1}

The corresponding immersion
(
η± ◦ π±

xy

)−1
: R2 \ S1 → C is injective and continuous but not

open since it maps the open disk ϵB2 onto the subset
(
η+ ◦ π+

xy

)−1 [
ϵB2] =

(
δB2 × [0; δ[

) ∩ C with δ

= ϵ
1−ϵ which is not open in C. By removing the two parts from each other in the fourth (temporal)

dimension we may construct another disconnectedR2-manifold C4 = C−
∗ ×{−1}∪C+×{1} with the

two charts
(
C±; η± ◦ π±

xy

)
into the same connected components as above. In this space the cones are

disconnected with respect to both topologies OC = OR4 ∩C and the map
(
η± ◦ π±

xy

)−1
: R2 \S1 → C4

is an embedding since the image of the critical neighborhood
(
η+ ◦ π+

xy

)−1 [
ϵB2] =

(
δB2 × R2)∩C4

with δ = ϵ
1−ϵ is open in C4.
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20.14 The two-dimensional sphere

Due to the closed map lemma 2 the polar coordinates φ1 : Ī2 × J̄ → S2 given by φ1 (u; v)
(cosu · sin v; sin u · sin v; cos v) define a quotient map whence the two-dimensional sphere S2 is
homeomorphic to the quotient space

(
Ī2 × J̄

)
/Rφ1 with (0; v)Rφ1 (2π; v) and (u; 0)Rφ1 (w;π) for

0 < u < 2π and 0 ≤ u ≤ w ≤ 0 identifying the opposite points on the vertical sides and collapsing
the horizontal sides each into one pole (0; 0; ±1). Since the corresponding equivalence classes con-
tain infinitely many points there is no finite cover Ī2 × J̄ = ⋃

1≤i≤k Uk with injective restrictions of
the canonical projections π|Ui → S2 and consequently no direct representation of the quotient space(
Ī2 × J̄

)
/Rφ1 as a manifold. The corresponding R2-manifold S2 can be covered by four charts(

φj [Ii × J ] ;φ−1) with φ2 (u; v) (cosu · sin v; cos v; sin u · sin v) and the closed R2-submanifold S2of
R3 is realized by the additional chart

(
ψj [Ii × J ×Bϵ (1)] ;ψ−1) of R3 with ψj (u; v; r) = r · φj (u; v)

such that ψ−1
j

[
ψj [Ii × J ×Bϵ (1)] ∩ S2] = Ii × J × {1} ⊂ R× R× {1} ∼= R2.

φ
π

v

−π π 2π2π

v

u

π1

u

Ī2 × J̄

φ1
φ2 φ1

φ2

I2 × JI1 × J

x

z z

x

z

xx

z

x

z

y
y yyy

x
1

1

y
φ

z

y

x

y

z

x

Alternatively the quotient map η : B̄2 → S2 given by η (x; y) =(
−ry · cos

(
πx
ry

)
; −ry · sin

(
πx
ry

)
; y
)

with ry =
√

1 − y2 for y ̸= 1 and η (0; 1)
= (0; 0; 1) provides the homeomorphic quotient space B̄2/Rη. Since η maps the
upper left and right quarter circles φ± (u) = (± cosu; sin u; 0) with 0 ≤ u ≤ π

2
of B̄2 onto the front right quarter circle η◦φ (u) = (sin u; 0, cosu) of S2 while the
corresponding lower left and right quarter circles with −π

2 ≤ u ≤ 0 are folded
onto the back right quarter circle η ◦φ (u) = (cosu; 0; sin u; ) we conclude that
−xRηx for every x ∈ S1. Since due to 9.11 the closed square Ī2 is homeo-
morphic to the closed unit ball B̄2 with ∂Ī2 ∼= ∂B̄2 = S1 the quotient space
B̄2/Rη by some ϑ̄ : Ī2/R ∼= B̄2/Rη is also homeomorphic to the corresponding
quotient space Ī2/R with (u; 0)R (0;u) and (u; 1)R (1;u) for 0 ≤ u ≤ 1 identi-
fying adjacent sides in a corresponding sense. The equivalence classes of
this quotient space comprise at most a pair of two opposing points such that
this time we can find a finite cover Ī2 = ⋃

1≤i≤4 Ui with injective restrictions
of the canonical projections π|Ui → S2. The subsets U1 = ]0; 1[×]0; 1]; U2 =
[0; 1[×]0; 1[; U3 = ]0; 1[×[0; 1[ and U4 = ]0; 1]×]0; 1[ are open in Ī2 and also
open in the halfspaces extending the corresponding boundaries but not in R2

such that we arrive at a R2-manifold with boundary with the four charts((
η̄ ◦ ϑ̄ ◦ π

)
[Ui] ;

(
η̄ ◦ ϑ̄ ◦ π|Ui

)−1
)

.
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20.15 The n-dimensional sphere

R

Rn

Sn

s

x − e0

x

e0 Rn+1

The n-dimensional unit sphere Sn = ∂B̄n+1 can be represented
as an Rn-manifold by the 2n charts

(
Si±;πi

)
with the projection

πi : Si± → Bn given by πi (x1; ...;xi; ...;xn+1) = (x1; ...; 0; ...;xn+1)
on the upper half-spheres Si+ = Sn ∩ Hi+ with the upper half-
spaces Hi+ = {xi > 0} and the corresponding lower half-spheres Si−.
Since in this case the projections are continuous bijections with contin-
uous inverses π−1

i (x1; ...; 0; ...;xn+1) =
(
x1; ...;

√
1 − ∥x∥2; ...;xn+1

)
for

x = (x1; ...;xn+1) the half-spheres Si± are homeomorphic to the
open balls Bn. The sphere can also be embedded onto the identi-
cal Rn-submanifold Sn of Rn+1 with the additional charts

(
Si±ϵ ;πi

)
on open segments Si±ϵ ={

rx : r ∈ Bϵ (1) ∧ x ∈ Si±} such that πi
[
Sn ∩ Si±ϵ

]
= Bn ⊂ Rn. Moreover Sn is homeomorphic to

1. the quotient space B̄n/Sn

2. the adjunction space B̄n ∪ι B̄n given by the injection ι : Sn−1 → B̄n

3. the adjunction space B̄n ∪π {en+1} given by the projection π : Sn−1 → {en}.

4. the one-point-compactification R̄n = Rn ∪ {∞}
5. the projective completion Φ [RPn] = en+1 + R̄n of the affine space en+1 + Rn.

Proof :

1. Sn ∼= B̄n/Sn : According to enu:4.8.2 the continuous, open and surjective map φ : B̄n → Sn

given by φ (x) =
(

2
√

1 − ∥x∥2 · x; 2 ∥x∥2 − 1
)

with continuous partial inverse φ−1 : Sn \

{en+1} → Bn given by φ−1 (y; yn+1) = y
∥y∥ ·

√
1
2 + 1

2yn+1 = y
∥y∥ ·

√
1
2 ± 1

2

√
1 − ∥y∥2 for ∥y∥2+y2

n+1

= 1 is a quotient map whence its canonical bijection φ̄ : B̄n/Sn → Sn is a homeomorphism.

2. Sn ∼= B̄n ∪π {en+1}: The surjective and continuous map φ : B̄n → Sn from 1. is injective on
Bn ∼= Sn \ {en+1} with continuous inverse and maps its complete boundary onto the north
pole {en} = φ

[
Sn−1] of the sphere. According to 4.12.3 follows B̄n ∪π {en} ∼= B̄n ⊔ {en}

φ∼=
Sn \ {en+1} ⊔ {en+1} = Sn.

3. Sn ∼= B̄n ∪ι B̄n: The projection π1+ : S̄n+ → B̄n given by π1+ (x;xn+1) = (x; 0) for x =
(x1; ...;xn)on the closed upper half-sphere S̄n+ = Sn ∩ H̄n+1 with the closed upper half-
space H̄n+1 = {xn+1 ≥ 0} is a continuous bijection with the continuous inverse π−1

1+ (x; 0) =(
x;
√

1 − ∥x∥2
)

whence S̄n+ is homeomorphic to B̄n and by the corresponding projection π−
1+ :

S̄n− → B̄n the lower open half-sphere S̄n− is also homeomorphic to B̄n. Both the projections
and their inverses are continuous maps into B̄n ∪ι B̄n coinciding on the boundary ∂S̄n+ = ∂S̄n−

= Sn−1 with π1+|Sn−1 = π1−|Sn−1 = id|Sn−1 such that the attaching lemma 4.11 applies in
both directions to yield a continuous extension π : Sn = S̄n+ ∪ S̄n− → B̄n ∪ι B̄n which is a
homeomorphism.

4. Sn ∼= R̄n: The desired homeomorphism is provided by the continuous stereographic projec-
tion p : Sn → R̄n given by p (s; sn+1) = 2s

1−sn+1
for (s; sn+1) ∈ Sn \ {en+1} with ∥s∥2 + s2

n+1

= 1 resp. p (en+1) = ∞ and its continuous inverse defined by p−1 (x) = 1
1+ 1

4 ∥x∥2

(
x; 1

2 ∥x∥2
)

resp. p−1 (∞) = en+1.

5. R̄n ∼= en+1 + R̄n: Obvious according to [17, th. 9.3] 9.1.
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S̄2+

S̄2−

S1 = ∂S̄2+ = ∂S̄2− = ∂B̄2

π−1
1+

ι

S̄2+

S2−

⊔∪ι∪ι

S2

=∼= ∼=
B̄2

B̄2

φ

S2

1√
2S

n

p
∞

∞

∞

∞

en+1

B̄2 ∪Φ {en+1}

φ

Ren+1

−en+1

B̄2

R

S2 ∼= R̄2 ∼= RP2

s

xR2

R

2en+1 = p−1 (∞)

20.16 The torus

φab

u

v

y

x

b

a

z

−π

2π

2π−π

Due to the closed map lemma 2 the map φab : Ī2
2 → T2 given

by φab (u; v) = ψab (u; v; 1) with ψab (u; v; r) = ((a+ br · cos v) · cosu;
(a+ br · cos v) · sin u; br · sin v) is a quotient map whence the two-
dimensional torus T2

ab is homeomorphic to the quotient space Ī2
2
/Rφ

with (0;u)Rφ (1;u) and (u; 0)Rφ (u; 1) for 0 ≤ u ≤ 2π identifying op-
posed sides of the closed rectangle Ī2

2 in corresponding sense.
Each equivalence class comprises at most two distinct points such
that a parametrization on the open coordinate square I2

2 of an
R2-manifold can be obtained by the four charts

(
φab [Ii × Ij ] ;φ−1)

.
Hence by the canonical bijection φ̄ab : Ī2

2
/Rφ → T2

ab the torus is
embedded onto a closed R2-submanifold T2

ab in R3 with the ad-
ditional four charts

(
ψab [Ii × Ij ×Bϵ (1)] ;ψ−1

ab

)
of R3. The open

neighborhoods U+
±
(
T2
ab

)
= Uϵ

(
T2
ab

)\
(
E±
y ∪ B̄az

)
resp. U−

±
(
T2
ab

)
= Uϵ

(
T2
ab

)\
(
E±
y ∪ Bacz

)
satisfy the

submanifold condition ψ−1
ab

[
ψab [Ii × Ij ×Bϵ (1)] ∩ T2

ab

]
= Ii × Ij × {1} ⊂ R× R× {1} ∼= R2.

Finally the torus can be represented as a closed R2-product manifold T2
ab

∼= aS1 × bS1 according
to 20.3 and parametrized by the four charts

(
(aϵ× bϵ) [Ii × Ij ] ; (aϵ× bϵ)−1

)
with the exponential

quotient map ϵ : R → S1 ⊂ C ∼= R2 defined by ϵ (u) = eiu. It describes the rotation of n coupled
bodies around fixed axes, e.g. for n = 2 a double pendulum. The restriction ϵ|Ī2 satisfies the
conditions of the closed map lemma with Rϵ = Rφ whence the compositiopn φab ◦

(
aϵ|Ī2 × bϵ|Ī2

)−1
:

aS1 × bS1 → T2
ab is an embedding.

The n-dimensional torus Tn =
(
S1)n is homeomorphic to the quotient space Rn/2πZn = (R/2πZ)n

since the exponential quotient map is continuous and surjective with continuous inverse
ϵ−1(s) = ln s whence its canonical bijection ϵ̄ = ϵ ◦ π−1 : R/2πZ → S1 is a homeomorphism.
According to 4.2 the continuity of the components in both directions extends to the corresponding
products of the exponential quotient map.
The product representation also admits the embedding of the space-filling curve α on the torus T2

ab∼= S1
a × S1

b with the parametrizations (φa × φb) ◦α : R → S1 × S1 given by the line α : R → (R/Z)2 ≃
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Ī2
2
/R with α (t) = (t;αt) for an irrational α ∈ R \Q.

20.17 Affine and projective spaces

Every affine space (A;XA ;⃗ ) over a Banach space XA as defined in [17] 8.1 is an XA-manifold
by the single chart (φ;A) with coordinates given by φo (x) = −→ox for some arbitrary origin o ∈ A.
In the case of A = a + XA ⊂ X with a = −→oa ∈ X it is an XA-submanifold of X with identical
coordinates which are usually translated to φa (x) = −→ax.
The projective spaces RPn = PRn+1 = Rn+1

∗ /R ∼= Sn/R with R ⊂ Rn+1
∗ ×Rn+1

∗ resp. R ⊂ Sn × Sn
defined by xRy ⇔ ∃α ∈ R∗ : αx = y in [17] 9.1 are quotient spaces of cosets R∗x obtained by
the action of the multiplicative group R∗ on the punctured vector space Rn+1

∗ = Rn+1 \ {0} or
equivalently on Sn.

x

x̄

Bϵ (x)

(
π|−1

S2 ◦ π
)

[Bϵ (x)]

(
π−1 ◦ π

)
[Bϵ (x)]

S2

Indeed the quotient space RPn = PRn+1 = Rn+1
∗ /R of all open

double rays
(
π−1 ◦ π) (x) = {tx : t ∈ R∗} given by xRy ⇔ ∃t ∈

R∗ : tx = y as defined in [17] 9.1 is homeomorphic to the quo-
tient space Sn/R of all antipodal pairs

(
π|−1
Sn ◦ π|Sn

)
(x) = {±xe}

= Sn ∩ (π−1 ◦ π) (x) on the n-dimensional sphere with the homeo-
morphism given by π ◦ π|−1

Sn : Sn/R → Rn∗/R since the preimage
π−1

[
B∥x∥ϵ (π|Sn (xs))

]
=
{
y ∈ Rn+1

∗ : |xs − ys| < ϵ
}

with xs = x
∥x∥

of an open neighborhood is an open double cone in Rn+1
∗ whereas(

π|−1
Sn ◦ π

) [
B∥x∥ϵ (x)

]
= (Bϵ (xe) ∪Bϵ (−xe))∩Sn is the union of the

intersections of the balls around the two corresponding antipodal rep-
resentants ±xe with the sphere Sn which is an open subset of Sn.

(
π|−1

S2 ◦ π
)

[Bϵ (x)]

x̄

φ−1
[
Bϵ (x)

]

S2

B̄2

=
(
π−1 ◦ π

)
[Bϵ (x)]

Bϵ (x)

By the closed map theorem enu:9.8.2 the function ψ : B̄n → RPn

defined by ψ (x) =
[
x1 : ... : xn :

√
1 − ∥x∥

]
for x = (x1; ...;xn) is a

quotient map whence the projective space RPn is homeomorphic
to the quotient space B̄n/Rψ with −xRψx for x ∈ ∂B̄n identifying
the antipodal pairs on the boundary or equivalently gluing the two
halves of the boundary together in opposing sense. This is
equivalent to gluing the disk B2 to the Moebius strip M from
20.16. Finally the homeomorphism ϑ : B̄n → [−1; 1]n given by ϑ (x)
= αx · x with αx = min

{
1
xi

: 1 ≤ i ≤ n
}

for x = (x1; ...;xn) shows
that in particular the projective space RP2 is homeomorphic to the
quotient space Ī2/R with I = [0; 1] and the equivalence relation given
by (0;u)R (1; −u) resp. (u; 0)R (−u; 1) for 0 ≤ u ≤ 1 identifying
opposite sides in antiparallel sense.
According to [17] 9.3 the projective space RPn is isomorphic to the projective completion of
the affine spaces (ei + Ei;Rn ;⃗ ) over the infinitely distant hyperplane Rn ∼= ei + Ei with Ei =
{xi = 0} and RPn \PEi∗ ∼= ei+Ei and dimRPn = dimRn+1 = dimPRn+2 = n with the bijections
Φi : RPn \ PEi∗ → ei + Ei given by Φi [x1 : ... : xn+1] =

(
x1
xi

; ...; xi−1
xi

; 1; xi+1
xi

; ...; xn+1
xi

)
and inverses

Φ−1
i (x1; ...; 1; ...;xn+1) = [x1 : ... : 1 : ... : xn+1].

The projective space RPn is also an Rn-manifold covered by n + 1 charts (π {xi ̸= 0} ;φi) with
coordinates given by the stereographic projections φi : π {xi ̸= 0} → Rn with φi [x1 : ... : xn+1]
=
(
x1
xi

; ...; xi−1
xi

; xi+1
xi

; ...; xn+1
xi

)
and parametrizations φ−1

i (x1; ...;xn) = [x1 : ... : 1 : ... : xn]. Note that
the projections π {xi ̸= 0} = RPn \PEi∗ of the saturated open sets {xi ̸= 0} = Rn+1

∗ \Ei∗ are open
in the quotient topology of RPn as described in 4.7. An argument analogous to the reasoning for
the homeomorphy of Rn+1

∗ /R ∼= Sn/R shows that both the bijections Φi : RPn \ PEi∗ → ei + Ei
and the charts φi : RPn \ PEi∗ → Ei are homeomorphisms. According to 9.8 and 9.10 the
quotient space RPn = Rn+1

∗ /R ∼= π [Sn] is compact while every hyperplane Ei is a locally compact
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closed vector subspace of Rn. Since the parametrization φ−1
i [K] of every compact set K ⊂ Ei

is compact and hence closed in RPn due to 9.4 the extension Φ̄i : RPn → Ēi onto the one-point-
compactification 10.2 Ēi = Ei ∪ {∞} defined by Φ̄i [PEi∗] = {∞} is continuous. Likewise we may
extend the homeomorphism h : Bn → Rn given by h (x) = x

1−∥x∥ with inverse h−1 (y) = y
1+∥y∥ to a

continuous map h̄ : B̄n → R̄n from the compact closure B̄n of the locally compact unit ball onto
the one-point-compactification R̄n = Rn ∪ ∞ by defining h̄

[
Sn−1] = {∞}.

Hence the Rn-manifold RPn can be immersed into Rn+1 or embedded onto Rn-submanifolds of
Rn+2. The projective subspaces {xi = 0} ∼= Sn−1/R ∼= RPn−1 ⊂ RPn admit an immersion in Rn
but an embedding is only possible in Rn+1.

In the case of n = 1 the projective line RP = R2
∗/R

∼= S1/RS1 can be represented as an R-manifold
with two charts using coordinates φi : π {xi ̸= 0} → R given by the stereographic projections
φ1 [1 : x2] = x2 and φ2 [x1 : 1] = x1. These result in a change of coordinates φ2 ◦ φ−1

1 : E1∗ → E2∗

given by
(
φ2 ◦ φ−1

1

)
(x1) = 1

x1
. It can also be embedded as a compact R-submanifold into R2

which is homeomorphic to the circle S1.

x2 (
1

x2
; 1
)

space

{x2 ̸= 0}
{x1 ̸= 0}

E1 RP1 \ RP0 Φ∼= e1 + E1 ∼= R1

⊔

Φ∼=
(x1; 1)

∼=

h∼=

RP1

(1;x2)

x1
E2

manifold

affine spaces

CW complex

B1RP1 \ RP0 Φ∼= e2 + E2 ∼= R1

projective

B1 ∪φ B0 ∼= S1(1; 0)

(0; 1)

B0 = B̄0

(
1; 1

x1

)

For n = 2 the projective plane RP2 = R3
∗/R

∼= S2/RS2 is an R2-manifold with three charts for co-
ordinates φi : π {xi ̸= 0} → Ei ∼= R2 ∼= B2 given by φ1 [1 : x2 : x3] = (x2;x3), φ2 [x1 : 1 : x3] = (x1;x3)
and φ3 [x1 : x2 : 1] = (x1;x2) where every chart describes the projection of an open halfsphere onto
the plane R2. An embedding onto an R2-submanifold in R3 is not possible but there are several
immersions f : RP2 → R3 onto compact R2-manifolds in R3 which are determined by the symme-
try f [x1 : x2 : x3] = f [−x1 : −x2 : −x3]. In R3 every such immersion has additional self intersect-
ing points f [x1 : x2 : x3] = f [y1 : y2 : y3] such that R ⊊ Rf and consequently RP2 = R3

∗/R ⊋ R3
∗/Rf

∼= f
[
RP2

]
. Usually these immersions are expressed in polar coordinates (u; v) from 20.14 with

three charts being sufficient since the two poles (0; 0; ±1) are now equivalent in the class [0 : 0 : 1].

Φ
S1/R ∼= S1

⊔
=

RP2 ∼= S2/R ∼= B̄2 ∪φ S1

crosscap

affine space

vector subspace

h

projective space

(
x1
|x| ; x2

|x| ; x3
|x|
)

(
y1
y0

; y2
y0

; 0
)

RP2

(0; 0; 1)

x3

x2

[x1 : x2 : 0]

x1

E3

(
x1
x3

x2
x3

; 1
)

−
(

x1
|x| ; x2

|x| ; x0
|x|
)x̄ = [x1 : x2 : x3]

RP2 \ RP1 Φ∼= e3 + E3 ∼= R2
B2
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20.18 The roman surface

1

The simplest representant of the projective plane in an algebraic
sense is the roman surface R = fR

[
RP2

]
with fR [x : y : z] =

(yz;xz;xy) in cartesian coordinates resp. (id ◦ fR ◦ φ) (u; v) =
(cosu · sin 2v; sin u · sin 2v; sin 2u · sin2 v) due to sin 2α = 2 cosα ·
sinα in polar coordinates restricted to half-spheres for 0 <
u < π and 0 < v < π

2 to retain injectivity on the equiva-
lence pairs of antipodal points. The boundaries are (fR ◦ φ) (u; 0)
= (0; 0; 0), (fR ◦ φ)

(
u; π2

)
= (0; 0; sin 2u) and (fR ◦ φ)

(
π
2 ± π

2 ; v
)

=
(± sin 2v; 0; 0) as well as the self-intersecting line (fR ◦ φ)

(
π
2 ; v

)
= (0; sin 2v; 0) which is crossed e.g. by the undulating circle
(fR ◦ φ)

(
u; π6

)
=
(√

3
2 cosu;

√
3

2 sin u; 1
4 sin 2u

)
. Exchanging the co-

ordinates by σxz (x; y; z) = (z; y;x) and σyz (x; y; z) = (x; z; y) we obtain further parametrizations ηij
= id ◦ fR ◦ σij ◦φ = id ◦ σij ◦ fR ◦φ approaching the self-intersecting line along the y-axis from above
and providing the missing boundary lines on the other two axes with corresponding intersecting lines.
Thus the three charts

(
ηij
[

1
2I2 × 1

2J2
]

; η−1
ij

)
with ij ∈ {xz; yz; zz} define a compact R2-manifold

in R3 which on account of the intersecting surfaces is not an R2-submanifold in R3. Geometrically
it resembles a football which is squeezed together along the coordinate axes.

20.19 The crosscap

v

u

1

1

RP2

x

−x

x

v

u

π
2

1
2 I2 × 1

2J2

π−π π
11 21

2212

φxz

φzz

φyz

φ

φ

φ φ

f

ϑ

ψ
z

x

z

x

y

y

The crosscap C = fC
[
RP2

]
given by fC [x : y : z] =(
xz; yz;x2 − z2) is the sim-

plest representation of the
projective plane in a ge-
ometric sense. With ηij
= id ◦ σij ◦ fC ◦ φ we
obtain the three charts(
ηij
[

1
2I2 × 1

2J2
]

; η−1
ij

)
on the

coordinate sets from 20.14
defining a compact R2-
manifold in R3 which on
account of the intersecting
surfaces is not an R2-
submanifold in R3:
The boundaries of the first
chart with ηzz = (cosu ·
sin 2v; sin u · sin 2v; cos2 u ·
sin2 v − cos2 v) run along
the curve ηzz

(
π
2 ± π

2 ; v
)

=
(± sin 2v; 0; sin2 v − cos2 v),
fuse into the point ηzz (u; 0)
= (0; 0; −1) and approach
the self-intersecting line
ηzz

(
u; π2

)
=
(
0; 0; cos2 u

)
cut

e.g. by ηzz
(
π
4 ; v

)
= (

√
2

2 sin 2v;
√

2
2 sin 2v; 1

2 sin2 v − cos2 v) at ηzz
(
π
4 ; π2

)
=
(
0; 0; 1

2

)
and meeting ηzz

(
π
2 ; v

)
=
(
0; sin 2v; − cos2 v

)
at

ηzz
(
π
2 ; π2

)
= (0; 0; 0).

The boundaries of the second chart with ηyz = (sin 2u · sin2 v; sin u · sin 2v;
(
cos2 u− sin2 u

)
sin2 v)
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run along the self-intersecting line ηyz
(
π
2 ± π

2 ; v
)

=
(
0; 0; sin2 v

)
between ηyz

(
π
2 ± π

2 ; 0
)

= (0; 0; 0)
and ηyz

(
π
2 ± π

2 ; π2
)

= (0; 0; 1). The self-intersecting line is not part of the second chart but the trans-
verse orientation of the adjacent surfaces is visible e.g. in the undulating eight-line ηyz

(
u; π4

)
=

1
2
(
sin 2u; sin u; cos2 u− sin2 u

)
approaching it from both sides at the point ηyz

(
π
2 ± π

2 ; π4
)

=
(
0; 0; 1

2

)
.

The other boundary line is ηyz
(
u; π2

)
=
(
sin 2u; 0; cos2 u− sin2 u

)
passing two poles at ηyz

(
π
2 ± π

4 ; π2
)

= (±1; 0; 0). Also of interest is ηyz
(
π
2 ; v

)
=
(
0; sin 2v; − sin2 v

)
crossing the line ηyz

(
u; π4

)
from above

at ηyz
(
π
2 ; π4

)
=
(
0; 1; −1

2

)
The boundaries of the third chart with ηxz = (cosu · sin 2v; sin 2u · sin2 v; cos2 v − cos2 u · sin2 v) are
ηxz

(
π
2 ± π

2 ; v
)

=
(± sin 2v; 0; cos2 v − sin2 v

)
, ηxz (u; 0) = (0; 0; 1) and ηxz

(
u; π2

)
=
(
0; sin 2u; − cos2 u

)
.

The self-intersecting line runs along ηxz
(
π
2 ; v

)
=
(
0; 0; cos2 v

)
and is crossed e.g. by ηxz

(
u; π4

)
=(

cosu; 1
2 sin 2u; 1

2 − 1
2 cos2 u

)
at ηxz

(
π
2 ; π4

)
=
(
0; 0; 1

2

)
.

20.20 The Klein bottle
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝜋 < 𝑢 < 2𝜋 

𝜋 < 𝑣 < 2𝜋 

0 < 𝑢 < 𝜋 

0 < 𝑣 < 𝜋 

𝜋 < 𝑢 < 2𝜋 

0 < 𝑣 < 𝜋 

0 < 𝑢 < 2𝜋 

𝜋 < 𝑣 < 𝜋 

The Klein bottle is parametrized by κ (u; v) =
2 · cos 2u · (1 − sin 2u) + (2 − cos 2u) · cos v ·

(
2 · e−(πu)2 − 1

)
6 · sin 2u+ 1

2 · (2 − cos 2u) · sin 2u · cos v · e−(2u− 3
2π)

2

(2 − cos 2u) · sin v


resulting from gluing the opposite sides of a rect-
angle pairwise together in parallel sense for one
pair and in antiparallel sense for the other pair.
If we start with the parallel pair we obtain a
tube which can be closed to a sinusoidal torus
parametrized by φ (u; v) = (a+ b · cos v) · cos 2u

(a+ b · cos v) · sin 2u
b · sin v · cosu


for 0 < u < π resp. 0 < v < 2π with the self-
intersecting line along the diagonal φ

(
π
4 ;π ± w

)
=
(

1√
2 (a+ b · cos v) ; 1√

2 (a+ b · cos v) ; 0
)

for 0 <
w < π. The same figure results if we start with
the Möbius strip and curl it together so that one
half of the open boundary meets the other half
with the self-intersecting line at the horizontal
section of the surface. By gluing together two
Möbius strips we obtain the eight-figure given
by ψ (u; v) = (a+ b · (cosu · sin v − sin u · sin 2v)) · cos 2u

(a+ b · (cosu · sin v − sin u · sin 2v)) · sin 2u
b · (cosu · sin v − cosu · sin 2v)


for 0 < u < π resp. 0 < v < 2π with the self-
intersecting line along the circle ψ

(
π
2 ± w;π

)
=

(a · cosu; a · sin u; 0) for 0 < w < π
2 as another

homotopic version of the Klein bottle with a very
different geometric aspect but still consisting of
a one-sided surface with a single closed line of
self-intersection.
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21 Cell complexes

21.1 Cell complexes

∼= e0 ⊔ e1 ⊔ e2 ⊔ e3

a0 ∪φ a1 ∪φ a2 ∪φ a3

a3 ∼= B2

a0 ∪φ a1 ∪φ a2 ∼= e0 ⊔ e1 ⊔ e2

ā0 ∼= B̄0

a1 ∼= B1
a2 ∼= B2

a0 ∪φ a1
∼= e0 ⊔ e1

An open resp. closed n-cell is a topological space homeomor-
phic to the open resp. closed n-dimensional unit ball Bn =
Bn

1 (0) resp. B̄n. A cell complex (X; E) is a cell decomposi-
tion, i.e. a partition E of a Hausdorff space X = ⊔

e∈E e into
open cells e such that for every e ∈ E of dimension n ≥ 1 exists
a homeomorphism φe : a → e with an n-cell a extending to a
continuous characteristic map φe : ā → X such that φe [∂ā]
⊂ Xn−1 with the n-skeleton = ⊔ {e ∈ E : dim e ≤ n}. Hence
we have Xn ⊂ Xn+1 and X = ⋃

n≥0Xn. From the closed map
lemma 9.8 follows φe [ā] = ē whence by 9.1 the e are precom-
pact but the closure ē might not be a closed cell in X as
shown by e3 of the example since the characteristic map φe need
not be injective on the boundary ∂ā. Conversely the open cells
e = φe [a] are open in ē = φe [ā] but not necessarily open in X.
If the n-skeletons are endowed with the adjunction space Xn

= Xn−1 ∪Φ (⊔i∈I ai) ∼= Xn−1 ⊔ (⊔i∈In
ei
)

defined according to
4.12 with regard to a family of n-cells (ai)i∈In

and the contin-
uous extension Φ : Xn−1 ⊔ (⊔i∈I āi) → Xn−1 ⊔ (⊔i∈I ai) of the
characteristic maps φi : ai → Xn−1 the attached open n-cells
ei = φe [ai] due to 4.12.2 are open in Xn and the subset Xn−1 is
closed in Xn due to 4.12.1. Consequently the open (n− 1)-cells
e ∈ En−1 are open in Xn−1 but not necessarily so in Xn. In the
example the open cell e2 is open in a0 ∪φ a1 ∪φ a2 but not in a0 ∪φ a1 ∪φ a2 ∪φ a3.

21.2 CW complexes

A CW complex is a cell complex (X; E) with
1. Closure finiteness, i.e. the closure of each cell is contained in a union of finitely many cells.
2. Weak topology in this case meaning the coherent topology with respect to the family of

closures of all cells.
Every Hausdorff space X with a locally finite cell decomposition E is a CW complex.
Note: Due to 11.4 the decomposition E is locally finite iff the family Ē = {ē : e ∈ E} of its closures
is locally finite.
Proof : The closure finiteness is a consequence of the compactness of the closure of every cell.
For every x ∈ O ⊂ X with O∩ ē open in ē for every e ∈ E exists an open x ∈ U ⊂ O ⊂ X intersecting
only finitely many ē and the finitely many intersections U ∩ ē are open in ē such that in the case of
x ∈ U ∩ ē exists an open Ue ⊂ X with x ∈ Ue ∩ ē ⊂ U ∩ ē and the finite intersection x ∈⋂x∈U∩ē Ue
⊂ U ⊂ O is an open neighborhood of x in O. Since we can find such a neighborhood for every x ∈ O
the set O is open in X and since this is true for every O with O ∩ ē open in every ē the cell complex
(X; E) is coherent with respect to the family of closures of all cells.
Examples:

3. The set X = ⋃
n∈N Īn ⊂ R2 with I0 = {0} × ]0; 1[ and In =

{
(x;nx) ∈ R2 : 0 < x < 1

n

}
from

5.9 is a cell complex comprising the disjoint open cells In;
(

1
n ; 1

)
for n ≥ 1 and (0; 0) with

characteristic functions φn : B̄1 → Īn and ψn : B̄0 →
{(

1
n ; 1

)}
for n ≥ 1 resp. ψ0= id|B̄0 whose

trace topology is obviously coherent with that of the In. But since the set A =
(
n2;n

)
n∈N∗ is

closed in every In but due to (0; 0) ∈ ∂A \X not in X this cell complex is not a CW complex.
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4. The set Y = B̄2 ⊂ R2 is a cell complex comprising the disjoint open cells B2 and
(
cos 1

n ; sin 1
n

)
for n ≥ 1 with characteristic functions φn : B̄0 →

{(
cos 1

n ; sin 1
n

)}
for n ≥ 1 resp. φ0= id|B̄1

obviously satisfies 21.2.1 but since ∂B̄2 ⊈
(
cos 1

n ; sin 1
n

)
1≤n≤k

for any k < ∞ this cell complex is
not a CW complex.

21.3 Finite-dimensional CW complexes

A CW complex (X; E) containing cells with maximal dimension n ≥ 0 is called finite dimensional
of dimension n. In that case every n-cell e ∈ E is open in X.

Proof : The closed map lemma 9.8 applied to its continuous and surjective characteristic map
φe : ā → ē implies that every e ∈ E is open in ē since φ−1

e [e] = a is open in ā. The intersection e∩ ḡ is
also open in ḡ for every other cell g ∈ E since due to e∩ g = ∅ we have e∩ ḡ ⊂ ∂g, which is contained
in a finite and disjoint union of cells of dimension less than n while e is of dimension n whence it
cannot be part of this union such that e ∩ ḡ = ∅, which is an open set. The assertion then follows
from 21.2.2.

Examples:

1. A graph is a CW complex exclusively composed of 0-cells or vertices and 1-cells called edges.
The bouquet of circles

∨
1≤i≤n S1 from 4.13 is a graph composed from one 0-cell for the basis

point p and a 1-cell for each of the original circles. The characteristic maps of these are the
compositions πf ◦ ι ◦ πg of the projection πf from 4.8.4 and projection πg resp. the projection
from 4.13 in the sequence [0; 2π] πf→ S1 ι→ ⊔

1≤i≤n S1 πg→ ∨
1≤i≤n S1.

2. The decomposition of Sn ∼= B̄n ∪π {en+1} ∼= Bn ⊔ B0 from enu:20.12.3 is an n-complex.

21.4 Subcomplexes

A subcomplex Y ⊂ X of a CW complex X = ⊔
i∈I ei is a union of cells from X containing also

the closures of its members such that we have the form Y = ⊔
j∈J ej = ⋃

j∈J ēj with J ⊂ I. Every
such subcomplex is itself a closed subset of X and also a CW complex with regard to the subspace
topology in X.

Proof : Condition 21.2.1 directly follows from the definition. Concerning 21.2.2 we consider a subset
S ⊂ Y such that every intersection S ∩ ē is closed in ē for every e ⊂ Y . For every e ⊂ X \ Y follows
S ∩ e = ∅ whence S ∩ ē ⊂ ∂e which is contained in a finite union of cells with some of them contained
in Y such that we have S ∩ ē ⊂ ⋃k

i=1 ei ⊂ Y . This implies S ∩ ē =
(⋃k

i=1 S ∩ ēi
)

∩ ē with every S ∩ ēi
closed in ēi and consequently closed in the closed subset ⋃ki=1 ēi ⊂ X whence ⋃ki=1 S ∩ ēi is closed in
X and S ∩ ē is closed in ē. Since this is true for every e ∈ E we conclude that S is closed in X and
thus closed in Y . Since this argument also works with S = Y it implies that Y is closed in X.

21.5 n-skeletons

For every n ≥ 0 the n-skeleton Xn of a CW complex X is a subcomplex and X is coherent with
the family (Xn)n≥0 of n-skeletons.

Proof : For any cell e ∈ E exists an n ≥ 0 such that ē ⊂ Xn and for any subset S ⊂ X whose
intersections S ∩ Xn are closed in Xn for every n ≥ 0 the intersection S ∩ ē is closed in the closed
subset Xn ⊂ X and hence closed in X. Since this is true for every e ∈ E the set S is closed in X.
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21.6 Regular cells

A cell is called regular iff its characteristic map φe : ā → ē is a homeomorphism in particular
preserving the boundary by the injective restriction φe|∂a. Hence the closure ē of every regular cell
is a closed cell but the converse is not true as the example B2 \ {(x; 0) : 0 < yx < 1} shows. A CW
complex is regular iff each of its cells is regular.

B̄2

B̄0 B̄0

S0 ∼= B0 ⊔ B0

Φ

B̄1

B̄1

S1

Φ

Φ

Φ

Φ

S1 ∼= B1 ⊔ S0 ⊔ B1
B̄2

S2 ∼= B2 ⊔ S1 ⊔ B2

Hence every discrete space is a regular 0-
dimensional CW complex.

The decomposition of Sn from enu:20.12.2 can be ex-
tended to a regular cell decomposition as follows:
By an induction starting with S0 = B0 ⊔ B0 ∼=
B̄0 ∪ι B̄0 we assume a regular decomposition of Sn−1

∼= ⊔
1≤i≤n

(
Bi−1 ⊔ Bi−1) into n cell pairs of dimensions

0; ...;n−1 and obtain Sn ∼= B̄n∪ι B̄n ∼= Bn⊔Sn−1 ⊔Bn
according to 4.12.3.

21.7 Connected CW complexes

For a CW complex X the following conditions are equivalent:

1. X is path-connected

2. X is connected

3. Every n-skeleton Xn of X is connected

4. Some n-skeleton Xn of X is connected

Proof :

1. ⇒ 2. : follows from 5.8

2. ⇒ 3. : Assuming a partition Xn = X ′
n ⊔X ′′

n and since the boundary ∂ā ∼= Sn of every (n+ 1)-cell a
is connected, its continuous image φe [∂ā] ⊂ Xn lies in either of the two components. Hence by X ′

n+1
= X ′

n∪⋃φe[∂ā]∈X′
n

and X ′
n+1’ = X ′′

n ∪⋃φe[∂ā]∈X′′
n

we obtain a partition of Xn+1 = X ′
n+1 ⊔X ′′

n+1. Then
X ′ = ⋃

k≥nX
′
k and X ′′ = ⋃

k≥nX
′′
k provide the desired partition X = X ′ ∪X ′′.

3. ⇒ 4. : obvious

4. ⇒ 1. : According to 5.8 for any x ∈ Xn and every n-cell e ⊂ Xn the continuous image ē = φe [ā] is
path-connected and so lies in the path component Pn (x) of x in Xn . Consequently P (x) is open
and closed in the closure ē of every e ⊂ Xn and hence open and closed in Xn. Since Xn is connected
we infer Pn (x) = Xn, i.e. Xn is path-connected. Then the closure ē of every (n+ 1)-cell e ⊂ Xn+1 is
a path-connected subset of Xn+1 with ē ∩ Xn ̸= ∅ whence follows ē ⊂ Xn ⊂ Pn+1 (x) and therefore
Pn+1 (x) = Xn+1, i.e. Xn+1 is also path-connected. The assertion then follows by induction.

21.8 Compact CW complexes

In a CW complex X

1. The closure ē of each cell e ⊂ X is contained in a finite subcomplex.

2. A subset S ⊂ X is discrete iff its intersection with every cell is finite.

3. A subset S ⊂ X is compact iff it is closed in X and contained in a finite subcomplex. In
particular X is compact iff it is finite.

Proof :
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1. For n = 0 the proposition is obvious and assuming it for all dimensions up to n ≥ 0 condition
21.2.1 implies that the boundary ∂ē of a cell ē ⊂ X with dimension n + 1 is contained in the
union of finitely many cells of dimension up to n each of which is contained in a finite subcomplex
due to the assumption. The finite union of these finite subcomplexes together with the cell e is
again a finite subcomplex.

2. The intersection of the closed discrete set S̄= S with the compact set ē is compact and discrete,
hence finite. Conversely the hypothesis together with 1. imply that the intersection s∩ ē is finite
and hence closed in ē for every subset s ⊂ S and every cell e ⊂ X. Due to 21.2.2 every subset
s ⊂ S is closed in X whence follows the assertion.

3. Due to 9.4 every intersection S∩ ē of a compact S ⊂ X with the compact closure of a cell e ⊂ X
is closed in ē whence S is closed in X. Also S is covered by finitely many cells since every point
xe ∈ S ∩ e ̸= ∅ is closed in ē and consequently closed in X such that the complements X \xe are
open and cover S. Hence due to 1. it muss be contained in a finite subcomplex. Conversely we
conclude from 21.4 that every finite subcomplex is itself compact such that the assertion
follows from 9.4.

21.9 Locally compact CW complexes

A CW complex is locally compact iff it is locally finite.
Proof : ⇒ follows from 10.7 and 21.8.3. ⇐ is a consequence of the local finiteness of the closures
Ē mentioned in 21.2 combined with 21.8.1 and 21.8.3 together with the closed character of the finite
subcomplex containing the open neighborhood of the chosen point x as explained in 21.4.

21.10 The structure of n-skeletons in a CW complex

Xn−1
āe āe

Xn−1 ∪φ

⊔
e∈En

āe

Xn = Xn−1 ⊔
⊔

e∈En
e

e

Xn−1 ⊔
⊔

e∈En
āe

e

φ

φ̄

πφ

Every n-skeleton Xn = Xn−1 ⊔ ⊔e∈En
e of a CW complex X is homeo-

morphic to the adjunction space Xn−1 ∪φ
⊔
e∈En

āe formed by attach-
ing all n-cells ae with φe [ae] = e ⊂ Xn \ Xn−1 to Xn−1 by the ex-
tension φ : ⊔e∈En

∂ae → Xn−1 of the characteristic functions φ|∂āe =
φe|∂āe : ∂āe → Xn−1.
Proof : According to the attaching lemma 4.11 the further extension
φ : Xn−1 ⊔ ⊔

e∈En
āe → Xn defined by φ|Xn−1 = id and φ|āe = φe is

continuous and for every closed saturated set φ−1 [A] the intersections
φ−1 [A] ∩ Xn−1 resp. φ−1 [A] ∩ āe are closed in Xn−1 resp. āe whence
their homeomorphic images A∩Xn−1 resp. A∩ ē are closed in Xn−1 resp.
ē for e ∈ En hence closed in all e ∈ E and consequently closed in Xn.
Hence according to 4.8 the map φ is an identifying map which proves
the assertion.

21.11 The CW construction theorem

The union X = ⋃
n≥0Xn of any ascending sequence (Xn)n≥0 of topological spaces Xn = Xn−1 ∪φn⊔

e∈En
āe for n ≥ 1 obtained by subsequently attaching n-cells āe to Xn−1 according to 21.1and

starting with a nonempty discrete space X0 has a unique topology coherent with (Xn)n≥0 and a
unique cell decomposition E such that (X; E) is a CW complex with n-skeletons Xn for n ≥ 0.
Example: By continuation of the process from 21.6 we obtain an infinite-dimensional CW-complex
S∞ = ⋃

n≥0Sn ∼= ⊔
n≥0 Bn ⊔ Bn with two cells in every dimension containing every sphere Snas a

subcomplex resp. n-skeleton.
Proof : By declaring a set A ⊂ X as closed in X iff A ∩Xn is closed in Xn for every n ≥ 0 we have
defined a topology on X which is obviously the only one coherent with (Xn)n≥0. According to 4.12.1
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every Xn−1 is a closed subspace of Xn whence for any set A ⊂ Xn being closed in Xn its intersection
A∩Xm is also closed in every other Xm and hence A is closed in X. Consequently every Xn is also a
closed subspace of X. For each 0-cell e ∈ X0 and every n-cell defined as e := φn [ae] ⊂ Xn\Xn−1 for
n ≥ 1 by a composition of the identifying map φn with the injection ιe : āe → Xn−1 ⊔⊔e∈En

āe and
the projection πe : Xn → ē we obtain a characteristic map φe = πe ◦φn|āe ◦ ιe : āe → ē. According
to 21.1 the restriction φn|ae is a homeomorphism and this property extends to the composition φe|ae =
id ◦ φn|ae ◦ id : ae → e. Thus we obtain a cell decomposition of X for which Xn is the n-skeleton
for each n ≥ 0.

According to the second case in 9.12 for every x ∈ e ⊂ X in the uniquely determined n-cell e = φe [ae]
⊂ Xn \ Xn−1 exists a continuous function ψ : āe → [0; 1] with ψ−1 (0) =

{
φ−1
e (x)

}
and ψ [∂āe] =

{1}. The map Ψn : Xn−1 ⊔ ⊔e∈En
āe → [0; 1] defined by Ψn|āe = ψ and Ψ ≡ 1 everywhere else for

n ≥ 0 with X−1 := ∅ in the case of n = 0 by 4.10 is continuous on the topological sum with Ψ−1
n (0)

=
{
φ−1
e (x)

}
. Due to the universal property from 4.7 the continuity extends to the composition

fn = Ψn ◦ π−1
φn

: Xn → [0; 1] on the quotient space with with f−1
n (0) = {x}. Assuming a continuous

fn−1 : Xn−1 → [0; 1] with f−1
n−1 (0) = {x} for x ∈ Xn−1 for every e ⊂ Xn \ Xn−1 exists an ϵe > 0

such that the compact image (fn−1 ◦ πφn) [∂āe] ⊂ [ϵe; 1] whence by the first case in 9.12 we obtain an
extension ψe : āe → [ϵe; 1] of Ψn−1|∂āe = fn−1 ◦ πφn |∂āe : ∂āe → [ϵe; 1]. In analogy to the induction
start by Ψn|āe = ψe and Ψn|Xn−1 = Ψn−1 we define a continuous map Ψn : Xn−1 ⊔ ⊔e∈En

āe → [0; 1]
with Ψ−1

n (0) =
{
φ−1
e (x)

}
continuously descending to fn = Ψn ◦ π−1

φn
: Xn → [0; 1] with f−1

n (0) =
{x}. The map f : X → [0; 1] defined by f |Xn = fn is continuous since for every open O ⊂ [0; 1] the
intersection Xn ∩ f−1 [O] = f−1

n [O] is open in Xnwhence f−1 [O] is open in X. Since we can find a
such a continuous map f with f−1 (0) = {x} for every x ∈ X the space X is a Hausdorff space.

The continuous image of the compact boundary φe [∂ā] ⊂ ⊔ {e ∈ E : dim e < n} ⊂ Xn−1 of an
n-cell e is compact and hence must be included in a union of finitely many cells of dimension less
than n which implies condition 21.2.1. For any set A ⊂ X whose intersections A ∩ ē are closed in the
closure ē of every cell e ∈ E the intersection A ∩X0 is obviously closed in X0. Assuming A ∩Xn−1 =
φ−1
n [A] ∩ Xn−1 closed in Xn−1 every intersection φ−1

n [A] ∩ Xn−1 is closed in āe whence due to 4.10
the saturated set φ−1

n [A] is closed in Xn−1 ⊔ ⊔e∈En
āe so that by 4.12 the set A is closed in Xn=

Xn−1 ∪φn

⊔
e∈En

āe. By induction this is true for every n ≥ 0 so that the coherence of the chosen
topology with (Xn)n≥0 entails condition 21.2.2.

21.12 Paracompactness

Every CW-complex is paracompact.

Proof : According to 11.3 it is sufficient to show that for every open cover U = (Ui)i∈I exists a
subordinate partition of unity. By induction we construct a partition of unity (ψni )i∈I for Xn

subordinate to the open cover (Uni )i∈I of the intersections Uni = Ui ∩ Xn. We start with n = 0 by
choosing an xi ∈ U0

i for every nonempty U0
i and setting ψ0

i (xj) = δij .

Assuming partitions of unity
(
ψki

)
i∈I

for Xk subordinate to the open cover
(
Uki

)
i∈I

for k < n with
ψki |Xk−1 = ψk−1

i and for every open Vk−1 ⊂ Xk−1 with ψk−1
i [Vk−1] = {0} an open Vk−1 ⊂ Vk ⊂ Xk

with ψki [Vk] = {0} we define ψ̃n−1
i;e = ψn−1

i ◦ φ|∂āe : ∂āe → [0; 1] and Ũni;e = φ−1
e [Uni ] ⊂ āe for the

identifying map φ : Xn−1 ⊔ ⊔e∈En
āe → Xn and the characteristic map φe = φ|āe : āe → Xn of

any n-cell e ∈ En and i ∈ I. Also for any subset A ⊂ ∂āe and 0 < ϵ < 1 we define segments Aϵ ={
x ∈ āe : x

∥x∥e
∈ A ∧ 1 − ϵ < ∥x∥e ≤ 1

}
for some homeomorphism βe : B̄n → āe and the image of the

euclidean norm defined by ∥x∥e =
∥∥β−1

e (x)
∥∥ for x ∈ āe. Since the open cover (Uni )i∈I is locally

finite the compact boundary ∂āe meets only finitely many Ũnj;e with j ∈ J ⊂ I.
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1

0 |x|3︷︸︸︷
1 − ϵ 11

1 − σ (x)σ (x)

suppψ̃3(
suppψ̃3

)
ϵ

Ũ2
4

Ũ1
3

(
suppψ̃3

)
ϵ

Û1
3

Û1
2

Û2
3

Ũ1
2

suppψ̃3

Û0
1

U2U3
U0

1

Û2
2

Û1
1

φ̄

U1
2

Ûn
i = φ̄−1

[
Un

i

]

Û2
1

Û2
4

U1
1

U1

U4

e0∪̊e1∪̊e2 = X1∪̊e2 = X2 = X

ē0 ∪φ ē1 ∪φ ē2 ∼= X1 ∪φ ē2 ∼= X2

πφ

U1
3

ā1 ⊔ ā2 ⊔ ā3 ∼= B̄0 ⊔ B̄1 ⊔ B̄2

Ũ1
1Ũ0

2

Ũ2
3

Ũ2
2

Ũ2
1

Ũ1
3

Because the sets suppψ̃n−1
j;e ⊂ ∂āe ∩ Ũnj are com-

pact there is an ϵj > 0 such that
(
supp ψ̃n−1

j;e

)
ϵj

⊂
Ũnj;e for every j ∈ J . Hence we obtain an exten-
sion ψ̃ni;e;ϵ : (∂āe)ϵ → [0; 1] defined by ψ̃ni;e;ϵ (x) =
ψ̃n−1
i;e

(
x

∥x∥e

)
for ϵ = min {ϵj : j ∈ J} on the circular

strip (∂āe)ϵ. In order to cover the interior of āe we
choose a partition of unity

(
η̃ni;e

)
i∈I

subordinate to

the open cover
(
Ũni;e

)
i∈I

on the paracompact space
āe ∼= B̄n ⊂ Rn and a bump function σe : āe → [0; 1]
with supp σe = āe\(∂āe)ϵ/2 and σ−1

e {1} = āe\(∂āe)ϵ/2
according to 8.1.1. The continuous maps ψ̃ni;e =
σe · η̃ni;e + (1 − σe) · ψ̃ni;e;ϵ : āe → [0; 1] then obviously
satisfy ψ̃ni;e|∂āe = ψ̃n−1

i;e , supp ψ̃ni;e ⊂ Ũni;e and ∑i∈I ψ̃
n
i;e

≡ 1. Since these maps coincide on φ−1 (x) for ev-
ery x ∈ Xn−1 the extensions ψni : Xn → [0; 1] given
by ψni |Xn−1 = ψn−1

i resp. ψni |e = ψ̃ni;e ◦ φ−1
e are well

defined with supp ψni ⊂ Uni . They are also continu-
ous owing to the universal property 4.5 of the final
topology on Xn with regard to the identifying map φ
and the continuity of ψni ◦φ : Xn−1 ⊔⊔e∈En

āe → [0; 1].

According to the construction of the maps ψ̃ni;e resp.
ψ̃ni;e;ϵ as described above for every open Vn−1 ⊂ Xn−1
with ψn−1

i [Vn−1] = {0} and every e ∈ En exists an
ϵi > 0 such that

(
Ṽn−1

)
ϵ/2

⊂ āe and ψ̃ni
[(
Ṽn−1

)
ϵ/2

]
=

{0}. The intersections
(
Ṽn−1

)
ϵ/2

∩ ae are open in ae

whence their homeomorphic images φe
[(
Ṽn−1

)
ϵ/2

]
∩ ae are open in e and consequently the union Vn

= Vn−1 ∪ ⋃̊e∈En
φe

[(
Ṽn−1

)
ϵ/2

]
∩ ae is open in Xn with ψni [Vn] = {0}.

Since the open cover (Uni )i∈I is locally finite the compact closure āe meets only finitely many Ũni;e
such that for any x ∈ X contained in some n-cell e ⊂ Xn there are most finitely many supp ψ̃ni;e ⊂ āe
meeting the neighborhood φ−1

e (x) ∈ ae such that only finitely many supp ψni meet the neighborhood x
∈ e which is open in Xn. In the case of x ∈ Xn−1 there is a neighborhood V n−1 open in Xn−1 meeting
at most finitely many supp ψn−1

i ⊂ Xn−1 and since for each such i ∈ K the induction hypothesis
implies the existence of a V n−1 \ supp ψn−1

i ⊂ V n
i open in Xn the finite union V n = ⋃

i∈K V
n
i is open

in Xn and contains the union ⋃
i∈K

(
V n−1 \ supp ψn−1

i

)
= V n−1 \ ⋂i∈K supp ψn−1

i = V n−1. This
completes the inductive construction of a partition of unity (ψni )i∈I for each Xn subordinate to the
open cover (Uni )i∈I of the intersections Uni = Ui ∩Xn.

Finally for each i ∈ I we define ψi : X → [0; 1] by ψi|e = ψni for e ∈ En. This function is continuous on
X since every ψni is continuous on ē ⊂ Xn for e ∈ En and the topology on X is coherent with regard
to (ē)e∈E . For every x ∈ X there is an e ∈ En with x ∈ e whence follows ∑i∈I ψi (x) = ∑

i∈I ψ
n
i (x) =

1. Also we have supp ψi ⊂ ⋃
n≥0 supp ψni ⊂ ⋃

n≥0 U
n
i = Ui. The family (ψi)i∈I is locally finite since

for every x ∈ X with x ∈ e for some e ∈ En the local finiteness of (ψni )i∈I implies the existence of a
finite subset J ⊂ I and an open neighborhood x ∈ V n ⊂ Xn with ψni [V n] = 0 for i ∈ I \ J . Due to
the construction of the families (ψni )i∈I we also have ascending open neighborhoods V m ⊂ Xm with
V m−1 ⊂ V m and ψmi [V m] = 0 for i ∈ I \ J and every m ≥ n such that V = ⋃

m≥n Vm is an open
neighborhood of x in X meeting only the same finitely many supp ψj with j ∈ J .
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21.13 CW complexes as manifolds

Every CW complex X is a manifold. If it has countably many cells and every point x ∈ X is
locally Euclidean of dimension n with an n-cell neighborhood it is a connected n-dimensional
manifold and in that case the dimension of the CW complex is also n.

Note: In [8] p. 145 th 5.27 CW complexes are used to show that every 1-manifold is homeomorphic
to S1 if it is compact and homeomorphic to B1 if not. The subsequent corollary 5.28 asserts that
every 1-manifold with boundary is homeomorphic to B̄1 if it is compact and homeomorphic to
R+

0 if not.

Examples:

1. The sphere due to enu:20.12.3 has a CW decomposition given by Sn = e0 ⊔ en−1 ∼= B0 ⊔ Bn
which according to 21.6 can be extended to a regular CW decomposition Sn ∼=⊔

0≤i≤n
(
Bi ⊔ Bi).

Apart from the trivial representation as the corresponding disconnected manifold it can
also be described as an n-dimensional connected manifold with 2n charts

(
Sn±
i ;πn+1±

i

)
on the half spheres Sn± = Sn ∩ Hn+1± in the open halfplanes Hn+1+

i = {xi > 0} and
Hn+1−
i = {xi < 0} as defined in 21.12 with the projections πn+1±

i : Sn±
i → En+1

i
∼= Rn

given by πn+1±
i (x1; ...;xi; ...;xn+1) = (x1; ...; 0; ...;xn+1) with continuous inverse given by(

πn+1±
i

)−1
(y1; ...; 0; ...; yn+1) =

(
y1; ...; ±

√
1 − ∥y∥2; ...; yn+1

)
. By a simple extension of the di-

mension in the additional charts
(
Sn+1±
i;ϵ ;πn+1

i;ϵ

)
on the segments Sn+1±

i;ϵ = {1 − ϵ < ∥x∥ < 1 + ϵ}∩
Hn+1±
i ⊂ Rn+1 with πn+1

i;ϵ (x1; ...;xi; ...;xn+1) = (x1; ...; 1 − ∥x∥ ; ...;xn+1) we obtain the corre-
sponding n-dimensional connected submanifold of Rn+1.

2. The closed ball due to 1. has a CW decomposition given by B̄n = e0 ⊔ en−1 ⊔ en ∼= Sn ⊔Bn
∼= B0 ⊔Bn−1 ⊔Bn resp. a regular CW decomposition Sn ∼= ⊔

1≤i≤n
(
Bi ⊔ Bi). Analogously to

1. it has a representation as an n-dimensional connected manifold with boundary with
the interior chart

((
1 − ϵ

2
)
Bn; id

)
and 2n boundary charts

(
SHn±

i;ϵ ; ρn±
i

)
on the segments

SHn±
i;ϵ = {1 − ϵ < ∥x∥ ≤ 1} ∩ Hn±

i in the open halfplanes Hn±
i with the homeomorphisms

ρn±
i : B̄n∗ → Hn±

i given by ρn±
i (x1; ...;xi; ...;xn) =

(
x1; ...; ±

(
1 − 1

∥x∥

)
; ...;xn

)
with contin-

uous inverse given by
(
ρn±
i

)−1
(y1; ...; yi; ...; yn) =

(
y1; ...; ±1

1−∥y∥ ; ...; yn
)
. By the additional

charts
((

1 − ϵ
2
)
Bn+1; id

)
and

(
SHn+1±

i;ϵ ; ρn+1±
i

)
we obtain the corresponding n-dimensional

connected submanifold with boundary of Rn+1. Note that according to enu:20.12.2 the
closed half sphere Sn± = Sn ∩Hn± ∼= B̄n is homeomorphic to the closed ball.

φ1 φ2

ā2

e1

ā1
ā0

e2
e0

3. he lemniscate L = e0 ⊔ e1 ⊔ e2 may be constructed by attaching two
equal 1-cells ā1 ∼= B̄1 and ā2 ∼= B̄1 to a 0-cell a0 ∼= B̄0 = B0. The
three cells may also be regarded as the connected components of a
disconnected manifold with the charts φ0 : B0 → e0; φ2 : B1 → e1
and φ2 : B1 → e2 determined by the corresponding characteristic
functions. According to 20.11 the lemniscate may also be described as
a connected R-manifold in R2 and as a connected R-submanifold
in R3 but not in R2.

4. The double cone C =
{
z2 = x2 + y2} = C+ ∪ C−

∗ ⊂ R3 with C+

= {(x; y; z) : z ≥ 0} and C−
∗ = {(x; y; z) : z < 0} from 20.13 can be

represented as a disconnected R2-manifold and as a disconnected
R2-submanifold in R4 but not in R3 each with two connected com-
ponents. However it does not have a CW decomposition.
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Proof : The n-cells and their homeomorphisms provide charts and assure the Hausdorff property.
According to 4.6 condition 21.2.2 implies that the injections ιe : ē → X for e ∈ E into the CW complex
(X; E) are open maps. Definition 4.10 implies that their continuous extension I : ⊔e∈E ē → X is
also an open map and due to enu:4.8.2 it is a quotient map. According to the closed map lemma
enu:9.8.2 the continuous extension ΦI : ⊔e∈E āe → ⊔

e∈E ē of the homeomorphisms φe : ae → e
is also a quotient map. Obviously the composition of two quotient maps is a quotient map and so
is the continuous extension of the characteristic maps Φ = I ◦ ΦI : ⊔e∈E āe → X. Hence X
is homeomorphic to a quotient space on a countable disjoint union of closed cells which is second
countable. Due to 4.7 the quotient space is also second countable and so is X. According to 20.7
and 21.9 the CW complex X is locally finite and due to the Note in 21.2 for every x ∈ X exists an
open neighborhood W intersecting only finitely many closures ē of its cells. Then the intersection U
= W ∩ e0 with one of these cells with maximal dimension k is nonempty and open in e0 since W is
open in X. Thus U is an Rk-manifold. For every other cell e ∈ E with e ∩ W ̸= ∅ we have e ∩ e0 =
∅ and due to ē \ e ⊂ Xk−1 and e0 ∩ Xk−1 = ∅ follows ē ∩ e0 = ∅ and in particular ē ∩ U = ∅. Since
this is true for every e ∈ E \ {e0} condition 21.2.2 implies that U is open in X and therefore an
Rn-manifold. By the invariance of dimension 26.1 follows k = n. Hence every neighborhood of
every x ∈ X intersects a cell of dimension n but not larger whence follows that the dimension of the
CW complex is indeed n.

22 Simplicial complexes

22.1 Definitions

simplices

simplicial
complex

complexes
not simplicial

A k-simplex σ = [a0; ...; ak] = co {a0; ...; ak} =
{∑

0≤i≤k tiai : ti ≥ 0;∑0≤i≤k ti = 1
}

generated by the affinely independent vectors (ai)0≤i≤k ⊂ Rn with linearly in-
dependent translations (ai − a0)1≤i≤k is their convex hull as defined in [16]
1.6 and furnished with the subspace topology. The barycentric coordinates
(t0; ...; tk) ∈ [0; 1[k+1 of x = ∑

0≤i≤k tiai represent the mass distribution of the
vertices ai if the center of gravity is at the point x with the associated vec-
tor x = a0 +∑

0≤i≤k ti (ai − a0) in the affine space a0 + Rn as described in [17]
9.1. Any simplex σ spanned by a subset of the vertices of a simplex σ is called a
face of σ. Faces generated by two resp. k − 1 vertices are edges resp. boundary
faces. Due to 9.7 and 9.11 every k-simplex is a closed k-cell and consequently
a compact k-manifold with boundary. Its boundary is the union of its
faces and identical to the manifold boundary as defined in 20.9. A k-simplex
without its faces is called its interior resp. an open k-simplex and is defined
by
{∑

0≤i≤k tiai : ti > 0;∑0≤i≤k ti = 1
}

, i.e. the barycentric coordinates are not al-
lowed to vanish. Note that similarly to the manifolds with boundary except for
k = n an open k-simplex is not open in Rn and its interior and boundary do not
coincide with its topological interior and boundary as subset of Rn.

A simplicial complex K is a locally finite set of simplices including every
face of every σ ∈ K such that the intersection of every two simplices is either
empty or a face of each. Its dimension is the maximal dimension of the simplices
included in K and its union ⋃K = |K| is the polyhedron of K. A subset K ′ ⊂ K
is a subcomplex of K iff it includes every face of every simplex σ ∈ K ′ such that
every subcomplex is also a simplicial complex. The subcomplex comprising every
simplicial complex of dimension at most k is the k-skeleton of K. Obviously the set of all interiors
of the elements of a simplicial complex K is a regular cell decomposition of its polyhedron |K|.
Examples:

1. The set including an n-simplex together with all of its faces is an n-dimensional simplicial
complex whose polyhedron is homeomorpic to B̄n.
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2. The set of all proper faces of an n-simplex constitutes an (n− 1)-dimensional simplicial com-
plex whose polyhedron is homeomorpic to Sn−1.

3. The set of all vertices and edges of a convex m-polygon in R2 with distinct vertices is a
1-dimensional simplicial complex whose polyhedron is homeomorpic to S1.

4. The set of all 1-simplices [n;n+ 1] and all 0-simplices {n} for n ∈ Z is a 1-dimensional simplicial
complex whose polyhedron is homeomorpic to R.

5. The set of all 1-simplices [n;n+ 1] and all 0-simplices {n} for n ∈ N is a 1-dimensional simplicial
complex whose polyhedron is homeomorpic to R+

0 .

22.2 Triangulation

A triangulation is a homeomorphism between a topological space and the polyhedron of some sim-
plicial complex. The proofs of the following theorems can be found in [9]:

1. Triangulation theorem for R2-manifolds: Every R2-manifold is homeomorphic to the poly-
hedron of a 2-dimensional simplicial complex, in which every 1-simplex is a face of exactly two
2-simplices.

2. Triangulation theorem for R3-manifolds: Every R3-manifold is triangulable.
3. There are R4-manifolds which are not triangulable.

22.3 Simplicial maps

simplicial isomorphism

simplicial map

According to [17] 9.3 an affine map F : a + Ea → b + Eb between affine
Rn-spaces with a; b ∈ Rn and vector subspaces Ea;Eb ⊂ Rn is given by
F (a) = b and F (a + x) −F (a) = f (x) resp. F (a + x) = b + f (x) for every
x ∈ Ea and some linear map f : Ea → Eb. Due to [16] th. 1.10 the linear map
f is continuous and so is F with regard to the closed subsets a + Ey and
b + Eb. According to [17] th. 3.7 for any two k-simplices σ = [a0; ...; ak] and
τ = [b0; ...; bk] exists a unique affine extension F : ao + Rn → bo + Rn with
F [σ] = τ of the vertex map given by F (ai) = bi for 0 ≤ i ≤ n since there
is a unique endomorphism f : Rn → Rn with f (ai − a0) = F (ai) − F (a0)
= bi − b0 such that F

(∑
0≤i≤n tiai

)
= F (a0) + f

(∑
0≤i≤n tiai − a0

)
= b0 +

f
(∑

0≤i≤n ti (ai − a0)
)

= b0 +∑0≤i≤n tif (ai − a0) = b0 +∑0≤i≤n ti (bi − b0)
= ∑

0≤i≤n tibi.
A simplicial map between simplicial complexes K and L is a continuous map F : |K| → |L|
whose restriction F |σ to any simplex δ ∈ K is an affine map onto a simplex F [σ] ∈ L . In the
case of a homeomorphism it is called a simplicial isomorphism . For any given vertex map
F0 : K0 → L0 between the 0-skeletons K0 and L0 of simplicial complexes K and L preserving ev-
ery simplex [a0; ...; ak] ∈ K such that its image [F0 (a0) ; ...;F0 (ak)] is again a simplex in L exists a
unique simplicial map F : |K| → |L| coinciding on K0 with F0 = F |K0 . If in addition the preim-
age

[
F−1

0 (b0) ; ...;F−1
0 (bk)

]
of every simplex [b0; ...; bk] ∈ L is again a simplex in K the continuous

extension is a simplicial isomorphism. Indeed the map F determined by the unique continuous ex-
tensions F |σ : σ → F [σ] of the vertex map on every closed cell σ ∈ K is continuous on the regular
CW complex |K|= ⋃

σ∈K σ since every preimage F |−1
σ [O] = F−1[O] ∩ σ of an open set O ⊂ |L| is

open in σ whence due to 21.2.2 F−1 [O] is open in |K|. A second application of this argument to the
inverse yields the asserted homomorphism.

22.4 The Hauptvermutung

A simplicial complex K ′ is a subdivision of the simplicial complex K iff every simplex σ′ ∈ K ′ is
contained in a simplex σ′ ⊂ σ ∈ K and every simplex σ ∈ K is the union of simplices σ′ ∈ K ′. Two
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simplicial complexes with a common subdivision are combinatorally equivalent and in that case
their polyhedra coincide: |K| = |K ′|. The converse assertion is called the Hauptvermutung and
was conjectured by Ernst Steinitz and Heinrich Tietze in 1908. It is known to be true for all simplicial
complexes of dimension 2 and triangulated compact complexes of dimension 3 but false in
all higher dimensions.

23 Compact surfaces

24 Topological groups

24.1 Group actions

A topological group is a group (G; ◦) endowed with a topology such that the group operation
◦ : G × G → G is continuous. Obviously every subgroup H ⊂ G of a topological group is a
topological group with regard to the trace topology and every product (G×H; ◦ × ⋄) of topological
groups (G; ◦) and (H; ⋄) is a topological group with regard to the product topology. For every
continuous left action G × X → X of a group G on a topological space X defined according
to [17] Def. 1.13 by a map (g;x) 7→ g · x with the associative law g1 · (g2 · x) = (g1g2) · x and
the conformity with the neutral element e · x = x for every x ∈ X the left translations g · X
are homeomorphic to X since all maps x 7→ g · x are obviously continuous and this implies the
continuity of their inverses g · x 7→ x =

(
g−1g

) · x. The same is true for the right actions defined by
x · g = g−1 · x. The orbits G · x of all x ∈ X defined in [17] 1.14 form a partition of X = ⋃̊

x∈XG · x
since g · x = h · y ∈ (G · x) ∩ (G · y) ⇒ (

h−1g
) · x = y ⇒ y ∈ G · x ⇒ G · y ⊂ G · x and vice versa.

The corresponding orbit space X/G is the quotient space with regard to xGy ⇔ ∃g ∈ G : y = g · x.
The action is transitive iff G · x = X for every x ∈ X and it is free iff g · x = x implies g = e.
According to [17] 1.7 in the case of a subgroup H ⊂ G acting on a topological group the orbits gH
of the left action are the right cosets and vice versa. The orbit space G/H is then called the left
coset space of G by H and in the case of coinciding cosets gH = Hg according to [17] 1.8 the orbit
space inherits the algebraic structure of a factor group.
Obvious examples of topological groups are provided by the real numbers

(
R+

∗ ; ·) ⊂ (R∗; ·) ⊂ (C∗; ·), the
circle

(
S1; ·) ⊂ (C∗; ·) with the complex multiplication and the torus (Tn; ·) =

(
S1 × ...× S1; ·)with

the direct group structure defined according to [17] 1.4 as componentwise multiplication xy =
(xi · yi)1≤i≤n for xi; yi ∈ C.

24.2 The general linear group
The continuity of the multiplication and addition on C2 → C, the resulting continuity of polynomials
on C2n → C resp. the continuity of the components of the matrix multiplication C2n2 → C imply
the continuity of the matrix multiplication C2n2 → Cn2 with regard to the corresponding product
spaces while Cramer’s rule [17] 4.3 assures the continuity of the inversion whence the general
linear groups GL (n;R) ⊂ GL (n;C) are topological group with regard to the product topology
on Rn2 ⊂ Cn2 . Among its subgroups we have the orthogonal group O (n;R) ⊂ GL (n;R) and the
normal subgroup U (n) ⊂ GL (n;C) of the unitary matrices defined in [17] 6.6.

1 · · · i · · · j · · · n

Eij =



1
. . .

0 1
. . .

1 0
. . .

1



1
...
i
...
j
...
n

From the argument above follows that the general linear group
GL (n;R) by matrix multiplication continuously acts on the left
on Rn. According to [17] Def. 3.10 for any pair x; y ∈ Rn with
xi ̸= 0 and yj ̸= 0 exists a TA

B =
(
T E

B

)−1
∗ Cij ∗ T E

A ∈ GL (n;R)
with regard to the bases A = (e1; ...; ei−1; x; ei+1; ...; en) and B =
(e1; ...; ej−1; y; ej+1; ...; en) with the coordinate systems T E

A ∗ x =
ei resp. T E

B ∗ y = ej and the index exchange Cij ∗ ei = ej which
implies TA

B ∗ x = y. Hence we have GL (n;R) ∗ Rn∗ = Rn∗ and conse-
quently two orbits Rn∗ and {0} resp. the orbit space Rn∗/GL (n;R)
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= {π (e1) ;π (0)}. Its quotient topology comprises the three sets
{π (e1) ;π (0)}, {π (e1)} and ∅ whence it is not a Hausdorff space.
The corresponding orbits of the orthogonal group are the spheres
rSn−1 with the orbit space Rn∗/O (n;R) = {π (re1) : r ≥ 0}. This
space is homeomorphic to R+ and hence a Hausdorff space.

24.3 The torus

The group ({±1} ; ·) endowed with the discrete topology by multiplication freely and continuously
acts on the sphere Sn with orbits consisting of pairs of antipodal points ±e for e ∈Sn such that
its orbit space is homeomorphic to the projective space Pn defined in [17] 9.1 as the orbit space of
(R∗; ·) acting on Rn+1 \ {0} resulting in the orbits R∗ · e for e ∈Sn. The action of the additive group
(Zn; +) endowed with the direct group structure, i.e. x + y = (xi + yi)1≤i≤n by g · x = g + x on
Rn results in the orbit space Rn/Zn which due to the commutativity of the componentwise addition
due to [17] 1.8 inherits the algebraic structure of a factor group. The exponential quotient map
ϵ : Rn → Sn−1 defined by ϵ (r) =

(
e2πirk

)
1≤k≤n is continuous, open and surjective so that according

to ?? it is a quotient map and its canonical bijection ϵ̄ : Rn/Zn → Sn−1 is a homeomorphism.

25 Homotopy

Two continuous maps f ; g : X → Y are homotopic iff there is a continuous F : X × I → Y
with I = [0; 1] such that F (t; 0) = f (t) and F (t; 1) = g (t) for every t ∈ I. Obviously homotopy
is an equivalence relation and the set X is simply connected iff any two closed paths are
homotopic.

26 Homology

26.1 Invariance of dimension

The dimension n of a finite-dimensional manifold is uniquely determined.

Proof : [8] p. 379 problem 13-3

26.2 Invariance of the boundary

Every manifold with a boundary is the disjoint union of its interior and its boundary..

Proof : [8] p. 379 problem 13-4

26.3 Brouwer’s fixed point theorem

Every continuous map f : B̄n → B̄n has a fixed point x with f (x) = x.

Proof : [8] p. 379 problem 13-7
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Index
Lp-norm, 8
n-cell, 33, 80
n-dimensional torus, 75
n-skeleton, 80–83
-polygon, 88

absolute convergence, 10
absolute value, 13, 15
accumulation point, 9, 12, 23, 30, 36, 46
addition, 16
adjacent of order U, 41
adjunction space, 19, 20, 74, 80, 83
admissible chart, 65
affine map, 88
affine space, 74, 76, 87, 88
affinely independent, 87
Alexander’s theorem, 31
Alexandrov compactification, 34, 51, 57, 59, 62
Alexandrov’s theorem, 37
almost all, 9
almost everywhere, 8
amount function, 61
antipodal points, 90
Arzela-Ascoli theorem, 64
associative law, 89
atlas, 65
atom, 23, 25
attaching lemma, 19, 83
axiom of choice, 8
Axioms of countability, 11

Baire category, 54
Baire set, 56
Baire space, 52, 54
Baire’s theorem, 55, 56
Banach space, 14, 76
Banach’s category theorem, 56
Banach-Steinhaus theorem, 56
barycentric coordinates, 87
base points, 20
basis, 10, 65
basis point, 81
big union, 8
Bolzano-Weierstrass, 30
boundary, 12
boundary chart, 70, 72, 86
boundary faces, 87
boundary of a simplex, 87
boundary point, 12, 16, 21
bounded, 59, 63
bounded from above, 54

bouquet of circles, 20, 81
Brouwer fixed point theorem, 90
bump function, 28, 85

canonical bijection, 17
canonical injection, 16
canonical projection, 17, 70
Cantor set, 13, 54
category theorem, 55, 56
Cauchy filter, 46
Cauchy sequence, 9, 49, 50, 58
Cauchy’s integral formula, 65
cell complex, 80
cell decomposition, 80
change of coordinates, 65, 77
characteristic map, 80, 81, 84, 87
chart, 65, 86
circle, 70, 77, 89
closed ball, 86
closed function, 49
closed graph theorem, 56, 66
closed map lemma, 32, 70, 73, 75, 81, 87
closed map theorem, 76
closed mapping, 14
closed set, 9
closed sets, 10
closed submanifold, 67
closed-map lemma, 33
closure, 12, 21, 22, 38, 48, 58, 64
Closure finiteness, 80
cluster point, 23
cofinite topology, 26
coherent topology, 17, 80
combinatorally equivalent, 89
commutative, 90
compact, 30, 41, 43, 51, 56, 57, 62, 64, 76, 82
compact convergence, 34, 60, 61
compact manifold, 70
compact open topology, 61
compatible atlas, 65
complement, 9
complete, 9, 46, 49, 52, 57, 59, 60, 62
complete closure, 57
completely metrizable, 55
completely regular, 24, 26, 35, 40, 58
complex conjugate, 62
complex valued sequences, 51
complex-valued function, 8, 61, 62
component, 15, 44
components, 32
composition, 13, 43
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connected, 20, 82
connected component, 65
Connected components, 21
connectedness, 66
constant term, 62
continuous, 9, 13, 24, 30, 34, 43
continuous at a point, 13
continuous complex valued functions, 51
continuous image, 20
contractible, 22
contraction, 22
Contraction principle, 50
convergence, 9, 23
convergent subsequence, 64
convex, 33, 56
convex hull, 87
coordinate axes, 71
coordinate function, 65
coset space, 89
cosets, 76, 89
countable, 29, 33
countable at infinity, 35
countable basis, 59
countable neighborhood basis, 52
countably compact, 36, 64
cover, 16, 29, 37, 55, 58
Cramer’s rule, 89
crosscap, 78
curve, 32
CW complex, 80, 88
cylinder sets, 15
càdlàg, 14, 51

decreasing, 49
dense, 12, 33, 44, 47, 52, 55, 62
diagonal, 41, 42, 57
diameter, 49, 53
differentiable manifold, 65
differential equation, 64
Dilation principle, 49
dimension of a CW complex, 81
dimension of a simplicial complex, 87
Dini’s theorem, 34
direct group structure, 89, 90
direct sum, 66
discrete space, 82
discrete topology, 10, 42, 46, 52
disjoint, 19, 20, 53
disjoint covering, 21
distance between sets, 39
distribution function, 14
double cone, 72, 86
double pendulum, 75
downstairs map, 68

edge, 81, 87
eight-figure, 79
embedding, 16, 19, 32, 40, 48, 58, 68, 71
entourage, 41
ϵ-neighbourhood, 71
eqivalence class, 8
equicontinuous, 63, 64
equivalence relation, 17
equivalent metrics, 9
Euclidean manifold, 69
Euclidean norm, 8, 15
euclidean norm, 10
Euclidean topology, 16
exponential quotient map, 75, 90
extended addition, 35
extended multiplication, 35
extension, 28, 48, 58

face, 87
factor group, 89, 90
field, 8
filter, 23
filter basis, 23
final topology, 17–19, 37, 65, 67, 68
finite dimensional CW complex, 81
finite partition, 42, 46
first category, 54–56
first countable, 11–13, 37, 39, 45, 60
first countable, 36
fixed point, 50
fixed-point-free, 68
floor function, 33
free action, 89
free filter, 23
Fréchet filter, 23
Fréchet space, 56
function, 17, 20
functional, 70

Gauss bracket, 33
general linear group, 89
geometric series, 10
gluing lemma, 68
graph, 20, 28, 81

half plane, 21
half sphere, 86
halfplane, 86
Hauptvermutung, 89
Hausdorff, 66, 68
Hausdorff property, 8
Hausdorff space, 24, 34, 36, 84
Heine’s theorem, 43
Heine-Borel theorem, 32
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Heine-Borel-theorem, 33
Hilbert cube, 52
holomorphic, 65
homeomorphic, 14
homeomorphism, 14, 16, 18, 48, 51, 52, 66
homotopic, 90
hyperplane, 76

identification topology, 17
identifying map, 83, 84
identity, 13
image of a filter, 24
image sequence, 9
imaginary part, 62
imaginary part, 15
immersion, 68, 71
Index notation, 8
index set, 8
indiscrete topology, 10, 26, 42
induction, 45, 61
inductive, 23
inductively ordered, 65
initial neighborhood filter, 43, 46, 60
initial topology, 15, 45, 67, 71
injection, 17, 44, 46
injective, 33, 54
interior, 12
interior chart, 70, 72, 86
interior of a manifold with a boundary, 70
interior of a simplex, 87
interior point, 12, 16
interior points, 54
intermediate value theorem, 20
interval, 20
Invariance of dimension, 90
invariance of dimension, 87
Invariance of the boundary, 90
involution, 68
irrational number, 33

kernel, 29, 70
Klein bottle, 79
Kronecker’s approximation theorem, 33

Lebesgue measure, 54
Lebesgue number, 34
Lebesgue’s Lemma, 34
left action, 89
left-limits, 14
lemniscate, 67, 68, 71, 86
limit, 50
limit point, 9, 12, 23
Lindelöf space, 36
line, 16

linear order, 23, 30, 50
linearity, 8
linearly independent, 87
Lipschitz continuous, 63
local basis, 65
locally closed, 66, 71, 72
locally compact, 34, 35, 41, 55, 57, 60, 64, 69,

76, 83
locally Euclidean, 86
locally finite, 16, 29, 37, 83, 87
locally path connected, 22
loop, 22
lower semicontinuous, 14

manifold, 77, 86
manifold boundary, 70, 87
manifold with a boundary, 71, 90
manifold with boundary, 70, 72, 86
manifolds, 22
T1-space, 24
T2-space, 24
T3a-space, 24
T3-space, 24
T4-space, 24
Fσ-set, 29, 53
Fs-set, 39
Gδ-set, 29, 51, 53, 54
Gδ-set, 40, 52
Lp -spaces, 51
Lp-space, 54
T3-space, 42
maximal element, 23
Mazurkiewicz’ theorem, 51
meager, 54
measure, 54
measure space, 8
meromorphic function, 35
Meromorphic functions, 35
metric, 8
metric space, 8, 10, 39, 44, 49, 56, 59
metric spaces, 25
metrizable, 41, 45, 50–52, 60, 62, 64
metrization theorem (Bing, Nagata, Smirnow),

40
Metrization theorem for uniform spaces, 45
minimal Cauchy filter, 47
Minimum, 50
mirror image, 41
Moebius strip, 76
multiplication, 16
Möbius strip, 19, 72

natural numbers, 50
natural topology, 10
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neighborhood, 9, 11, 29, 41
neighborhood basis, 11, 35, 42–44
neighborhood filter, 23, 28, 41
neighborhood system, 11
neutral element, 89
norm, 8
normal, 24, 31, 36, 41
normal family, 65
normal subgroup, 89
nowhere dense, 12, 54

one-point-compactification, 74, 77
open ball, 9
open cover, 30
open disc, 16
open map, 17
open mapping, 14
open mapping theorem, 56
open set, 9, 10
open simplex, 87
open spiral, 16
orbit, 89
orbit space, 89
order topology, 59
ordinal numbers, 59
origin, 65
orthogonal group, 89

paracompact, 37, 40
partition, 80
partition of unity, 30, 38, 70, 84
path, 52
path component, 22, 82
path connected, 22
path-connected, 82
point at infinity, 34
point finite, 29
pointwise convergence, 9, 34, 63
polar coordinates, 72, 73, 77
pole, 35
polish, 62
Polish space, 50
polish space, 57
polyhedron, 87
polynomial, 62
positive definiteness, 8
positive halfspace, 70
precompact, 30, 56, 57, 69, 80
principal filter, 23
principal ultrafilter, 23
probability space, 14
product, 8
product manifold, 67
product metric, 10

product of uniform spaces, 44
product space, 27, 32, 41, 64
product topology, 15, 51, 68
projection, 17, 32, 44, 46, 51, 60, 66, 69
projections, 15
projective completion, 74, 76
projective line, 77
projective plane, 77
projective space, 76, 90
pruned tree, 52
pseudometric, 8, 44
punctured vector space, 76

quasi-compact, 30
quotient manifold, 68
quotient map, 17, 32, 37, 68, 72–76, 87, 90
quotient space, 27, 73, 74
quotient spaces, 76
quotient topology, 17, 76

random variable, 14
random variables, 51
rational numbers, 54
real part, 15, 62
reciprocal, 13
refinement, 37
refinemet, 38
regular, 24, 31, 39, 41, 52, 66
regular cell, 82
regular cell decomposition, 87
regular coordinate ball, 69
regular CW complex, 82, 86
relation, 17
restriction, 16, 25
right action, 89
right-limits, 14
roman surface, 78

S-convergence, 60
saturated, 17, 76
saturated set, 17, 37
second category, 54, 55
second countability, 66
second countable, 12, 35, 36, 41, 50, 52, 57, 68,

69, 87
second countable, 11
segments, 84, 86
seminorm, 9
separable, 8, 12, 41, 47, 52
separated, 42, 45, 48, 57, 60, 64
separating function, 29
separation axioms, 8, 24, 42, 60
sequence, 9, 23, 31
sequentially compact, 36, 64
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σ-compact, 35, 37, 41, 51, 60, 62, 64
σ-locally finite, 38
simple chain, 21
simplex, 87
simplicial complex, 87
simplicial isomorphism, 88
simplicial map, 88
simply connected, 22
sinusoidal torus, 79
skeleton of a simplicial complex, 87
Skorokhod metric, 51
small of order U, 41, 46
Sorgenfrey line, 12, 21
sphere, 73
splitting map, 66
splitting space, 66
stereographic projection, 74, 76, 77
stochastic processes, 51
Stone Weierstrass theorem, 62
Stone’s theorem, 39
Stone-Čech-compactification, 58
Stone-Čech-compactification, 26
strictly increasing, 14
stronger, 10, 23, 43
subbasis, 10, 13, 15, 31
subcomplex, 81
subcomplex of a simplicial complex, 87
subdivision of a simplicial complex, 88
subgroup, 89
submanifold, 67
submersion, 69
subspace, 25
subspace topology, 16
support, 30
supremum metric, 59
supremum norm, 8, 9
supremum property, 50
surjective, 17, 54
symmetric, 41, 64
symmetry, 8

tails, 23
T3a-space, 45
Tietze’s extension theorem, 29
topological boundary, 70
topological embeddings, 18
topological group, 89
topological manifold, 65
topological space, 10
topological sum, 18
topology, 10
topology of compact convergence, 60
topology of the uniform space, 42
topology of uniform convergence, 59

torus, 19, 68, 75, 89
torus group, 66
totally bounded, 56, 58
totally disconnected, 20, 21, 52
trace filter, 24, 44, 47
trace topology, 16, 18, 67, 71
trajectory, 20
transition map, 65, 70
transitive action, 89
Trees, 52
triangle inequality, 8
triangulation, 88
Tychonov’s theorem, 32, 58

ultrafilter, 23, 30–32, 57
Uniform convergence, 59
uniform convergence, 9, 60
uniform equicontinuous, 63
uniform neighborhood, 43
uniform space, 41
uniform structure, 11
uniformizable, 42, 45
uniformly continuous, 16, 43, 47, 48, 53
unit circle, 16, 18
unit sphere, 18
unitary matrices, 89
universal property, 15, 17, 18, 67, 84, 85
upper half-space, 74
upper half-sphere, 74
upper semicontinuous, 14
Urysohn’s lemma, 28, 35, 40
Urysohn’s metrization theorem, 26, 52
Urysohn’s metrization theorems, 41
Urysohns metrization theorem, 51

vanishing at infinity, 62
vector space, 8
vertex, 81, 87
vertex map, 88

weak topology, 15
weaker, 10, 23, 43
wedge sum, 20
well-ordering, 50

Zorn’s lemma, 23, 30, 56, 65
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